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Abstract

A criterion of joint ergodicity of several sequences of transformations of a probability measure space X of

the form T
ϕi(n)
i is given for the case where Ti are commuting measure preserving transformations of X and ϕi

are integer valued generalized linear functions, that is, the functions formed from conventional linear functions
by an iterated use of addition, multiplication by constants, and the greatest integer function. We also establish a
similar criterion for joint ergodicity of families of transformations depending of a continuous parameter, as well

as a condition of joint ergodicity of sequences T
ϕi(n)
i along primes.

0. Introduction

Let (X,B, µ) be a probability measure space. A measure preserving transformation T :X −→ X is said
to be weakly mixing if the transformation T × T , acting on the Cartesian square X × X, is ergodic. The
notion of weak mixing was introduced in [vNK] (for measure preserving flows) and has numerous equivalent
forms (see, for example, [BeR] and [BeG].) The following result involving weak mixing plays a critical role
in Furstenberg’s proof ([Fu]) of ergodic Szemerédi theorem and forms a natural starting point for numerous
further developments (see [Be], [BeL1], [BeMc], [BeH]):

Theorem 0.1. If T is an invertible weakly mixing measure preserving transformation of X, then for any
k ∈ N and any A0, A1, . . . , Ak ∈ B one has

lim
N−→∞

1

N

N∑

n=1

µ
(
A0 ∩ T−nA1 ∩ · · · ∩ T−knAk

)
=

k∏

i=0

µ(Ai).

It is not hard to show that Theorem 0.1 has the following functional form. (In accordance with the well
established tradition we write Tf for the function f(Tx).)

Theorem 0.2. If T is an invertible weakly mixing measure preserving transformation of X, then for any
k ∈ N, any distinct nonzero integers a1, . . . , ak, and any f1, . . . , fk ∈ L∞(X) one has

lim
N−→∞

1

N

N∑

n=1

T a1nf1 · · ·T aknfk =

k∏

i=1

∫

X

fi dµ

in L2 norm.
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In other words, given a weakly mixing transformation T of X and distinct nonzero integers a1, . . . , ak, the
transformations T a1 , . . . , T ak (or, rather, the sequences T a1n, . . . , T akn, n ∈ N) possess a strong independence
property. This naturally leads to the following definition:

Definition. (Cf. [BBe1].) Measure preserving transformations T1, . . . , Tk of a probability measure space X
are said to be jointly ergodic if for any f1, . . . , fk ∈ L∞(X) one has

lim
N−→∞

1

N

N∑

n=1

Tn
1 f1 · · ·Tn

k fk =

k∏

i=1

∫

X

fi dµ

in L2 norm.

The following theorem, proved in [BBe1], provides a criterion of joint ergodicity of commuting measure
preserving transformations:

Theorem 0.3. Let T1, . . . , Tk be commuting invertible measure preserving transformations of X. Then
T1, . . . , Tk are jointly ergodic iff the transformation T1 × · · · × Tk of Xk is ergodic and the transformations
T−1

i Tj of X are ergodic for all i 6= j.

Further developments (most of which were motivated by connections with combinatorics and number
theory) have revealed that the phenomenon of joint ergodicity is a rather general one. For example, as it
was shown in [Be], if T is an invertible weakly mixing measure preserving transformation and p1, . . . , pk are
nonconstant polynomials Z −→ Z with pi − pj 6= const for any i 6= j, then for any f1, . . . , fk ∈ L∞(X) one
has

lim
N−→∞

1

N

N∑

n=1

T p1(n)f1 · · ·T pk(n)fk =

k∏

i=1

∫

X

fi dµ

in L2 norm. (See also [FK], [BeH], and [F] for more results of this flavor.) So, it makes sense to consider
ergodicity and joint ergodicity of sequences of measure preserving transformations of general form:

Definition. Let T (n), n ∈ N, be a sequence of measure preserving transformations of X; we say that T is
ergodic if for any f ∈ L2(X),

lim
N−→∞

1

N

N∑

n=1

T (n)f =

∫

X

f dµ.

Given several sequences T1(n), . . . , Tk(n), n ∈ N, of measure preserving transformations of X, we say that
T1, . . . , Tk are jointly ergodic if

lim
N−→∞

1

N

N∑

n=1

T1(n)f1 · · · Tk(n)fk =
k∏

i=1

∫

X

fi dµ

in L2 norm for any f1, . . . , fk ∈ L∞(X).

Results obtained in [Be], [BeH], and [F] lead to a natural question of what are the necessary and sufficient

conditions for joint ergodicity of sequences of transformations of the form T
ϕ1(n)
1 , . . . , T

ϕk(n)
k , where Ti are

measure preserving transformations of X and ϕi(n) are “sufficiently regular” sequences of integers diverging
to infinity. In the case where T1 = . . . = Tk = T where T is a weakly mixing transformation, this question
has a quite satisfactory answer not only when ϕi are integer-valued polynomials, but also, more generally,
are functions of the form [ψi], where [·] denotes the integer part and ψi are either the so-called “tempered
functions”, or functions of polynomial growth belonging to a Hardy field (see [BeH] and [F]).

Much less is known about joint ergodicity of T
ϕ1(n)
1 , . . . , T

ϕk(n)
k when Ti are distinct, not necessarily

weakly mixing transformations. It is our goal in this paper to extend Theorem 0.3 to the case ϕi are integer-
valued generalized linear functions. A generalized, or bracket linear function (of real or integer argument)
is a function constructible from conventional linear functions with the help of the operations of addition,
multiplication by constants, and taking the integer part, [·] (or, equivalently, the fractional part, {·}). (For
example, ϕ(n) = [α1n+α2], ϕ(n) = α1[α2n+α3]+α4, and, say, ϕ(n) = α1

[
α2

[
α3[α4n+α5]+α6

]
+α7[α8n+

α9]
]
+ α10n + α11, where αi ∈ R, are generalized linear functions.) In complete analogy with Theorem 0.3,

we have the following result:
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Theorem 0.4. (Special case of Theorem 0.7.) Let T1, . . . , Tk be commuting invertible measure preserv-
ing transformations of X and let ϕ1, . . . , ϕk be generalized linear functions Z −→ Z. The sequences

T
ϕ1(n)
1 , . . . , T

ϕk(n)
k are jointly ergodic iff the sequence T

ϕ1(n)
1 × · · · × T

ϕk(n)
k of transformations of Xk is

ergodic and the sequences T
−ϕi(n)
i T

ϕj(n)
j of transformations of X are ergodic for all i 6= j.

Here are two corollaries of Theorem 0.4:

Corollary 0.5. (Cf. Corollary 5.7 below.) Let T be a weakly mixing invertible measure preserving trans-
formation of X and let ϕ1, . . . , ϕk be unbounded generalized linear functions Z −→ Z such that ϕj − ϕi are
unbounded for all i 6= j. Then for any f1, . . . , fk ∈ L∞(X),

lim
N→∞

1

N

N∑

n=1

Tϕ1(n)f1 · · ·Tϕk(n)fk =

k∏

i=1

∫

X

fi dµ.

In particular, for any distinct α1, . . . , αk ∈ R \ {0},

lim
N→∞

1

N

N∑

n=1

T [α1n]f1 · · ·T [αkn]fk =

k∏

i=1

∫
fi dµ.

For a measure preserving transformation T of X, let Eig T be the set of eigenvalues of T ,

Eig T =
{
λ ∈ C∗ : Tf = λf for some f ∈ L2(X)

}
.

For several measure preserving transformations T1, . . . , Tk of X we put Eig(T1, . . . , Tk) =
∏k

i=1 Eig Ti.

Corollary 0.6. (Cf. Corollary 5.8.) Let T1, . . . , Tk be commuting invertible jointly ergodic measure preserving
transformations of X and let ϕ be an unbounded generalized linear function Z −→ Z. Then

lim
N→∞

1

N

N∑

n=1

T
ϕ(n)
1 f1 · · ·Tϕ(n)

k fk =

k∏

i=1

∫
fi dµ for any f1, . . . , fk ∈ L∞(X)

iff limN→∞
1
N

∑N
n=1 λϕ(n) = 0 for every λ ∈ Eig(T1, . . . , Tk) \ {1}. In particular, for any irrational α ∈ R,

lim
N→∞

1

N

N∑

n=1

T
[αn]
1 f1 · · ·T [αn]

k fk =

k∏

i=1

∫
fi dµ for any f1, . . . , fk ∈ L∞(X)

iff e2πiα−1Q ∩ Eig(T1, . . . , Tk) = {1}.
In fact, we obtain a result more general than Theorem 0.4. Let G be a commutative group of measure

preserving transformations of X. We say that a sequence T of transformations of X is a generalized linear

sequence in G if it has the form T (n) = T
ϕ1(n)
1 · · ·Tϕr(n)

r , n ∈ Z, for some T1, . . . , Tr ∈ G and generalized

linear functions ϕ1, . . . , ϕk: Z −→ Z. (The sequences T
−ϕi(n)
i T

ϕj(n)
j appearing in Theorem 0.4 are of this

sort.) Also, we change the definitions of ergodicity and of joint ergodicity above (see Definition 5.3), replacing

the averages 1
N

∑N
n=1 with the more general averages 1

|ΦN |

∑
n∈ΦN

, where (ΦN ) is an arbitrary Følner

sequence in Z. (The uniform ergodicity and joint ergodicity, which appear when the averages 1
N

∑N
n=1, with

N → ∞, are replaced by the averages 1
M−N

∑M
n=N+1, with M − N → ∞, form a special case of it.) In this

setup, we prove the following:

Theorem 0.7. (Theorem 5.4 below.) Generalized linear sequences T1, . . . , Tk in a commutative group of
transformations of X are jointly ergodic iff the sequence T1 × · · · × Tk of transformations of Xk is ergodic
and the sequences T −1

i Tj of transformations of X are ergodic for all i 6= j.

Utilizing a technique developed by Green and Tao ([GT]), and following closely an argument of Sun ([S]),
we then obtain a version of Theorem 0.4 for sequences along primes. Here is a special case of Theorem 6.1
below:
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Theorem 0.8. Let T1, . . . , Tk be commuting invertible measure preserving transformations of X and let
ϕ1, . . . , ϕk be generalized linear functions Z −→ Z. Assume that for any W ∈ N and any 1 < r < W

relatively prime with W , the sequences Ti(n) = T
ϕi(Wn+r)
i , i = 1, . . . , k, are jointly ergodic. Then for any

f1, . . . , fk ∈ L∞(X),

lim
N→∞

1

π(N)

∑

p∈P(N)

T
ϕ1(p)
1 f1 · · ·Tϕk(p)

k fk =

k∏

i=1

∫

X

fi dµ

in L2 norm, where, for N ∈ N, P(N) =
{
p : p is prime, p ≤ N

}
and π(N) = |P(N)|.

The structure of the paper is as follows: Sections 1-3 contain technical material related to properties of
generalized linear functions. In Section 4 we investigate ergodic properties of what we call “a generalized
linear sequence of measure preserving transformations” – a product of several sequences of the form Tϕ(n),
where ϕ is an integer valued generalized linear function. In Section 5 we obtain our main result, Theorem 5.4,
the criterion of joint ergodicty of several commuting generalized linear sequences. In Section 6, we extend
Theorem 5.4 to averaging along primes. In Section 7 we deal with families of transformations depending on
a continuous parameter, and obtain a version of Theorem 5.4 for continuous flows. By using a “change of
variable” trick we also extend this result to more general families of transformations of the form Tϕ(σ(t)),
where ϕ is a generalized linear function and σ is a monotone function of “regular” growth. For example, we
have the following version of Corollary 0.6:

Proposition 0.9. Let T s
1 , . . . , T s

k , s ∈ R, be commuting jointly ergodic continuous flows of measure pre-
serving transformations of X and let ϕ be an unbounded generalized linear function; then for any α > 0

the families T
ϕ(tα)
1 , . . . , T

ϕ(tα)
k , t ∈ [0,∞), are jointly ergodic (that is, limb→∞

1
b

∫ b

0
T

ϕ(tc)
1 f1 · · ·Tϕ(tc)

k fk dt =
∏k

i=1

∫
X

fi dµ for any f1, . . . , fk ∈ L∞(X)) iff limb→∞
1
b

∫ b

0
λϕ(t) dt = 0 for every λ ∈ Eig(T 1

1 , . . . , T 1
k ) \ {1}.

Finally, Section 8 contains a result pertaining to joint ergodicity of several non-commuting generalized linear
sequences.

1. Generalized linear functions

For x ∈ R we denote by [x] the integer part of x and by {x} the fractional part x − [x] of x.
The set GLF of generalized linear functions is the minimal set of functions R −→ R containing all linear

functions ax + b and closed under addition, multiplication by constants, and the operation of taking the
integer (equivalently, the fractional) part. More exactly, we define GLF inductively in the following way. We
put GLF0 =

{
ϕ(x) = ax + b, a, b ∈ R

}
. After GLFk has already been defined, we define GLFk+1 to be the

space of functions spanned by GLFk and the set
{
[ϕ], ϕ ∈ GLFk

}
. (Equivalently, we can define GLFk+1 to

be the space spanned by GLFk and the set
{
{ϕ}, ϕ ∈ GLFk

}
.) Finally, we put GLF =

⋃∞
k=0 GLFk. For

ϕ ∈ GLF, we call the minimal k for which ϕ ∈ GLFk the weight of ϕ.
We will refer to functions from GLF as to GL-functions.

Example. ϕ(x) = a1

{
a2

[
a3{a4x + a5} + a6

]
+ a7[a8x + a9]

}
+ a10x + a11, where a1, . . . , a11 ∈ R, is a

GL-function.

Clearly, the set of GL-functions is closed under the composition: if ϕ1, ϕ2 ∈ GLF, then ϕ1(ϕ2(x)) ∈ GLF.
We define the set BGLF inductively in the following way: BGLF1 =

{
ϕ(x) = {ax + b}, a, b ∈ R

}
; if

BGLFk has already been defined, BGLFk+1 is the space spanned by the set BGLFk ∪
{
{ϕ}, ϕ ∈ GLFk

}
;

and finally, BGLF =
⋃∞

k=1 BGLFk.

Lemma 1.1. BGLF is exactly the set of bounded GL-functions. (Hence the abbreviation “BGLF”.)

Proof. Clearly, all elements of BGLF are bounded GL-functions. To prove the opposite inclusion we use
induction on the weight of GL-functions. Let ϕ ∈ GLFk \GLFk−1 be bounded. If k = 0, then ϕ must be a
constant and thus belongs to BGLF. If k ≥ 1, ϕ = ϕ0 +

∑m
i=1 ai{ϕi}, where ϕ0, ϕ1, . . . , ϕm ∈ GLFk−1. Now,

ϕ0 is bounded, thus by induction, ϕ0 ∈ BGLF, and {ϕ1}, . . . , {ϕm} ∈ BGLF by definition, so ϕ ∈ BGLF.

We will refer to elements of BGLF as to bounded generalized linear functions, or BGL-functions.
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Lemma 1.2. Any GL-function ϕ is uniquely representable in the form ϕ(x) = ax + ψ(x), where a ∈ R and
ψ is a BGL-function.

Proof. Every ϕ ∈ GLFk has the form ϕ = ϕ0 +
∑m

i=1 ai{ϕi} with ϕ0, ϕ1, . . . , ϕm ∈ GLFk−1. We have∑m
i=1 ai{ϕi} ∈ BGLF, and ϕ0 is representable in the form ϕ0(x) = ax+ψ0(x) with ψ0 ∈ BGLF by induction

on k.
As for the uniqueness, if a1x + ψ1(x) = a2x + ψ2(x) with a1, a2 ∈ R and ψ1, ψ2 ∈ BGLF, then the

function (a1 − a2)x is bounded, and so a1 = a2.

Corollary 1.3. Any GL-function ϕ is uniquely representable in the form ϕ(x) = [ax] + ξ(x) with a ∈ R

and ξ ∈ BGLF.

For a function ϕ: R −→ R and α ∈ R “the difference derivative” Dαϕ of ϕ with step α is Dαϕ(x) =
ϕ(x + α) − ϕ(x), x ∈ R.

Corollary 1.4. For any GL-function ϕ and α ∈ R, Dαϕ is a BGL-function.

We will refer to BGL-functions taking values in {0, 1} as to UGL-functions.

Lemma 1.5. Let ϕ be a BGL-function. Then for any a ∈ R the indicator functions 1{ϕ<a}, 1{ϕ≤a},
1{ϕ>a}, and 1{ϕ≥a} of the sets {x : ϕ(x) < a}, {x : ϕ(x) ≤ a}, {x : ϕ(x) > a}, and {x : ϕ(x) ≥ a} are
UGL-functions.

Proof. We start with the set {ϕ ≥ a}. Let c = sup |ϕ|+ |a|+1. Then the function ξ = (ϕ−a)/c+1 satisfies
0 < ξ < 2, and ϕ ≥ a iff ξ ≥ 1. Thus, the UGL-function [ξ] is just 1{ϕ≥a}.

Now, 1{ϕ≤a} = 1{−ϕ≥−a}, 1{ϕ<a} = 1 − 1{ϕ≤a}, and 1{ϕ>a} = 1 − 1{ϕ≤a}.

We will now show that the set of UGL-functions is closed under Boolean operations. For two functions
ϕ and ψ taking values in {0, 1}, let ϕ ∨ ψ = max{ϕ,ψ} = ϕ + ψ − ϕψ, ϕ ∧ ψ = min{ϕ,ψ} = ϕψ, and
¬ϕ = 1 − ϕ.

Proposition 1.6. If ϕ, ψ are UGL-functions, then ϕ ∨ ψ, ϕ ∧ ψ, and ¬ϕ are also UGL-functions.

Proof. ¬ϕ = 1 − ϕ is clearly a UGL-function, ϕ ∨ ψ is the indicator function of the set {ϕ + ψ > 0} and
thus is a UGL-function by Lemma 1.5, and ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ).

From Proposition 1.6 we get the following generalization of Lemma 1.5:

Proposition 1.7. Let ϕ1, . . . , ϕk be BGL-functions and let ϕ = (ϕ1, . . . , ϕk). For any interval I = I1 ×
· · · × Ik ⊆ Rk, (where Ii are intervals in R, which may be bounded or unbounded, open, closed, half-open
half-closed, or degenerate) the indicator function 1A of the set A = {x : ϕ(x) ∈ I} is a UGL-function.

We also have the following:

Proposition 1.8. Let ϕ be an unbounded GL-function Z −→ Z. Then the indicator function 1H of the
range H = ϕ(Z) of ϕ is a UGL-function.

(Notice that GL-functions Z −→ R are restrictions of GL-functions R −→ R, thus all the results above
apply.)

Proof. By Corollary 1.3, ϕ(n) = [an] + ψ(n) for some a ∈ R, ψ ∈ BGLF. Since ϕ is integer-valued, ψ is
integer valued, and thus the range K = ψ(Z) of ψ is a finite set of integers. Since ϕ is unbounded, a 6= 0;
let us assume that a > 0.

If n, k, j ∈ Z are such that n = [ak] + j, then 0 ≤ ak − n + j < 1, so

n−j
a ≤ k < n−j+1

a

and so,
k ∈

{[
n−j

a

]
+ i, i ∈ I

}
,

where I =
{
0, 1, . . . ,

[
1
a

]
+ 1

}
. Hence, if n ∈ H, that is, if n = ϕ(k) for some k ∈ Z, then

k ∈
{[

n−j
a

]
+ i, i ∈ I, j ∈ K

}
.
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For each i ∈ I and j ∈ K, define

δi,j(n) = n − ϕ
([

n−j
a

]
+ i

)
= n − a

([
n−j

a

]
+ i

)
− ψ

([
n−j

a

]
+ i

)
;

then δi,j ∈ BGLF for all i, j, and n ∈ H iff δi,j(n) = 0 for some i, j. By Lemma 1.5 and Proposition 1.6
the indicator functions 1{δi,j=0} are UGL-functions for all i, j, and thus the function 1H =

∨
i∈I
j∈K

1{δi,j=0}

is also a UGL-function by Proposition 1.6.

2. C-lims, D-lims, densities, and the van der Corput trick

This is a technical section. Starting from this moment we fix an arbitrary Følner sequence (ΦN )∞N=1 in
Z (that is, a sequence of finite subsets of Z with the property that for any h ∈ Z, |(ΦN − h)△ΦN |/|ΦN | → 0
as N → ∞).

Under “a sequence” we will usually understand a function with domain Z. For a sequence (un) of real
numbers, or of elements of a normed vector space, we define C-limn un = limN→∞

1
|ΦN |

∑
n∈ΦN

un, if this

limit exists. When un are real numbers, we define C-limsupn un = lim supN→∞
1

|ΦN |

∑
n∈ΦN

un. When un

are elements of a normed vector space we also define C-limsup‖·‖,n un = lim supN→∞

∥∥ 1
|ΦN |

∑
n∈ΦN

un

∥∥.

For a set E ⊆ Z we define the density of E to be d(E) = limN→∞ |E ∩ ΦN |/|ΦN |, if this limit exists.
We also define the upper density and the lower density of E as d∗(E) = lim supN→∞ |E ∩ ΦN |/|ΦN | and
d∗(E) = lim infN→∞ |E ∩ ΦN |/|ΦN | respectively.

We will say that a sequence (zn) in a probability measure space (Z, λ) is uniformly distributed if
C-limn g(zn) =

∫
Z

g dλ for any g ∈ C(Z).
For a sequence (un) of vectors in a normed vector space we write D-limn un = u if for any ε > 0,

d
({

n : ‖un − u‖ ≥ ε
})

= 0. Clearly, this is equivalent to C-limn ‖un − u‖ = 0. For a sequence (un) of real

numbers we also define D-limsupn un as inf
{
u ∈ R : d({n : un > u}) = 0

}
.

We will be using the following version of the van der Corput trick:

Lemma 2.1. Let (un) be a bounded sequence of elements of a Hilbert space. Then for any finite subset D
of Z,

C-limsupn,‖·‖ un ≤
( 1

|D|2
∑

h1,h2∈D

C-limsup
n

〈un+h1
, un+h2

〉
)1/2

.

Thus, if for some ε > 0 there exists an infinite set B ⊆ Z such that
∣∣C-limsupn〈un+h1

, un+h2
〉
∣∣ < ε for all

distinct h1, h2 ∈ B, then C-limsupn,‖·‖ un <
√

ε.

Proof. Let D ⊆ Z, |D| < ∞. For any N ∈ N we have

1

|ΦN |
∑

n∈ΦN

un =
1

|D|
∑

h∈D

1

|ΦN |
∑

n∈ΦN

un =
( 1

|D|
∑

h∈D

1

|ΦN |
∑

n∈ΦN

un+h

)
− AN + BN ,

where AN = 1
|D|

∑
h∈D

1
|ΦN |

∑
n∈ΦN

n+h6∈ΦN

un+h and BN = 1
|D|

∑
h∈D

1
|ΦN |

∑
n6∈ΦN

n+h∈ΦN

un+h. Since {ΦN}∞N=1 is a

Følner sequence and the sequence (un) is bounded, ‖AN‖, ‖BN‖ → 0 as N → ∞. Thus,

lim sup
N→∞

∥∥∥
1

|ΦN |
∑

n∈ΦN

un

∥∥∥ = lim sup
N→∞

∥∥∥
1

|D|
∑

h∈D

1

|ΦN |
∑

u∈ΦN

un+h

∥∥∥.

By Schwarz’s inequality,

∥∥∥
1

|D|
∑

h∈D

1

|ΦN |
∑

n∈ΦN

un+h

∥∥∥
2

=
1

|D|2
∥∥∥

1

|ΦN |
∑

n∈ΦN

∑

h∈D

un+h

∥∥∥
2

≤ 1

|D|2
1

|ΦN |
∑

n∈ΦN

∥∥∥
∑

h∈D

un+h

∥∥∥
2

=
1

|D|2
1

|ΦN |
∑

n∈ΦN

∑

h1,h2∈D

〈un+h1
, un+h2

〉,
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so

(
lim sup
N→∞

∥∥∥
1

|ΦN |
∑

n∈ΦN

un

∥∥∥
)2

=
(
lim sup
N→∞

∥∥∥
1

|D|
∑

h∈D

1

|ΦN |
∑

u∈ΦN

un+h

∥∥∥
)2

= lim sup
N→∞

∥∥∥
1

|D|
∑

h∈D

1

|ΦN |
∑

n∈ΦN

un+h

∥∥∥
2

≤ lim sup
N→∞

1

|D|2
∑

h1,h2∈D

1

|ΦN |
∑

n∈ΦN

〈un+h1
, un+h2

〉 ≤ 1

|D|2
∑

h1,h2∈D

lim sup
N→∞

1

|ΦN |
∑

n∈ΦN

〈un+h1
, un+h2

〉.

To get the second assertion, for any finite set D ⊆ B write

∣∣∣
1

|D|2
∑

h1,h2∈D

C-limsup
n

〈un+h1
, un+h2

〉
∣∣∣

≤ 1

|D|2
∑

h1,h2∈D
h1 6=h2

∣∣C-limsup
n

〈un+h1
, un+h2

〉
∣∣ +

1

|D|2
∑

h∈D

∣∣C-limsup
n

〈un+h, un+h〉
∣∣ ≤ ε +

1

|D| sup
n

‖un‖2

and notice that the second summand tends to zero as |D| → ∞.

We will also need a simple “finitary version” of the van der Corput trick:

Lemma 2.2. Let u1, . . . , uN be elements of a Hilbert space. Then

∥∥∥
1

N

N∑

n=1

un

∥∥∥
2

≤ 1

N

∑

h∈Z

∣∣∣
1

N

N∑

n=1

〈un, un+h〉
∣∣∣,

where we assume that um = 0 if m 6∈ {1, . . . , N} (and so, the sum on the right is finite).

Proof.

∥∥∥
1

N

N∑

n=1

un

∥∥∥
2

=
1

N2

N∑

n,m=1

〈un, um〉 =
1

N2

∑

h∈Z

N∑

n=1

〈un, un+h〉 ≤
1

N

∑

h∈Z

∣∣∣
1

N

N∑

n=1

〈un, un+h〉
∣∣∣.

3. BGL-functions and Besicovitch almost periodicity

We will now describe and use a “dynamical” approach to BGL-functions. We will focus on functions
Z −→ R.

Let M be a torus, M = V/Γ, where V is a finite dimensional R-vector space and Γ is a cocompact
lattice in V , and let π be the projection V −→ M. We call a polygon any bounded subset P of V defined
by a system of linear inequalities, strict or non-strict:

P =
{

v ∈ V : L1(v) < c1, . . . , Lk(v) < ck, Lk+1(v) ≤ ck+1, . . . , Lm(v) ≤ cm

}
,

where Li are linear functions on V and ci ∈ R. Let Q be a parallelepiped in V such that π|Q:Q −→ M is a

bijection. (Q is a fundamental domain of M in V .) Assume that Q =
⋃l

j=1 P̂j is a finite partition of Q into

disjoint polygons. Let a function F̃ on Q be the sum, F̃ = L + E, of a linear function L and of a function
E which is constant on each of P̂j . Finally, let F be the function induced by F̃ on M, F = F̃ ◦(π|Q)−1. We
will call functions F obtainable this way polygonally broken linear, or PGL-functions.

Example. The function
{
2x + 1

3

}
on R/Z is a PGL-function.

The following is clear:

Lemma 3.1. The set of PGL-functions on a torus M is closed under addition, multiplication by scalars,
and the operation of taking the fractional part.
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The following theorem says that BGL-functions are dynamically obtainable from PGL-functions:

Theorem 3.2. For any BGL-function ϕ there exists a torus M, an element u ∈ M, and a PGL-function
F on M such that ϕ(n) = F (nu), n ∈ Z.

Proof. For ϕ(n) = {an + b}, a, b ∈ R, take M = R/Z, u = amod Z, and F (x) = {x + b}, x ∈ M.

The set of BGL-functions satisfying the assertion of the theorem is closed under addition and mul-
tiplication by constants. Indeed, if a BGL-function ϕ is represented in the form ϕ(n) = F (nu), n ∈ Z,
where F is a PGL-function on a torus M and u ∈ M, then for a ∈ R the function aF is a PGL-function
as well and aϕ(n) = (aF )(nu), n ∈ Z. If BGL-functions ϕ1, ϕ2 are represented as ϕ1(n) = F1(nu),
ϕ2(n) = F2(nv), n ∈ Z, where F1, F2 are PGL-functions on tori M1 and M2 respectively, u1 ∈ M1 and
u2 ∈ M2, then the function F (x1, x2) = F1(x1) + F2(x2) on the torus M1 × M2 is a PGL-function and
(ϕ1 + ϕ2)(n) = F (n(u1, u2)), n ∈ Z.

Also, the set of BGL-functions satisfying the assertion of the theorem is closed under the operation
of taking the fractional part: if a BGL-function ϕ is represented as ϕ(n) = F (nu), n ∈ Z, where F is a
PGL-function on a torus M and u ∈ M, then the function {F} is a PGL-function and {ϕ(n)} = {F}(nu),
n ∈ Z.

From the inductive definition of BGL-functions, it follows that the theorem holds for all BGL-functions.

Any closed subgroup Z of a torus M has the form Z = M′ × J for some subtorus M′ of M and a
finite abelian group J . We will say that a function F on Z is a PGL-function if the restriction F |M′×{i}

is

a PGL-function on the torus M′ × {i} for every i ∈ J .

If Z is a closed subgroup of a torus M and F is a PGL-function on M, then F |Z is a PGL-function on

Z. In the environment of Theorem 3.2, putting Z = Zu, we obtain the following:

Proposition 3.3. For any BGL-function ϕ there exists a compact abelian group Z, of the form Z = M′×J ,
where M′ is a torus and J is a finite cyclic group, an element u ∈ Z, whose orbit Zu is dense (and so,
uniformly distributed) in Z, and a PGL-function F on Z such that ϕ(n) = F (nu), n ∈ Z.

Corollary 3.4. For any BGL-function ϕ, the limit C-limn ϕ(n) exists. For any BGL-functions ϕ1, . . . , ϕk,
for ϕ = (ϕ1, . . . , ϕk), and for any polygon P ⊆ Rk, the density of the set {n ∈ Z : ϕ(n) ∈ P} exists.

As another corollary of Proposition 3.3, we get the following result:

Proposition 3.5. Let ϕ: Z −→ R be a BGL-function. For any ε > 0 there exists h ∈ Z such that
D-limsupn |ϕ(n + h)−ϕ(n)| < ε, and there exists a trigonometric polynomial q such that D-limsupn |ϕ(n)−
q(n)| < ε.

Remark. Functions with these properties are called Besicovitch almost periodic (at least, in the case the
Følner sequence with respect to which the densities are measured is ΦN = [−N,N ], N ∈ N). Any function
obtainable dynamically with the help of a rotation of a compact commutative Lie group and a Riemann
integrable function thereon is such.

Proof. Represent ϕ in the form ϕ(n) = F (nu), n ∈ Z, as in Proposition 3.3. Let Z =
⋃l

j=1 Pj be the

polygonal partition of Z such that F is linear on each of Pj . Let U be a δ-neighborhood of
⋃l

j=1 ∂Pj

with δ > 0 small enough so that λ(U) < ε, where λ is the normalized Haar measure on Z. Let F̂ be a

continuous function on Z which coincides with F on Z \ U and such that sup |F̂ | ≤ sup |F | = sup |ϕ|. Let

ϕ̂(n) = F̂ (nu), n ∈ Z. The sequence (nu) is uniformly distributed on Z, thus d∗
(
{n ∈ Z : nu ∈ U}

)
< ε, and

so d∗
(
{n : ϕ(n) 6= ϕ̂(n)}

)
= d∗

(
{n : F (nu) 6= F̂ (nu)}

)
< ε. Since F̂ is uniformly continuous, for any h ∈ Z

for which hu is close enough to 0 we have
∣∣F̂ (v+hu)− F̂ (v)

∣∣ < ε for all v ∈ Z, so |ϕ̂(n+h)− ϕ̂(n)| < ε for all
n ∈ Z. This implies that D-limsupn |ϕ(n+h)−ϕ(n)| < ε+2ε sup |ϕ|. And if Θ is a finite linear combination

of characters of Z such that |F̂ − Θ| < ε, then for the trigonometric polynomial q(n) = Θ(nu), n ∈ Z, we
have |ϕ̂(n) − q(n)| < ε for all n, which implies that D-limsupn |ϕ(n) − q(n)| < ε + (sup |ϕ| + sup |q|)ε =
ε + (2 sup |ϕ| + ε)ε.
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Corollary 3.6. If ϕ is a BGL-function Z −→ Z, then for any ε > 0 there exists h ∈ Z such that d
({

n ∈
Z : ϕ(n + h) = ϕ(n)

})
> 1 − ε.

(Notice that the density of the set
{
n ∈ Z : ϕ(n + h) = ϕ(n)

}
exists by Corollary 3.4.) We now turn to

unbounded GL-functions. From Lemma 1.2 and Theorem 3.2 we see that any GL-function ϕ is representable
in the form ϕ(n) = an + F (nu), where a ∈ R, F is a PGL-function on a torus M, and u ∈ M. Given
several GL-functions ϕ1, . . . , ϕk, we can read them off a single torus: for each i represent ϕi in the form
ϕi(n) = ain+Fi(nui), where ai ∈ R, Fi is a PGL-function on a torus Mi, and ui ∈ Mi, put M =

∏k
i=1 Mi,

u = (u1, . . . , uk) ∈ M, and lift F1, . . . , Fk to a function on M; then ϕi(n) = ain+Fi(nu), n ∈ Z, i = 1, . . . , k.
As a corollay, we get:

Proposition 3.7. Given GL-functions ϕ1, . . . , ϕk, there exists a torus M, an element u ∈ M, and a
polygonal partition M =

⋃l
j=1 Pj, such that for each i, j, ϕi(n + h) − ϕi(n) does not depend on n if both

nu, (n + h)u ∈ Pj.

Proof. Let M, u, and Fi be as above; let M = V/Γ where V is a vector space and Γ is a lattice in V , π

be the projection V −→ M, Q ⊂ V be the fundamental domain of M in V , and F̃i = F ◦π|Q, i = 1, . . . , k.

Choose a partition M =
⋃l

j=1 Pj of M such that for each j and each i, the function Fi is linear on Pj ,

and, additionally, for each j,
(
(P̂j − P̂j) − (P̂j − P̂j)

)
∩ Γ = {0}, where P̂j = π−1(Pj) ∩ Q. Then for any

i and j, for v, w ∈ Pj , Fi(v) − Fi(w) depends on v − w only. Indeed, let v1, w1, v2, w2 ∈ Pj be such that
v1 −w1 = v2 −w2; let v̂t = π|Q−1(vt), ŵt = π|Q−1(wt), t = 1, 2, then (v̂1 − ŵ1)− (v̂2 − ŵ2) ∈ Γ, so = 0, thus

Fi(v1) − Fi(w1) = F̃i(v̂1) − F̃i(ŵ1) = Li(v̂1) − Li(ŵ1) = Li(v̂1 − ŵ1) = Li(v̂2 − ŵ2) = Fi(v2) − Fi(w2),

where Li is the linear function on V that coincides with F̃i on P̂j up to a constant. Now, if n and h are such
that both nu, (n + h)u ∈ Pj for some j, then for any i, ϕi(n + h)−ϕi(n) = aih + Fi(nu + hu)−Fi(nu), and
Fi(nu + hu) − Fi(nu) does not depend on n.

A set H ⊆ Z is said to be a Bohr set if H contains a nonempty subset of the form {n ∈ Z : nu ∈ W},
where u and W are an element and an open subset of a torus. Any Bohr set is infinite and has positive density
(with respect to any Følner sequence in Z). The following proposition says that (several) GL-functions are
“almost linear” along a Bohr set:

Proposition 3.8. For any GL-functions ϕ1, . . . , ϕk and any ε > 0 there exists a Bohr set H ⊆ Z and
constants C1, . . . , Ck such that for any h ∈ H,

d
({

n ∈ Z : ϕi(n + h) = ϕi(n) + ϕi(h) + Ci, i = 1, . . . , k
})

> 1 − ε.

Proof. First of all, for any h, the density of the set
{
n ∈ Z : ϕi(n + h) = ϕi(n) + ϕi(h) + Ci, i = 1, . . . , k

}

exists by Corollary 3.4.
Let M be a torus, u ∈ M, and F1, . . . , Fk be PGL-functions on M such that ϕi(n) = Fi(nu), i =

1, . . . , k. Let Z = Zu; then the sequence (nu)n∈Z is uniformly distributed in Z. Let Z =
⋃l

j=1 Pj be the
polygonal partition of Z such that for every i and j, Fi|Pj

= Li + Ci,j , where Li is linear and Ci,j is a

constant. Let δ > 0 be small enough so that λ(U) < ε where U is the δ-neighborhood of the set
⋃l

j=1 ∂Pj

and λ is the normalized Haar measure on Z. Let W0 be the δ-neighborhood of 0. Now, for any w ∈ W0,
d
({

n ∈ Z : nu ∈ Pj1 , nu + w ∈ Pj2 , j1 6= j2
})

< ε. Choose j0 for which 0 is a limit point of the interior
o
P j0 of Pj0 , let W =

o
P j0 ∩ W0, and let H = {n ∈ Z : nu ∈ W}. Then for any w ∈ W and any i, whenever

v, v + w ∈ Pj for some j we have

Fi(v + w) = Li(v + w) + Ci,j = Li(v) + Ci,j + Li(w) + Ci,j0 − Ci,j0 = Fi(v) + Fi(w) + Ci,

where Ci = −Ci,j0 . For any h ∈ H let Eh =
{
n ∈ Z : nu, (n + h)u ∈ Pj for some j

}
; then d(Eh) > 1 − ε,

and for any n ∈ Eh and any i, ϕi(n + h) = ϕi(n) + ϕi(h) + Ci.
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4. Generalized linear sequences of transformations

A generalized linear sequence (a GL-sequence) in a commutative group G is a sequence of the form

T (n) = T
ϕ1(n)
1 · · ·Tϕr(n)

r , n ∈ Z, where T1, . . . , Tr ∈ G and ϕ1, . . . , ϕr are GL-functions Z −→ Z. We say
that T is a BGL-sequence if ϕ1, . . . , ϕr are BGL-functions. Corollary 1.3, Corollary 3.6, Proposition 3.7,
and Proposition 3.8 imply the following properties of GL-sequences:

Proposition 4.1. Let G be a commutative group.

(i) If T is a GL-sequence in G, then for any h ∈ Z the sequence T (n)−1T (n+h), n ∈ Z, is a BGL-sequence.

(ii) If T is a BGL-sequence in G, then for any ε > 0 there exists h ∈ Z such that d∗

({
n ∈ Z : T (n + h) =

T (n)
})

> 1 − ε.

(iii) If T1, . . . , Tk are GL-sequences in G (or, more generally, in distinct commutative groups G1, . . . , Gk

respectively) then there exist a torus M, an element u ∈ M, and a polygonal partition M =
⋃l

j=1 Pj such

that for any i, j, Ti(n)−1Ti(n + h) does not depend on n whenever nu, (n + h)u ∈ Pj.

(iv) If T1, . . . , Tk are GL-sequences in G (or, more generally, in distinct commutative groups G1, . . . , Gk

respectively) then for any ε > 0 there exist a Bohr set H ⊆ Z and elements S1, . . . , Sk ∈ G (respectively,
Si ∈ Gi, i = 1, . . . , k) such that for any h ∈ H the set Eh =

{
n ∈ Z : Ti(n+h) = Ti(n)Ti(h)Si, i = 1, . . . , k

}

satisfies d∗(Eh) > 1 − ε.

If T is a GL-sequence of unitary operators on a Hilbert space H, then via the spectral theorem, Corol-
lary 3.4 implies the following:

Lemma 4.2. For any f ∈ H, C-limn T (n)f exists.

We now fix a commutative group G of measure preserving transformations of a probability measure
space (X,µ), and denote by T the set of GL-sequences of transformations in G.

Definition 4.3. If T is a sequence of measure preserving transformations of X (or just a sequence of unitary
operators on a Hilbert space H), we say that T is ergodic if C-limn T (n)f =

∫
X

f dµ for all f ∈ L2(X)
(respectively, C-limn T (n)f = 0 for all f ∈ H). We will also say that T is weakly mixing if for any
f, g ∈ L2(X) one has D-limn

∫
X
T (n)f · g dµ =

∫
X

f dµ
∫

X
g dµ (respectively, D-limn〈T (n)f, g〉 = 0 for all

f, g ∈ H).

Remark 4.4. We have defined our C-lims, and so, ergodicity of a sequence of transformations, with
respect to a fixed Følner sequence in Z. However, since, for any GL-sequence T of measure preserving
transformations, or of unitary operators, and for any (function or vector) f , C-lim T (n)f exists with respect
to any Følner sequence, this limit is the same for all Følner sequences; thus, the ergodicity of GL-sequences
does not depend on the choice of the Følner sequence.

Let Hc ⊕Hwm be the compact/weak mixing decomposition of L2(X) induced by G, meaning that Hc is
the subspace of L2(X) on which all elements of G act in a compact way and Hwm is the orthocomplement
of Hc; then for any g ∈ Hwm there exists a transformation T ∈ G that acts on g in a weakly mixing fashion.
Notice also that if T ∈ G is ergodic, then T is weakly mixing on Hwm. The following theorem says that any
ergodic sequence from T is weakly mixing on Hwm:

Theorem 4.5. If T ∈ T is ergodic, then for any f ∈ Hwm and g ∈ L2(X) one has D-limn

∫
X
T (n)f ·g dµ = 0.

We first prove that T has no “eigenfunctions” in Hwm:

Lemma 4.6. If T ∈ T is ergodic, then for any f ∈ Hwm and λ ∈ C with |λ| = 1 one has C-limn λnT (n)f = 0.

Proof. We may and will assume that |f | ≤ 1. Fix g ∈ Hwm with |g| ≤ 1, and let T ∈ G be a transformation
that acts weakly mixingly on g. We are going to apply the van der Corput trick (Lemma 2.1 above) to the
sequence fn = λnTnT (n)f · Tng, n ∈ Z. Let ε > 0, and let a Bohr set H ⊆ Z, a transformation S ∈ G, and
sets Eh ⊆ Z, h ∈ H, be as in Proposition 4.1(iv), applied to the single GL-sequence T . Let h1, h2 ∈ H; for
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any n ∈ Eh1
∩ Eh2

one has

〈fn+h1
, fn+h2

〉 =

∫

X

fn+h1
f̄n+h2

dµ

=

∫

X

λh1Tn+h1T (n + h1)f · Tn+h1g · λ̄h2Tn+h2T (n + h2)f̄ · Tn+h2 ḡ dµ

=

∫

X

T (n)
(
λh1−h2Th1T (h1)Sf · Th2T (h2)Sf̄

)
· (Th1g · Th2 ḡ) dµ

=

∫

X

T (n)f̃h1,h2
· (Th1g · Th2 ḡ) dµ,

where f̃h1,h2
= λh1−h2Th1T (h1)Sf · Th2T (h2)Sf̄ . Since T is ergodic,

C-lim
n

∫

X

T (n)f̃h1,h2
· (Th1g · Th2 ḡ) dµ =

(∫

X

f̃h1,h2
dµ

)(∫

X

Th1g · Th2 ḡ dµ
)
,

and since d∗(Eh1
∩ Eh2

) > 1 − 2ε and |f̃h1,h2
|, |g| ≤ 1,

∣∣∣C-limsup
n

〈fn+h1
, fn+h2

〉
∣∣∣ ≤

∣∣∣
∫

X

Th1g · Th2 ḡ dµ
∣∣∣ + 2ε.

Since D-limh

∫
X

Thg · g′ dµ = 0 for any g′ ∈ L2(X), and since d∗(H) > 0, we can construct an infinite set

B ⊆ H such that
∣∣∫

X
Th1g · Th2 ḡ dµ

∣∣ < ε for any distinct h1, h2 ∈ B. (Indeed, choose b1 ∈ H arbitrarily.

The set B1 =
{
h ∈ N :

∣∣∫
X

Thg · T b1 ḡ dµ
∣∣ < ε

}
has density one, so B1 ∩ H 6= ∅; choose b2 ∈ B1 ∩ H. Next,

the set B2 =
{
h ∈ N :

∣∣∫
X

Thg · T b2 ḡ dµ
∣∣ < ε

}
also has density one, so there is b3 ∈ B1 ∩ B2 ∩ H, etc. Then

put B = {b1, b2, . . .}.) Then for any distinct h1, h2 ∈ B we have
∣∣C-limsupn〈fn+h1

, fn+h2
〉
∣∣ < 3ε, which, by

Lemma 2.1, implies that C-limsup‖·‖,n fn ≤
√

3ε. Since ε is arbitrary, C-limn fn = 0.

Now, let f̂ = C-limn λnT (n)f ∈ Hwm (this limit exists by Lemma 4.2). Then for any g ∈ L2(X),
∫

X

f̂ · g dµ = C-lim
n

∫

X

λnT (n)f · g dµ = C-lim
n

∫

X

fndµ = 0.

Hence, f̂ = 0.

Proof of Theorem 4.5. Let T (n) = T
ϕ1(n)
1 · · ·Tϕr(n)

r , n ∈ Z, where Ti ∈ G and ϕi are GL-functions. By
Lemma 1.2, for each j = 1, . . . , r one has ϕj(n) = ajn+ψj(n), n ∈ Z, where aj ∈ R and ψj is a BGL-function.
Considering T1, . . . , Tr as unitary operators on Hwm, embed them (by utilizing the spectral theorem) into
commuting continuous unitary flows (T t

i )t∈R, and let T = T a1

1 · · ·T ar
r .

Based on Lemma 4.6, we are going to show that T has no eigenvectors in Hwm. Assume, in the course

of contradiction, that there exists f ∈ Hwm, with ‖f‖ = 1, such that Tf = λf . Let S(n) = T
ψ1(n)
1 · · ·Tψr(n)

r ,
so that T (n) = TnS(n), n ∈ Z. Fix ε > 0. Let I be an interval in Rr that contains the range ψ(Z) of the
function ψ = (ψ1, . . . , ψr). Partition I to subintervals I1, . . . , Il small enough so that for each i = 1, . . . , l, for

some fi ∈ Hwm one has (T z1

1 · · ·T zr
r )−1f

ε≈ fi for all (z1, . . . , zr) ∈ Ii. (Here and below, for g1, g2 ∈ L2(X),

“g1
ε≈ g2” means that ‖g1 − g2‖ ≤ ε.) For each i = 1, . . . , l let Ai =

{
n : ψ(n) ∈ Ii

}
; by Proposition 1.7, the

indicator function 1Ai
is a UGL-function, and thus by Proposition 3.5 there exists a trigonometric polynomial

qi such that D-limsupn |1Ai
(n) − qi(n)| < ε/l. For any i, for any n ∈ Ai, Tnf = T (n)S(n)−1f

ε≈T (n)fi,
thus,

d(Ai)f = C-lim
n

1Ai
(n)λ−nTnf

d(Ai)ε≈ C-lim
n

1Ai
(n)λ−nT (n)fi

ε/l≈ C-lim
n

qi(n)λ−nT (n)fi.

By Lemma 4.6, the last limit is equal to 0; summing this up for i = 1, . . . , l we get f
2ε≈ 0. Since ε is arbitrary,

f = 0.
Hence, T is weakly mixing on Hwm, that is, for any f, g ∈ Hwm, D-limn〈Tnf, g〉 = 0. Let f, g ∈ Hwm

and let ε > 0. The set {S(n)−1g, n ∈ Z} is totally bounded; let {g1, . . . , gk} be an ε-net in this set. Then

D-limsup
n

∣∣〈T (n)f, g〉
∣∣ = D-limsup

n

∣∣〈Tnf,S(n)−1g〉
∣∣ < D-lim

n
max

i
|〈Tnf, gi〉| + ε = ε.

Since ε is arbitrary, D-limn〈T (n)f, g〉 = 0.
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5. Joint ergodicity of several GL-sequences of transformations

We now start dealing with several GL-sequences of measure preserving transformations. We preserve
the notations G, T, Hc, and Hwm from the preceding section.

Given functions f1, . . . , fk on X, the tensor product
⊗k

i=1 fi = f1⊗· · ·⊗fk is the function f(x1, . . . , xk) =

f1(x1) · · · fk(xk) on Xk (whereas the product
∏k

i=1 fi = f1 · · · fk is the function f1(x) · · · fk(x) on X).

Lemma 5.1. If T1, . . . , Tk ∈ T are ergodic, then for any functions f1, . . . , fk ∈ L∞(X) with fi ∈ Hwm for

at least one i, C-limn

⊗k
i=1 Ti(n)fi = 0 in L2(Xk).

Proof. Assume that f1 ∈ Hwm. Let f̂ = C-limn

⊗k
i=1 Ti(n)fi (the limit exists by Lemma 4.2). For any

g1, . . . , gk ∈ L∞(X) we have

〈
f̂ ,

k⊗

i=1

gi

〉
= C-lim

n

∫

Xk

k⊗

i=1

Ti(n)fi ·
k⊗

i=1

ḡi dµk = C-lim
n

k∏

i=1

∫

X

Ti(n)fi · ḡi dµ = 0

since D-limn

∫
X
T1(n)f1 · ḡ1 dµ = 0 by Theorem 4.5. Since the functions of the form

⊗k
i=1 gi are dense in

L2(Xk), f̂ = 0.

Given transformations T1, . . . , Tk of X, T1 × · · · × Tk is the transformation of Xk defined by (T1 × · · · ×
Tk)(x1, . . . , xk) =

(
T1x1, . . . , Tkxk

)
. Notice that if T1, . . . , Tk are sequences of transformations of X such

that T1 × · · · × Tk is ergodic, then T1, . . . , Tk are ergodic, and, moreover, Ti1 × · · · × Til
is ergodic for any

1 ≤ i1 < . . . < il ≤ k.

Lemma 5.2. Let T1, . . . , Tk ∈ T be such that the GL-sequences T −1
1 T2, . . . , T −1

1 Tk of transformations of X
are ergodic and the GL-sequence T1 × · · · × Tk of transformations of Xk is ergodic. Then the GL-sequence
(T −1

1 T2) × · · · × (T −1
1 Tk) of transformations of Xk−1 is also ergodic.

Proof. Since the span of the functions of the form f2⊗· · ·⊗fk with f2, . . . , fk ∈ L∞(X) is dense in L2(Xk−1),
it suffices to show that for any f2, . . . , fk ∈ L∞(X) with

∫
X

f2 dµ = . . . =
∫

X
fk dµ = 0 one has

C-lim
n

k⊗

i=2

T1(n)−1Ti(n)fi = 0 (5.1)

in L2(Xk−1). If at least one of fi is in Hwm, this is true by Lemma 5.1. If f2, . . . , fk ∈ Hc, we may
assume that f2, . . . , fk are nonconstant eigenfunctions of the elements of G, so that T1(n)fi = τi(n)fi and
Ti(n)fi = λi(n)fi, i = 2, . . . , k, for some (multiplicative) GL-sequences τi, λi in {z ∈ C : |z| = 1}. Put

f1 = f2 · · · fk. Since T1 × · · · × Tk is ergodic, we have C-limn

⊗k
i=1 Ti(n)fi = 0. But

C-lim
n

k⊗

i=1

Ti(n)fi = C-lim
n

( k∏

i=2

τi(n)f̄i

)
⊗

k⊗

i=2

λifi = C-lim
n

k∏

i=2

τi(n)λi(n)
( k∏

i=2

f̄i

k⊗

i=2

fi

)
,

so C-limn

∏k
i=1 τi(n)λi(n) = 0. Hence, C-limn

⊗k
i=2 T1(n)−1Ti(n)fi = C-limn

∏k
i=2 τi(n)λi(n)

(⊗k
i=2 fi

)
= 0

as well.

Definition 5.3. We say that sequences T1, . . . , Tk of measure preserving transformations of X are jointly
ergodic if for any f1, . . . , fk ∈ L∞(X), C-limn

∏k
i=1 Ti(n)fi =

∏k
i=1

∫
X

fi dµ in L2(X).

Notice that if T1, . . . , Tk are jointly egodic, then T1, . . . , Tk are ergodic, and, moreover, Ti1 , . . . , Til
are

jointly ergodic for any 1 ≤ i1 < . . . < il ≤ k.
We are now in position to prove our main result:

Theorem 5.4. GL-sequences T1, . . . , Tk ∈ T are jointly ergodic iff the GL-sequences T −1
i Tj are ergodic for

all i 6= j and the GL-sequence T1 × · · · × Tk is ergodic.
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Proof. Assume that T1, . . . , Tk ∈ T are jointly ergodic. Let i, j ∈ {1, . . . , k}, i 6= j, let f ∈ L∞(X), and let

f̂ = C-limn T −1
i (n)Tj(n)f . Then for any g ∈ L∞(X) we have

〈f̂ , g〉 = C-lim
n

∫

X

T −1
i (n)Tj(n)f · ḡ dµ =

∫

X

C-lim
n

Tj(n)f · Ti(n)ḡ dµ =

∫

X

f dµ

∫

X

ḡ dµ.

Hence, f̂ =
∫

X
f dµ, so T −1

i Tj is ergodic.
To prove that T1 × · · · × Tk is also ergodic, it suffices to show that for any f1, . . . , fk ∈ L∞(X) with∫

X
f1 dµ = . . . =

∫
X

fk dµ = 0, C-limn

⊗k
i=1 Ti(n)fi = 0. If at least one of fi is in Hwm, this is true by

Lemma 5.1. If fi ∈ Hc for all i, we may assume that f1, . . . , fk are nonconstant eigenfunctions of the elements
of G, and then Ti(n)fi = λi(n)fi, i = 1, . . . , k, for some GL-sequences λ1, . . . , λk in {z ∈ C : |z| = 1}. In this

case both
⊗k

i=1 Ti(n)fi = λ(n)
⊗k

i=1 fi and
∏k

i=1 Ti(n)fi = λ(n)
∏k

i=1 fi, where λ(n) =
∏k

i=1 λi(n), n ∈ Z.

Since C-limn

∏k
i=1 Ti(n)fi = 0, we have C-limn λ(n) = 0, and so, C-limn

⊗k
i=1 Ti(n)fi = 0.

Conversely, assume that T −1
i Tj are ergodic for all i 6= j and T1 × · · · × Tk is ergodic, and let

f1, . . . , fk ∈ L∞(X). If all fi ∈ Hc, then, again, we may assume that f1, . . . , fk are nonconstant eigen-

functions of the elements of G, so
⊗k

i=1 Ti(n)fi = λ(n)
⊗k

i=1 fi and
∏k

i=1 Ti(n)fi = λ(n)
∏k

i=1 fi, and since

now C-limn

⊗k
i=1 Ti(n)fi = 0, we obtain that C-limn

∏k
i=1 Ti(n)fi = 0 as well.

It remains to show that C-limn

∏k
i=1 Ti(n)fi = 0 whenever fi ∈ Hwm for at least one i. We will assume

that f1 ∈ Hwm and that |fi| ≤ 1 for all i. We will use the van der Corput trick and induction on k. Let ε > 0.
Let a Bohr set H ⊆ Z, transformations S1, . . . , Sk ∈ G, and sets Eh ⊆ Z, h ∈ H, be as in Proposition 4.1(iv),
applied to the GL-sequences T1, . . . , Tk. Let h1, h2 ∈ H; for any n ∈ Eh1

∩ Eh2
we have

〈 k∏

i=1

Ti(n + h1)fi,

k∏

i=1

Ti(n + h2)fi

〉
=

∫

X

k∏

i=1

Ti(n + h1)fi ·
k∏

i=1

Ti(n + h2)f̄i dµ

=

∫

X

(
T1(h1)S1f1 · T1(h2)S1f̄1

)
·

k∏

i=2

T −1
1 (n)Ti(n)

(
Ti(h1)Sifi · Ti(h2)Sif̄i

)
dµ.

By Lemma 5.2, T −1
1 T2×· · ·×T −1

1 Tk is ergodic, thus by induction on k, T −1
1 T2, . . . , T −1

1 Tk are jointly ergodic,
so

C-lim
n

∫

X

(
T1(h1)S1f1 · T1(h2)S1f̄1

)
·

k∏

i=2

T −1
1 (n)Ti(n)

(
Ti(h1)Sifi · Ti(h2)Sif̄i

)
dµ

=
k∏

i=1

∫

X

Ti(h1)Sifi · Ti(h2)Sif̄i dµ.

Since d∗(Eh1
∩ Eh2

) > 1 − 2ε and |f1|, . . . , |fk| ≤ 1, we get

∣∣∣C-limsup
n

〈 k∏

i=1

Ti(n + h1)fi,

k∏

i=1

Ti(n + h2)fi

〉∣∣∣ ≤
∣∣∣
∫

X

T1(h1)f̃ · T1(h2)f̃ dµ
∣∣∣ + 2ε,

where f̃ = S1f1. Since f̃ ∈ Hwm, by Theorem 4.5, D-limh

∫
X
T1(h)f̃ · f ′ dµ = 0 for any f ′ ∈ Hwm, and

since d∗(H) > 0, we can construct an infinite subset B of H such that
∣∣∫

X
T1(h1)f̃ · T1(h2)f̃ dµ

∣∣ < ε for any

distinct h1, h2 ∈ B. (Indeed, choose b1 ∈ H arbitrarily. The set B1 =
{
h ∈ N :

∣∣∫
X

Thf̃ · T b1 f̃ dµ
∣∣ < ε

}

has density one, so B1 ∩ H 6= ∅; choose b2 ∈ B1 ∩ H. Next, the set B2 =
{
h ∈ N :

∣∣∫
X

Thf̃ · T b2 f̃ dµ
∣∣ < ε

}

also has density one, so there is b3 ∈ B1 ∩ B2 ∩ H, etc. Then put B = {b1, b2, . . .}.) Then for any

distinct h1, h2 ∈ B we have
∣∣C-limsupn

〈∏k
i=1 Ti(n + h1)fi,

∏k
i=1 Ti(n + h2)fi

〉∣∣ < 3ε, and so by Lemma 2.1,

C-limsup‖·‖,n

∏k
i=1 Ti(n)fi ≤

√
3ε. Since ε is arbitrary, C-limn

∏k
i=1 Ti(n)fi = 0.
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Remark 5.5. We defined our C-lims with respect to a fixed Følner sequence in Z. However, since, for any
GL-sequence T of measure preserving transformations of X and any f ∈ L2(X), C-lim T (n)f exists with
respect to any Følner sequence, this limit is the same for all Følner sequences (since any two such sequences
can be combined to produce a new one having them as subsequences). This implies that for T1, . . . , Tk ∈ T,
the condition that T −1

i Tj for all i 6= j and T1 × · · · × Tk are ergodic is independent of the choice of a Følner
sequence in Z. It now follows from Theorem 5.4 that the joint ergodicity of T1, . . . , Tk does not depend on
the choice of the Følner sequence either, – which was not apriori evident.

For GL-sequences based on a single transformation, that is, of the form T (n) = Tϕ(n), we have a simple
criterion of ergodicity. Recall that for a measure preserving transformation T of X we defined

Eig T =
{
λ ∈ C∗ : Tf = λf for some f ∈ L2(X)

}
,

and for several measure preserving transformations T1, . . . , Tk of X, Eig(T1, . . . , Tk) = (EigT1) · · · (Eig Tk).

Lemma 5.6. Let T be an invertible measure preserving transformation of X and let ϕ be an unbounded GL-
function Z −→ Z. Then the GL-sequence T (n) = Tϕ(n), n ∈ Z, is ergodic iff T is ergodic and C-limn λϕ(n) =
0 for every λ ∈ Eig T \ {1}, and T is weakly mixing iff T is weakly mixing.

Proof. The “only if” part is clear. Let L2(X) = Hc ⊕ Hwm be the compact/weak mixing decomposition
induced by T . If T is ergodic and C-limn λϕ(n) = 0 for every λ ∈ EigT \ {1}, then C-limn T (n)f =

∫
X

f dµ
for any f ∈ Hc, so T is ergodic on Hc. Considering T as a unitary operator on Hwm and using the spectral
theorem, embed T into a continuous unitary flow. Using Lemma 1.2, write ϕ(n) = an + ψ(n), n ∈ Z, where
a ∈ R \ {0} and ψ is a BGL-function; then T a has no eigenfunctions in Hwm, so is weakly mixing on Hwm.
Since for any f ∈ Hwm the set {Tψ(n)f, n ∈ Z} is totally bounded, T is weakly mixing (and so, ergodic) on
Hwm.

We are now in position to prove Corollaries 0.5 and 0.6, formulated in the Introduction:

Corollary 5.7. Let T be an invertible weakly mixing measure preserving transformation of X and let
ϕ1, . . . , ϕk be unbounded GL-functions such that ϕj −ϕi are unbounded for all i 6= j; then the GL-sequences
Tϕ1(n), . . . , Tϕk(n), n ∈ Z, are jointly ergodic. In particular, for any distinct α1, . . . , αk ∈ R \ {0}, the
GL-sequences T [α1n], . . . , T [αkn] are jointly ergodic.

Proof. By Lemma 5.6, the GL-sequences T−ϕi(n)Tϕj(n) = Tϕj(n)−ϕi(n) are ergodic for all i 6= j. The GL-
sequence Tϕ1(n) × · · ·×Tϕk(n) is also ergodic by Lemma 5.1. By Theorem 5.4, Tϕ1(n), . . . , Tϕk(n) are jointly
ergodic.

Corollary 5.8. Let T1, . . . , Tk be commuting invertible jointly ergodic measure preserving transformations

of X and let ϕ be an unbounded GL-function Z −→ Z; then the GL-sequences T
ϕ(n)
1 , . . . , T

ϕ(n)
k , n ∈ Z, are

jointly ergodic iff C-limn λϕ(n) = 0 for every λ ∈ Eig(T1, . . . , Tk) \ {1}. In particular, for any irrational

α ∈ R, the GL-sequences T
[αn]
1 , . . . , T

[αn]
k are jointly ergodic iff e2πiα−1Q ∩ Eig(T1, . . . , Tk) = {1}.

Proof. First of all, notice that Eig(T1, . . . , Tk) = Eig(T1 × · · · × Tk). Since the transformations T1, . . . , Tk

are ergodic and commute, they share the set of eigenfunctions, so for any i and j we have Eig(T−1
i Tj) ⊆

Eig Ti · EigTj ⊆ Eig(T1, . . . , Tk) as well. Applying Lemma 5.6 to the transformations T−1
i Tj for i 6= j and

T1 × · · · × Tk, we get the first assertion.
The case ϕ(n) = [αn], with an irrational α, is now managed by the following lemma:

Lemma 5.9. For an irrational α and a real β one has C-limn e2πi[αn]β = 0 iff αβ 6∈ Zα + Q.

Proof. We have [αn]β = αβn − {αn}β, n ∈ Z. Consider the sequence un = ({αβn}, {αn}) in the torus
T2

(x,y) = R2/Z2, so that the sequence ([αn]β)mod 1 is its image in T under the map σ(x, y) =
(
{x} −

β{y}
)
mod 1. If αβ and α are rationally independent modulo 1, (un) is uniformly distributed in T2, thus

σ(un) is uniformly distributed in T, and so, C-limn e2πi[αn]β = C-limn e2πiσ(un) = 0. Let αβ and α be
rationally dependent modulo 1, kαβ = mα + l, where k ∈ N and m, l ∈ Z with g.c.d.(k,m, l) = 1. Then
the sequence (un) in uniformly distributed in the subgroup S of T2 defined by the equation kx = my. σ
maps S to k isomorphic intervals

[
m
k j, m

k (j + 1) − β
)
, j = 0, . . . , k − 1, in T, and the sequence σ(un) is
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uniformly distributed in the weighted union of these intervals. It follows that C-limn e2πiσ(un) = 0 unless all
the intervals coincide, which happens iff k

∣∣m, that is, iff αβ ∈ Zα + Q. In this situation of a single interval

it could still be possible that C-limn e2πiσ(un) = 0, – if this interval covered T an integer number of times,
that is, iff m

k − β ∈ Z \ {0}; however, this is never the case since α is irrational. Thus, if αβ ∈ Zα + Q,

C-limn e2πiσ(un) 6= 0.

6. Joint ergodicity of GL-sequences along primes

In this section we will adapt some results from [GT] and a technique from [S] to establish a condition
for several GL-sequences to be jointly ergodic along primes.

By P we will denote the set of prime integers. Let us also use the following notation: for N ∈ N let
P(N) = P ∩ {1, . . . , N}, π(N) = |P(N)|, and R(N) = {r ∈ {1, . . . , N} : g.c.d.(r,N) = 1}. As above, we fix
a commutative group G of measure preserving transformations of a probability measure space (X,µ) and
denote by T the group of GL-sequences in G. We will prove the following theorem:

Theorem 6.1. Let T1, . . . , Tk ∈ T be such that for any W ∈ N and r ∈ R(W ) the GL-sequences Ti,W,r(n) =
Ti(Wn + r), i = 1, . . . , k, are jointly ergodic. Then for any f1, . . . , fk ∈ L∞(X),

lim
N→∞

1

π(N)

∑

p∈P(N)

T1(p)f1 · · · Tk(p)fk =

k∏

i=1

∫

X

fi dµ (in L2 norm).

Remark. In general, joint ergodicity of Ti, i = 1, . . . , k, does not imply that of Ti,W,r. Indeed, let α ∈
R \ Q, let X = {0, 1} with measure µ({0}) = µ({1}) = 1/2, let Tx = (x + 1)mod 2, let T1(n) = Tn

and T2(n) = T [αn], n ∈ N. Then T1 and T2 are jointly ergodic, but T1(2n + 1) is not ergodic. Notice
also that the assertion of the theorem does not hold for these T1 and T2: for functions f1 and f2 on X,
limN→∞

1
π(N)

∑
p∈P(N) T1(p)f1 · T2(p)f2 = Tf1

∫
X

f2 dµ.

Following [GT], we introduce “the modified von Mangoldt function” Λ′(n) = 1P(n) log n, n ∈ N. The
following simple lemma allows one to rewrite the average in Theorem 6.1 in terms of Λ′:

Lemma 6.2. (Cf. Lemma 1 in [FHoK].) For any bounded sequence (vn) of vectors in a normed vector space,

limN→∞

∥∥ 1
π(N)

∑
p∈P(N) vp − 1

N

∑N
n=1 Λ′(n)vn

∥∥ = 0.

A (compact) nilmanifold N is a compact homogeneous space of a nilpotent Lie group G; a nilrotation
of N is a translation by an element of G. Nilmanifolds are characterized by the nilpotency class and the
number of generators of G; for any k, d ∈ N there exists a universal, “free” nilmanifold Nk,d of nilpotency
class k, with d “continuous” and d “discrete” generators(1) such that any nilmanifold of class ≤ k and with
≤ d generators is a factor of Nk,d. A basic nilsequence is a sequence of the form η(n) = g(an) where g is a
continuous function on a nilmanifold N and a is a nil-rotation of N . We may always assume that N = Nk,d

for some k and d; the minimal such k is said to be the nilpotency class of η. Given k, d ∈ N and M > 0, we
will denote by Lk,d,M the set of basic nilsequences η(n) = g(an) where the function g ∈ C(Nk,d) is Lipschitz
with constant M and |g| ≤ M . (A smooth metric on each nilmanifold Nk,d is assumed to be chosen.)

Following [GT], for W, r ∈ N we define Λ′
W,r(n) = φ(W )

W Λ′(Wn+r), n ∈ N, where φ is the Euler function,
φ(W ) = |R(W )|. By W we will denote the set of integers of the form W =

∏
p∈P(m) p, m ∈ N. It is proved in

[GT] that “the W -tricked von Mangoldt sequences Λ′
W,r are orthogonal to nilsequences”; here is a weakened

version of Proposition 10.2 from [GT]:

(1) “A continuous generator” of a nilmanifold N is a continuous flow (at)t∈R in the group G; “a discrete generator”

is just an element of G.
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Proposition 6.3. For any k, d ∈ N and M > 0,

lim
W∈W
W→∞

lim sup
N→∞

sup
η∈Lk,d,M

r∈R(W )

∣∣∣
1

N

N∑

n=1

(Λ′
W,r(n) − 1)η(n)

∣∣∣ = 0.

We need to extend Proposition 6.3 to sequences slightly more general than nilsequences:

Lemma 6.4. (Cf. [S], Proposition 3.2.) Let P be a polygonal subset of a torus M and let u ∈ M. For any
k, d ∈ N and M > 0,

lim
W∈W
W→∞

lim sup
N→∞

sup
η∈Lk,d,M

r∈R(W )

∣∣∣
1

N

N∑

n=1

(Λ′
W,r(n) − 1)1P ((Wn + r)u)η(n)

∣∣∣ = 0.

Proof. Let Z = Zu; Z is a finite union of subtori M1, . . . ,Ml of M. Let ε > 0. Choose smooth functions
g1, g2 on M such that 0 ≤ g1 ≤ 1P ≤ g2 ≤ 1 and the set S = {g1 6= g2} is polygonal with λMi

(S ∩Mi) ≤
ελMi

(Mi), i = 1, . . . , l, where λMi
is the normalized Haar measure on Mi. Then for any W and r, the

sequences ζ1,W,r(n) = g1((Wn + r)u) and ζ2,W,r(n) = g2((Wn + r)u) are (1-step) basic nilsequences, and
since the sequence (Wn + r)u is uniformly distributed in the union of several components of Z, the set
{n : ζ1(n) 6= ζ2(n)} has density < ε. Notice that if M ′ is the sum of M and the Lipschitz’s constants of g1

and g2 and d′ = d + dimM, then for any η ∈ Lk,d,M one has ζ1,W,rη, ζ2,W,rη ∈ Lk,d′,M ′ .

Let L+
k,d,M = {η ∈ Lk,d,M : η ≥ 0}. For any W , r, and any η ∈ L+

k,d,M , for every n ∈ N we have

(Λ′
W,r(n) − 1)1P ((Wn + r)u)η(n) ≤

(
Λ′

W,r(n)ζ2,W,r(n) − ζ1,W,r(n)
)
η(n)

= (Λ′
W,r(n) − 1)ζ2,W,r(n)η(n) +

(
ζ2,W,r(n) − ζ1,W,r(n)

)
η(n).

By Proposition 6.3, lim W∈W
W→∞

lim supN→∞ supη∈Lk,d,M

r∈R(W )

∣∣ 1
N

∑N
n=1(Λ

′
W,r(n) − 1)ζ2,W,r(n)η(n)

∣∣ = 0, whereas

for any W , r, and any η ∈ L+
k,d,M , limN→∞

1
N

∑N
n=1

∣∣ζ2,W,r(n) − ζ1,W,r(n)
∣∣η(n) ≤ Mε; thus,

lim sup
W∈W
W→∞

lim sup
N→∞

sup
η∈L+

k,d,M

r∈R(W )

1

N

N∑

n=1

(Λ′
W,r(n) − 1)1P ((Wn + r)u)η(n) ≤ Mε.

Similarly,

(Λ′
W,r(n) − 1)1P ((Wn + r)u)η(n) ≥ (Λ′

W,r(n) − 1)ζ1,W,r(n)η(n) −
(
ζ2,W,r(n) − ζ1,W,r(n)

)
η(n),

so

lim inf
W∈W
W→∞

lim inf
N→∞

inf
η∈L+

k,d,M

r∈R(W )

1

N

N∑

n=1

(Λ′
W,r(n) − 1)1P ((Wn + r)u)η(n) ≥ −Mε.

Hence,

lim
W∈W
W→∞

lim sup
N→∞

sup
η∈L+

k,d,M

r∈R(W )

∣∣∣
1

N

N∑

n=1

(Λ′
W,r(n) − 1)1P ((Wn + r)u)η(n)

∣∣∣ = 0;

since Lk,d,M = L+
k,d,M − L+

k,d,M , we are done.
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Let k,N ∈ N; for sequences b: {1, . . . , N} −→ R, the k-th Gowers’s norm is defined by

‖b‖Uk[N ] =
( 1

Vk(N)

∑

n,h1,...,hk∈Z

∏

e1,...,ek∈{0,1}

b(n + e1h1 + · · · + ekhk)
)1/2k

=
( N2

Vk(N)

∑

h1,...,hk−1∈Z

∣∣∣
1

N

N∑

n=1

∏

e1,...,ek−1∈{0,1}

b(n + e1h1 + · · · + ek−1hk−1)
∣∣∣
2)1/2k

,

where

Vk(N) = #
{

(n, h1, . . . , nk) ∈ Zk+1 : n + e1h1 + · · · + ek−1hk−1 ∈ [1, N ] for any e1, . . . , ek ∈ {0, 1}
}
≤ Nk+1,

and where we assume b(n) = 0 if n 6∈ {1, . . . , N}.
The next result we need is the fact that, on a certain class of sequences, “the k-th Gowers norm

is continuous with respect to the system of seminorms ‖b‖d,M = supη∈Lk,d,M

∣∣ 1
N

∑N
n=1 b(n)η(n)

∣∣, d ∈ N,
M > 0”. We will utilize the following lemma, which is a corollary of Propositions 10.1 and 6.4 in [GT]:

Lemma 6.5. For any ε > 0 and k ∈ N there exist d ∈ N, M > 0, and δ > 0 such that for any
N ∈ N, if a sequence b: {1, . . . , N} −→ R satisfies |b| ≤ 1 + Λ′

W,r for some W ∈ W and r ∈ R(W )

and supη∈Lk,d,M

∣∣ 1
N

∑N
n=1 b(n)η(n)

∣∣ < δ, then ‖b‖Uk[N ] < ε.

Remark. Proposition 10.1 was proved in [GT] modulo the “Inverse Gowers-norm Conjecture”, which had
then been confirmed in [GTZ].

Combining Lemma 6.4 and Lemma 6.5, applied to the sequence b(n) = (Λ′
W,r(n) − 1)1P ((Wn +

r)u)1[1,N ](n), we obtain:

Lemma 6.6. (Cf. [S], Proposition 3.2.) Let P be a polygonal region in a torus M and let u ∈ M. Then for
any k ∈ N,

lim
W∈W
W→∞

lim sup
N→∞

max
r∈R(W )

∥∥(Λ′
W,r(n) − 1)1P ((Wn + r)u)

∥∥
Uk[N ]

= 0.

From Lemma 6.6 we now deduce:

Proposition 6.7. (Cf. [S], Proposition 4.1) Let T1, . . . , Tk ∈ T and f1, . . . , fk ∈ L∞(X). For any f1, . . . , fk ∈
L∞(X) we have

lim
W∈W
W→∞

lim sup
N→∞

max
r∈R(W )

∥∥∥
1

N

N∑

n=1

(Λ′
W,r(n) − 1)T1(Wn + r)f1 · · · Tk(Wn + r)fk

∥∥∥
L2(X)

= 0.

Proof. We will assume that |fi| ≤ 1, i = 1, . . . , k. Let, by Proposition 4.1(iii), M be a torus, u ∈ M, and

M =
⋃l

j=1 Pj be a polygonal partition of M such that for every i and j, Ti(n)−1Ti(n + h) does not depend
on n whenever both nu, (n + h)u ∈ Pj . We will show that for any j and any N,W, r ∈ N one has

∥∥∥
1

N

N∑

n=1

(Λ′
W,r(n) − 1)1Pj

((Wn + r)u)T1(Wn + r)f1 · · · Tk(Wn + r)fk

∥∥∥
L2(X)

≤
∥∥(Λ′

W,r(n) − 1)1Pj
((Wn + r)u)

∥∥
Uk+1[N ]

;

via Lemma 6.6, this will imply that

lim
W∈W
W→∞

lim sup
N→∞

max
r∈R(W )

∥∥∥
1

N

N∑

n=1

(Λ′
W,r(n) − 1)1Pj

((Wn + r)u)T1(Wn + r)f1 · · · Tk(Wn + r)fk

∥∥∥
L2(X)

= 0

for each j = 1, . . . , l, from which the assertion of the proposition follows.
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Fix j, N , W , and r; put P = Pj , define b(n) = (Λ′
W,r(n) − 1)1P ((Wn + r)u)1[1,N ](n), and let T̃i(n) =

Ti(Wn + r) for i = 1, . . . , k.
By Lemma 2.2,

∥∥∥
1

N

N∑

n=1

b(n)T̃1(n)f1 · · · T̃k(n)fk

∥∥∥
2

L2(X)

≤ 1

N

∑

h∈Z

∣∣∣
1

N

N∑

n=1

∫

X

b(n)b(n + h1) · T̃1(n)f1 · T̃1(n + h1)f̄1 · · · T̃k(n)fk · T̃k(n + h1)f̄k dµ
∣∣∣.

By the definition of P = Pj , for each i there exists a sequence Si(h1), h1 ∈ Z, of transformations such that

T̃i(n)−1T̃i(n + h1) = Si(h1) if 1P ((Wn + r)u)1P ((W (n + h1) + r)u) 6= 0, and so, if b(n)b(n + h1) 6= 0. Thus,
if we put fi,h1

= fi · Si(h1)f̄i, i = 1, . . . , k, h1 ∈ Z, we get

∥∥∥
1

N

N∑

n=1

b(n)T̃1(n)f1 · · · T̃k(n)fk

∥∥∥
2

L2(X)

≤ 1

N

∑

h1∈Z

∣∣∣
1

N

N∑

n=1

∫

X

b(n)b(n + h1) · T̃1(n)f1,h1
· · · T̃k(n)fk,h1

dµ
∣∣∣

=
1

N

∑

h1∈Z

∣∣∣
∫

X

f1,h1

1

N

N∑

n=1

b(n)b(n + h1) · (T̃ −1
1 T̃2)(n)f2,h1

· · · (T̃ −1
1 T̃k)(n)fk,h1

dµ
∣∣∣

≤ 1

N

∑

h1∈Z

∥∥∥
1

N

N∑

n=1

b(n)b(n + h1) · (T̃ −1
1 T̃2)(n)f2,h1

· · · (T̃ −1
1 T̃k)(n)fk,h1

∥∥∥
L2(X)

.

In the same way, for every h1,

∥∥∥
1

N

N∑

n=1

b(n)b(n + h1) · (T̃ −1
1 T̃2)(n)f2,h1

· · · (T̃ −1
1 T̃k)(n)fk,h1

∥∥∥
2

L2(X)

≤ 1

N

∑

h2∈Z

∥∥∥
1

N

N∑

n=1

b(n)b(n + h1)b(n + h2)b(n + h1 + h2) · (T̃ −1
2 T̃3)(n)f3,h1,h2

· · · (T̃ −1
2 T̃k)(n)fk,h1,h2

∥∥∥
L2(X)

for some functions fi,h1,h2
of modulus ≤ 1, and so, by Schwarz’s lemma,

∥∥∥
1

N

N∑

n=1

b(n)T̃1(n)f1 · · · T̃k(n)fk

∥∥∥
4

L2(X)

≤ 1

N2

∑

h1,h2∈Z

∥∥∥
1

N

N∑

n=1

b(n)b(n + h1)b(n + h2)b(n + h1 + h2) · (T̃ −1
2 T̃3)(n)f3,h1,h2

· · · (T̃ −1
2 T̃k)(n)fk,h1,h2

∥∥∥
L2(X)

.

Applying Lemma 2.2 with Schwarz’s lemma k − 2 more times, and then Schwarz’s lemma once again, we
arrive at

∥∥∥
1

N

N∑

n=1

b(n)T̃1(n)f1 · · · T̃k(n)fk

∥∥∥
2k

L2(X)

≤ 1

Nk

∑

h1,...,hk∈Z

∣∣∣
1

N

N∑

n=1

∏

e1,...,ek∈{0,1}

b(n + e1h1 + · · · + ekhk)
∣∣∣

≤
( 1

Nk

∑

h1,...,hk∈Z

∣∣∣
1

N

N∑

n=1

∏

e1,...,ek∈{0,1}

b(n + e1h1 + · · · + ekhk)
∣∣∣
2)1/2

≤ ‖b‖2k

Uk+1[N ].
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We are now in position to prove Theorem 6.1:

Proof of Theorem 6.1. For short, put f̃(n) = T1(n)f1 · · · Tk(n)fk, n ∈ N. By Lemma 6.2, we have to show

that limN→∞
1
N

∑N
n=1 Λ′(n)f̃(n) =

∏k
i=1

∫
X

fi dµ. Let ε > 0. By Proposition 6.7, we can choose W ∈ W
such that for any N large enough and any r ∈ R(W ) one has

∥∥∥
1

N

N∑

n=1

(Λ′
W,r(n) − 1)f̃(Wn + r)

∥∥∥
L2(X)

< ε,

and so,
∥∥∥

1

NW

N∑

n=1

Λ′(Wn + r)f̃(Wn + r) − 1

Nφ(W )

N∑

n=1

f̃(Wn + r)
∥∥∥

L2(X)
<

ε

φ(W )
.

Summing this up for all r ∈ R(W ), and taking into account that Λ′(Wn + r) = 0 if r 6∈ R(W ), we obtain

∥∥∥
1

NW

NW∑

n=1

Λ′(n)f̃(n) − 1

φ(W )

∑

r∈R(W )

1

N

N∑

n=1

f̃(Wn + r)
∥∥∥

L2(X)
< ε.

By the theorem’s assumption, for any r ∈ R(W ),
∥∥ 1

N

∑N
n=1 f̃(Wn + r) − ∏k

i=1

∫
X

fi dµ
∥∥

L2(X)
< ε for all N

large enough. Hence,
∥∥ 1

NW

∑NW
n=1 Λ′(n)f̃(n)

∥∥
L2(X)

< 2ε for such N , and so,

lim
N→∞

1

N

N∑

n=1

Λ′(n)f̃(n) = lim
N→∞

1

NW

NW∑

n=1

Λ′(n)f̃(n) =
k∏

i=1

∫

X

fi dµ.

We will now collect some special cases of Theorem 6.1. It was shown in [B] that if T1, . . . , Tk, with
k ≥ 2, are commuting, invertible, jointly ergodic measure preserving transformations, then they are actually
totally jointly ergodic, that is, for any W ∈ N and r ∈ Z, TWn+r

1 , . . . , TWn+r
k are jointly ergodic. Hence, by

Theorem 6.1, we obtain:

Theorem 6.8. Let T1, . . . , Tk, where k ≥ 2, be commuting, invertible, jointly ergodic measure preserving
transformations of X. Then for any f1, . . . , fk ∈ L∞(X), in the L2-norm,

lim
N→∞

1

π(N)

∑

p∈P(N)

T p
1 f1 · · ·T p

k fk =

k∏

i=1

∫

X

fi dµ.

The following is a corollary of Theorem 6.1 and Corollary 0.5:

Corollary 6.9. Let T be a weakly mixing invertible measure preserving transformation of X and let
ϕ1, . . . , ϕk be unbounded GL-functions Z −→ Z such that ϕj − ϕi are unbounded for all i 6= j. Then
for any f1, . . . , fk ∈ L∞(X),

lim
N→∞

1

π(N)

∑

p∈P(N)

Tϕ1(p)f1 · · ·Tϕk(p)fk =

k∏

i=1

∫

X

fi dµ.

In particular, for any distinct α1, . . . , αk ∈ R \ {0},

lim
N→∞

1

π(N)

∑

p∈P(N)

T [α1p]f1 · · ·T [αkp]fk =

k∏

i=1

∫
fi dµ.

From Theorem 6.1 and Corollary 0.6 we obtain:
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Corollary 6.10. Let T1, . . . , Tk be commuting invertible jointly ergodic measure preserving transformations
of X and let ϕ be an unbounded GL-function Z −→ Z such that limN→∞

1
N

∑N
n=1 λϕ(Wn+r) = 0 for every

λ ∈ Eig(T1, . . . , Tk), W ∈ W, and r ∈ R(W ). Then for any f1, . . . , fk ∈ L∞(X),

lim
N→∞

1

π(N)

∑

p∈P(N)

T
ϕ(p)
1 f1 · · ·Tϕ(p)

k fk =
k∏

i=1

∫
fi dµ

In particular, if α ∈ R is irrational and such that e2πiα−1Q ∩ Eig(T1, . . . , Tk) = {1}, then

lim
N→∞

1

π(N)

∑

p∈P(N)

T
[αp]
1 f1 · · ·T [αp]

k fk =

k∏

i=1

∫
fi dµ for any f1, . . . , fk ∈ L∞(X).

7. GL-families of a continuous parameter

Let T (t), t ∈ R, be a family of measure preserving transformations of X. We say that T is ergodic if, for

any f ∈ L2(X), limb→∞
1
b

∫ b

0
T (t)f dt =

∫
X

f dµ in L2-norm, and uniformly ergodic if, for any f ∈ L2(X),

limb→∞
1

b−a

∫ b

a
T (t)f dt =

∫
X

f dµ. Given several families T1(t), . . . , Tk(t), t ∈ R, of measure preserving
transformations of X, we say that T1, . . . , Tk are jointly ergodic if

lim
b→∞

1

b

∫ b

0

T1(t)f1 · · · Tk(t)fk dt =

k∏

i=1

∫

X

fi dµ

in L2-norm for any f1, . . . , fk ∈ L∞(X), and uniformly jointly ergodic if

lim
b−a→∞

1

b − a

∫ b

a

T1(t)f1 · · · Tk(t)fk dt =

k∏

i=1

∫

X

fi dµ

for any f1, . . . , fk ∈ L∞(X).
Let G be a commutative group of measure preserving transformations of X. In analogy with the

terminology adopted in previous sections, we will call a family T (t), t ∈ R, of elements of G a GL-family if

it is of the form T (t) = T
ϕ1(t)
1 · · ·Tϕr(t)

r , t ∈ R, where T1, . . . , Tr are continuous homomorphisms R −→ G
and ϕ1, . . . , ϕr are GL-functions R −→ R. Let TR denote the set of GL-families of transformations from G.
We have the following analogue of Theorem 5.4:

Theorem 7.1. Let T1, . . . , Tk ∈ TR. Then the following are equivalent:
(i) T1, . . . , Tk are jointly ergodic;
(ii) T1, . . . , Tk are uniformly jointly ergodic;
(iii) the GL-families T −1

i Tj are ergodic for all i 6= j and the GL-family T1 × · · · × Tk is ergodic.

One can verify that a (properly modified) proof of Theorem 5.4 works in the situation at hand as
well. An alternative and simpler approach is to derive Theorem 7.1 from Theorem 5.4 with the help of the
techniques developed in [BeLM]. Namely, we can use the following fact:

Theorem 7.2. ([BeLM]) Let τ : R −→ V be a bounded measurable mapping to a Banach space V such that

for every t ∈ R, the limit Lt = limN→∞
1
N

∑N
n=1 τ(nt) (respectively, Lt = limN−M→∞

1
N−M

∑N
n=M+1 τ(nt))

exists for a.e. t ∈ R. Then the limit L = limb→∞
1
b

∫ b

0
τ(t) dt (respectively, L = limb→∞

1
b−a

∫ b

a
τ(t) dt) also

exists, and Lt = L for a.e. t ∈ R.

To apply this result we need to verify that for any GL-family T and any t ∈ R the sequence
T (nt), n ∈ Z, is a GL-sequence. This is indeed so: any GL-function ϕ can be written in the form

ϕ(t) =
∑l

j=1[ϕj(t)]aj + ct + d, where ϕj are GL-functions and aj , c, d ∈ R, thus for any flow T and any

t ∈ R, Tϕ(nt) =
(∏l

j=1(T
aj )[ϕj(nt)]

)
(T ct)nT d, in which expression all the factors are GL-sequences in the

group generated by the transformations T a1 , . . . , T al , T ct, T d. We may now apply Theorem 7.2 in conjunc-
tion with Lemma 4.2 to the family τ(t) = T (t)f , where T is a GL-family and f ∈ L2(X), and see that the

limits limb→∞
1
b

∫ b

0
T (t)f dt and limb−a→∞

1
b−a

∫ b

a
T (t)f dt exist, and T is ergodic and is uniformly ergodic

iff the GL-sequences T (nt), n ∈ Z, are ergodic (= uniformly ergodic) for almost all t ∈ R.
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Proof of Theorem 7.1. Assume that the GL-families T1, . . . , Tk are jointly ergodic. For any distinct i and
j, Ti and Tj are jointly ergodic, which implies that T −1

i Tj is ergodic. It remains to show that T1 × · · · × Tk

is ergodic. T1, . . . , Tk are ergodic, so the GL-sequences T1(nt), . . . , Tk(nt), n ∈ Z, are ergodic for a.e. t ∈ R.

Thus, by Lemma 5.1, C-limn

⊗k
i=1 Ti(nt)fi = 0 for a.e. t ∈ R whenever fi ∈ Hwm for at least one of i;

by Theorem 7.2, this implies that limb→∞
1
b

∫ b

0

∏k
i=1 Ti(t)fi dt = 0 whenever fi ∈ Hwm for at least one of

i. If fi ∈ Hc for all i, we may assume that all fi are nonconstant eigenfunctions of elements of G, so
Ti(t)fi = λi(t)fi, i = 1, . . . , k, where λi are functions R −→ C. In this case,

0 = lim
b→∞

1

b

∫ b

0

k∏

i=1

Ti(t)fi dt =
(

lim
b→∞

1

b

∫ b

0

k∏

i=1

λi(t) dt
) k∏

i=1

fi,

so limb→∞
1
b

∫ b

0

∏k
i=1 λi(t) dt = 0, so

lim
b→∞

1

b

∫ b

0

k⊗

i=1

Ti(t)fi dt =
(

lim
b→∞

1

b

∫ b

0

k∏

i=1

λi(t) dt
) k⊗

i=1

fi = 0.

Hence, T1 × · · · × Tk is ergodic.
Conversely, if T −1

i Tj for all i 6= j and T1 × · · · × Tk are ergodic, then by Lemma 4.2 and Theorem 7.2,
the GL-sequences (T −1

i Tj)(nt) and (T1 × · · · × Tk)(nt) are ergodic for a.e. t ∈ R, so, by Theorem 5.4, the
GL-sequences T1(nt), . . . , Tk(nt) are jointly ergodic (= uniformly jointly ergodic, see remark after the proof of
Theorem 5.4) for a.e. t ∈ R, so T1, . . . , Tk are jointly ergodic and uniformly jointly ergodic by Theorem 7.2.

For a continuous parameter, Corollaries 0.5 and 0.6 take the following form:

Corollary 7.3. Let T s, s ∈ R, be a weakly mixing continuous flow of measure preserving transformations
of X and let ϕ1, . . . , ϕk be unbounded GL-functions R −→ R such that ϕj − ϕi are unbounded for all
i 6= j; then the GL-families Tϕ1(t), . . . , Tϕk(t), t ∈ R, are jointly ergodic. In particular, for any distinct
α1, . . . , αk ∈ R \ {0}, the GL-families T [α1t], . . . , T [αkt], t ∈ R, are jointly ergodic.

Corollary 7.4. Let T s
1 , . . . , T s

k , s ∈ R, be commuting jointly ergodic continuous flows of measure preserving

transformations of X and let ϕ be an unbounded GL-function; then the GL-families T
ϕ(t)
1 , . . . , T

ϕ(t)
k , t ∈ R,

are jointly ergodic iff limb→∞
1
b

∫ b

0
λϕ(t) dt = 0 for every λ ∈ Eig(T 1

1 , . . . , T 1
k ) \ {1}.

We would also like to remark that, in the case of continuous parameter, by using a “change of variable”
trick one can easily extend the results above, proved for GL-families, to more general families of transforma-
tions of the form T (σ(t)), where T is a GL-family and σ is a monotone function of “regular” growth. What
we mean is the following proposition:

Proposition 7.5. Let T1(t), . . . , Tk(t), t ∈ R, be jointly ergodic families of measure preserving transforma-
tions of X and let σ: R −→ R be a strictly increasing C1-function such that σ′ is monotone and

lim
b−a→∞

(σ−1)′(a)

σ−1(b) − σ−1(a)
= lim

b−a→∞

(σ−1)′(b)

σ−1(b) − σ−1(a)
= 0.

Then the families T1(σ(t)), . . . , Tk(σ(t)) are also jointly ergodic.

Remark. Of course, Proposition 7.5 remains true when the families Ti are only defined on a ray [r,∞). In

this form, it applies when σ is of the form σ(t) =
∑d

i=1 cit
αi , where αi are nonnegative reals, on the ray

[r,∞) where σ′ becomes monotone. Moreover, for σ of this sort, σ−1 also satisfies the assumptions of the
proposition, thus T1, . . . , Tk are jointly ergodic iff T1(σ(t)), . . . , Tk(σ(t)) are.

Let us say that a function τ : R −→ R has uniform Cesàro limit L if limb−a→∞
1

b−a

∫ b

a
τ(t) dt = L.

Proposition 7.5 is simply a special case of the following general fact:

Proposition 7.6. Let σ be as in Proposition 7.5. Then, if a bounded function τ : R −→ R has uniform
Cesàro limit L, the function τ(σ(t)) also does.
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This proposition must be well known to aficionados, but since we have not been able to find any
references, we will sketch its proof. Making the substitution s = σ(t) we get

lim
b−a→∞

1

b − a

∫ b

a

τ(σ(t)) dt = lim
q−p→∞

1

σ−1(q) − σ−1(p)

∫ q

p

τ(s)(σ−1)′(s)ds.

What we have in the right hand part of this formula, limb−a→∞
1∫
b

a
ω

∫ b

a
τ(t)ω(t) dt, is the weighted uniform

Cesàro limit of τ with weight ω = (σ−1)′. Rewriting Proposition 7.6 in terms of ω, we reduce it to the
following lemma:

Lemma 7.7. Let ω: R −→ R be a positive monotone function with the property that, for any c > 0,

limb−a→∞ ω(a)/
∫ b

a
ω = limb−a→∞ ω(b)/

∫ b

a
ω = 0. Then, if a bounded function τ : [0,∞) −→ R has uniform

Cesàro limit L, then the weighted uniform Cesàro limit of τ with weight ω is equal to L (and, in particular,
exists).

Proof. We will assume that ω is increasing, the case of decreasing ω is similar. Let M = sup |τ |. Let ε > 0.

Find c > 0 such that 1
c

∫ x+c

x
τ(t) dt

ε≈L for every x > 0. Averaging this equation with weight ω over an
interval [a, b] and changing the order of integration, we get

L
ε≈ 1

∫ b

a
ω

∫ b

a

ω(x)
(1

c

∫ x+c

x

τ(t) dt
)

dx =
1

c
∫ b

a
ω

∫ b

a

(∫ t

t−c

ω(x) dx
)
τ(t) dt

− 1

c
∫ b

a
ω

∫ a+c

a

(∫ a

t−c

ω(x) dx
)
τ(t) dt +

1

c
∫ b

a
ω

∫ b+c

b

(∫ b

t−c

ω(x) dx
)
τ(t) dt.

The moduli of the second and of the third summands in the right hand part of this epuality are majorized

by Mω(b)c2/2

c
∫

b

a
ω

and tend to 0 as b − a −→ ∞. We now claim that, for large b − a, the first summand is close

to 1∫
b

a
ω

∫ b

a
τ(t)ω(t) dt. Indeed, taking into account the monotonicity of ω, we have

∣∣∣∣∣
1

c
∫ b

a
ω

∫ b

a

(∫ t

t−c

ω(x) dx
)
τ(t) dt − 1

∫ b

a
ω

∫ b

a

τ(t)ω(t) dt

∣∣∣∣∣ =
1

c
∫ b

a
ω

∣∣∣∣∣

∫ b

a

(∫ t

t−c

(
ω(x) − ω(t)

)
dx

)
τ(t) dt

∣∣∣∣∣

≤ M

c
∫ b

a
ω

∫ b

a

(∫ t

t−c

∣∣ω(x) − ω(t)
∣∣ dx

)
dt ≤ M

∫ b

a
ω

∫ b

a

(
ω(t) − ω(t − c)

)
dt

=
M

∫ b

a
ω

∫ b

b−c

ω(t) dt − M
∫ b

a
ω

∫ a

a−c

ω(t) dt ≤ Mc
ω(b)
∫ b

a
ω

,

which tends to 0 as b − a → ∞.

8. Noncommuting GL-sequences

If GL-sequences T1, . . . , Tk do not commute, the situation becomes much more complicated. Recall that
we introduced the notions of ergodicty and joint ergodicity of sequences of transformations (Definitions 4.3
and 5.3 above) with respect to an arbitrary fixed Følner sequence in Z. However, for commuting GL-
sequences the property of being ergodic or jointly ergodic has turned out to be Følner sequence independent
(see Remarks 4.4 and 5.5). An example in [BBe2] shows that this is no longer the case if Ti do not commute,
even in the conventional case Ti(n) = Tn

i . It follows that one cannot expect to have a criterion of joint
ergodicity in terms of ergodicity of a certain collection of sequences of transformations, unless the ergodicity
of these sequences is itself Følner sequence dependent.

One has nevertheless the following generalization of Theorem 2.1 from [BBe2]:

Theorem 8.1. Let G1, . . . , Gk be several commutative groups of measure preserving transformations of X,
and for each i = 1, . . . , k let Ti be a GL-sequence in Gi. Then T1, . . . , Tk are jointly ergodic iff T1, . . . , Tk are
ergodic and C-limn

∫
X

∏k
i=1 Ti(n)fi dµ =

∏k
i=1

∫
X

fi dµ for any f1, . . . , fk ∈ L∞(X).
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Proof. The “only if” direction is clear; we will prove the “if” statement. Let f1, . . . , fk ∈ L∞(X), with
|fi| ≤ 1 for all i. First, assume that for some i, fi is in the Hwm space corresponding to the group Gi. We
will assume that i = 1; then T1 is weakly mixing on f1 by Theorem 4.5. Let ε > 0, and let a Bohr set H ⊆ Z,
transformations Si ∈ Gi for i = 1, . . . , k, and sets Eh ⊆ Z for h ∈ H be as in Proposition 4.1(iv). Then for
any h1, h2 ∈ H,

∣∣∣C-lim
n

〈 k∏

i=1

Ti(n + h1)fi,

k∏

i=1

Ti(n + h2)fi

〉∣∣∣ ≤
∣∣∣C-lim

n

∫

X

k∏

i=1

Ti(n)
(
Ti(h1)Sifi · Ti(h2)Sif̄i

)
dµ

∣∣∣ + 2ε

=
∣∣∣

k∏

i=1

∫

X

Ti(h1)Sifi · Ti(h2)Sif̄i dµ
∣∣∣ + 2ε ≤

∣∣∣
∫

X

T1(h1)S1f1 · T1(h2)S1f̄1 dµ
∣∣∣ + 2ε.

Since D-limh〈T1(h)S1f, f ′〉 = 0 for any f ′ ∈ L2(X), we can construct an infinite set B ⊆ H such that∣∣∫
X
T1(h1)S1f1 ·T1(h2)S1f̄1 dµ

∣∣ < ε for any distinct h1, h2 ∈ B. By Lemma 2.1, C-limsup‖·‖,n

∏k
i=1 Ti(n)fi <√

3ε. Since ε is arbitrary, C-limn

∏k
i=1 Ti(n)fi = 0.

Now assume that for each i, Ti acts on fi in a compact way. We then may assume that, for each i, fi is a
nonconstant eigenfunction of Gi, and so, Ti(n)fi = λi(n)fi, n ∈ Z, for some GL-sequence λi in {z ∈ C : |z| =

1}. In this case,
∏k

i=1 Ti(n)fi = λ(n)
∏k

i=1 fi, where λ(n) =
∏k

i=1 λi(n). Since C-limn

∫
X

∏k
i=1 Ti(n)fi dµ =

0, we have C-limn λ(n) = 0, and so, C-limn

∏k
i=1 Ti(n)fi = 0.
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