Topic 1

Let $p \neq 2$ be a prime integer. A group G is a p-group if $g^{p}=\mathbf{1}_{G}$ for all $g \in G$.
Lemma 1. Let G be a nilpotent group of class k with $k<p$, let $S \subseteq G$ generate G and let $s^{p}=\mathbf{1}_{G}$ for every $s \in S$. Then G is a p-group.

Proof. Let $\left\{\mathbf{1}_{G}\right\} \subset G_{1} \subset G_{2} \subset \ldots \subset G_{k}=G$ be the lower central series of G. We'll use induction on i to prove that G_{i} is a p-group. Let $1 \leq i \leq k-1$, let $g \in$ $G_{i}, g=\prod_{l=1}^{r}\left[s_{l}, h_{l}\right], s_{l} \in S, h_{l} \in G_{i+1}, l=1, \ldots, r$. Then, in terminology of [1], $g^{n}\left(\prod_{l=1}^{r}\left[s_{l}^{n}, h_{l}\right]\right)^{-1}$ is a polynomial sequence of degree $\leq(1,2, \ldots)$ in G, lying in G_{i-1}. So, $\left.g^{n}=\prod_{l=1}^{r}\left[s_{l}^{n}, h_{l}\right] \prod_{j=1}^{i-1} g_{j}^{(k-j+1}\right)$ for some $g_{j} \in G_{j}, j=1, \ldots, i-1$ (by a modification of Hall-Petresco Theorem in [1]). Since $\binom{p}{t} \vdots p$ for $t<p$, the last product vanishes for $n=p$.

Let now $g \in G, g=\prod_{l=1}^{r} s_{l}$. Then, for the same reason as above, we have $g^{n}=$ $\prod_{l=1}^{r} s_{l}^{n} \prod_{j=1}^{k-1} g_{j}^{\left(\begin{array}{c}n-j+1\end{array}\right)}$ for some $g_{j} \in G_{j}, j=1, \ldots, k-1$, and so, $g^{p}=\mathbf{1}_{G}$.
Lemma 2. A finitely generated nilpotent p-group is finite.
Proof. In a Malcev basis g_{1}, \ldots, g_{r} of the group, every its element is representable in the form $g_{1}^{d_{1}} g_{2}^{d_{2}} \ldots g_{r}^{d_{r}}$ with $0 \leq d_{l} \leq p-1, l=1 \ldots, r$.
Lemma 3. Let H be a nilpotent p-group. Given $h_{1}, \ldots, h_{r} \in H$ and $d_{1}, \ldots, d_{r} \in \mathbb{Z}$ with $d=d_{1}+\ldots+d_{r} \not \equiv 0(\bmod p)$, the mapping $\varphi: g \mapsto \prod_{l=1}^{r} g^{d_{l}} h_{l}$ is a one-to-one mapping of H onto itself.

Proof. Replace φ by $\varphi\left(\mathbf{1}_{G}\right)^{-1} \varphi$. We may assume that H is finitely generated, and so finite by Lemma 2. Let $H_{1} \subset \ldots \subset H_{k}=H$ be the lower central series of H. The mapping φ preserves each $H_{i}, i=1, \ldots, k$, and the mapping $H_{i} / H_{i-1} \longrightarrow H_{i} / H_{i-1}$ induced by φ is of the form $g \rightarrow g^{d}$. Since H_{i} / H_{i-1} is a commutative p-group, that is a \mathbb{Z}_{p}-vector space, this mapping is surjective, and so is φ itself.

For $k \in \mathbb{N}$ and a set S, the free nilpotent p-group of class k over S is the group

$$
\left\langle S \mid\left[s_{1},\left[s_{2}, \ldots\left[s_{k}, s\right] \ldots\right]\right]=\mathbf{1}, s^{p}=\mathbf{1}, s_{1}, s_{2}, \ldots, s_{k}, s \in S\right\rangle .
$$

We will call free nilpotent p-groups simply "free".
Let K be an infinite countable field of characteristic p, let G be the group of 3×3 upper-triangular matrices with unit main diagonal: $G=\left\{\left(\begin{array}{ccc}1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right), a, b, c \in K\right\}$. Then G is a nilpotent p-group of class 2 . We denote the commutator of G by $G_{1}: G_{1}$ consists of matrices of the form $\left(\begin{array}{lll}1 & 0 & c \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), c \in K$.

Proposition. Let T be a unitary action of G on a Hilbert space M such that $\left.T\right|_{G_{1}}$ is weakly mixing on M. Let $u \in M$, let H be a finite free subgroup of G, let $\varepsilon>0$. There is $g \in G \backslash H$ such that the group H^{\prime} generated by g and H is free and $|\langle h u, u\rangle|<\varepsilon$ for all $h \in H^{\prime} \backslash H$.

Corollary (informal). Under the assumptions of the proposition above, G contains an infinite free subgroup F such that the function $|\langle h u, u\rangle|$ decreases "as fast as one wishes" on F.

Proof. 1. Let's fix a sequence of subgroups in G : we enumerate the elements of G, and let Φ_{m} be the subgroup of G generated by the first m elements. We will measure densities of subsets in G with respect to the Følner sequence $\Phi_{1}, \Phi_{2}, \ldots$, and in G_{1} with respect to the Følner sequence $\Phi_{1} \cap G_{1}, \Phi_{2} \cap G_{1}, \ldots$.
2. If H is a nilpotent p-group of class 2 , then $H /[H, H]$ and $[H, H]$ are commutative p groups and so, can be considered as vector spaces over the field \mathbb{Z}_{p}. If such H is generated by a set S, then H is free if S is a basis for $H /[H, H]$ and the elements $\left[s_{1}, s_{2}\right]$ for all distinct $s_{1}, s_{2} \in S$ form a basis for $[H, H]$. It follows that, after adding a new element g to H we will still have a free group if $[g, H] \cap[H, H]=\left\{\mathbf{1}_{H}\right\}$.

Thus the condition "the subgroup H^{\prime} of G generated by $g=\left(\begin{array}{ccc}1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right)$ and a finite free $H \subset G$ is free" converts into finitely many inequalities of the form $a t-b r \neq w$, for $\left(\begin{array}{ccc}1 & r & q \\ 0 & 1 & t \\ 0 & 0 & 1\end{array}\right) \in H \backslash[H, H]$ and $\left(\begin{array}{ccc}1 & 0 & w \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \in[H, H]$. So, elements g satisfying this requirement form the complement to finitely many "planes" in the "3-dimensional space" (a, b, c) over K, that is a set of density one in G.
3. Since the subgroup G_{1} of G is weakly mixing on M, G is weakly mixing on M as well. So, the set $\{f \in G:|[f u, v]|<\varepsilon\}$ has density one for any $v \in M$ in both G and G_{1}.
4. For $g \in G$, every element of the subgroup H^{\prime} of G generated by g and H is of the form $g^{d} h_{1}\left[g, h_{2}\right]$ with $h_{1} \in H, h_{2} \in H \backslash G_{1}$ and $0 \leq d \leq p-1$. Fix h_{1}, h_{2} and k and consider the mapping $\varphi: G \longrightarrow G, \varphi(g)=g^{d} h_{1}\left[g, h_{2}\right]$. For $d \neq 0, \varphi$ is a self-bijection of G by Lemma 3, and of any subgroup of G containing both h_{1} and h_{2}. In particular, φ is a self-bijection of Φ_{m} if m is big enough. So, the set of g for which $|\langle\varphi(g) u, u\rangle|<\varepsilon$ is of density one in G in this case.

Let $d=0$. The mapping $g \rightarrow\left[g, h_{2}\right]$ is a homomorphism of G onto G_{1}, and of Φ_{m} onto $\Phi_{l} \cap G_{1}$ if $m \gg l$. Hence, again, g for which $|\langle\varphi(g) u, u\rangle|=\left|\left\langle\left[g, h_{2}\right] u, h_{1}^{-1} u\right\rangle\right|<\varepsilon$ form a subset of density one in G.
5. Thus, the set of $g \in G$ satisfying the conclusion of the proposition is the intersection of finitely many subsets of density one, and so is nonempty.

Topic 2

For a group G, we will denote by $\gamma_{k} G$ the $k-t h$ term of the lower central series of G.
For a set S, let $F(S)$ be the free group generated by S. A nilpotent group G is free of class c (with generating set S) if G is isomorphic to $F(S) / \gamma_{c+1} F(S)$. (Clearly, this group is the universal repelling object in the category of nilpotent groups of class $\leq c$ generated by the (marked) set S.)

Under the rank of a nilpotent group G we will understand the rank of the abelian group $G / \gamma_{2} G$. If G is a free nilpotent group generated by S, the rank of G coincides with the cardinality of S.

Let G be a nilpotent group and K be any group. The constant mapping $\varphi: K \longrightarrow G$, $\varphi \equiv 1$, is polynomial. A mapping $\varphi: K \longrightarrow G$ is polynomial if for every $a \in K$, the mapping $D_{a} \varphi: K \longrightarrow G$ defined by $D_{a} \varphi(b)=\varphi(a b) \varphi(b)^{-1}$ is polynomial.

Theorem. Under the element-wise multiplication, polynomial mappings $K \longrightarrow G$ form a group.

If K is a finitely torsion-free nilpotent group, it has a basis $S_{1}, \ldots, S_{k} \in K$ with the property that every element of K can be uniquely written in the form $S=S_{1}^{a_{1}} \ldots S_{k}^{a_{k}}$, $a_{1}, \ldots, a_{k} \in \mathbb{Z}$. Let both K and G be finitely generated torsion-free nilpotent groups, let S_{1}, \ldots, S_{k} be a basis in K and T_{1}, \ldots, T_{l} be a basis in G. Let $\varphi: K \longrightarrow G$; we can write $\varphi\left(S_{1}^{a_{1}} \ldots S_{k}^{a_{k}}\right)=T^{b_{1}\left(a_{1}, \ldots, a_{k}\right)} \ldots T^{b_{l}\left(a_{1}, \ldots, a_{k}\right)}$.

Theorem. φ is polynomial if and only if b_{1}, \ldots, b_{l} are all polynomials $\mathbb{Z} \longrightarrow \mathbb{Z}$.
A subgroup H of a group G is called closed in G if for every $T \in G \backslash H, T^{n} \notin H$ for all $n \neq 0$. The closure of H is the minimal closed subgroup of G containing H.

Theorem. Let $\varphi: K \longrightarrow G$ be a polynomial mapping of nilpotent groups. If H is a closed subgroup of G and $\varphi(K) \nsubseteq H$, then $\varphi(a) \notin H$ for almost all $a \in G$ (that is, for all $a \in G$ but a set of density 0).

We will use the following fact:
Theorem S. ([2]) Let G be a finitely generated nilpotent group of unitary operators on a Hilbert space \mathcal{H}. Then there is a decomposition of $\mathcal{H}, \mathcal{H}=\bigoplus_{\alpha \in A} \mathcal{L}_{\alpha}$ into the direct sum of a family of pairwise orthogonal subspaces such that elements of G permute the members of the family, and if $T \in G, T\left(\mathcal{L}_{\alpha}\right)=\mathcal{L}_{\alpha}$, then T is either scalar or weakly mixing on \mathcal{L}_{α}. Moreover, for every $\alpha \in A, G$ contains a subgroup G^{\prime} of finite index with the following property: for any $T \in G^{\prime}$ with $T\left(\mathcal{L}_{\alpha}\right) \neq \mathcal{L}_{\alpha}$ one has $T^{n}\left(\mathcal{L}_{\alpha}\right) \neq \mathcal{L}_{\alpha}$ for all $n \neq 0$.

Let G be a nilpotent group of unitary operators on a Hilbert space \mathcal{H}, let K be a nilpotent group and let $\varphi: K \longrightarrow G$ be a polynomial mapping (polynomial action) with $\varphi(0)=0$. Let $\mathcal{H}=\bigoplus_{\alpha \in A} \mathcal{L}_{\alpha}$ be the decomposition of \mathcal{H} described in Theorem S. Fix $\alpha \in A$, let $H=\left\{T \in G \mid T\left(\mathcal{L}_{\alpha}\right)=L_{\alpha}\right\}$ and $E=\left\{T \in H \mid T\right.$ is scalar on $\left.\mathcal{L}_{\alpha}\right\}$. Let \bar{H} and \bar{E} be the closure of H and of E respectively.

Proposition X. If $\varphi(K) \nsubseteq \bar{H}$ then $\varphi_{a}\left(\mathcal{L}_{\alpha}\right) \perp \mathcal{L}_{\alpha}$ for almost all $a \in G$. If $\varphi(K) \subseteq \bar{H} \backslash \bar{E}$ then φ is weakly mixing on \mathcal{L}_{α} (that is, for any $u \in \mathcal{H}^{\mathrm{wm}}(\varphi)$ and any $\varepsilon>0$, the set $\{T \in K||\langle\varphi(T) u, u\rangle|>\varepsilon\}$ has density 0 in $G)$. If $\varphi(K) \subseteq \bar{E}$ then φ is compact on \mathcal{L}_{α} (that is, $\varphi(K) u$ is precompact for all $u \in \mathcal{H}^{c}(\varphi)$).

Theorem. Let G be a nilpotent group of unitary operators on a Hilbert space \mathcal{H}, let K be a nilpotent group and let $\varphi: K \longrightarrow G$ be a polynomial mapping. Then $\mathcal{H}=\mathcal{H}^{\mathrm{c}}(\varphi) \oplus \mathcal{H}^{\mathrm{wm}}(\varphi)$ so that φ is compact on $\mathcal{H}^{c}(\varphi)$ and is weakly mixing on $\mathcal{H}^{\mathrm{wm}}(\varphi)$.

Let $w \in F\left(x_{1}, x_{2}, \ldots\right)$. Let the weight of w be the maximal k for which x_{k} participates in w (that is, $w \in F\left(x_{1}, \ldots, x_{k}\right) \backslash F\left(x_{1}, \ldots, x_{k-1}\right)$). We say that w of weight k is nondegenerate if the total exponent of x_{k} in w is nonzero. If the weight of w is k, we will denote by w^{0} the element of $F\left(x_{1}, \ldots, x_{k-1}\right)$ obtained from w by erasing all appearances of x_{k} in it. If $\tau=\left(T_{1}, T_{2}, \ldots\right)$, let $w(\tau)$ denote the word obtained by replacing each x_{i} in w by the corresponding T_{i}.

Here is our result:
Theorem R. Let G be a nilpotent group, of rank d, of unitary operators on a Hilbert space \mathcal{H}, and let $\mathcal{H}=\bigoplus_{\alpha \in A} \mathcal{L}_{\alpha}$ be the decomposition of \mathcal{H} under the action of G described in Theorem S. Let $W \subset F\left(x_{1}, x_{2}, \ldots\right)$ be such that for every $k \in \mathbb{N}$, W contains finitely many elements of weight k, and for each $w \in W$ let ε_{w} be a positive real number. Then for any $\alpha_{1}, \ldots, \alpha_{m} \in A$ and any $u_{1} \in \mathcal{L}_{\alpha_{1}}, \ldots, u_{m} \in \mathcal{L}_{\alpha_{m}}$ there is a sequence $\tau=\left(T_{1}, T_{2}, \ldots\right) \subseteq G$ such that any d elements of τ generate a subgroup of finite index in G, and for every $w \in W$ and $i=1, \ldots, m$, either $\left|\left\langle w(\tau) u_{i}, u_{i}\right\rangle\right|<\varepsilon_{w}$, or $w(\tau) u_{i}=\lambda w^{0}(\tau) u_{i}, \lambda=\lambda(w) \in \mathbb{C}$. If the action of G on \mathcal{H} is weakly mixing, then for all nondegenerate $w \in W$ only the first possibility takes place.

Proof. We may assume that G is torsion-free, then $G / \gamma_{2} G$ is isomorphic to \mathbb{Z}^{d}. Now, if we pick $T_{1}, T_{2}, \ldots \in G$ in such a way that $T_{k} \bmod \gamma_{2} G$ is in the general position with respect to $T_{1} \bmod \gamma_{2} G, \ldots, T_{k-1} \bmod \gamma_{2} G$, then any d elements of T_{1}, T_{2}, \ldots generate $G / \gamma_{2} G$ and so, G itself. Thus, to satisfy this condition, we may choose every T_{k} from a set of density 1 in G.

Let $\alpha \in A, u \in \mathcal{L}_{\alpha}$, and assume that T_{1}, \ldots, T_{k-1} have been already chosen. Let w_{1}, \ldots, w_{l} be all elements of W of weight k. Then for every $j, \varphi_{j}(T)=w_{j}\left(T_{1}, \ldots, T_{k-1}, T\right)$ can be considered as a mapping $G \longrightarrow G$; needless to say that φ_{j} is polynomial. Consider φ_{1}. Let $H=\left\{T \in G \mid T\left(\mathcal{L}_{\alpha}\right)=L_{\alpha}\right\}$ and $E=\left\{T \in H \mid T\right.$ is scalar on $\left.\mathcal{L}_{\alpha}\right\}$. We may replace G by G^{\prime} described in Theorem S; after this, H and E are closed in G. By Proposition X, we have 3 possibilities:

1) $\varphi_{1}(G) \nsubseteq H$. Then $\varphi_{1}(T) \notin H$ for almost all $T \in G$, and $\varphi_{1}(T) u \perp u$ for such T.
2) $\varphi_{1}(G) \varphi_{1}(0)^{-1} \subseteq H \backslash E$. Then φ_{1} is weakly mixing on L_{α} and so, $\left|\left\langle\varphi_{1}(T) u, u\right\rangle\right|<\varepsilon_{w_{1}}$ for almost all $T \in G$.
3) $\varphi_{1}(G) \varphi_{1}(0)^{-1} \subseteq E$. Then $\varphi_{1}(T) u=\varphi_{1}(T) \varphi_{1}(0)^{-1} \varphi_{1}(0) u=\lambda \varphi_{1}(0) u, \lambda \in \mathbb{C}$.

In any case, the set of T which can serve as T_{k} for w_{1} has density 1 in G. The same true
for the other elements of W, w_{2}, \ldots, w_{l}, and, if instead of u we consider several vectors u_{1}, \ldots, u_{m} in $\mathcal{H}, u_{i} \in \mathcal{L}_{\alpha_{i}}$, then it is true for each of them, that is the set of T_{k} which satisfy the requirements of the theorem is of density 1 in G.

If the action of G is weakly mixing on \mathcal{H}, then it is easy to see that the mapping φ_{j} corresponding to a nondegenerate w_{j} is weakly mixing on \mathcal{H} and so, only the case 2) takes place for such φ_{j}.

Example. Let G be a finitely generated nilpotent group of unitary operators on a Hilbert space \mathcal{H}, whose action on \mathcal{H} is weakly mixing. Let W_{1} be the set of words w in alphabet x_{1}, x_{2}, \ldots such that for every x_{i}, it appears in w not more than d times. Let W_{2} be the set of differences of $W_{1}, W_{2}=\left\{w_{1} w_{2}^{-1} \mid w_{1}, w_{2} \in W_{1}\right\}$, and W be the set of differences of W_{2}. W has the property that for any $w \in W, w^{0} \in W$ as well. Take any $u \in \mathcal{H}$. Let $\mathcal{H}=\bigoplus_{\alpha \in A} \mathcal{L}_{\alpha}$ be the decomposition of \mathcal{H} described in Theorem S ; replace u by a close vector of the form $u_{1}+\ldots+u_{m}$ with $u_{j} \in \mathcal{L}_{\alpha_{j}}$. Find a sequence $T_{1}, T_{2}, \ldots \in G$ as in Theorem R, corresponding to W and u_{1}, \ldots, u_{m}. Then, for every $w \in W_{1}, w\left(T_{1}, T_{2}, \ldots\right) u$ is almost (up to an a-priory given ε_{w}) orthogonal to u. As for the rest of elements of W, for every $j=1, \ldots, m$ the set $w\left(T_{1}, T_{2}, \ldots\right) u_{j}, w \in W$, is partitioned into classes of proportional vectors, each class almost orthogonal to u_{j}. It seems that it suffices to make all vectors $w\left(T_{1}, T_{2}, \ldots\right) u, w \in W_{1}$, to be strictly orthogonal to u.

Bibliography

[1] Leibman, Polynomial sequences in groups, Journal of Algebra 201 (1998), 189-206.
[2] Leibman, Structure of unitary actions of finitely generated nilpotent groups, submitted.

