Pointwise convergence of ergodic averages for polynomial actions of \mathbb{Z}^{d} by translations on a nilmanifold

A. Leibman
Department of Mathematics The Ohio State University Columbus, OH 43210, USA
e-mail: leibman@math.ohio-state.edu

January 30, 2004

Abstract

Generalizing the one-parameter case, we prove that the orbit of a point on a compact nilmanifold X under a polynomial action of \mathbb{Z}^{d} by translations on X is uniformly distributed on the union of several sub-nilmanifolds of X. As a corollary we obtain the pointwise ergodic theorem for polynomial actions of \mathbb{Z}^{d} by translations on a nilmanifold.

1. Formulations

1.1. Let G be a nilpotent Lie group, Γ be a closed uniform subgroup of G and X be the compact nilmanifold G / Γ. G acts on X by left translations: for $a \in G$ and $x=b \Gamma \in X$ one defines $a x=a b \Gamma$.

We will say that a mapping $g: \mathbb{Z}^{d} \longrightarrow G$ is polynomial if g can be written in the form $g(n)=a_{1}^{p_{1}(n)} . . a_{m}^{p_{m}(n)}$, where $a_{1}, \ldots, a_{m} \in G$ and p_{1}, \ldots, p_{m} are polynomial mappings $\mathbb{Z}^{d} \longrightarrow \mathbb{Z}$. Such a mapping will also be called a polynomial action of \mathbb{Z}^{d} on X by translations, in contrast with a homomorphism $\mathbb{Z}^{d} \longrightarrow G$, which will be referred to as a linear action. We are going to show the following:
1.2. Theorem A. Let g be a polynomial mapping $\mathbb{Z}^{d} \longrightarrow G$. For any $x \in X, f \in C(X)$ and Følner sequence $\left\{\Phi_{N}\right\}_{N=1}^{\infty}$ in $\mathbb{Z}^{d}, \lim _{N \rightarrow \infty} \frac{1}{\left|\Phi_{N}\right|} \sum_{n \in \Phi_{N}} f(g(n) x)$ exists.

An analogous result for polynomial actions of \mathbb{R}^{d}, in a much more general situation, was obtained in [Sh1]. The one-parameter case $d=1$ of Theorem A was proved in [L].
1.3. Let $\varphi: A \longrightarrow X$ be a mapping from a countable amenable group A and let Y be a sub-nilmanifold of X, that is, a closed subset of the form $Y=H y$ where H is a closed subgroup of G and $y \in Y$. Let B be a subset of A; we will say that $\{\varphi(a)\}_{a \in B}$ is well distributed in Y if $\varphi(B) \subseteq Y$ and for any $f \in C(Y)$ and any Følner sequence $\left\{\Phi_{N}\right\}_{N=1}^{\infty}$ in A one has $\lim _{N \rightarrow \infty} \frac{1}{\left|\Phi_{N} \cap B\right|} \sum_{a \in \Phi_{N} \cap B} f(\varphi(a))=\int_{Y} f d \mu_{Y}$, where μ_{Y} is the H-invariant probability measure on Y. In particular, this implies $\overline{\varphi(B)}=Y$.
1.4. In order to prove Theorem A we will show that the closure $Y=\overline{\operatorname{Orb}(x)}$ of the orbit $\operatorname{Orb}(x)=$ $\{g(n) x\}_{n \in \mathbb{Z}^{d}}$ of $x \in X$ is a disjoint finite union of sub-nilmanifolds of X and that $\{g(n) x\}_{n \in \mathbb{Z}^{d}}$ is well distributed in the connected components of Y. This fact is known for linear actions by translations:

Theorem. Let A be a finitely generated amenable group and let $\varphi: A \longrightarrow G$ be a homomorphism. For any $x \in X$ there exists a closed subgroup $E \subseteq G$ such that $\varphi(A) \subseteq E, \overline{\varphi(A) x}=E x$ and $\{\varphi(a) x\}_{a \in A}$ is well distributed in Ex.

For a simple proof of this theorem see [L]. A more general theorem can be found in [Sh2].
1.5. In the case of polynomial actions the situation is a little bit more complicated; we prove the following:

Supported by NSF grant DMS-0070566 and by the A. Sloan Foundation.

Theorem B. Let $g: \mathbb{Z}^{d} \longrightarrow G$ be a polynomial mapping and let $x \in X$. There exist a connected closed subgroup H of G and points $x_{1}, x_{2}, \ldots, x_{k} \in X$ such that $\overline{\{g(n) x\}}_{n \in \mathbb{Z}^{d}}=\bigcup_{j=1}^{k} H x_{j}$ and for each $j=$ $1, \ldots, k,\{g(n) x\}_{n: g(n) x \in H x_{j}}$ is well distributed in $H x_{j}$. In particular, if $Y={\overline{\{g}(n) x\}_{n \in \mathbb{Z}^{d}}}$ is connected then $\{g(n) x\}_{n \in \mathbb{Z}^{d}}$ is well distributed in Y.
1.6. A more detailed information about the behavior of $g(n) x$ is given by the following theorem:

Theorem B*. Let $g: \mathbb{Z}^{d} \longrightarrow G$ be a polynomial mapping and let $x \in X$. There exist a connected closed subgroup H of G, a homomorphism $\omega: \mathbb{Z}^{d} \longrightarrow W$ onto a finite group W and a set $\left\{x_{w}, w \in W\right\} \subseteq X$ such that the sets $Y_{w}=H x_{w}, w \in W$, are closed in X and $\{g(n) x\}_{n \in \omega^{-1}(w)}$ is well distributed in Y_{w} for every $w \in W$.

Notice that the sets Y_{w} are not assumed to be all distinct.
1.7. Corollary. For any $f \in C(X)$ and any Følner sequence $\left\{\Phi_{N}\right\}_{N=1}^{\infty}$ in \mathbb{Z}^{d},

$$
\lim _{N \rightarrow \infty} \frac{1}{\left|\Phi_{N}\right|} \sum_{n \in \Phi_{N}} f(g(n) x)=\frac{1}{|W|} \sum_{w \in W} \int_{Y_{w}} f d \mu_{Y_{w}} .
$$

In particular, Theorem A follows.
1.8. Let A_{1}, \ldots, A_{l} be finitely generated subgroups of G. Theorem 1.4 says that, for every i, the orbit of any $x \in X$ under the action of A_{i} is well distributed in a sub-nilmanifold of X. It now follows from Theorem B that the orbit $A_{1} \ldots A_{l} x$ of x under the product $A_{1} \ldots A_{l}$ is also well distributed in the union of several disjoint submanifolds of X.

Corollary. For any $x \in X$ there exist a connected closed subgroup H of G and points $x_{1}, x_{2}, \ldots, x_{k} \in X$ such that $\overline{A_{1} \ldots A_{l} x}=\bigcup_{j=1}^{k} H x_{j}$, and for each $j=1, \ldots, k,\{a x\}_{a \in A_{1} \ldots A_{l}: a x \in H x_{j}}$ is well distributed in $H x_{j}$ (in the sense clear from the proof).

Proof. For each $i=1, \ldots, l$, the finitely generated nilpotent group A_{i} possesses a finite basis, that is, $a_{i, 1}, \ldots, a_{i, r_{i}} \in A_{i}$ such that every element of A_{i} is representable in the form $a_{i, 1}^{n_{1}} \ldots a_{i, r_{i}}^{n_{r_{i}}}$ with $n_{1}, \ldots, n_{r_{i}} \in \mathbb{Z}$. The mapping $\mathbb{Z}^{r_{1}+\ldots+r_{l}} \longrightarrow G,\left(n_{1,1}, \ldots, n_{l, r_{l}}\right) \mapsto \prod_{i=1}^{l} \prod_{j=1}^{r_{i}} a_{i, j}^{n_{i, j}}$ is therefore a polynomial mapping onto $A_{1} \ldots A_{l}$. By Theorem $\mathrm{B}, \overline{A_{1} \ldots A_{l} x}$ has form $\bigcup_{j=1}^{k} H x_{j}$, and $A_{1} \ldots A_{l} x$ is well distributed in the components of this union (with respect to any Følner sequence in $\mathbb{Z}^{r_{1}+\ldots+r_{l}}$).
1.9. Theorem B also remains true if, instead of the orbit of a point in X, one considers the orbit of a subnilmanifold of X. Let us say that a family $\left\{Z_{n}\right\}_{n \in B}, B \subseteq \mathbb{Z}^{d}$, of sub-nilmanifolds of X is well distributed in a sub-nilmanifold Y of X if $Z_{n} \subseteq Y$ for all $n \in B$ and for any $f \in C(Y)$ and any Følner sequence $\left\{\Phi_{N}\right\}_{N=1}^{\infty}$ in \mathbb{Z}^{d} one has $\lim _{N \rightarrow \infty} \frac{1}{\left|\Phi_{N} \cap B\right|} \sum_{n \in \Phi_{N} \cap B} \int_{Z_{n}} f d \mu_{Z_{n}}=\int_{Y} f d \mu_{Y}$. In particular, $\overline{\bigcup_{n \in B} Z_{n}}=Y$ in this case.
Corollary. Let $g: \mathbb{Z}^{d} \longrightarrow G$ be a polynomial mapping and let Z be a connected sub-nilmanifold of X. There exist a connected closed subgroup H of G and points $x_{1}, x_{2}, \ldots, x_{k} \in X$ such that $\overline{\bigcup_{n \in \mathbb{Z}^{d}} g(n) Z}=\bigcup_{j=1}^{k} H x_{j}$, and for each $j=1, \ldots, k,\{g(n) Z\}_{n: g(n) Z \subseteq H x_{j}}$ is well distributed in $H x_{j}$.
Proof. Let $x \in Z$ and let $a \in G$ be such that $\left\{a^{l} x\right\}_{l \in \mathbb{N}}$ is well distributed in Z. (Letting F be a closed subgroup of G such that $Z=F x$, take any $a \in F$ such that the projection of $\left\{a^{l} x\right\}_{l \in \mathbb{N}}$ is well distributed in the maximal factor-torus of Z; see 1.10 below.) Consider the polynomial sequence $h(n, l)=g(n) a^{l}, n \in \mathbb{Z}^{d}$, $l \in \mathbb{Z}$. Then $\bigcup_{n \in \mathbb{Z}^{d}} g(n) Z=\overline{\{h(n, l) x\}_{(n, l) \in \mathbb{Z}^{d+1}} \text { and by Theorem } \mathrm{B}, \bar{\bigcup}_{n \in \mathbb{Z}^{d}} g(n) Z}=\bigcup_{j=1}^{k} H x_{j}$ for suitable H and x_{1}, \ldots, x_{k}.

For $j \in\{1, \ldots, k\}$ let $B_{j}=\left\{n \in \mathbb{Z}^{d}: g(n) Z \subseteq H x_{j}\right\}$ and $C_{j}=B_{j} \times \mathbb{Z}$. Now let $\left\{\Phi_{N}\right\}_{N \in \mathbb{N}}$ be a Følner sequence in \mathbb{Z}^{d}; given $f \in C\left(H x_{j}\right)$ consider a Følner sequence $\Psi_{N}=\Phi_{N} \times\left\{1, \ldots, p_{N}\right\}, N \in \mathbb{N}$, in \mathbb{Z}^{d+1}. Then, if the integers p_{N} tend to infinity fast enough, one has $\lim _{N \rightarrow \infty} \frac{1}{\left|\Phi_{N} \cap B_{j}\right|} \sum_{n \in \Phi_{N} \cap B_{j}} \int_{g(n) Z} f d \mu_{g(n) Z}=$ $\lim _{N \rightarrow \infty} \frac{1}{\left|\Psi_{N} \cap C_{j}\right|} \sum_{(n, l) \in \Psi_{N} \cap C_{j}} f(h(n, l) x)=\int_{H x_{j}} f d \mu_{H x_{j}}$.
1.10. It follows from Theorem B that if the orbit $\{g(n) x\}_{n \in \mathbb{Z}^{d}}$ of a point $x \in X$ is dense in X then it is well distributed in X. In the case where X is connected we have a simple criterion of this situation. Let G^{o} be the identity component of G; if X is connected, then X is a homogeneous space of $G^{o}, X=G^{o} /\left(\Gamma \cap G^{o}\right)$. The factor $T=\left[G^{o}, G^{o}\right] \backslash X=G^{o} /\left(\left(\Gamma \cap G^{o}\right)\left[G^{o}, G^{o}\right]\right)$ of X is a compact connected abelian Lie group, which we will call the maximal factor-torus of X.

Theorem C. Let X be connected, let T be the maximal factor-torus of X, let $p: X \longrightarrow T$ be the factorization mapping and let g be a polynomial mapping $\mathbb{Z}^{d} \longrightarrow G$. The orbit $\{g(n) x\}_{n \in \mathbb{Z}^{d}}$ of $x \in X$ is dense X iff $\{g(n) p(x)\}_{n \in \mathbb{Z}^{d}}$ is dense in T.
1.11. Let $\left\{z_{n}\right\}_{n \in \mathbb{Z}^{d}}$ be a (multiparameter) sequence in a topological space X. A point z_{m} of this sequence is called recurrent if for in any neighborhood U of z_{m} the set $\left\{n \in \mathbb{Z}^{d}: z_{n} \in U\right\}$ is infinite. If $g: \mathbb{Z}^{d} \longrightarrow G$ is a polynomial mapping and $x \in X$, it follows from Theorem B that every point of $\{g(n) x\}_{n \in \mathbb{Z}^{d}}$ is recurrent.

Actually, a stronger fact holds. The set of finite sums of distinct elements of a sequence in \mathbb{Z}^{d} is called an $I P$-set; a subset of \mathbb{Z}^{d} that has nonempty intersection with any IP-set is called an $I P^{*}$-set. IP*-sets are "regular" and "large"; in particular, any IP^{*}-set is syndetic, that is, has bounded gaps. (See [F], ch. 9.) Given a (multiparameter) sequence $\left\{z_{n}\right\}_{n \in \mathbb{Z}^{d}}$ in a topological space X, following [F] we say that a point z_{m}, $m \in \mathbb{Z}^{d}$, is $I P^{*}$-recurrent if for any neighborhood U of z_{m} the set $\left\{n \in \mathbb{Z}^{d}: z_{n} \in U\right\}$ is IP^{*}.
Theorem D. Let $g: \mathbb{Z}^{d} \longrightarrow G$ be a polynomial mapping and let $x \in X$. The point $g(0) x$ is IP*-recurrent for $\{g(n) x\}_{n \in \mathbb{Z}^{d}}$.

2. Proofs

2.1. By $[a, b]$ we will denote $a^{-1} b^{-1} a b$. If B is a subset of a group G, we will denote by $\langle B\rangle$ the subgroup of G generated by B. Given a group G, by G_{2} we will denote the derived subgroup $[G, G]$ of G.

When G is a nilpotent Lie group we will denote by G^{o} the identity component of G. Any connected nilpotent Lie group is exponential and so, for any $a \in G^{o}$ there exists a one-parameter group $\left\{\alpha_{t}\right\}_{t \in \mathbb{R}} \subseteq G^{o}$ with $\alpha(1)=a$. We will denote $\alpha(t)$ by a^{t} (ignoring the fact that a^{t} may not be uniquely defined).
2.2. Let \mathcal{F} be the free group generated by continuous generators a_{1}, \ldots, a_{l} and discrete generators e_{1}, \ldots, e_{m}, that is, the group of words in the alphabet $\left\{a_{1}^{t_{1}}, \ldots, a_{l}^{t_{l}}, e_{1}^{k_{1}}, \ldots, e_{m}^{k_{m}}\right\}_{\substack{t_{i} \in \mathbb{R} \\ k_{j} \in \mathbb{Z}}}$. Let $\mathcal{F}=\mathcal{F}_{1} \supseteq \mathcal{F}_{2} \supseteq \ldots$ be the lower central series of $\mathcal{F}: \mathcal{F}_{i+1}=\left[\mathcal{F}_{i}, \mathcal{F}\right], i \in \mathbb{N}$. Let $r \in \mathbb{N}$; we will call the nilpotent Lie group $F=\mathcal{F} / \mathcal{F}_{r+1}$ the free nilpotent Lie group (of class r, with continuous generators a_{1}, \ldots, a_{l} and discrete generators e_{1}, \ldots, e_{m}). The discrete subgroup of F generated by the set $\left\{a_{1}, \ldots, a_{l}, e_{1}, \ldots, e_{m}\right\}$ is uniform in F; we will denote it by $\Gamma(F)$.
2.3. Lemma. Let G be a nilpotent Lie group of class $\leq r$ and let F be a free nilpotent Lie group of class r with continuous generators a_{1}, \ldots, a_{l} and discrete generators e_{1}, \ldots, e_{m}. Any mapping $\eta:\left\{a_{1}, \ldots, a_{l}\right.$, $\left.e_{1}, \ldots, e_{m}\right\} \longrightarrow G$ with $\eta\left(\left\{a_{1}, \ldots, a_{l}\right\}\right) \subseteq G^{o}$ extends to a homomorphism $F \longrightarrow G$.

Proof. Put $\eta\left(a_{i}^{t}\right)=\left(\eta\left(a_{i}\right)\right)^{t}, t \in \mathbb{R}, i=1, \ldots, l$, then η extends to a homomorphism $\eta: \mathcal{F} \longrightarrow G$ from the free group \mathcal{F} generated by $\left\{a_{1}^{t_{1}}, \ldots, a_{l}^{t_{l}}, e_{1}, \ldots, e_{m}\right\}_{t_{i} \in \mathbb{R}}$. Since $\eta\left(\mathcal{F}_{r+1}\right) \subseteq G_{r+1}=\left\{\mathbf{1}_{G}\right\}, \eta$ factors to a homomorphism $F \longrightarrow G$.
2.4. Let G be a nilpotent Lie group such that G / G^{o} is finitely generated. Then G is generated by a set of the form $\left\{a_{1}^{t_{1}}, \ldots, a_{l}^{t_{l}}, e_{1}, \ldots, e_{m}\right\}_{t_{i} \in \mathbb{R}}$, where $a_{1}^{t_{1}}, \ldots, a_{l}^{t_{l}}$ generate G^{o} and e_{1}, \ldots, e_{m} generate G / G^{o}. It follows from Lemma 2.3 that G is a factor of the free nilpotent Lie group of the same nilpotency class as G with continuous generators a_{1}, \ldots, a_{l} and discrete generators e_{1}, \ldots, e_{m}.
2.5. Lemma. Let G be a nilpotent group and let H be a subgroup of G such that $H G_{2}=G$. Then $H=G$.

Proof. Let $G=G_{1} \supseteq G_{2} \supseteq \ldots \supseteq G_{r} \supseteq G_{r+1}=\left\{\mathbf{1}_{G}\right\}$ be the lower central series of G. By induction on r, $H G_{r}=G$, and it is only to be checked that $G_{r} \subseteq H . G_{r}$ is generated by elements of the form $[b, a]$ with $a \in G$ and $b \in G_{r-1}$. Let $c \in H$ be such that $c G_{2}=a G_{2}$ and $d \in H \cap G_{r-1}$ be such that $d G_{r}=b G_{r}$. Then $[d, c] \in H$ and $[d, c]=[b, a]$.
2.6. Lemma. Let F be a free nilpotent Lie group and let a self-homomorphism τ of F be such that the induced self-homomorphism of F / F_{2} is invertible. Then τ is also invertible.

Proof. Since $\tau(F) F_{2}=F, \tau(F)=F$ by Lemma 2.5. It follows from Lemma 2.3 that there exists a homomorphism $\sigma: F \longrightarrow F$ such that $\tau \circ \sigma=\operatorname{Id}_{F}$. Since σ induces an automorphism of F / F_{2}, σ is also surjective. Hence, $\sigma=\tau^{-1}$.
2.7. We say that an automorphism τ of a group G is unipotent if the mapping $\xi: G \longrightarrow G$ defined by $\xi(a)=\tau(a) a^{-1}, a \in G$, satisfies $\xi^{\circ q} \equiv \mathbf{1}_{G}$ for $q \in \mathbb{N}$ large enough.
2.8. Proposition. Let G be a nilpotent group and let $\tau_{1}, \ldots, \tau_{k}$ be automorphisms of G such that the automorphisms induced by $\tau_{1}, \ldots, \tau_{k}$ on G / G_{2} are unipotent and commute. Then the group extension of G by $\tau_{1}, \ldots, \tau_{k}$ is nilpotent. In particular, $\tau_{1}, \ldots, \tau_{k}$ generate a nilpotent group.

Proof. Let \mathcal{T} be the group of automorphisms of G generated by $\tau_{1}, \ldots, \tau_{k}$. For $\delta \in \mathcal{T}$ let $\xi_{\delta}: G \longrightarrow G$ be defined by $\xi_{\delta}(a)=\delta(a) a^{-1}, a \in G$. Since $\tau_{1}, \ldots, \tau_{k}$ are unipotent and commuting on G / G_{2}, there exists $q \in \mathbb{N}$ such that $\xi_{\delta}^{\circ q}(G) \subseteq G_{2}$ for any $\delta \in \mathcal{T}$. For $j=0,1, \ldots$ let $A_{1, j}$ be the subgroup of G generated by G_{2} and the set $\left\{\xi_{\left.\delta_{1} \circ \ldots \circ \xi_{\delta_{j}}(G), \delta_{1}, \ldots, \delta_{j} \in \mathcal{T}\right\} \text {. We then have a } \mathcal{T} \text {-invariant series } G=A_{1,0} \supseteq A_{1,1} \supseteq \ldots \supseteq, ~(a) ~}^{\text {D }}\right.$ $A_{1, q-1} \supseteq A_{1, q}=G_{2}$ such that for any $j<q, a \in A_{1, j}$ and $\delta \in \mathcal{T}$ one has $\delta(a)=c a$ with $c \in A_{1, j+1}$.

Let $G=G_{1} \supseteq G_{2} \supseteq \ldots \supseteq G_{r} \supseteq G_{r+1}=\left\{\mathbf{1}_{G}\right\}$ be the lower central series of G. For each $s=2, \ldots, r$ and $j \geq 0$ let $A_{s, j}$ be the subgroup of G_{s} generated by G_{s+1} and $\left\{\left[A_{s-1, l}, A_{1, m}\right]: l+m=j\right\}$. Then $A_{s, s q}=G_{s+1}$ and we get the \mathcal{T}-invariant series $G_{s}=A_{s, 0} \supseteq A_{s, 1} \supseteq \ldots \supseteq A_{s, s q-1} \supseteq A_{s, s q}=G_{s+1}$.
Lemma. For any $s \leq r, j<s q, a \in A_{s, j}$ and $\delta \in \mathcal{T}$ one has $\delta(a)=b a$ with $b \in A_{s, j+1}$.
Proof. Let $a=[v, u]$ where $u \in A_{1, l}$ and $v \in A_{s-1, m}$ with $l+m=j$. Then $\delta(u)=c u$ with $c \in A_{1, l+1}$, and, by induction on $s, \delta(v)=d v$ with $d \in A_{s-1, m+1}$. Thus $\delta(a)=\delta([v, u])=[d v, c u]=[d, c][v, c][d, u] w[v, u]$ with $w \in G_{s+1}$, and so, $\delta(a)=b a$ where $b=[d, c][v, c][d, u] w \in A_{s, j+1}$.

Let us now consider the "long" series

$$
\begin{array}{r}
G=A_{1,0} \supseteq A_{1,1} \supseteq \ldots \supseteq A_{1, q-1} \supseteq A_{1, q}=A_{2,0} \supseteq A_{2,1} \supseteq \ldots \supseteq A_{2, q-1} \supseteq A_{2,2 q}=A_{3,0} \supseteq \ldots \\
\\
\cdots \supseteq A_{r-1,(r-1) q}=A_{r, 0} \supseteq A_{r, 1} \supseteq \ldots \supseteq A_{r, r q-1} \supseteq A_{r, r q}=\left\{\mathbf{1}_{G}\right\} .
\end{array}
$$

Denote the distinct terms of this series by $A_{1}, A_{2}, \ldots, A_{p}$ so that $G=A_{1} \supseteq A_{2} \supseteq \ldots \supseteq A_{p}=\left\{\mathbf{1}_{G}\right\}$ is a \mathcal{T}-invariant central series in G such that for any $j<p, a \in A_{j}$ and $\delta \in \mathcal{T}$ one has $\delta(a)=b a$ with $b \in A_{j+1}$. Also, define $A_{p+1}=A_{p+2}=\ldots=\left\{\mathbf{1}_{G}\right\}$. Let $\mathcal{T}=\mathcal{T}_{1} \supseteq \mathcal{T}_{2} \supseteq \ldots$ be the lower central series of \mathcal{T}.
Lemma. For any $l, j \in \mathbb{N}, \tau \in \mathcal{T}_{l}$ and $a \in A_{j}$ one has $\tau(a)=$ ca with $c \in A_{j+l}$.
Proof. We will use induction on l. Assume that the statement is true for some l; let $\tau \in \mathcal{T}_{l}, \delta \in \mathcal{T}, a \in A_{j}$, $\delta(a)=b a$ and $\tau(a)=c a$ with $b \in A_{j+1}$ and $c \in A_{j+l}$. Then $\delta^{-1}(a)=\delta^{-1}\left(b^{-1}\right) a$ and $\tau^{-1}(a)=\tau^{-1}\left(c^{-1}\right) a$. Also, we have $\tau(b) \equiv b \bmod A_{j+l+1}$ and $\delta(c) \equiv c \bmod A_{j+l+1}$. Performing calculations modulo A_{j+l+1} we obtain

$$
\begin{aligned}
{[\tau, \delta](a) } & \equiv \tau^{-1} \delta^{-1} \tau \delta(a) \equiv \tau^{-1} \delta^{-1} \tau(b a)=\tau^{-1} \delta^{-1}(b c a) \equiv \tau^{-1}\left(\delta^{-1}(b) c \delta^{-1}\left(b^{-1}\right) a\right) \\
& \equiv \tau^{-1}\left(\delta^{-1}(b) c \delta^{-1}\left(b^{-1}\right)\right) \tau^{-1}\left(c^{-1}\right) a \equiv \tau^{-1}\left(\left[\delta^{-1}\left(b^{-1}\right), c^{-1}\right]\right) a \equiv a \bmod A_{j+l+1}
\end{aligned}
$$

It follows that $\tau(a)=a$ for all $\tau \in \mathcal{T}_{p}$ and $a \in G$. Hence, \mathcal{T}_{p} is trivial and \mathcal{T} is nilpotent.
Now let \widehat{G} be the extension of G by \mathcal{T}, that is, $\widehat{G}=\{(a, \delta), a \in G, \delta \in \mathcal{T}\}$ with $\left(a_{1}, \delta_{1}\right)\left(a_{2}, \delta_{2}\right)=$ $\left(a_{2} \delta_{1}\left(a_{2}\right), \delta_{1} \delta_{2}\right)$. We will identify G and \mathcal{T} with their images in \widehat{G}; then $(a, \delta)=a \delta, \delta(a)=\delta a \delta^{-1}$ and $[a, \delta]=a^{-1} \delta^{-1}(a)$. Given $j \in \mathbb{N}, b \in A_{j}, \tau \in \mathcal{T}_{j}, a \in G$ and $\delta \in \mathcal{T}$, one has $\delta b \delta^{-1}=\delta(b) \in A_{j}$, $[b, \delta]=b^{-1} \delta^{-1}(b) \in A_{j+1}$ and $[\tau, a]=\tau^{-1}\left(a^{-1}\right) a \in A_{j+1}$. Thus,

$$
[b \tau, a \delta]=\left(\tau^{-1}[b, \delta] \tau\right)\left(\tau^{-1} \delta^{-1}[b, a] \delta \tau\right)\left([\tau, \delta] \delta^{-1}[\tau, a] \delta[\tau, \delta]^{-1}\right)[\tau, \delta] \in A_{j+1} \mathcal{T}_{j+1}
$$

Hence $\widehat{G}=A_{1} \mathcal{T}_{1} \supseteq A_{2} \mathcal{T}_{2} \supseteq \ldots \supseteq A_{p} \mathcal{T}_{p}=\left\{\mathbf{1}_{\widehat{G}}\right\}$ is a central series in \widehat{G} and \widehat{G} is nilpotent.
2.9. We want also to mention the following fact. Assume that $\eta: \widetilde{\widetilde{G}} \longrightarrow G$ is a group homomorphism and $\widetilde{\Gamma}$ and Γ are closed subgroups of \widetilde{G} and G respectively such that $\eta(\widetilde{\Gamma}) \subseteq \Gamma$. Then η factors to a homomorphism of homogeneous spaces $\widetilde{X}=\widetilde{G} / \widetilde{\Gamma} \xrightarrow{\eta} X=G / \Gamma$. Assume that the set $\{\varphi(a)\}_{a \in A}$ of values of a mapping $\varphi: A \longrightarrow \widetilde{X}$ from an amenable group A is well distributed in \widetilde{X}. Then $\{\eta(\varphi(a))\}_{a \in A}$ is well distributed in $Y=\eta(\widetilde{X})$. Indeed, for any $f \in C(Y)$ and any Følner sequence $\left\{\Phi_{N}\right\}_{N=1}^{\infty}$ in A we have

$$
\lim _{N \rightarrow \infty} \frac{1}{\left|\Phi_{N}\right|} \sum_{a \in \Phi_{N}} f(\eta \circ \varphi(a))=\lim _{N \rightarrow \infty} \frac{1}{\left|\Phi_{N}\right|} \sum_{a \in \Phi_{N}} f \circ \eta(\varphi(a))=\int_{\widetilde{X}} f \circ \eta d \mu_{\widetilde{X}}=\int_{Y} f d\left(\eta_{*} \mu_{\widetilde{X}}\right),
$$

where $\mu_{\widetilde{X}}$ is the \widetilde{G}-invariant probability measure on $\widetilde{X} . \eta_{*}\left(\mu_{\widetilde{X}}\right)$ is therefore the $\eta(\widetilde{G})$-invariant probability measure on Y, that is, μ_{Y}.
2.10. From now on let G be a nilpotent Lie group with identity component G^{o}, Γ be a closed uniform subgroup of G and $X=G / \Gamma$. We may and will assume that G / G^{o} is finitely generated and that Γ is discrete; see [L] for more detail.

The group G possesses a basis, that is, a system $a_{1}, \ldots, a_{l} \in G^{o}, e_{1}, \ldots, e_{m} \in G$, such that any element of G is representable in the form $a_{1}^{t_{1}} \ldots a_{l}^{t_{l}} e_{1}^{k_{1}} \ldots e_{m}^{k_{m}}$ with $t_{1}, \ldots, t_{l} \in \mathbb{R}$ and $k_{1}, \ldots, k_{m} \in \mathbb{Z}$, and Γ is a subgroup of finite index in $\left\langle a_{1}, \ldots, a_{l}, e_{1}, \ldots, e_{m}\right\rangle$. (For the case of a connected G see $[\mathrm{M}]$, for the general case see [L].) We will refer to a_{1}, \ldots, a_{l} as to continuous generators and to e_{1}, \ldots, e_{m} as to discrete generators. The multiplication in a nilpotent group is polynomial; this implies that any polynomial mapping $g: \mathbb{Z}^{d} \longrightarrow G$ can be written in the basis $\left\{a_{1}, \ldots, a_{l}, e_{1}, \ldots, e_{m}\right\}$ in the form $g(n)=a_{1}^{p_{1}(n)} \stackrel{\ldots}{p_{l}^{p_{l}(n)}} e_{1}^{q_{1}(n)} \ldots e_{m}^{q_{m}(n)}$, where p_{1}, \ldots, p_{l} are polynomial mappings $\mathbb{Z}^{d} \longrightarrow \mathbb{R}$ and q_{1}, \ldots, q_{m} are polynomial mappings $\mathbb{Z}^{d} \longrightarrow \mathbb{Z}$.
2.11. Proof of Theorem \mathbf{B}^{*}. Let $g: \mathbb{Z}^{d} \longrightarrow G$ be a polynomial mapping and let $x \in X$. Our plan is to represent X as a factor, $\widetilde{\widetilde{X}} \xrightarrow{\tilde{\eta}} X$, of a "larger" nilmanifold $\widetilde{\widetilde{X}}=\widehat{\widehat{G}} / \widehat{\hat{\Gamma}}$ and find a homomorphism $\varphi: \mathbb{Z}^{d} \longrightarrow \widehat{\widehat{G}}$ so that the "polynomial orbit" $\{g(n) x\}_{n \in \mathbb{Z}^{d}}$ would be the projection, $g(n) x=\widetilde{\widetilde{\eta}}(\varphi(n) \widetilde{\widetilde{x}})$, of the "linear orbit" $\{\varphi(n) \widetilde{\widetilde{x}}\}_{n \in \mathbb{Z}^{d}}$ in $\widetilde{\widetilde{X}}$. (Let us remark that in the construction that follows G is not a factor-group of $\widehat{\widehat{G}}$ and g is not a projection of φ.) This will allow us to derive Theorem B* from Theorem 1.4.

Let $\pi: G \longrightarrow X$ be the factorization mapping and let $a \in \pi^{-1}(x)$. Choose a basis $\left\{a_{1}, \ldots, a_{K}\right\}$ in G, where some of a_{k} may be continuous and some may be discrete, and $s \in \mathbb{N}$ such that $c^{s} \in \Gamma$ for any $c \in\left\langle a_{1}, \ldots, a_{K}\right\rangle$. Write $g(n) a=a_{1}^{p_{1}(n)} . . a_{K}^{p_{K}(n)}$, where $p_{k}, k=1, \ldots, K$, is a polynomial mapping $\mathbb{Z}^{d} \longrightarrow \mathbb{Z}$ if a_{k} is a discrete generator and $\mathbb{Z}^{d} \longrightarrow \mathbb{R}$ if a_{k} is a continuous generator. Any polynomial mapping $p: \mathbb{Z}^{d} \longrightarrow \mathbb{R}$ is representable in the form $p\left(n_{1}, \ldots, n_{d}\right)=\sum_{j} \lambda_{j}\left(\prod_{i=1}^{d}\binom{n_{i}}{r_{j, i}}\right), r_{i, j} \in\{0,1, \ldots\}, \lambda_{j} \in \mathbb{R}$, with all $\lambda_{j} \in \mathbb{Z}$ if $p\left(\mathbb{Z}^{d}\right) \subseteq \mathbb{Z}$. This allows us to write

$$
g(n) a=\prod_{j=1}^{J} a_{k_{j}}^{\lambda_{j}} \prod_{i=1}^{d}\binom{n_{i}}{r_{j, i}}, \quad n=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}
$$

where $\lambda_{j} \in \mathbb{R}$ if $a_{k_{j}}$ is a continuous generator and $\lambda_{j} \in \mathbb{Z}$ if $a_{k_{j}}$ is a discrete generator. For each $j=1, \ldots, J$ define $V_{j}=\prod_{i=1}^{d}\left\{0, \ldots, r_{j, i}\right\}$, and let \widetilde{G} be the free nilpotent Lie group of same nilpotency class as G, with generators $\alpha_{j, v}, v \in V_{j}, j \in\{1, \ldots, J\}$, such that $\alpha_{j, v}$ is continuous if $a_{k_{j}}$ is continuous, and discrete if $a_{k_{j}}$ is discrete. Define an epimorphism $\eta: \widetilde{G} \longrightarrow G$ by

Let $\Gamma(\widetilde{G})$ be the lattice $\left\langle\alpha_{j, v}, j \in\{1, \ldots, J\}, v \in V_{j}\right\rangle$ in \widetilde{G} and let $\widetilde{\Gamma}=\left\langle\gamma^{s}, \gamma \in \Gamma(\widetilde{G})\right\rangle$. Then $\widetilde{\Gamma}$ is a discrete uniform subgroup of \widetilde{G} invariant under all automorphisms of $\Gamma(\widetilde{G})$ and $\eta(\widetilde{\Gamma}) \subseteq \Gamma$. Define $\widetilde{X}=\widetilde{G} / \widetilde{\Gamma}$ and let $\widetilde{\pi}: \widetilde{G} \longrightarrow \widetilde{X}$ be the factorization mapping; then η factors to a mapping $\widetilde{X} \longrightarrow X$ so that $\eta \circ \widetilde{\pi}=\pi \circ \eta$.

We will now define automorphisms $\tau_{1}, \ldots, \tau_{d}$ of \widetilde{G}. For each $i=1, \ldots, d$ let ϵ_{i} be the i-th basis vector $(0, \ldots, 0,1,0, \ldots, 0)$ in \mathbb{Z}^{d} and let

$$
\tau_{i}\left(\alpha_{j, v}\right)=\left\{\begin{array}{l}
\alpha_{j, v} \alpha_{j, v+\epsilon_{i}} \text { if } v=\left(v_{1}, \ldots, v_{d}\right) \text { with } v_{i}<r_{j, i}, \quad v \in V_{j}, j \in\{1, \ldots, K\} . \\
\alpha_{j, v} \text { if } v_{i}=r_{j, i}
\end{array}\right.
$$

(The following diagram shows how $\alpha^{-1} \tau_{i}(\alpha)$ act; here $d=2, r_{j, 1}=2, r_{j, 2}=3, " \rightarrow$ " stands for $\alpha^{-1} \tau_{1}(\alpha)$ and " \downarrow " stands for $\alpha^{-1} \tau_{2}(\alpha)$:

$\alpha_{j,(0,0)} \rightarrow \alpha_{j,(1,0)} \rightarrow \alpha_{j,(2,0)}$		
\downarrow	\downarrow	\downarrow
$\alpha_{j,(0,1)}$	$\rightarrow \alpha_{j,(1,1)} \rightarrow \alpha_{j,(2,1)}$	
\downarrow	\downarrow	\downarrow
$\alpha_{j,(0,2)}$	$\rightarrow \alpha_{j,(1,2)} \rightarrow$	$\rightarrow \alpha_{j,(2,2)}$
\downarrow	\downarrow	\downarrow
$\alpha_{j,(0,3)} \rightarrow$	$\alpha_{j,(1,3)} \rightarrow$	$\alpha_{j,(2,3) .}$.

By Lemmas 2.3 and $2.6, \tau_{1}, \ldots, \tau_{d}$ are extendible to automorphisms of \widetilde{G}. One checks that for any $j \in$ $\{1, \ldots, J\}, i \in\{1, \ldots, d\}, v=\left(v_{1}, \ldots, v_{d}\right)$ with $v_{i}=0, \lambda \in \mathbb{R}$ if $a_{k_{j}}$ is continuous and $\lambda \in \mathbb{Z}$ if $a_{k_{j}}$ is discrete one has $\tau_{i}^{n}\left(\alpha_{j, v}^{\lambda}\right)=\prod_{m=0}^{r_{j, i}} \alpha_{j, v+m \epsilon_{i}}^{\lambda\binom{n}{m}}, n \in \mathbb{Z}$. It follows that for any $\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}$ one has $\tau_{1}^{n_{1}} \ldots \tau_{d}^{n_{d}}\left(\alpha_{j,(0, \ldots, 0)}^{\lambda}\right)=\prod_{m_{d}=0}^{r_{j, d}} \ldots \prod_{m_{1}=0}^{r_{j, 1}} \begin{gathered}\lambda\binom{n_{1}}{m_{1}} \ldots\binom{n_{d}}{m_{d}} \\ \left.m_{1}, \ldots, m_{d}\right)\end{gathered}$, and $\eta\left(\left(\prod_{i=1}^{d} \tau_{i}^{n_{i}}\right)\left(\alpha_{j,(0, \ldots, 0)}^{\lambda}\right)\right)=a_{k_{j}}^{\lambda} \prod_{i=1}^{d}\binom{n_{i}}{r_{j, i}}$. Define $\alpha=\prod_{j=1}^{J} \alpha_{j,(0, \ldots, 0)}^{\lambda_{j}}$, then

$$
\begin{equation*}
\eta\left(\left(\prod_{i=1}^{d} \tau_{i}^{n_{i}}\right)(\alpha)\right)=\prod_{j=1}^{J} a_{k_{j}}^{\lambda_{j}} \prod_{i=1}^{d}\binom{n_{i}}{r_{j, i}}=g(n) a, \quad n=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d} \tag{2.1}
\end{equation*}
$$

The automorphisms induced by $\tau_{1}, \ldots, \tau_{d}$ on $\widetilde{G} / \widetilde{G}_{2}$ are unipotent and commute. (The automorphisms τ_{i} themselves do not commute: $\tau_{1} \tau_{2} \alpha_{j,(0,0)}=\alpha_{j,(0,0)} \alpha_{j,(1,0)} \alpha_{j,(0,1)} \alpha_{j,(1,1)}$, whereas $\tau_{1} \tau_{2} \alpha_{j,(0,0)}=$ $\alpha_{j,(0,0)} \alpha_{j,(0,1)} \alpha_{j,(1,0)} \alpha_{j,(1,1)}$.) Let \widehat{G} be the extension of \widetilde{G} by the discrete group of automorphisms generated by $\tau_{1}, \ldots, \tau_{d}$; by Proposition $2.8, \widehat{G}$ is nilpotent. \widetilde{G} is normal in \widehat{G}, so $\left(\prod_{i=1}^{d} \tau_{i}^{n_{i}}\right) \alpha\left(\prod_{i=1}^{d} \tau_{i}^{n_{i}}\right)^{-1} \in \widetilde{G}$ and by (2.1),

$$
\begin{equation*}
\eta\left(\left(\prod_{i=1}^{d} \tau_{i}^{n_{i}}\right) \alpha\left(\prod_{i=1}^{d} \tau_{i}^{n_{i}}\right)^{-1}\right)=g(n) a, \quad n=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d} \tag{2.2}
\end{equation*}
$$

Define $\widehat{\Gamma}=\left\langle\widetilde{\Gamma}, \tau_{1}, \ldots, \tau_{k}\right\rangle$; since τ_{i} preserve $\widetilde{\Gamma}$ one has $\widehat{\Gamma} \cap \widetilde{G}=\widetilde{\Gamma}$. Hence, $\widehat{\Gamma}$ is a discrete subgroup in \widehat{G} and $\widehat{G} / \widehat{\Gamma} \simeq \widetilde{G} / \widetilde{\Gamma}=\widetilde{X}$; let $\widehat{\pi}: \widehat{G} \longrightarrow \widetilde{X}$ be the factorization mapping. We get the commutative diagram

$$
\begin{gathered}
\widetilde{G} \subseteq \widehat{G} \\
\eta \downarrow \hat{\pi} \downarrow \downarrow \hat{\pi} \\
G \quad \bar{X} \\
\pi \searrow \downarrow \eta \\
\quad X
\end{gathered}
$$

Let $\widetilde{x}=\widehat{\pi}(\alpha) \in \widetilde{X}$ and $\widetilde{g}(n)=\prod_{i=1}^{d} \tau_{i}^{n_{i}}, n=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}$. Then, since $\prod_{i=1}^{d} \tau_{i}^{n_{i}} \in \widehat{\Gamma}$, we have by (2.2):

$$
\begin{equation*}
\widetilde{g}(n) \widetilde{x}=\widehat{\pi}\left(\left(\prod_{i=1}^{d} \tau_{i}^{n_{i}}\right) \alpha\right)=\widehat{\pi}\left(\left(\prod_{i=1}^{d} \tau_{i}^{n_{i}}\right) \alpha\left(\prod_{i=1}^{d} \tau_{i}^{n_{i}}\right)^{-1}\right) \xrightarrow{\eta} \pi(g(n) a)=g(n) x, \tag{2.3}
\end{equation*}
$$

$n=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}$.
The polynomial mapping $\widetilde{g}: \mathbb{Z}^{d} \longrightarrow \widehat{G}$ is not a homomorphism since τ_{i} do not commute. We will now repeat the procedure described above. Let $\widetilde{\widehat{G}}$ be the free nilpotent group of same nilpotency class as \widehat{G} with generators $\alpha_{j, v}$ for $v \in V_{j}, j \in\{1, \ldots, J\}$, and discrete generators τ_{i} and δ_{i} for $i=1, \ldots, d$. Define an epimorphism $\widetilde{\eta}: \widetilde{\widehat{G}} \longrightarrow \widehat{G}$ by

$$
\begin{gathered}
\widetilde{\eta}\left(\alpha_{j, v}\right)=\alpha_{j, v}, \quad v \in V_{j}, j \in\{1, \ldots, J\} \\
\widetilde{\eta}\left(\tau_{i}\right)=\tau_{i} \text { and } \widetilde{\eta}\left(\delta_{i}\right)=\mathbf{1}_{\widetilde{G}}, \quad i=1, \ldots, d
\end{gathered}
$$

Define automorphisms $\sigma_{i}, i=1, \ldots, d$, of $\widetilde{\widehat{G}}$ by

$$
\begin{gathered}
\sigma_{i}\left(\alpha_{j, v}\right)=\alpha_{j, v}, \quad v \in V_{j}, j \in\{1, \ldots, J\} \\
\sigma_{i}\left(\tau_{l}\right)=\tau_{l}, \quad \sigma_{i}\left(\delta_{l}\right)=\left\{\begin{array}{l}
\delta_{l} \text { if } l \neq i \\
\delta_{i} \tau_{i} \text { if } l=i
\end{array}, \quad l=1, \ldots, d .\right.
\end{gathered}
$$

$\sigma_{1}, \ldots, \sigma_{d}$ commute and the automorphisms induced by $\sigma_{1}, \ldots, \sigma_{d}$ on $\widetilde{\widehat{G}} / \widetilde{\widehat{G}}_{2}$ are unipotent. For any i one has $\sigma_{i}^{n}\left(\delta_{i}\right)=\delta_{i} \tau_{i}^{n}, n \in \mathbb{Z}$. Put $\delta=\left(\prod_{i=1}^{d} \delta_{i}\right) \alpha$, then $\left(\prod_{i=1}^{d} \sigma_{i}^{n_{i}}\right)(\delta)=\left(\prod_{i=1}^{d} \delta_{i} \tau_{i}^{n_{i}}\right) \alpha$ and

$$
\begin{equation*}
\widetilde{\eta}\left(\left(\prod_{i=1}^{d} \sigma_{i}^{n_{i}}\right)(\delta)\right)=\left(\prod_{i=1}^{d} \tau_{i}^{n_{i}}\right) \alpha, \quad\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d} \tag{2.4}
\end{equation*}
$$

Now let $\underset{\widehat{\widehat{G}}}{\widehat{G}}$ be the extension of $\widetilde{\widehat{G}}$ by the discrete group generated by $\sigma_{1}, \ldots, \sigma_{d}$. By Proposition $2.8, \widehat{\widehat{G}}$ is nilpotent. $\widetilde{\widehat{G}}$ is normal in $\widehat{\widehat{G}}$, so $\left(\prod_{i=1}^{d} \sigma_{i}^{n_{i}}\right) \delta\left(\prod_{i=1}^{d} \sigma_{i}^{n_{i}}\right)^{-1} \in \widetilde{\widehat{G}}$ and by (2.4),

$$
\begin{equation*}
\widetilde{\eta}\left(\left(\prod_{i=1}^{d} \sigma_{i}^{n_{i}}\right) \delta\left(\prod_{i=1}^{d} \sigma_{i}^{n_{i}}\right)^{-1}\right)=\left(\prod_{i=1}^{d} \tau_{i}^{n_{i}}\right) \alpha, \quad\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d} \tag{2.5}
\end{equation*}
$$

Let $\widetilde{\widehat{\Gamma}}=\left\langle\widehat{\Gamma}, \delta_{1}, \ldots, \delta_{d}\right\rangle \subseteq \widetilde{\widehat{G}}$ and $\widehat{\widehat{\Gamma}}=\left\langle\widetilde{\widehat{\Gamma}}, \sigma_{1}, \ldots, \sigma_{d}\right\rangle \subseteq \widehat{\widehat{G}}$. Then $\widetilde{\widehat{\Gamma}}$ and $\widehat{\widehat{\Gamma}}$ are discrete uniform subgroups of $\widetilde{\widehat{G}}$ and $\widehat{\widehat{G}}$ respectively, and $\widetilde{\widetilde{X}}:=\widetilde{\widehat{G}} / \widetilde{\widehat{\Gamma}} \simeq \widehat{\widehat{G}} / \widehat{\widehat{\Gamma}}$; let $\widehat{\widehat{\pi}}: \widehat{\widehat{G}} \longrightarrow \widetilde{\widetilde{X}}$ be the factorization mapping. We have the commutative diagram

Put $\widetilde{\widetilde{x}}=\widehat{\widehat{\pi}}(\delta)$ and define $\varphi(n)=\prod_{i=1}^{d} \sigma_{i}^{n_{i}}, n=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}$. Then, since $\prod_{i=1}^{d} \sigma_{i}^{n_{i}} \in \widehat{\widehat{\Gamma}}$, we have by (2.5):

$$
\varphi(n) \widetilde{\widetilde{x}}=\widehat{\widehat{\pi}}\left(\left(\prod_{i=1}^{d} \sigma_{i}^{n_{i}}\right) \delta\right)=\widehat{\widehat{\pi}}\left(\left(\prod_{i=1}^{d} \sigma_{i}^{n_{i}}\right) \delta\left(\prod_{i=1}^{d} \sigma_{i}^{n_{i}}\right)^{-1}\right) \xrightarrow{\widetilde{\eta}} \widehat{\pi}\left(\left(\prod_{i=1}^{d} \tau_{i}^{n_{i}}\right) \alpha\right)=\widetilde{g}(n) \widetilde{x},
$$

$n=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}$. Combining this with (2.3) we get $\eta \circ \widetilde{\eta}(\varphi(n) \widetilde{\widetilde{x}})=g(n) x, n \in \mathbb{Z}^{d}$.
Since $\sigma_{1}, \ldots, \sigma_{d}$ commute, $\varphi: \mathbb{Z}^{d} \longrightarrow \widehat{\widehat{G}}$ is a group homomorphism. By Theorem 1.4, there exists a closed subgroup E of $\widehat{\widehat{G}}$ such that $\varphi\left(\mathbb{Z}^{d}\right) \subseteq E$ and $\{\varphi(n) \widetilde{\widetilde{x}}\}_{n \in \mathbb{Z}^{d}}$ is well distributed in Ex. Let $\widetilde{\widetilde{H}}$ be the identity component of E; since $\widehat{\widehat{G}} / \widetilde{\widehat{G}}$ is discrete, $\widetilde{\widetilde{H}} \subseteq \widetilde{\widehat{G}}$. $\widetilde{\widetilde{H}} \widetilde{\widetilde{x}}$ is a connected component of $E \widetilde{\widetilde{x}}$; since $E \widetilde{\widetilde{x}}$ is compact it consists of finitely many translates of $\widetilde{\widetilde{H}} \widetilde{\widetilde{x}}$ and so, the stabilizer $\operatorname{Stab}(\widetilde{\widetilde{H}} \widetilde{\widetilde{x}})$ of $\widetilde{\widetilde{H}} \widetilde{\widetilde{x}}$ has finite index in E. Let W be the finite group $\mathbb{Z}^{d} / \varphi^{-1}(\operatorname{Stab}(\widetilde{\widetilde{H}} \widetilde{\widetilde{x}}))$, let $\omega: \mathbb{Z}^{d} \longrightarrow W$ be the factorization mapping, for each $w \in W$ let $n_{w} \in \mathbb{Z}^{d}$ be a representative of w and $\widetilde{\widetilde{x}}_{w}=\varphi\left(n_{w}\right) \widetilde{\widetilde{x}}$. Then $E x=\bigcup_{w \in W} \widetilde{\widetilde{H}} \widetilde{\widetilde{x}}_{w}, \widetilde{\widetilde{H}}^{\widetilde{x}_{w}}$ is closed and $\{\varphi(n) \widetilde{\widetilde{x}}\}_{n \in \omega^{-1}(w)}$ is well distributed in $\widetilde{\widetilde{H}} \widetilde{\widetilde{x}}_{w}$ for any $w \in W$.

Now let $\widetilde{H}=\widetilde{\eta}(\widetilde{\widetilde{H}}) \subseteq \widehat{G}$. Since \widetilde{H} is connected, $\widetilde{H} \subseteq \widetilde{G}$; let $H=\eta(\widetilde{H})$. Let $x_{w}=\eta \circ \widetilde{\eta}\left(\widetilde{\widetilde{x}}_{w}\right)$, $w \in W$. For each $w \in W$, since $\widetilde{\widetilde{H}}_{w}$ is compact, $H x_{w}=\eta \circ \widetilde{\eta}\left(\widetilde{\widetilde{H}} \widetilde{x}_{w}\right)$ is closed in X. Let $b \in \pi^{-1}\left(H x_{0}\right)$; since Γ is discrete, $H b$ is a connected component of the closed set $\pi^{-1}\left(H x_{0}\right)$, and thus H is closed in G. By 2.9, $\{g(n) x\}_{n \in \omega^{-1}(w)}=\{\eta \circ \widetilde{\eta}(\varphi(n) \widetilde{\widetilde{x}})\}_{n \in \omega^{-1}(w)}$ is well distributed in $H x_{w}$ for any $w \in W$.
2.12. Remark. Note that the components $H x_{w}$ of $\overline{\{g(n) x\}}_{n \in \mathbb{Z}^{d}}$ do not have to be distinct though $\widetilde{\widetilde{H}}^{\widetilde{x}_{w}}$ are all distinct. Here is a simple example: let $G=\mathbb{R}, \Gamma=\mathbb{Z}, x=0, d=1, g(n)=\frac{n^{2}}{3} \in \mathbb{R}$; then $H=0, x_{0}=0$ and $x_{1}=x_{2}=\frac{1}{3}$, so that $\{g(n) x\}_{n \in \mathbb{Z}}=\left\{0, \frac{1}{3}\right\}$.
2.13. Proof of Theorem \mathbf{D}. In the notation of 2.11 , the action of \mathbb{Z}^{d} on X by $x \mapsto \varphi(n) x, x \in X$, $n \in \mathbb{Z}_{\widetilde{d}}^{d}$, is distal. (See, for example, [L].) It follows that the point $\varphi(0) \widetilde{\widetilde{x}}$ is IP^{*}-recurrent for the sequence $\{\varphi(n) \widetilde{\widetilde{x}}\}_{n \in \mathbb{Z}^{d}}$. ([F], Theorem 9.11.) Hence, the point $g(0) x$ is IP *-recurrent for the sequence $\{g(n) x\}_{n \in \mathbb{Z}^{d}}=$ $\{\eta \circ \widetilde{\eta}(\varphi(n) \widetilde{x})\}_{n \in \mathbb{Z}^{d}}$.
2.14. Proof of Theorem C. Let X be connected and let $g: \mathbb{Z}^{d} \longrightarrow G$ be a polynomial mapping. Let $x \in X$ and let, by Theorem B, H be a connected closed subgroup of G such that $\overline{\{g(n) x\}}_{n \in \mathbb{Z}^{d}}=\bigcup_{j=1}^{k} H x_{j}$ for some $x_{1}, \ldots, x_{k} \in X$.

Let $T=\left[G^{o}, G^{o}\right] \backslash X$ and $p: X \longrightarrow T$ be the factorization mapping. Assume that $\{g(n) p(x)\}_{n \in \mathbb{Z}^{d}}$ is dense in T. Then $T=\bigcup_{j=1}^{k} H p\left(x_{j}\right)$, and since T is connected, $H p\left(x_{j}\right)=T$ for some j. Thus $H\left[G^{o}, G^{o}\right]\left(\Gamma \cap G^{o}\right)=$ G^{o}, and since Γ is countable, $H\left[G^{o}, G^{o}\right]=G^{o}$. By Lemma $2.5, H=G^{o}$, so $\overline{\{g(n) x\}}_{n \in \mathbb{Z}^{d}}=H x_{1}=X$.
Acknowledgment. I thank V. Bergelson for useful communications.

Bibliography

[F] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, 1981.
[L] A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold, preprint. Available at http://www.math.ohio-state.edu/~leibman/preprints
[Sh1] N. Shah, Limit distributions of polynomial trajectories on homogeneous spaces, Duke Math. J. 75 (1994), no.3, 711-732.
[Sh2] N. Shah, Invariant measures and orbit closures on homogeneous spaces for actions of subgroups generated by unipotent elements, Lie groups and ergodic theory (Mumbai, 1996), 229-271, Tata Inst. Fund. Res., Bombay, 1998.
[M] A. Malcev, On a class of homogeneous spaces, Izvestiya Akad. Nauk SSSR, Ser. Mat. 13 (1949), 9-32.

