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Abstract

Generalizing the one-parameter case, we prove that the orbit of a point on a com-

pact nilmanifold X under a polynomial action of Zd by translations on X is uniformly
distributed on the union of several sub-nilmanifolds of X. As a corollary we obtain the

pointwise ergodic theorem for polynomial actions of Zd by translations on a nilmanifold.

1. Formulations

1.1. Let G be a nilpotent Lie group, Γ be a closed uniform subgroup of G and X be the compact nilmanifold
G/Γ. G acts on X by left translations: for a ∈ G and x = bΓ ∈ X one defines ax = abΓ.

We will say that a mapping g:Zd −→ G is polynomial if g can be written in the form g(n) = a
p1(n)
1 . . . a

pm(n)
m ,

where a1, . . . , am ∈ G and p1, . . . , pm are polynomial mappings Zd −→ Z. Such a mapping will also be called
a polynomial action of Zd on X by translations, in contrast with a homomorphism Z

d −→ G, which will be
referred to as a linear action. We are going to show the following:

1.2. Theorem A. Let g be a polynomial mapping Z
d −→ G. For any x ∈ X, f ∈ C(X) and Følner

sequence {ΦN}∞N=1 in Z
d, lim

N→∞

1
|ΦN |

∑
n∈ΦN

f
(
g(n)x

)
exists.

An analogous result for polynomial actions of Rd, in a much more general situation, was obtained in [Sh1].
The one-parameter case d = 1 of Theorem A was proved in [L].

1.3. Let ϕ:A −→ X be a mapping from a countable amenable group A and let Y be a sub-nilmanifold of
X, that is, a closed subset of the form Y = Hy where H is a closed subgroup of G and y ∈ Y . Let B
be a subset of A; we will say that {ϕ(a)}a∈B is well distributed in Y if ϕ(B) ⊆ Y and for any f ∈ C(Y )
and any Følner sequence {ΦN}∞N=1 in A one has lim

N→∞

1
|ΦN∩B|

∑
a∈ΦN∩B

f
(
ϕ(a)

)
=

∫
Y
f dµY , where µY is the

H-invariant probability measure on Y . In particular, this implies ϕ(B) = Y .

1.4. In order to prove Theorem A we will show that the closure Y = Orb(x) of the orbit Orb(x) =
{g(n)x}n∈Zd of x ∈ X is a disjoint finite union of sub-nilmanifolds of X and that {g(n)x}n∈Zd is well
distributed in the connected components of Y . This fact is known for linear actions by translations:

Theorem. Let A be a finitely generated amenable group and let ϕ:A −→ G be a homomorphism. For any
x ∈ X there exists a closed subgroup E ⊆ G such that ϕ(A) ⊆ E, ϕ(A)x = Ex and {ϕ(a)x}a∈A is well
distributed in Ex.

For a simple proof of this theorem see [L]. A more general theorem can be found in [Sh2].

1.5. In the case of polynomial actions the situation is a little bit more complicated; we prove the following:
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Theorem B. Let g:Zd −→ G be a polynomial mapping and let x ∈ X. There exist a connected closed
subgroup H of G and points x1, x2, . . . , xk ∈ X such that {g(n)x}n∈Zd =

⋃k
j=1 Hxj and for each j =

1, . . . , k, {g(n)x}n:g(n)x∈Hxj
is well distributed in Hxj. In particular, if Y = {g(n)x}n∈Zd is connected then

{g(n)x}n∈Zd is well distributed in Y .

1.6. A more detailed information about the behavior of g(n)x is given by the following theorem:

Theorem B∗. Let g:Zd −→ G be a polynomial mapping and let x ∈ X. There exist a connected closed
subgroup H of G, a homomorphism ω:Zd −→ W onto a finite group W and a set {xw, w ∈ W} ⊆ X such
that the sets Yw = Hxw, w ∈ W , are closed in X and {g(n)x}n∈ω−1(w) is well distributed in Yw for every
w ∈ W .

Notice that the sets Yw are not assumed to be all distinct.

1.7. Corollary. For any f ∈ C(X) and any Følner sequence {ΦN}∞N=1 in Z
d,

lim
N→∞

1
|ΦN |

∑
n∈ΦN

f
(
g(n)x

)
= 1

|W |

∑
w∈W

∫
Yw

f dµYw
.

In particular, Theorem A follows.

1.8. Let A1, . . . , Al be finitely generated subgroups of G. Theorem 1.4 says that, for every i, the orbit of any
x ∈ X under the action of Ai is well distributed in a sub-nilmanifold of X. It now follows from Theorem B
that the orbit A1 . . . Alx of x under the product A1 . . . Al is also well distributed in the union of several
disjoint submanifolds of X.

Corollary. For any x ∈ X there exist a connected closed subgroup H of G and points x1, x2, . . . , xk ∈ X
such that A1 . . . Alx =

⋃k
j=1 Hxj, and for each j = 1, . . . , k, {ax}a∈A1...Al:ax∈Hxj

is well distributed in Hxj

(in the sense clear from the proof).

Proof. For each i = 1, . . . , l, the finitely generated nilpotent group Ai possesses a finite basis, that is,
ai,1, . . . , ai,ri ∈ Ai such that every element of Ai is representable in the form an1

i,1 . . . a
nri

i,ri
with n1, . . . , nri ∈ Z.

The mapping Z
r1+...+rl −→ G, (n1,1, . . . , nl,rl) 7→

∏l
i=1

∏ri
j=1 a

ni,j

i,j is therefore a polynomial mapping onto

A1 . . . Al. By Theorem B, A1 . . . Alx has form
⋃k

j=1 Hxj , and A1 . . . Alx is well distributed in the components

of this union (with respect to any Følner sequence in Z
r1+...+rl).

1.9. Theorem B also remains true if, instead of the orbit of a point in X, one considers the orbit of a sub-
nilmanifold of X. Let us say that a family {Zn}n∈B , B ⊆ Z

d, of sub-nilmanifolds of X is well distributed in
a sub-nilmanifold Y of X if Zn ⊆ Y for all n ∈ B and for any f ∈ C(Y ) and any Følner sequence {ΦN}∞N=1

in Z
d one has lim

N→∞

1
|ΦN∩B|

∑
n∈ΦN∩B

∫
Zn

f dµZn
=

∫
Y
f dµY . In particular,

⋃
n∈B Zn = Y in this case.

Corollary. Let g:Zd −→ G be a polynomial mapping and let Z be a connected sub-nilmanifold of X. There
exist a connected closed subgroup H of G and points x1, x2, . . . , xk ∈ X such that

⋃
n∈Zd g(n)Z =

⋃k
j=1 Hxj,

and for each j = 1, . . . , k, {g(n)Z}n:g(n)Z⊆Hxj
is well distributed in Hxj.

Proof. Let x ∈ Z and let a ∈ G be such that {alx}l∈N is well distributed in Z. (Letting F be a closed
subgroup of G such that Z = Fx, take any a ∈ F such that the projection of {alx}l∈N is well distributed in
the maximal factor-torus of Z; see 1.10 below.) Consider the polynomial sequence h(n, l) = g(n)al, n ∈ Z

d,

l ∈ Z. Then
⋃

n∈Zd g(n)Z = {h(n, l)x}(n,l)∈Zd+1 and by Theorem B,
⋃

n∈Zd g(n)Z =
⋃k

j=1 Hxj for suitable
H and x1, . . . , xk.

For j ∈ {1, . . . , k} let Bj =
{
n ∈ Z

d : g(n)Z ⊆ Hxj

}
and Cj = Bj × Z. Now let {ΦN}N∈N be a

Følner sequence in Z
d; given f ∈ C(Hxj) consider a Følner sequence ΨN = ΦN × {1, . . . , pN}, N ∈ N, in

Z
d+1. Then, if the integers pN tend to infinity fast enough, one has lim

N→∞

1
|ΦN∩Bj |

∑
n∈ΦN∩Bj

∫
g(n)Z

f dµg(n)Z =

lim
N→∞

1
|ΨN∩Cj |

∑
(n,l)∈ΨN∩Cj

f(h(n, l)x) =
∫
Hxj

f dµHxj
.
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1.10. It follows from Theorem B that if the orbit {g(n)x}n∈Zd of a point x ∈ X is dense in X then it is well
distributed in X. In the case where X is connected we have a simple criterion of this situation. Let Go be
the identity component of G; if X is connected, then X is a homogeneous space of Go, X = Go/(Γ ∩ Go).
The factor T = [Go, Go]\X = Go

/(
(Γ ∩Go)[Go, Go]

)
of X is a compact connected abelian Lie group, which

we will call the maximal factor-torus of X.

Theorem C. Let X be connected, let T be the maximal factor-torus of X, let p:X −→ T be the factorization
mapping and let g be a polynomial mapping Z

d −→ G. The orbit {g(n)x}n∈Zd of x ∈ X is dense X iff
{g(n)p(x)}n∈Zd is dense in T .

1.11. Let {zn}n∈Zd be a (multiparameter) sequence in a topological space X. A point zm of this sequence
is called recurrent if for in any neighborhood U of zm the set

{
n ∈ Z

d : zn ∈ U
}
is infinite. If g:Zd −→ G is

a polynomial mapping and x ∈ X, it follows from Theorem B that every point of {g(n)x}n∈Zd is recurrent.
Actually, a stronger fact holds. The set of finite sums of distinct elements of a sequence in Z

d is called
an IP-set ; a subset of Zd that has nonempty intersection with any IP-set is called an IP∗-set. IP∗-sets are
“regular” and “large”; in particular, any IP∗-set is syndetic, that is, has bounded gaps. (See [F], ch. 9.)
Given a (multiparameter) sequence {zn}n∈Zd in a topological space X, following [F] we say that a point zm,
m ∈ Z

d, is IP∗-recurrent if for any neighborhood U of zm the set
{
n ∈ Z

d : zn ∈ U
}
is IP∗.

Theorem D. Let g:Zd −→ G be a polynomial mapping and let x ∈ X. The point g(0)x is IP∗-recurrent
for {g(n)x}n∈Zd .

2. Proofs

2.1. By [a, b] we will denote a−1b−1ab. If B is a subset of a group G, we will denote by 〈B〉 the subgroup of
G generated by B. Given a group G, by G2 we will denote the derived subgroup [G,G] of G.

When G is a nilpotent Lie group we will denote by Go the identity component of G. Any connected
nilpotent Lie group is exponential and so, for any a ∈ Go there exists a one-parameter group {αt}t∈R ⊆ Go

with α(1) = a. We will denote α(t) by at (ignoring the fact that at may not be uniquely defined).

2.2. Let F be the free group generated by continuous generators a1, . . . , al and discrete generators e1, . . . , em,
that is, the group of words in the alphabet

{
at11 , . . . , atll , e

k1

1 , . . . , ekm
m

}
ti∈R

kj∈Z

. Let F = F1 ⊇ F2 ⊇ . . . be

the lower central series of F : Fi+1 = [Fi,F ], i ∈ N. Let r ∈ N; we will call the nilpotent Lie group
F = F/Fr+1 the free nilpotent Lie group (of class r, with continuous generators a1, . . . , al and discrete
generators e1, . . . , em). The discrete subgroup of F generated by the set {a1, . . . , al, e1, . . . , em} is uniform
in F ; we will denote it by Γ(F ).

2.3. Lemma. Let G be a nilpotent Lie group of class ≤ r and let F be a free nilpotent Lie group of
class r with continuous generators a1, . . . , al and discrete generators e1, . . . , em. Any mapping η: {a1, . . . , al,
e1, . . . , em} −→ G with η

(
{a1, . . . , al}

)
⊆ Go extends to a homomorphism F −→ G.

Proof. Put η(ati) =
(
η(ai)

)t
, t ∈ R, i = 1, . . . , l, then η extends to a homomorphism η:F −→ G from

the free group F generated by {at11 , . . . , atll , e1, . . . , em}ti∈R. Since η(Fr+1) ⊆ Gr+1 = {1G}, η factors to a
homomorphism F −→ G.

2.4. Let G be a nilpotent Lie group such that G/Go is finitely generated. Then G is generated by a set
of the form

{
at11 , . . . , atll , e1, . . . , em

}
ti∈R

, where at11 , . . . , atll generate Go and e1, . . . , em generate G/Go. It
follows from Lemma 2.3 that G is a factor of the free nilpotent Lie group of the same nilpotency class as G
with continuous generators a1, . . . , al and discrete generators e1, . . . , em.

2.5. Lemma. Let G be a nilpotent group and let H be a subgroup of G such that HG2 = G. Then H = G.

Proof. Let G = G1 ⊇ G2 ⊇ . . . ⊇ Gr ⊇ Gr+1 = {1G} be the lower central series of G. By induction on r,
HGr = G, and it is only to be checked that Gr ⊆ H. Gr is generated by elements of the form [b, a] with
a ∈ G and b ∈ Gr−1. Let c ∈ H be such that cG2 = aG2 and d ∈ H ∩Gr−1 be such that dGr = bGr. Then
[d, c] ∈ H and [d, c] = [b, a].
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2.6. Lemma. Let F be a free nilpotent Lie group and let a self-homomorphism τ of F be such that the
induced self-homomorphism of F/F2 is invertible. Then τ is also invertible.

Proof. Since τ(F )F2 = F , τ(F ) = F by Lemma 2.5. It follows from Lemma 2.3 that there exists a
homomorphism σ:F −→ F such that τ◦σ = IdF . Since σ induces an automorphism of F/F2, σ is also
surjective. Hence, σ = τ−1.

2.7. We say that an automorphism τ of a group G is unipotent if the mapping ξ:G −→ G defined by
ξ(a) = τ(a)a−1, a ∈ G, satisfies ξ◦q ≡ 1G for q ∈ N large enough.

2.8. Proposition. Let G be a nilpotent group and let τ1, . . . , τk be automorphisms of G such that the
automorphisms induced by τ1, . . . , τk on G/G2 are unipotent and commute. Then the group extension of G
by τ1, . . . , τk is nilpotent. In particular, τ1, . . . , τk generate a nilpotent group.

Proof. Let T be the group of automorphisms of G generated by τ1, . . . , τk. For δ ∈ T let ξδ:G −→ G be
defined by ξδ(a) = δ(a)a−1, a ∈ G. Since τ1, . . . , τk are unipotent and commuting on G/G2, there exists
q ∈ N such that ξ◦qδ (G) ⊆ G2 for any δ ∈ T . For j = 0, 1, . . . let A1,j be the subgroup of G generated by G2

and the set
{
ξδ1◦ . . . ◦ξδj (G), δ1, . . . , δj ∈ T

}
. We then have a T -invariant series G = A1,0 ⊇ A1,1 ⊇ . . . ⊇

A1,q−1 ⊇ A1,q = G2 such that for any j < q, a ∈ A1,j and δ ∈ T one has δ(a) = ca with c ∈ A1,j+1.

Let G = G1 ⊇ G2 ⊇ . . . ⊇ Gr ⊇ Gr+1 = {1G} be the lower central series of G. For each s = 2, . . . , r and
j ≥ 0 let As,j be the subgroup of Gs generated by Gs+1 and

{
[As−1,l, A1,m] : l+m = j

}
. Then As,sq = Gs+1

and we get the T -invariant series Gs = As,0 ⊇ As,1 ⊇ . . . ⊇ As,sq−1 ⊇ As,sq = Gs+1.

Lemma. For any s ≤ r, j < sq, a ∈ As,j and δ ∈ T one has δ(a) = ba with b ∈ As,j+1.

Proof. Let a = [v, u] where u ∈ A1,l and v ∈ As−1,m with l +m = j. Then δ(u) = cu with c ∈ A1,l+1, and,
by induction on s, δ(v) = dv with d ∈ As−1,m+1. Thus δ(a) = δ([v, u]) = [dv, cu] = [d, c][v, c][d, u]w[v, u]
with w ∈ Gs+1, and so, δ(a) = ba where b = [d, c][v, c][d, u]w ∈ As,j+1.

Let us now consider the “long” series

G = A1,0 ⊇ A1,1 ⊇ . . . ⊇ A1,q−1 ⊇ A1,q = A2,0 ⊇ A2,1 ⊇ . . . ⊇ A2,q−1 ⊇ A2,2q = A3,0 ⊇ . . .
. . . ⊇ Ar−1,(r−1)q = Ar,0 ⊇ Ar,1 ⊇ . . . ⊇ Ar,rq−1 ⊇ Ar,rq = {1G}.

Denote the distinct terms of this series by A1, A2, . . . , Ap so that G = A1 ⊇ A2 ⊇ . . . ⊇ Ap = {1G} is a
T -invariant central series in G such that for any j < p, a ∈ Aj and δ ∈ T one has δ(a) = ba with b ∈ Aj+1.
Also, define Ap+1 = Ap+2 = . . . = {1G}. Let T = T1 ⊇ T2 ⊇ . . . be the lower central series of T .

Lemma. For any l, j ∈ N, τ ∈ Tl and a ∈ Aj one has τ(a) = ca with c ∈ Aj+l.

Proof. We will use induction on l. Assume that the statement is true for some l; let τ ∈ Tl, δ ∈ T , a ∈ Aj ,
δ(a) = ba and τ(a) = ca with b ∈ Aj+1 and c ∈ Aj+l. Then δ−1(a) = δ−1(b−1)a and τ−1(a) = τ−1(c−1)a.
Also, we have τ(b) ≡ bmodAj+l+1 and δ(c) ≡ cmodAj+l+1. Performing calculations modulo Aj+l+1 we
obtain

[τ, δ](a) ≡ τ−1δ−1τδ(a) ≡ τ−1δ−1τ(ba) = τ−1δ−1(bca) ≡ τ−1
(
δ−1(b)cδ−1(b−1)a

)

≡ τ−1
(
δ−1(b)cδ−1(b−1)

)
τ−1(c−1)a ≡ τ−1

([
δ−1(b−1), c−1

])
a ≡ amodAj+l+1.

It follows that τ(a) = a for all τ ∈ Tp and a ∈ G. Hence, Tp is trivial and T is nilpotent.

Now let Ĝ be the extension of G by T , that is, Ĝ =
{
(a, δ), a ∈ G, δ ∈ T

}
with (a1, δ1)(a2, δ2) =(

a2δ1(a2), δ1δ2
)
. We will identify G and T with their images in Ĝ; then (a, δ) = aδ, δ(a) = δaδ−1 and

[a, δ] = a−1δ−1(a). Given j ∈ N, b ∈ Aj , τ ∈ Tj , a ∈ G and δ ∈ T , one has δbδ−1 = δ(b) ∈ Aj ,
[b, δ] = b−1δ−1(b) ∈ Aj+1 and [τ, a] = τ−1(a−1)a ∈ Aj+1. Thus,

[bτ, aδ] =
(
τ−1[b, δ]τ

)(
τ−1δ−1[b, a]δτ

)(
[τ, δ]δ−1[τ, a]δ[τ, δ]−1

)
[τ, δ] ∈ Aj+1Tj+1.

Hence Ĝ = A1T1 ⊇ A2T2 ⊇ . . . ⊇ ApTp = {1
Ĝ
} is a central series in Ĝ and Ĝ is nilpotent.
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2.9. We want also to mention the following fact. Assume that η: G̃ −→ G is a group homomorphism and Γ̃
and Γ are closed subgroups of G̃ and G respectively such that η(Γ̃) ⊆ Γ. Then η factors to a homomorphism

of homogeneous spaces X̃ = G̃/Γ̃
η

−→ X = G/Γ. Assume that the set {ϕ(a)}a∈A of values of a mapping

ϕ:A −→ X̃ from an amenable group A is well distributed in X̃. Then
{
η(ϕ(a))

}
a∈A

is well distributed in

Y = η(X̃). Indeed, for any f ∈ C(Y ) and any Følner sequence {ΦN}∞N=1 in A we have

lim
N→∞

1
|ΦN |

∑
a∈ΦN

f
(
η◦ϕ(a)

)
= lim

N→∞

1
|ΦN |

∑
a∈ΦN

f◦η
(
ϕ(a)

)
=

∫

X̃

f◦η dµ
X̃

=
∫
Y

f d(η∗µX̃
),

where µ
X̃

is the G̃-invariant probability measure on X̃. η∗(µX̃
) is therefore the η(G̃)-invariant probability

measure on Y , that is, µY .

2.10. From now on let G be a nilpotent Lie group with identity component Go, Γ be a closed uniform
subgroup of G and X = G/Γ. We may and will assume that G/Go is finitely generated and that Γ is
discrete; see [L] for more detail.

The group G possesses a basis , that is, a system a1, . . . , al ∈ Go, e1, . . . , em ∈ G, such that any element of
G is representable in the form at11 . . . a

tl
l e

k1

1 . . . ekm
m with t1, . . . , tl ∈ R and k1, . . . , km ∈ Z, and Γ is a subgroup

of finite index in 〈a1, . . . , al, e1, . . . , em〉. (For the case of a connected G see [M], for the general case see
[L].) We will refer to a1, . . . , al as to continuous generators and to e1, . . . , em as to discrete generators. The
multiplication in a nilpotent group is polynomial; this implies that any polynomial mapping g:Zd −→ G can

be written in the basis {a1, . . . , al, e1, . . . , em} in the form g(n) = a
p1(n)
1 . . . a

pl(n)
l e

q1(n)
1 . . . e

qm(n)
m , where p1, . . . , pl

are polynomial mappings Zd −→ R and q1, . . . , qm are polynomial mappings Zd −→ Z.

2.11. Proof of Theorem B∗. Let g:Zd −→ G be a polynomial mapping and let x ∈ X. Our plan is to

represent X as a factor,
˜̃
X

˜̃η
−→ X, of a “larger” nilmanifold

˜̃
X =

̂̂
G/

̂̂
Γ and find a homomorphism ϕ:Zd −→

̂̂
G

so that the “polynomial orbit” {g(n)x}n∈Zd would be the projection, g(n)x = ˜̃η(ϕ(n)˜̃x), of the “linear orbit”
{ϕ(n)˜̃x}n∈Zd in

˜̃
X. (Let us remark that in the construction that follows G is not a factor-group of

̂̂
G and g

is not a projection of ϕ.) This will allow us to derive Theorem B∗ from Theorem 1.4.
Let π:G −→ X be the factorization mapping and let a ∈ π−1(x). Choose a basis {a1, . . . , aK} in

G, where some of ak may be continuous and some may be discrete, and s ∈ N such that cs ∈ Γ for any

c ∈ 〈a1, . . . , aK〉. Write g(n)a = a
p1(n)
1 . . . a

pK(n)
K , where pk, k = 1, . . . ,K, is a polynomial mapping Z

d −→ Z if
ak is a discrete generator and Z

d −→ R if ak is a continuous generator. Any polynomial mapping p:Zd −→ R

is representable in the form p(n1, . . . , nd) =
∑

j λj

(∏d
i=1

(
ni

rj,i

))
, ri,j ∈ {0, 1, . . .}, λj ∈ R, with all λj ∈ Z if

p(Zd) ⊆ Z. This allows us to write

g(n)a =
J∏

j=1

a
λj

∏
d

i=1
( ni
rj,i

)
kj

, n = (n1, . . . , nd) ∈ Z
d,

where λj ∈ R if akj
is a continuous generator and λj ∈ Z if akj

is a discrete generator. For each j = 1, . . . , J

define Vj =
∏d

i=1{0, . . . , rj,i}, and let G̃ be the free nilpotent Lie group of same nilpotency class as G, with
generators αj,v, v ∈ Vj , j ∈ {1, . . . , J}, such that αj,v is continuous if akj

is continuous, and discrete if akj

is discrete. Define an epimorphism η: G̃ −→ G by

η(αj,v) =

{
akj

if v = (rj,1, . . . , rj,d)
1G otherwise

, v ∈ Vj , j ∈ {1, . . . , J}.

Let Γ(G̃) be the lattice
〈
αj,v, j ∈ {1, . . . , J}, v ∈ Vj

〉
in G̃ and let Γ̃ =

〈
γs, γ ∈ Γ(G̃)

〉
. Then Γ̃ is a discrete

uniform subgroup of G̃ invariant under all automorphisms of Γ(G̃) and η(Γ̃) ⊆ Γ. Define X̃ = G̃/Γ̃ and let

π̃: G̃ −→ X̃ be the factorization mapping; then η factors to a mapping X̃ −→ X so that η◦π̃ = π◦η.
We will now define automorphisms τ1, . . . , τd of G̃. For each i = 1, . . . , d let ǫi be the i-th basis vector

(0, . . . , 0, 1, 0, . . . , 0) in Z
d and let

τi(αj,v) =

{
αj,vαj,v+ǫi if v = (v1, . . . , vd) with vi < rj,i
αj,v if vi = rj,i

, v ∈ Vj , j ∈ {1, . . . ,K}.
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(The following diagram shows how α−1τi(α) act; here d = 2, rj,1 = 2, rj,2 = 3, “→” stands for α−1τ1(α)
and “↓” stands for α−1τ2(α):

αj,(0,0)→αj,(1,0)→αj,(2,0)

↓ ↓ ↓
αj,(0,1)→αj,(1,1)→αj,(2,1)

↓ ↓ ↓
αj,(0,2)→αj,(1,2)→αj,(2,2)

↓ ↓ ↓
αj,(0,3)→αj,(1,3)→αj,(2,3).)

By Lemmas 2.3 and 2.6, τ1, . . . , τd are extendible to automorphisms of G̃. One checks that for any j ∈
{1, . . . , J}, i ∈ {1, . . . , d}, v = (v1, . . . , vd) with vi = 0, λ ∈ R if akj

is continuous and λ ∈ Z if akj
is

discrete one has τni (α
λ
j,v) =

∏rj,i
m=0 α

λ(n

m)
j,v+mǫi

, n ∈ Z. It follows that for any (n1, . . . , nd) ∈ Z
d one has

τn1

1 . . . τ
nd

d (αλ
j,(0,...,0)) =

∏rj,d
md=0 . . .

∏rj,1
m1=0 α

λ(n1
m1

)...(nd
md

)
j,(m1,...,md)

, and η
(
(
∏d

i=1 τ
ni

i )(αλ
j,(0,...,0))

)
= a

λ
∏

d

i=1
( ni
rj,i

)
kj

. Define

α =
∏J

j=1 α
λj

j,(0,...,0), then

η
(( d∏

i=1

τni

i

)
(α)

)
=

J∏

j=1

a
λj

∏
d

i=1
( ni
rj,i

)
kj

= g(n)a, n = (n1, . . . , nd) ∈ Z
d. (2.1)

The automorphisms induced by τ1, . . . , τd on G̃/G̃2 are unipotent and commute. (The automor-
phisms τi themselves do not commute: τ1τ2αj,(0,0) = αj,(0,0)αj,(1,0)αj,(0,1)αj,(1,1), whereas τ1τ2αj,(0,0) =

αj,(0,0)αj,(0,1)αj,(1,0)αj,(1,1).) Let Ĝ be the extension of G̃ by the discrete group of automorphisms generated

by τ1, . . . , τd; by Proposition 2.8, Ĝ is nilpotent. G̃ is normal in Ĝ, so
(∏d

i=1 τ
ni

i

)
α
(∏d

i=1 τ
ni

i

)−1
∈ G̃ and by

(2.1),

η
(( d∏

i=1

τni

i

)
α
( d∏
i=1

τni

i

)−1
)
= g(n)a, n = (n1, . . . , nd) ∈ Z

d. (2.2)

Define Γ̂ = 〈Γ̃, τ1, . . . , τk〉; since τi preserve Γ̃ one has Γ̂ ∩ G̃ = Γ̃. Hence, Γ̂ is a discrete subgroup in Ĝ

and Ĝ/Γ̂ ≃ G̃/Γ̃ = X̃; let π̂: Ĝ −→ X̃ be the factorization mapping. We get the commutative diagram

G̃ ⊆ Ĝ
η↓ π̃ց↓ π̂

G X̃
πց↓η

X

Let x̃ = π̂(α) ∈ X̃ and g̃(n) =
∏d

i=1 τ
ni

i , n = (n1, . . . , nd) ∈ Z
d. Then, since

∏d
i=1 τ

ni

i ∈ Γ̂, we have by (2.2):

g̃(n)x̃ = π̂
(( d∏

i=1

τni

i

)
α
)
= π̂

(( d∏
i=1

τni

i

)
α
( d∏
i=1

τni

i

)−1
)

η
−→ π

(
g(n)a

)
= g(n)x, (2.3)

n = (n1, . . . , nd) ∈ Z
d.

The polynomial mapping g̃:Zd −→ Ĝ is not a homomorphism since τi do not commute. We will now

repeat the procedure described above. Let
˜̂
G be the free nilpotent group of same nilpotency class as Ĝ with

generators αj,v for v ∈ Vj , j ∈ {1, . . . , J}, and discrete generators τi and δi for i = 1, . . . , d. Define an

epimorphism η̃:
˜̂
G −→ Ĝ by

η̃(αj,v) = αj,v, v ∈ Vj , j ∈ {1, . . . , J},
η̃(τi) = τi and η̃(δi) = 1

G̃
, i = 1, . . . , d.

Define automorphisms σi, i = 1, . . . , d, of
˜̂
G by

σi(αj,v) = αj,v, v ∈ Vj , j ∈ {1, . . . , J},

σi(τl) = τl, σi(δl) =

{
δl if l 6= i
δiτi if l = i

, l = 1, . . . , d.
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σ1, . . . , σd commute and the automorphisms induced by σ1, . . . , σd on
˜̂
G/

˜̂
G2 are unipotent. For any i one

has σn
i (δi) = δiτ

n
i , n ∈ Z. Put δ = (

∏d
i=1 δi)α, then (

∏d
i=1 σ

ni

i )(δ) = (
∏d

i=1 δiτ
ni

i )α and

η̃
(( d∏

i=1

σni

i

)
(δ)

)
=

( d∏
i=1

τni

i

)
α, (n1, . . . , nd) ∈ Z

d. (2.4)

Now let
̂̂
G be the extension of

˜̂
G by the discrete group generated by σ1, . . . , σd. By Proposition 2.8,

̂̂
G

is nilpotent.
˜̂
G is normal in

̂̂
G, so (

∏d
i=1 σ

ni

i )δ(
∏d

i=1 σ
ni

i )−1 ∈
˜̂
G and by (2.4),

η̃
(( d∏

i=1

σni

i

)
δ
( d∏
i=1

σni

i

)−1
)
=

( d∏
i=1

τni

i

)
α, (n1, . . . , nd) ∈ Z

d. (2.5)

Let
˜̂
Γ = 〈Γ̂, δ1, . . . , δd〉 ⊆

˜̂
G and

̂̂
Γ = 〈

˜̂
Γ, σ1, . . . , σd〉 ⊆

̂̂
G. Then

˜̂
Γ and

̂̂
Γ are discrete uniform subgroups

of
˜̂
G and

̂̂
G respectively, and

˜̃
X :=

˜̂
G/

˜̂
Γ ≃

̂̂
G/

̂̂
Γ; let ̂̂π: ̂̂G −→

˜̃
X be the factorization mapping. We have the

commutative diagram
˜̂
G ⊆

̂̂
G

η̃↓ ց↓ ˆ̂π

Ĝ
˜̃
X

π̂ց↓ η̃

X̃

Put ˜̃x = ̂̂π(δ) and define ϕ(n) =
∏d

i=1 σ
ni

i , n = (n1, . . . , nd) ∈ Z
d. Then, since

∏d
i=1 σ

ni

i ∈
̂̂
Γ, we have by

(2.5):

ϕ(n)˜̃x = ̂̂π
(( d∏

i=1

σni

i

)
δ
)
= ̂̂π

(( d∏
i=1

σni

i

)
δ
( d∏
i=1

σni

i

)−1
)

η̃
−→ π̂

(( d∏
i=1

τni

i

)
α
)
= g̃(n)x̃,

n = (n1, . . . , nd) ∈ Z
d. Combining this with (2.3) we get η◦η̃(ϕ(n)˜̃x) = g(n)x, n ∈ Z

d.

Since σ1, . . . , σd commute, ϕ:Zd −→
̂̂
G is a group homomorphism. By Theorem 1.4, there exists a

closed subgroup E of
̂̂
G such that ϕ(Zd) ⊆ E and {ϕ(n)˜̃x}n∈Zd is well distributed in Ex. Let

˜̃
H be the

identity component of E; since
̂̂
G/

˜̂
G is discrete,

˜̃
H ⊆

˜̂
G.

˜̃
H ˜̃x is a connected component of E˜̃x; since E˜̃x is

compact it consists of finitely many translates of
˜̃
H ˜̃x and so, the stabilizer Stab(

˜̃
H ˜̃x) of ˜̃

H ˜̃x has finite index

in E. Let W be the finite group Z
d
/
ϕ−1

(
Stab(

˜̃
H ˜̃x)

)
, let ω:Zd −→ W be the factorization mapping, for each

w ∈ W let nw ∈ Z
d be a representative of w and ˜̃xw = ϕ(nw)˜̃x. Then Ex =

⋃
w∈W

˜̃
H ˜̃xw,

˜̃
H ˜̃xw is closed and

{ϕ(n)˜̃x}n∈ω−1(w) is well distributed in
˜̃
H ˜̃xw for any w ∈ W .

Now let H̃ = η̃(
˜̃
H) ⊆ Ĝ. Since H̃ is connected, H̃ ⊆ G̃; let H = η(H̃). Let xw = η◦η̃(˜̃xw), w ∈ W .

For each w ∈ W , since
˜̃
H ˜̃xw is compact, Hxw = η◦η̃(

˜̃
H ˜̃xw) is closed in X. Let b ∈ π−1(Hx0); since Γ

is discrete, Hb is a connected component of the closed set π−1
(
Hx0

)
, and thus H is closed in G. By 2.9,

{g(n)x}n∈ω−1(w) =
{
η◦η̃(ϕ(n)˜̃x)

}
n∈ω−1(w)

is well distributed in Hxw for any w ∈ W .

2.12. Remark. Note that the components Hxw of {g(n)x}n∈Zd do not have to be distinct though
˜̃
H ˜̃xw are

all distinct. Here is a simple example: let G = R, Γ = Z, x = 0, d = 1, g(n) = n2

3 ∈ R; then H = 0, x0 = 0
and x1 = x2 = 1

3 , so that {g(n)x}n∈Z =
{
0, 1

3

}
.

2.13. Proof of Theorem D. In the notation of 2.11, the action of Z
d on X by x 7→ ϕ(n)x, x ∈ X,

n ∈ Z
d, is distal. (See, for example, [L].) It follows that the point ϕ(0)˜̃x is IP∗-recurrent for the sequence

{ϕ(n)˜̃x}n∈Zd . ([F], Theorem 9.11.) Hence, the point g(0)x is IP∗-recurrent for the sequence {g(n)x}n∈Zd ={
η◦η̃(ϕ(n)˜̃x)

}
n∈Zd .
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2.14. Proof of Theorem C. Let X be connected and let g:Zd −→ G be a polynomial mapping. Let x ∈ X
and let, by Theorem B, H be a connected closed subgroup of G such that {g(n)x}n∈Zd =

⋃k
j=1 Hxj for some

x1, . . . , xk ∈ X.
Let T = [Go, Go]\X and p:X −→ T be the factorization mapping. Assume that {g(n)p(x)}n∈Zd is dense

in T . Then T =
⋃k

j=1 Hp(xj), and since T is connected, Hp(xj) = T for some j. Thus H[Go, Go](Γ∩Go) =

Go, and since Γ is countable, H[Go, Go] = Go. By Lemma 2.5, H = Go, so {g(n)x}n∈Zd = Hx1 = X.

Acknowledgment. I thank V. Bergelson for useful communications.
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