Topic 1

Let $p \neq 2$ be a prime integer. A group G is a p-group if $g^p = \mathbf{1}_G$ for all $g \in G$.

Lemma 1. Let G be a nilpotent group of class k with k < p, let $S \subseteq G$ generate G and let $s^p = \mathbf{1}_G$ for every $s \in S$. Then G is a p-group.

Proof. Let $\{\mathbf{1}_G\} \subset G_1 \subset G_2 \subset \ldots \subset G_k = G$ be the lower central series of G. We'll use induction on i to prove that G_i is a p-group. Let $1 \leq i \leq k-1$, let $g \in G_i$, $g = \prod_{l=1}^r [s_l, h_l]$, $s_l \in S$, $h_l \in G_{i+1}$, $l = 1, \ldots, r$. Then, in terminology of [1], $g^n \left(\prod_{l=1}^r [s_l^n, h_l]\right)^{-1}$ is a polynomial sequence of degree $\leq (1, 2, \ldots)$ in G, lying in G_{i-1} . So, $g^n = \prod_{l=1}^r [s_l^n, h_l] \prod_{j=1}^{i-1} g_j^{\binom{n}{k-j+1}}$ for some $g_j \in G_j$, $j = 1, \ldots, i-1$ (by a modification of

Hall-Petresco Theorem in [1]). Since $\binom{p}{t} : p$ for t < p, the last product vanishes for n = p. Let now $g \in G$, $g = \prod_{l=1}^{r} s_l$. Then, for the same reason as above, we have $g^n = \prod_{l=1}^{r} s_l$.

$$\prod_{l=1}^{r} s_{l}^{n} \prod_{j=1}^{k-1} g_{j}^{(k-j+1)} \text{ for some } g_{j} \in G_{j}, \ j = 1, \dots, k-1, \text{ and so, } g^{p} = \mathbf{1}_{G}.$$

Lemma 2. A finitely generated nilpotent p-group is finite.

Proof. In a Malcev basis g_1, \ldots, g_r of the group, every its element is representable in the form $g_1^{d_1}g_2^{d_2}\ldots g_r^{d_r}$ with $0 \le d_l \le p-1, l=1\ldots, r$.

Lemma 3. Let H be a nilpotent p-group. Given $h_1, \ldots, h_r \in H$ and $d_1, \ldots, d_r \in \mathbb{Z}$ with $d = d_1 + \ldots + d_r \not\equiv 0 \pmod{p}$, the mapping $\varphi: g \mapsto \prod_{l=1}^r g^{d_l} h_l$ is a one-to-one mapping of H onto itself.

Proof. Replace φ by $\varphi(\mathbf{1}_G)^{-1}\varphi$. We may assume that H is finitely generated, and so finite by Lemma 2. Let $H_1 \subset \ldots \subset H_k = H$ be the lower central series of H. The mapping φ preserves each H_i , $i = 1, \ldots, k$, and the mapping $H_i/H_{i-1} \longrightarrow H_i/H_{i-1}$ induced by φ is of the form $g \to g^d$. Since H_i/H_{i-1} is a commutative p-group, that is a \mathbb{Z}_p -vector space, this mapping is surjective, and so is φ itself.

For $k \in \mathbb{N}$ and a set S, the free nilpotent p-group of class k over S is the group

$$\langle S \mid [s_1, [s_2, \dots [s_k, s] \dots]] = \mathbf{1}, \ s^p = \mathbf{1}, \ s_1, s_2, \dots, s_k, s \in S \rangle.$$

We will call free nilpotent *p*-groups simply "free".

Let K be an infinite countable field of characteristic p, let G be the group of 3×3 upper-triangular matrices with unit main diagonal: $G = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}, a, b, c \in K \right\}$. Then G is a nilpotent p-group of class 2. We denote the commutator of G by G_1 : G_1 consists of matrices of the form $\begin{pmatrix} 1 & 0 & c \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, c \in K$. **Proposition.** Let T be a unitary action of G on a Hilbert space M such that $T|_{G_1}$ is weakly mixing on M. Let $u \in M$, let H be a finite free subgroup of G, let $\varepsilon > 0$. There is $g \in G \setminus H$ such that the group H' generated by g and H is free and $|\langle hu, u \rangle| < \varepsilon$ for all $h \in H' \setminus H$.

Corollary (informal). Under the assumptions of the proposition above, G contains an infinite free subgroup F such that the function $|\langle hu, u \rangle|$ decreases "as fast as one wishes" on F.

Proof. 1. Let's fix a sequence of subgroups in G: we enumerate the elements of G, and let Φ_m be the subgroup of G generated by the first m elements. We will measure densities of subsets in G with respect to the Følner sequence Φ_1, Φ_2, \ldots , and in G_1 with respect to the Følner sequence Φ_1, Φ_2, \ldots , and in G_1 with respect to the Følner sequence $\Phi_1 \cap G_1, \Phi_2 \cap G_1, \ldots$

2. If *H* is a nilpotent *p*-group of class 2, then H/[H, H] and [H, H] are commutative *p*-groups and so, can be considered as vector spaces over the field \mathbb{Z}_p . If such *H* is generated by a set *S*, then *H* is free if *S* is a basis for H/[H, H] and the elements $[s_1, s_2]$ for all distinct $s_1, s_2 \in S$ form a basis for [H, H]. It follows that, after adding a new element *g* to *H* we will still have a free group if $[g, H] \cap [H, H] = \{\mathbf{1}_H\}$.

Thus the condition "the subgroup H' of G generated by $g = \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}$ and a

finite free $H \subset G$ is free" converts into finitely many inequalities of the form $at - br \neq w$, for $\begin{pmatrix} 1 & r & q \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix} \in H \setminus [H, H]$ and $\begin{pmatrix} 1 & 0 & w \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in [H, H]$. So, elements g satisfying this requirement form the complement to finitely many "planes" in the "3-dimensional space"

(a, b, c) over K, that is a set of density one in G.

3. Since the subgroup G_1 of G is weakly mixing on M, G is weakly mixing on M as well. So, the set $\{f \in G : |[fu, v]| < \varepsilon\}$ has density one for any $v \in M$ in both G and G_1 .

4. For $g \in G$, every element of the subgroup H' of G generated by g and H is of the form $g^d h_1[g, h_2]$ with $h_1 \in H$, $h_2 \in H \setminus G_1$ and $0 \le d \le p-1$. Fix h_1, h_2 and k and consider the mapping $\varphi: G \longrightarrow G$, $\varphi(g) = g^d h_1[g, h_2]$. For $d \ne 0$, φ is a self-bijection of G by Lemma 3, and of any subgroup of G containing both h_1 and h_2 . In particular, φ is a self-bijection of Φ_m if m is big enough. So, the set of g for which $|\langle \varphi(g)u, u \rangle| < \varepsilon$ is of density one in G in this case.

Let d = 0. The mapping $g \to [g, h_2]$ is a homomorphism of G onto G_1 , and of Φ_m onto $\Phi_l \cap G_1$ if $m \gg l$. Hence, again, g for which $|\langle \varphi(g)u, u \rangle| = |\langle [g, h_2]u, h_1^{-1}u \rangle| < \varepsilon$ form a subset of density one in G.

5. Thus, the set of $g \in G$ satisfying the conclusion of the proposition is the intersection of finitely many subsets of density one, and so is nonempty.

Topic 2

For a group G, we will denote by $\gamma_k G$ the k - th term of the lower central series of G. For a set S, let F(S) be the free group generated by S. A nilpotent group G is free of class c (with generating set S) if G is isomorphic to $F(S)/\gamma_{c+1}F(S)$. (Clearly, this group is the universal repelling object in the category of nilpotent groups of class $\leq c$ generated by the (marked) set S.)

Under the rank of a nilpotent group G we will understand the rank of the abelian group $G/\gamma_2 G$. If G is a free nilpotent group generated by S, the rank of G coincides with the cardinality of S.

Let G be a nilpotent group and K be any group. The constant mapping $\varphi: K \longrightarrow G$, $\varphi \equiv 1$, is *polynomial*. A mapping $\varphi: K \longrightarrow G$ is *polynomial* if for every $a \in K$, the mapping $D_a \varphi: K \longrightarrow G$ defined by $D_a \varphi(b) = \varphi(ab)\varphi(b)^{-1}$ is polynomial.

Theorem. Under the element-wise multiplication, polynomial mappings $K \longrightarrow G$ form a group.

If K is a finitely torsion-free nilpotent group, it has a basis $S_1, \ldots, S_k \in K$ with the property that every element of K can be uniquely written in the form $S = S_1^{a_1} \ldots S_k^{a_k}$, $a_1, \ldots, a_k \in \mathbb{Z}$. Let both K and G be finitely generated torsion-free nilpotent groups, let S_1, \ldots, S_k be a basis in K and T_1, \ldots, T_l be a basis in G. Let $\varphi: K \longrightarrow G$; we can write $\varphi(S_1^{a_1} \ldots S_k^{a_k}) = T^{b_1(a_1, \ldots, a_k)} \ldots T^{b_l(a_1, \ldots, a_k)}$.

Theorem. φ is polynomial if and only if b_1, \ldots, b_l are all polynomials $\mathbb{Z} \longrightarrow \mathbb{Z}$.

A subgroup H of a group G is called *closed in* G if for every $T \in G \setminus H$, $T^n \notin H$ for all $n \neq 0$. The closure of H is the minimal closed subgroup of G containing H.

Theorem. Let $\varphi: K \longrightarrow G$ be a polynomial mapping of nilpotent groups. If H is a closed subgroup of G and $\varphi(K) \not\subseteq H$, then $\varphi(a) \notin H$ for almost all $a \in G$ (that is, for all $a \in G$ but a set of density 0).

We will use the following fact:

Theorem S. ([2]) Let G be a finitely generated nilpotent group of unitary operators on a Hilbert space \mathcal{H} . Then there is a decomposition of \mathcal{H} , $\mathcal{H} = \bigoplus_{\alpha \in A} \mathcal{L}_{\alpha}$ into the direct sum of a family of pairwise orthogonal subspaces such that elements of G permute the members of the family, and if $T \in G$, $T(\mathcal{L}_{\alpha}) = \mathcal{L}_{\alpha}$, then T is either scalar or weakly mixing on \mathcal{L}_{α} . Moreover, for every $\alpha \in A$, G contains a subgroup G' of finite index with the following property: for any $T \in G'$ with $T(\mathcal{L}_{\alpha}) \neq \mathcal{L}_{\alpha}$ one has $T^n(\mathcal{L}_{\alpha}) \neq \mathcal{L}_{\alpha}$ for all $n \neq 0$.

Let G be a nilpotent group of unitary operators on a Hilbert space \mathcal{H} , let K be a nilpotent group and let $\varphi: K \longrightarrow G$ be a polynomial mapping (polynomial action) with $\varphi(0) = 0$. Let $\mathcal{H} = \bigoplus_{\alpha \in A} \mathcal{L}_{\alpha}$ be the decomposition of \mathcal{H} described in Theorem S. Fix $\alpha \in A$, let $H = \{T \in G \mid T(\mathcal{L}_{\alpha}) = L_{\alpha}\}$ and $E = \{T \in H \mid T \text{ is scalar on } \mathcal{L}_{\alpha}\}$. Let \overline{H} and \overline{E} be the closure of H and of E respectively.

Proposition X. If $\varphi(K) \not\subseteq \overline{H}$ then $\varphi_a(\mathcal{L}_\alpha) \perp \mathcal{L}_\alpha$ for almost all $a \in G$. If $\varphi(K) \subseteq \overline{H} \setminus \overline{E}$ then φ is weakly mixing on \mathcal{L}_α (that is, for any $u \in \mathcal{H}^{wm}(\varphi)$ and any $\varepsilon > 0$, the set $\{T \in K \mid |\langle \varphi(T)u, u \rangle| > \varepsilon\}$ has density 0 in G). If $\varphi(K) \subseteq \overline{E}$ then φ is compact on \mathcal{L}_α (that is, $\varphi(K)u$ is precompact for all $u \in \mathcal{H}^c(\varphi)$).

Theorem. Let G be a nilpotent group of unitary operators on a Hilbert space \mathcal{H} , let K be a nilpotent group and let $\varphi \colon K \longrightarrow G$ be a polynomial mapping. Then $\mathcal{H} = \mathcal{H}^{c}(\varphi) \oplus \mathcal{H}^{wm}(\varphi)$ so that φ is compact on $\mathcal{H}^{c}(\varphi)$ and is weakly mixing on $\mathcal{H}^{wm}(\varphi)$.

Let $w \in F(x_1, x_2, ...)$. Let the weight of w be the maximal k for which x_k participates in w (that is, $w \in F(x_1, ..., x_k) \setminus F(x_1, ..., x_{k-1})$). We say that w of weight k is nondegenerate if the total exponent of x_k in w is nonzero. If the weight of w is k, we will denote by w^0 the element of $F(x_1, ..., x_{k-1})$ obtained from w by erasing all appearances of x_k in it. If $\tau = (T_1, T_2, ...)$, let $w(\tau)$ denote the word obtained by replacing each x_i in w by the corresponding T_i .

Here is our result:

Theorem R. Let G be a nilpotent group, of rank d, of unitary operators on a Hilbert space \mathcal{H} , and let $\mathcal{H} = \bigoplus_{\alpha \in A} \mathcal{L}_{\alpha}$ be the decomposition of \mathcal{H} under the action of G described in Theorem S. Let $W \subset F(x_1, x_2, ...)$ be such that for every $k \in \mathbb{N}$, W contains finitely many elements of weight k, and for each $w \in W$ let ε_w be a positive real number. Then for any $\alpha_1, \ldots, \alpha_m \in A$ and any $u_1 \in \mathcal{L}_{\alpha_1}, \ldots, u_m \in \mathcal{L}_{\alpha_m}$ there is a sequence $\tau = (T_1, T_2, \ldots) \subseteq G$ such that any d elements of τ generate a subgroup of finite index in G, and for every $w \in W$ and $i = 1, \ldots, m$, either $|\langle w(\tau)u_i, u_i \rangle| < \varepsilon_w$, or $w(\tau)u_i = \lambda w^0(\tau)u_i$, $\lambda = \lambda(w) \in \mathbb{C}$. If the action of G on \mathcal{H} is weakly mixing, then for all nondegenerate $w \in W$ only the first possibility takes place.

Proof. We may assume that G is torsion-free, then $G/\gamma_2 G$ is isomorphic to \mathbb{Z}^d . Now, if we pick $T_1, T_2, \ldots \in G$ in such a way that $T_k \mod \gamma_2 G$ is in the general position with respect to $T_1 \mod \gamma_2 G, \ldots, T_{k-1} \mod \gamma_2 G$, then any d elements of T_1, T_2, \ldots generate $G/\gamma_2 G$ and so, G itself. Thus, to satisfy this condition, we may choose every T_k from a set of density 1 in G.

Let $\alpha \in A$, $u \in \mathcal{L}_{\alpha}$, and assume that T_1, \ldots, T_{k-1} have been already chosen. Let w_1, \ldots, w_l be all elements of W of weight k. Then for every j, $\varphi_j(T) = w_j(T_1, \ldots, T_{k-1}, T)$ can be considered as a mapping $G \longrightarrow G$; needless to say that φ_j is polynomial. Consider φ_1 . Let $H = \{T \in G \mid T(\mathcal{L}_{\alpha}) = L_{\alpha}\}$ and $E = \{T \in H \mid T \text{ is scalar on } \mathcal{L}_{\alpha}\}$. We may replace G by G' described in Theorem S; after this, H and E are closed in G. By Proposition X, we have 3 possibilities:

1) $\varphi_1(G) \not\subseteq H$. Then $\varphi_1(T) \not\in H$ for almost all $T \in G$, and $\varphi_1(T)u \perp u$ for such T. 2) $\varphi_1(G)\varphi_1(0)^{-1} \subseteq H \setminus E$. Then φ_1 is weakly mixing on L_{α} and so, $|\langle \varphi_1(T)u, u \rangle| < \varepsilon_{w_1}$ for almost all $T \in G$.

3) $\varphi_1(G)\varphi_1(0)^{-1} \subseteq E$. Then $\varphi_1(T)u = \varphi_1(T)\varphi_1(0)^{-1}\varphi_1(0)u = \lambda\varphi_1(0)u, \lambda \in \mathbb{C}$.

In any case, the set of T which can serve as T_k for w_1 has density 1 in G. The same true

for the other elements of W, w_2, \ldots, w_l , and, if instead of u we consider several vectors u_1, \ldots, u_m in $\mathcal{H}, u_i \in \mathcal{L}_{\alpha_i}$, then it is true for each of them, that is the set of T_k which satisfy the requirements of the theorem is of density 1 in G.

If the action of G is weakly mixing on \mathcal{H} , then it is easy to see that the mapping φ_j corresponding to a nondegenerate w_j is weakly mixing on \mathcal{H} and so, only the case 2) takes place for such φ_j .

Example. Let G be a finitely generated nilpotent group of unitary operators on a Hilbert space \mathcal{H} , whose action on \mathcal{H} is weakly mixing. Let W_1 be the set of words w in alphabet x_1, x_2, \ldots such that for every x_i , it appears in w not more than d times. Let W_2 be the set of differences of W_1 , $W_2 = \{w_1 w_2^{-1} \mid w_1, w_2 \in W_1\}$, and W be the set of differences of W_2 . W has the property that for any $w \in W$, $w^0 \in W$ as well. Take any $u \in \mathcal{H}$. Let $\mathcal{H} = \bigoplus_{\alpha \in A} \mathcal{L}_{\alpha}$ be the decomposition of \mathcal{H} described in Theorem S; replace u by a close vector of the form $u_1 + \ldots + u_m$ with $u_j \in \mathcal{L}_{\alpha_j}$. Find a sequence $T_1, T_2, \ldots \in G$ as in Theorem R, corresponding to W and u_1, \ldots, u_m . Then, for every $w \in W_1, w(T_1, T_2, \ldots)u$ is almost (up to an a-priory given ε_w) orthogonal to u. As for the rest of elements of W, for every $j = 1, \ldots, m$ the set $w(T_1, T_2, \ldots)u_j, w \in W$, is partitioned into classes of almost orthogonal vectors, each class almost orthogonal to u_j . It seems that it suffices to make all vectors $w(T_1, T_2, \ldots)u, w \in W_1$, to be strictly orthogonal to u.

Bibliography

- [1] Leibman, Polynomial sequences in groups, *Journal of Algebra* **201** (1998), 189-206.
- [2] Leibman, Structure of unitary actions of finitely generated nilpotent groups, *submitted*.