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Abstract

Generalizing the one-parameter case, we prove that the orbit of a point on a com-

pact nilmanifold X under a polynomial action of Vi by translations on X is uniformly
distributed on the union of several sub-nilmanifolds of X. As a corollary we obtain the

pointwise ergodic theorem for polynomial actions of z by translations on a nilmanifold.

1. Formulations

1.1. Let G be a nilpotent Lie group, I' be a closed uniform subgroup of G and X be the compact nilmanifold
G/T. G acts on X by left translations: for a € G and z = bI' € X one defines ax = abl.

We will say that a mapping g: Z¢ — G is polynomial if g can be written in the form g(n) a
where ay,...,a,, € G and p1,...,p,, are polynomial mappings Z¢ — Z. Such a mapping will also be called
a polynomial action of Z% on X by translations, in contrast with a homomorphism Z? — G, which will be
referred to as a linear action. We are going to show the following;:

=" aby ™)

1.2. Theorem A. Let g be a polynomial mapping Z* — G. For any x € X, f € C(X) and Folner
. d . 1 .

sequence {®n}_, in 2%, ngnoo Wﬂg};}\’ f(g(n)a:) exists.

An analogous result for polynomial actions of R, in a much more general situation, was obtained in [Sh1].

The one-parameter case d = 1 of Theorem A was proved in [L].

1.3. Let p: A — X be a mapping from a countable amenable group A and let Y be a sub-nilmanifold of
X, that is, a closed subset of the form Y = Hy where H is a closed subgroup of G and y € Y. Let B
be a subset of A; we will say that {¢(a)}ecp is well distributed in Y if o(B) C Y and for any f € C(Y)

and any Fglner sequence {®x}%_; in A one has ngnoo @Tlmm ae@z]\;nB f(e(a)) = [y fduy, where py is the

H-invariant probability measure on Y. In particular, this implies p(B) =Y.

1.4. In order to prove Theorem A we will show that the closure Y = Orb(x) of the orbit Orb(z) =
{g(n)x}peza of x € X is a disjoint finite union of sub-nilmanifolds of X and that {g(n)x},czs is well
distributed in the connected components of Y. This fact is known for linear actions by translations:

Theorem. Let A be a finitely generated amenable group and let p: A — G be a homomorphism. For any
x € X there exists a closed subgroup E C G such that p(A) C E, ¢(A)x = Ex and {p(a)x}aca is well
distributed in FEx.

For a simple proof of this theorem see [L]. A more general theorem can be found in [Sh2].

1.5. In the case of polynomial actions the situation is a little bit more complicated; we prove the following:
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Theorem B. Let g:Z¢ — G be a polynomial mapping and let x € X. There exist a connected closed
subgroup H of G and points x1,xs,...,x € X such that {g(n)r}, cpa = U§:1 Hz; and for each j =
L.k, {g(n)2}ngmyecHe, s well distributed in Hx;. In particular, if Y = {g(n)z},czq is connected then
{g(n)x}peza is well distributed in'Y .

1.6. A more detailed information about the behavior of g(n)xz is given by the following theorem:

Theorem B*. Let g:Z% — G be a polynomial mapping and let x € X. There exist a connected closed
subgroup H of G, a homomorphism w:Z* — W onto a finite group W and a set {x,, w € W} C X such
that the sets Yy, = Hwy, w € W, are closed in X and {g(n)x}new-1(w) is well distributed in Yy, for every
weW.

Notice that the sets Y,, are not assumed to be all distinct.

1.7. Corollary. For any f € C(X) and any Folner sequence {®n}3¥_, in Z4,

lim G Y fom)) = gy $ [ Fduy..

N—oo nEdy wWEW Yy,

In particular, Theorem A follows.

1.8. Let A4, ..., A; be finitely generated subgroups of G. Theorem 1.4 says that, for every i, the orbit of any
x € X under the action of A; is well distributed in a sub-nilmanifold of X. It now follows from Theorem B
that the orbit A;...A;z of z under the product A;...A; is also well distributed in the union of several
disjoint submanifolds of X.

Corollary. For any x € X there exist a connected closed subgroup H of G and points x1,x2,...,x € X
such that A; ... Ajx = Ule Hzxj, and for each j = 1,...,k, {ax}aca,...A;avcHe, i well distributed in Ha;
(in the sense clear from the proof).

Proof. For each i = 1,...,[, the finitely generated nilpotent group A; possesses a finite basis, that is,
ai1,-..,a;,r, €A;suchthat every element of A, is representable in the form a?,ll c.aT withng,. .. Ny, € 2.

i,rz-
The mapping Z" 4" — G, (n11,...,n1p) — Hi:l J a;y’
Aq...A;. By Theorem B, A; ... A;x has form U§:1 Hzj;,and A, ... Ajz is well distributed in the components

of this union (with respect to any Fglner sequence in Z™+771). g

is therefore a polynomial mapping onto

1.9. Theorem B also remains true if, instead of the orbit of a point in X, one considers the orbit of a sub-
nilmanifold of X. Let us say that a family {Z,},en, B C Z%, of sub-nilmanifolds of X is well distributed in
a sub-nilmanifold Y of X if Z,, CY for all n € B and for any f € C(Y) and any Fglner sequence {®n}¥_;

. d . 1 . . o . .
in Z% one has ]\}grlw BnAE] ne%mB on fduz, = [y fduy. In particular, |, 5 Z, =Y in this case.
Corollary. Let g:Z* — G be a polynomial mapping and let Z be a connected sub-nilmanifold of X. There
exist a connected closed subgroup H of G and points x1,xs, ..., 2 € X such that U, cza 9(n)Z = U?Zl Hzj,
and for each j =1,....,k, {g(n)Z}n.g(n)zCHa, is well distributed in Hz;.

Proof. Let z € Z and let a € G be such that {a'z};ey is well distributed in Z. (Letting F be a closed
subgroup of G such that Z = Fz, take any a € F such that the projection of {a'z};cy is well distributed in
the maximal factor-torus of Z; see 1.10 below.) Consider the polynomial sequence h(n,l) = g(n)a', n € Z4,
Ll € Z. Then U, 74 9(n)Z = {h(n,l)x}, eza+r and by Theorem B, |, cza 9(n)Z = U?:l Hz; for suitable
H and z4,..., 2.

For j € {1,....k} let B; = {n € Z* : g(n)Z C Hax;} and C; = B; x Z. Now let {®n}yen be a
Folner sequence in Z%; given f € C(Hz;) consider a Fglner sequence ¥y = &y x {1,...,pn}, N € N, in
Z%t1. Then, if the integers px tend to infinity fast enough, one has A}imoo m @ZQB fg(n)Z fdugmnyz =

—
lim et > f(h(n,Dzx) = [, fdpms..
N TTNOCHT 2 e Jita, v m




1.10. It follows from Theorem B that if the orbit {g(n)x},cze of a point x € X is dense in X then it is well
distributed in X. In the case where X is connected we have a simple criterion of this situation. Let G° be
the identity component of Gj; if X is connected, then X is a homogeneous space of G°, X = G°/(I' N G°).
The factor T' = [Go, G|\ X = G°/((F NG°)[G°,G°]) of X is a compact connected abelian Lie group, which
we will call the maximal factor-torus of X.

Theorem C. Let X be connected, let T be the mazimal factor-torus of X, let p: X — T be the factorization
mapping and let g be a polynomial mapping Z¢ — G. The orbit {g(n)x}pcze of * € X is dense X iff
{g(n)p(x)}eza is dense in T.

1.11. Let {z,},,cz¢ be a (multiparameter) sequence in a topological space X. A point z,, of this sequence
is called recurrent if for in any neighborhood U of z,, the set {n € Z?: z,, € U} is infinite. If g: Z¢ — G is
a polynomial mapping and x € X, it follows from Theorem B that every point of {g(n)z},cza is recurrent.

Actually, a stronger fact holds. The set of finite sums of distinct elements of a sequence in Z¢ is called
an IP-set; a subset of Z% that has nonempty intersection with any IP-set is called an IP*-set. IP*-sets are
“regular” and “large”; in particular, any IP*-set is syndetic, that is, has bounded gaps. (See [F], ch. 9.)
Given a (multiparameter) sequence {z, },cz¢ in a topological space X, following [F] we say that a point z,,,
m € Z*, is IP*-recurrent if for any neighborhood U of zp, the set {n € Z¢: z, € U} is IP*.

Theorem D. Let g:Z¢ — G be a polynomial mapping and let x € X. The point g(0)x is IP*-recurrent
fOT {g(n)x}nezd-

2. Proofs

2.1. By [a,b] we will denote a=*b~tab. If B is a subset of a group G, we will denote by (B) the subgroup of
G generated by B. Given a group G, by G2 we will denote the derived subgroup [G, G] of G.

When G is a nilpotent Lie group we will denote by G° the identity component of G. Any connected
nilpotent Lie group is exponential and so, for any a € G° there exists a one-parameter group {o}ier C G°
with a(1) = a. We will denote a(t) by a' (ignoring the fact that a’ may not be uniquely defined).

2.2. Let F be the free group generated by continuous generators a1, . .., a; and discrete generators ey, . .., €y,

that is, the group of words in the alphabet {atll,...,afl,e]fl,...,e’fnm} ter. Let F=F1 D Fa D ... be
k; €7

the lower central series of F: F;11 = [F;, F], ¢ € N. Let r € N; VVGJ will call the nilpotent Lie group

F = F/Fr41 the free nilpotent Lie group (of class r, with continuous generators ai,...,a; and discrete

generators ey, ..., en ). The discrete subgroup of F' generated by the set {ai,...,a;,€1,...,€,} is uniform

in F; we will denote it by I'(F).

2.3. Lemma. Let G be a nilpotent Lie group of class < r and let F be a free nilpotent Lie group of
class r with continuous generators ay,...,a; and discrete generators e1, ..., ey,. Any mapping n:{a, ..., a,
€1y em}t — G with n({al, ceey al}) C G° extends to a homomorphism F — G.

Proof. Put n(al) = (n(ai))t, t € R, i =1,...,1, then  extends to a homomorphism 7: F — G from
the free group F generated by {a!!,... ,afl,el, ooy emtter. Since N(Fr41) € Grp1 = {1¢}, 0 factors to a
homomorphism F' — G. g

2.4. Let G be a nilpotent Lie group such that G/G?° is finitely generated. Then G is generated by a set

of the form {ail, cee afl,el, . ,em}tleR, where al', ... ,afl generate G° and e, ..., e, generate G/G°. Tt
follows from Lemma 2.3 that G is a factor of the free nilpotent Lie group of the same nilpotency class as G
with continuous generators aq, ..., a; and discrete generators ey, ..., €.

2.5. Lemma. Let G be a nilpotent group and let H be a subgroup of G such that HGo = G. Then H = G.

Proof. Let G=G1 2 G2 2 ... 2 G, 2 Gry1 = {1g} be the lower central series of G. By induction on r,
HG, = G, and it is only to be checked that G, C H. G, is generated by elements of the form [b, a] with
a€ GandbeG,_1. Let ¢ € H be such that ¢Gy = aG2 and d € H N G,_1 be such that dG, = bG,.. Then
[d,c] € H and [d,c] = [b,a]. m



2.6. Lemma. Let F' be a free nilpotent Lie group and let a self-homomorphism T of F be such that the
induced self-homomorphism of F/Fy is invertible. Then T is also invertible.

Proof. Since 7(F)Fy, = F, 7(F) = F by Lemma 2.5. It follows from Lemma 2.3 that there exists a
homomorphism ¢: F — F such that 7oc = Idg. Since o induces an automorphism of F/Fy, o is also
surjective. Hence, 0 = 77 1. n

2.7. We say that an automorphism 7 of a group G is unipotent if the mapping £:G — G defined by
£(a) = 7(a)a™t, a € G, satisfies £°7 = 1 for ¢ € N large enough.

2.8. Proposition. Let G be a nilpotent group and let 1,...,7, be automorphisms of G such that the
automorphisms induced by 71, ...,7, on G/Gs are unipotent and commute. Then the group extension of G
by T1,...,Tx s nilpotent. In particular, T1,..., T, generate a nilpotent group.

Proof. Let T be the group of automorphisms of G generated by 71,...,7. For d € T let £5:G — G be
defined by &5(a) = 6(a)a™!, a € G. Since 71,...,7 are unipotent and commuting on G/G2, there exists
¢ € N such that £;7(G) C G, for any § € T. For j =0,1,... let Ay ; be the subgroup of G generated by G-
and the set {5510...o§(§j (@), 61,...,0; € T}. We then have a T-invariant series G = A; 9 2 A1 2 ... 2
Ay 41 2 A1, = G2 such that for any j < ¢, a € Ay ; and 6 € T one has 6(a) = ca with c € Ay j41.

Let G=G1 2G22 ... 2 G, 2 Griq = {1} be the lower central series of G. For each s =2,...,r and
j > 0let As ; be the subgroup of G generated by Gy and {[As_l,l, Ay ) i l4+m = j}. Then A g = Gst1
and we get the 7 -invariant series Gs = As 0 2 As1 2 ... D Ay gq—1 2 As g = Gst1.

Lemma. Foranys<r, j<sq, a€ As; andd €T one has §(a) = ba with b € A, j11.

Proof. Let a = [v,u] where u € Ay; and v € A1, with { +m = j. Then 6(u) = cu with ¢ € Ay 41, and,
by induction on s, §(v) = dv with d € As_1.m+1. Thus d(a) = §([v,u]) = [dv,cu] = [d, d][v, d][d, u]w]v, u]
with w € G441, and so, §(a) = ba where b = [d, c|[v, c][d,ulw € A; j11. m

Let us now consider the “long” series

G=A4102A4112...2A414,12A1,=A024212...2 A5, 12 Ax0,=A302 ...
DAty = Ao DAt DD A D Ay = {16}

Denote the distinct terms of this series by Ay, Aa,..., A, so that G = A; D A D ... D 4, ={1g} isa
T-invariant central series in G such that for any j < p, a € A; and 6 € T one has 6(a) = ba with b € A;,.
Also, define Apy1 = Apio=...={1lg}. Let T =71 2 72 D ... be the lower central series of 7.

Lemma. Foranyl,j €N, 7 €T, and a € A; one has 7(a) = ca with c € Aj4.

Proof. We will use induction on I. Assume that the statement is true for some l; let 7 € 75, 0 € T, a € A;,
§(a) = ba and 7(a) = ca with b € Aj;; and ¢ € Aj1;. Then 6 1(a) =6 1(b™)a and 77(a) = 77 (¢ V)a.
Also, we have 7(b) = bmod A; ;41 and 6(c) = cmod Aj4;41. Performing calculations modulo Aj4; 41 we
obtain
[7.0](a) =710 'r8(a) = 7716 r(ba) = 716 H(bea) = 77 (6 (b)es (b )a)
=70 )T O Y)) T e Na= ([0, e ])a = amod Ajy .

|
It follows that 7(a) = a for all 7 € T, and a € G. Hence, 7T, is trivial and 7 is nilpotent.

Now let G be the extension of G by 7T, that is, G = {(a,8), a € G, § € T} with (a1,61)(az,02) =
(a261(az),6102). We will identify G and T with their images in G; then (a,8) = ab, 6(a) = dad~! and
[a,6) = a='67'(a). Given j € N, b € Aj, 7 € Tj, a € G and § € T, one has 6b6~! = §(b) € A;,
[0,6) =b"1071(b) € Aj41 and [1,a] =77 (a"')a € Aj4;. Thus,

[bT,ad] = (Tﬁl[b, 5}7) (771571[6, a}(;T) ([T, 86 r, ald|r, 5]71)[7, 0 € Ajpa Ty
Hence G = AT D2 AT D ... D AT, = {15} is a central series in G and G is nilpotent. g
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2.9. We want also to mention the following fact. Assume that 7: G—Gisa group homomorphism and r
and I' are closed subgroups of G and G respectively such that n(I') C T'. Then 7 factors to a homomorphism
of homogeneous spaces X = G/T -5 X = G/T. Assume that the set {¢(a )}ae A of values of a mapping
p:A— X from an amenable group A is well distributed in X. Then {n )}a ca s well distributed in

Y = n(X). Indeed, for any f € C(Y) and any Folner sequence {® x5 }3_, in A we have
im g 2 flnep(a) = lim o > fon(e(a) :ifoTldﬂg:{fd(mMg),

N—oo acd N acd N X

where p5; is the G-invariant probability measure on X. 7, (15) is therefore the n(G)-invariant probability
measure on Y, that is, py.

2.10. From now on let G be a nilpotent Lie group with identity component G°, T' be a closed uniform
subgroup of G and X = G/T'. We may and will assume that G/G° is finitely generated and that I' is
discrete; see [L] for more detail.

The group G possesses a basis that is, a system ay,...,a; € G°, eq,..., e, € G, such that any element of
G is representable in the form al .. e’fl. ..efm withty,...,t) € Rand ki, ..., k,, € Z, and I is a subgroup
of finite index in (a1,...,as,€1,...,€emn). (For the case of a connected G see [M], for the general case see
[L].) We will refer to aq,...,a; as to continuous generators and to ey, ..., e, as to discrete generators. The
multiplication in a nilpotent group is polynomial; this implies that any polynomial mapping g: Z¢ — G can
be written in the basis {a1,...,a;,e1,...,emn} in the form g(n) = a’fl(rf). ) afl(")e‘fl(@. e yhere py, ..., pi

are polynomial mappings Z? — R and q1,. .., ¢, are polynomial mappings Z¢ — Z.

2.11. Proof of Theorem B* Let g:Z% — G be a polynomial mapping and let x € X. Our plan is to

represent X as a factor, X N X, of a “larger” nilmanifold X=aG / [ and find a homomorph1sm 074 — G
so that the “polynomial orbit” {g(n)xz}, ez« would be the projection, g(n)z = 77((,0(71) ) of the “linear orbit”

{cp(n)%}nezd in X. (Let us remark that in the construction that follows G is not a factor-group of G and g
is not a projection of ¢.) This will allow us to derive Theorem B* from Theorem 1.4.

Let m:G — X be the factorization mapping and let a € 7=*(z). Choose a basis {a1,...,ax} in
G, where some of a; may be continuous and some may be discrete, and s € N such that ¢® € T for any
c € {ay,...,ar). Write g(n)a = a’l’l(7f). . a%K(n), where pi, k= 1,..., K, is a polynomial mapping Z¢ — Z if

ay is a discrete generator and Z¢ — R if ay, is a continuous generator. Any polynomial mapping p: Z¢ — R

is representable in the form p(nq,...,ng) = Zj Aj (H?Zl (T")), ri; €{0,1,...}, A\j € R, with all \; € Z if
4

p(Z?) C Z. This allows us to write

J d )
Aj Hi— (ml)
= I | ak; = = (ng,...,nq) € Z4,
Jj=1

where \; € R if ag, is a continuous generator and \; € Z if ay; is a discrete generator. For each j =1,...,J
define V; = H?ZI{O, ...,Tji}, and let G be the free nilpotent Lie group of same nilpotency class as G, with
generators aj,, v € Vj, j € {1,...,J}, such that a;, is continuous if ay; is continuous, and discrete if ay,
is discrete. Define an epimorphism 7: G—G by

) _ Q. - if’l}:(’l‘j’l,...77'j’d) : . 1
77(0%1})_{16Z otherwise ;o veVy, jefl,... . J}

Let T'(G) be the lattice (aj,, j € {1,...,J}, v € V;)in G and let T = (7°, v € T(G)). Then T is a discrete
uniform subgroup of G invariant under all automorphisms of I'(G) and n(I') C T". Define X = G/T" and let
7:G — X be the factorization mapping; then 7 factors to a mapping X — X so that now = mon.

We will now define automorphisms 7,...,74 of G. For each ¢ = 1,...,d let ¢; be the i-th basis vector
(0,...,0,1,0,...,0) in Z? and let

Qi pae, if U= ith v; i .
i) = {aj,ua],qu if v = (v1,...,vq) With v; <r;; L weV, je{l... K}

Qj g if v; = ’I"j7i



(The following diagram shows how a~!7;(a) act; here d = 2, rj1 = 2, r;2 = 3, “=” stands for a7 (a)
and “}” stands for a= 17y (a):

@,(0,0) 7%, (1,0) 7 4,(2,0)

@,(0,1) 7P, (1,1) A, (2,1)

Q5,(0,2) 7 Qy,(1,2) 7 X,(2,2)

0,(0,3) 0, (1,3) %, (2,3)-)

By Lemmas 2.3 and 2.6, 7q,...,74 are extendible to automorphisms of G. One checks that for any j €

{1,...,J} i e {l,...,d}, v = (vi,...,vq) with v; = 0, A € R if ay, is continuous and X € Z if ay, is
o A"

discrete one has 77*(o},) = [[ato ozj’sfi)mel_, n € Z. Tt follows that for any (ni,...,nq) € Z? one has

(L) () ML G

G 'ng(a;\,(o,...,o)) =10 Ilnimo O (.. A0 n((Hz 1 TJM)(O‘;\,(O,...,O))) = Gy, - Define
J N
a=[[i_, @ ,..0) then

J T4 n;
oI @) = [T 5 = ga, =, onay e, 2.1)

1=

The automorphisms induced by 71,...,74 on é/ég are unipotent and commute. (The automor-
phisms 7; themselves do not commute: 71720t 0,0y = Q500,00 05,(1,0)%,(0,1) 4, (1,1) whereas 717205 (0,0) =

,(0,0)%,(0,1) %, (1,0) %, (1,1)-) Let G be the extension of G by the discrete group of automorphlsms generated
by 71, ...,74; by Proposition 2.8, G is nilpotent. G is normal in G, so (Hd_ 7'»""')04(]_[4_ Tm)_ € G and by

i=1"1 =1 "1
(2.1),
d n; d n;\ —1 d
n((H (T ) ) =g(n)a, n=(ny,...,nqg) €Z". (2.2)
i=1 i=1
Define T = (f ATRRR Tr); since ' Ti preserve FonehasI'NG=T. Hence, T is a discrete subgroup in G

and G / r~aG / [ = X let :G — X be the factorization mapping. We get the commutative diagram

Gcd
nd AN
G X
A n
X
Let 7 = 7(a) € X and §(n) = Hle ", n = (ni,...,nqg) € Z%. Then, since Hz 1T E T, we have by (2.2):

g(n)z = %((ﬁ Tl-”i)a) = ﬁ((ﬁ Tfi)a(ﬁ T[“)_l) 5 7(g(n)a) = g(n)z, (2.3)

n=(ny,...,ng) € Z%
The polynomial mapping §: Z¢ — G is not a homomorphism since 7; do not commute. We will now

repeat the procedure described above. Let G be the free nilpotent group of same nilpotency class as G with
generators «;, for v € V;, j € {1,...,J}, and discrete generators 7; and §; for ¢ = 1,...,d. Define an

epimorphism 7: G —s G by N

n(aje) =0, veV;, je{l,...,J},
n(r) = and 7(6) =15, i=1,....d.
Define automorphisms o;, i = 1,...,d, of G by
O'i(o‘j,v):ajw, UE‘/J‘, jG{l,...,J},

O ifl #£i
oi(m) =m0 = S LT
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o1,...,04 commute and the automorphisms induced by o1,...,04 on G / @2 are unipotent. For any 7 one
has 07(8;) = 8,77, n € Z. Put 6 = ([T°_, &;)ex, then (TT, 07%)(8) = ([T, &7 )a and

T(1To)@) = (T 7)a, (n,....na) € 24, (2.0

i=1

~
~

Now let G be the extension of G by the discrete group generated by o1, ...,04. By Proposition 2.8, G
is nilpotent. G is normal in G, so (]_[z'?l:1 0?1)6(]—[? o)l e G and by (2.4),

Y. iy —1 d

TI((HI ‘71‘1)5(1:[1 i) ) = (1:[171‘ Do, (ni,...,nq) € Z% (2.5)
Let ]." (1" 01,...,04) C G and | F (1" 01y...,04) C G. Then T and T are discrete uniform subgroups

of G and G respectively, and X = G/l" G/f t7:G

commutative diagram

X be the factorization mapping. We have the

l

Put 7 = %(5) and define p(n) = H('l:1 o', n = (ny,...,nq) € Z% Then, since Hle o' € T, we have by
(2.5):

p(n)F = %((ﬁ o7)8) = %((El o?i)é(zﬁl e %((Zf[l )a) = gn)z,
n=(ny,...,nq) € Z% Combining this with (2 3) we get non(p(n ):) =g(n)z, n € Z%.

Since 01,...,04 commute, : 74— Gis a group homomorphism. By Theorem 1.4, there exists a
closed subgroup E of G such thAat~<p(Zd) C E and {¢(n )x}nezd is well distributed in Ez. Let H be the
identity component of E; since G / G is discrete, ]2 - G. H7 is a connected component ~Of Em, since E7 is
compact it consists of finitely many translates evf H7 and S0, the stabilizer Stab(fl %) of H7 has finite index
in E. Let W be the finite group Zd/go*1 (Stab(ﬁ%)), let w:Z* — W be the factorization mapping, for each
w € W let ny, € Z% be a representative of w and %w = go(nwﬁ. Then Ex = J,cw ff%w, E’%w is closed and
{gp(n)%}newfl(w) is well distributed in I?%w for any w € W.

Now let H = 7]([3) c G. Since H is connected, ﬁNQ G; let H = n(H). Let z,, = noﬁ(ﬁw), we W.

For each w € W, since H,, is compact, Hax, = noﬁ(ﬁ%w) is closed in X. Let b € 7~ !(Huwg); since T’
is discrete, Hb is a connected component of the closed set 7r_1(H xo), and thus H is closed in G. By 2.9,

{9(n)z}new—1(w) = {noﬁ(cp(n)%)}new_l(w) is well distributed in Hz,, for any w € W. g

2.12. Remark. Note that the components Hz,, of {g(n)z}, cz¢ do not have to be distinct though wa are

all distinct. Here is a simple example: let G=R, ' =Z, 2 =0,d=1, g(n) = ? € R; then H =0, 2o =0
and 1 = x9 = 3, so that {g(n)x},ez = {0, 3}

2.13. Proof of Theorem D. In the notation of 2.11, the action of Z¢ on X by = — p(n)z, » € X,
n € Z4, is distal. (See, for example, [L].) It follows that the point ((0)z is IP*-recurrent for the sequence
{o(n)x},cza. ([F], Theorem 9.11.) Hence, the point g(0)z is IP*-recurrent for the sequence {g(n)z},czs =

{non(e(m)®)}, cp0- m



2.14. Proof of Theorem C. Let X be connected and let g: Z? — G be a polynomial mapping. Let z € X
and let, by Theorem B, H be a connected closed subgroup of G such that {g(n)z}, ;4 = U§:1 Hz; for some
Ty,...,T5 € X.

Let T' = [G°,G°]\X and p: X — T be the factorization mapping. Assume that {g(n)p(z)},czq is dense
inT. Then T = U?:l Hp(z;), and since T is connected, Hp(z;) = T for some j. Thus H[G°,G°|(I'NG°) =

G°, and since T' is countable, H[G?,G°] = G°. By Lemma 2.5, H = G°, so {g(n)z},cpa = Hr1 = X. g
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