Pointwise convergence of ergodic averages for polynomial actions of \mathbb{Z}^d by translations on a nilmanifold

A. Leibman

Department of Mathematics The Ohio State University Columbus, OH 43210, USA *e-mail*: leibman@math.ohio-state.edu

January 30, 2004

Abstract

Generalizing the one-parameter case, we prove that the orbit of a point on a compact nilmanifold X under a polynomial action of \mathbb{Z}^d by translations on X is uniformly distributed on the union of several sub-nilmanifolds of X. As a corollary we obtain the pointwise ergodic theorem for polynomial actions of \mathbb{Z}^d by translations on a nilmanifold.

1. Formulations

1.1. Let G be a nilpotent Lie group, Γ be a closed uniform subgroup of G and X be the compact nilmanifold G/Γ . G acts on X by left translations: for $a \in G$ and $x = b\Gamma \in X$ one defines $ax = ab\Gamma$.

We will say that a mapping $g: \mathbb{Z}^d \longrightarrow G$ is *polynomial* if g can be written in the form $g(n) = a_1^{p_1(n)} \dots a_m^{p_m(n)}$, where $a_1, \dots, a_m \in G$ and p_1, \dots, p_m are polynomial mappings $\mathbb{Z}^d \longrightarrow \mathbb{Z}$. Such a mapping will also be called a *polynomial action* of \mathbb{Z}^d on X by translations, in contrast with a homomorphism $\mathbb{Z}^d \longrightarrow G$, which will be referred to as a *linear action*. We are going to show the following:

1.2. Theorem A. Let g be a polynomial mapping $\mathbb{Z}^d \longrightarrow G$. For any $x \in X$, $f \in C(X)$ and Følner sequence $\{\Phi_N\}_{N=1}^{\infty}$ in \mathbb{Z}^d , $\lim_{N \to \infty} \frac{1}{|\Phi_N|} \sum_{n \in \Phi_N} f(g(n)x)$ exists.

An analogous result for polynomial actions of \mathbb{R}^d , in a much more general situation, was obtained in [Sh1]. The one-parameter case d = 1 of Theorem A was proved in [L].

1.3. Let $\varphi: A \longrightarrow X$ be a mapping from a countable amenable group A and let Y be a *sub-nilmanifold of* X, that is, a closed subset of the form Y = Hy where H is a closed subgroup of G and $y \in Y$. Let B be a subset of A; we will say that $\{\varphi(a)\}_{a\in B}$ is *well distributed in* Y if $\varphi(B) \subseteq Y$ and for any $f \in C(Y)$ and any Følner sequence $\{\Phi_N\}_{N=1}^{\infty}$ in A one has $\lim_{N\to\infty} \frac{1}{|\Phi_N\cap B|} \sum_{a\in \Phi_N\cap B} f(\varphi(a)) = \int_Y f \, d\mu_Y$, where μ_Y is the

H-invariant probability measure on *Y*. In particular, this implies $\overline{\varphi(B)} = Y$.

1.4. In order to prove Theorem A we will show that the closure $Y = \overline{\operatorname{Orb}(x)}$ of the orbit $\operatorname{Orb}(x) = \{g(n)x\}_{n \in \mathbb{Z}^d}$ of $x \in X$ is a disjoint finite union of sub-nilmanifolds of X and that $\{g(n)x\}_{n \in \mathbb{Z}^d}$ is well distributed in the connected components of Y. This fact is known for linear actions by translations:

Theorem. Let A be a finitely generated amenable group and let $\varphi: A \longrightarrow G$ be a homomorphism. For any $x \in X$ there exists a closed subgroup $E \subseteq G$ such that $\varphi(A) \subseteq E$, $\overline{\varphi(A)x} = Ex$ and $\{\varphi(a)x\}_{a \in A}$ is well distributed in Ex.

For a simple proof of this theorem see [L]. A more general theorem can be found in [Sh2].

1.5. In the case of polynomial actions the situation is a little bit more complicated; we prove the following:

Supported by NSF grant DMS-0070566 and by the A. Sloan Foundation.

Theorem B. Let $g: \mathbb{Z}^d \longrightarrow G$ be a polynomial mapping and let $x \in X$. There exist a connected closed subgroup H of G and points $x_1, x_2, \ldots, x_k \in X$ such that $\overline{\{g(n)x\}}_{n \in \mathbb{Z}^d} = \bigcup_{j=1}^k Hx_j$ and for each $j = 1, \ldots, k$, $\{g(n)x\}_{n:g(n)x \in Hx_j}$ is well distributed in Hx_j . In particular, if $Y = \overline{\{g(n)x\}}_{n \in \mathbb{Z}^d}$ is connected then $\{g(n)x\}_{n \in \mathbb{Z}^d}$ is well distributed in Y.

1.6. A more detailed information about the behavior of g(n)x is given by the following theorem:

Theorem B*. Let $g: \mathbb{Z}^d \longrightarrow G$ be a polynomial mapping and let $x \in X$. There exist a connected closed subgroup H of G, a homomorphism $\omega: \mathbb{Z}^d \longrightarrow W$ onto a finite group W and a set $\{x_w, w \in W\} \subseteq X$ such that the sets $Y_w = Hx_w, w \in W$, are closed in X and $\{g(n)x\}_{n \in \omega^{-1}(w)}$ is well distributed in Y_w for every $w \in W$.

Notice that the sets Y_w are not assumed to be all distinct.

1.7. Corollary. For any $f \in C(X)$ and any Følner sequence $\{\Phi_N\}_{N=1}^{\infty}$ in \mathbb{Z}^d ,

$$\lim_{N \to \infty} \frac{1}{|\Phi_N|} \sum_{n \in \Phi_N} f(g(n)x) = \frac{1}{|W|} \sum_{w \in W} \int_{Y_w} f \, d\mu_{Y_w}$$

In particular, Theorem A follows.

1.8. Let A_1, \ldots, A_l be finitely generated subgroups of G. Theorem 1.4 says that, for every i, the orbit of any $x \in X$ under the action of A_i is well distributed in a sub-nilmanifold of X. It now follows from Theorem B that the orbit $A_1 \ldots A_l x$ of x under the product $A_1 \ldots A_l$ is also well distributed in the union of several disjoint submanifolds of X.

Corollary. For any $x \in X$ there exist a connected closed subgroup H of G and points $x_1, x_2, \ldots, x_k \in X$ such that $\overline{A_1 \ldots A_l x} = \bigcup_{j=1}^k Hx_j$, and for each $j = 1, \ldots, k$, $\{ax\}_{a \in A_1 \ldots A_l : ax \in Hx_j}$ is well distributed in Hx_j (in the sense clear from the proof).

Proof. For each $i = 1, \ldots, l$, the finitely generated nilpotent group A_i possesses a finite basis, that is, $a_{i,1}, \ldots, a_{i,r_i} \in A_i$ such that every element of A_i is representable in the form $a_{i,1}^{n_1} \ldots a_{i,r_i}^{n_{r_i}}$ with $n_1, \ldots, n_{r_i} \in \mathbb{Z}$. The mapping $\mathbb{Z}^{r_1 + \ldots + r_l} \longrightarrow G$, $(n_{1,1}, \ldots, n_{l,r_l}) \mapsto \prod_{i=1}^l \prod_{j=1}^{r_i} a_{i,j}^{n_{i,j}}$ is therefore a polynomial mapping onto $A_1 \ldots A_l$. By Theorem B, $\overline{A_1} \ldots \overline{A_l x}$ has form $\bigcup_{j=1}^k Hx_j$, and $A_1 \ldots A_l x$ is well distributed in the components of this union (with respect to any Følner sequence in $\mathbb{Z}^{r_1 + \ldots + r_l}$).

1.9. Theorem B also remains true if, instead of the orbit of a point in X, one considers the orbit of a subnilmanifold of X. Let us say that a family $\{Z_n\}_{n\in B}, B\subseteq \mathbb{Z}^d$, of sub-nilmanifolds of X is *well distributed* in a sub-nilmanifold Y of X if $Z_n \subseteq Y$ for all $n \in B$ and for any $f \in C(Y)$ and any Følner sequence $\{\Phi_N\}_{N=1}^{\infty}$ in \mathbb{Z}^d one has $\lim_{N\to\infty} \frac{1}{|\Phi_N\cap B|} \sum_{n\in\Phi_N\cap B} \int_{Z_n} f d\mu_{Z_n} = \int_Y f d\mu_Y$. In particular, $\overline{\bigcup_{n\in B} Z_n} = Y$ in this case.

Corollary. Let $g: \mathbb{Z}^d \longrightarrow G$ be a polynomial mapping and let Z be a connected sub-nilmanifold of X. There exist a connected closed subgroup H of G and points $x_1, x_2, \ldots, x_k \in X$ such that $\bigcup_{n \in \mathbb{Z}^d} g(n)Z = \bigcup_{j=1}^k Hx_j$, and for each $j = 1, \ldots, k$, $\{g(n)Z\}_{n:g(n)Z \subseteq Hx_j}$ is well distributed in Hx_j .

Proof. Let $x \in Z$ and let $a \in G$ be such that $\{a^l x\}_{l \in \mathbb{N}}$ is well distributed in Z. (Letting F be a closed subgroup of G such that Z = Fx, take any $a \in F$ such that the projection of $\{a^l x\}_{l \in \mathbb{N}}$ is well distributed in the maximal factor-torus of Z; see 1.10 below.) Consider the polynomial sequence $h(n, l) = g(n)a^l$, $n \in \mathbb{Z}^d$, $l \in \mathbb{Z}$. Then $\bigcup_{n \in \mathbb{Z}^d} g(n)Z = \overline{\{h(n, l)x\}}_{(n, l) \in \mathbb{Z}^{d+1}}$ and by Theorem B, $\overline{\bigcup_{n \in \mathbb{Z}^d} g(n)Z} = \bigcup_{j=1}^k Hx_j$ for suitable H and x_1, \ldots, x_k .

For $j \in \{1, \ldots, k\}$ let $B_j = \{n \in \mathbb{Z}^d : g(n)Z \subseteq Hx_j\}$ and $C_j = B_j \times \mathbb{Z}$. Now let $\{\Phi_N\}_{N \in \mathbb{N}}$ be a Følner sequence in \mathbb{Z}^d ; given $f \in C(Hx_j)$ consider a Følner sequence $\Psi_N = \Phi_N \times \{1, \ldots, p_N\}$, $N \in \mathbb{N}$, in \mathbb{Z}^{d+1} . Then, if the integers p_N tend to infinity fast enough, one has $\lim_{N \to \infty} \frac{1}{|\Phi_N \cap B_j|} \sum_{n \in \Phi_N \cap B_j} \int_{g(n)Z} f d\mu_{g(n)Z} = 0$

$$\lim_{N \to \infty} \frac{1}{|\Psi_N \cap C_j|} \sum_{(n,l) \in \Psi_N \cap C_j} f(h(n,l)x) = \int_{Hx_j} f \, d\mu_{Hx_j}.$$

1.10. It follows from Theorem B that if the orbit $\{g(n)x\}_{n\in\mathbb{Z}^d}$ of a point $x \in X$ is dense in X then it is well distributed in X. In the case where X is connected we have a simple criterion of this situation. Let G^o be the identity component of G; if X is connected, then X is a homogeneous space of G^o , $X = G^o/(\Gamma \cap G^o)$. The factor $T = [G^o, G^o] \setminus X = G^o/((\Gamma \cap G^o)[G^o, G^o])$ of X is a compact connected abelian Lie group, which we will call the maximal factor-torus of X.

Theorem C. Let X be connected, let T be the maximal factor-torus of X, let $p: X \longrightarrow T$ be the factorization mapping and let g be a polynomial mapping $\mathbb{Z}^d \longrightarrow G$. The orbit $\{g(n)x\}_{n \in \mathbb{Z}^d}$ of $x \in X$ is dense X iff $\{g(n)p(x)\}_{n \in \mathbb{Z}^d}$ is dense in T.

1.11. Let $\{z_n\}_{n\in\mathbb{Z}^d}$ be a (multiparameter) sequence in a topological space X. A point z_m of this sequence is called *recurrent* if for in any neighborhood U of z_m the set $\{n \in \mathbb{Z}^d : z_n \in U\}$ is infinite. If $g: \mathbb{Z}^d \longrightarrow G$ is a polynomial mapping and $x \in X$, it follows from Theorem B that every point of $\{g(n)x\}_{n\in\mathbb{Z}^d}$ is recurrent.

Actually, a stronger fact holds. The set of finite sums of distinct elements of a sequence in \mathbb{Z}^d is called an *IP-set*; a subset of \mathbb{Z}^d that has nonempty intersection with any IP-set is called an *IP*-set*. IP*-sets are "regular" and "large"; in particular, any IP*-set is syndetic, that is, has bounded gaps. (See [F], ch. 9.) Given a (multiparameter) sequence $\{z_n\}_{n\in\mathbb{Z}^d}$ in a topological space X, following [F] we say that a point z_m , $m \in \mathbb{Z}^d$, is *IP*-recurrent* if for any neighborhood U of z_m the set $\{n \in \mathbb{Z}^d : z_n \in U\}$ is IP*.

Theorem D. Let $g: \mathbb{Z}^d \longrightarrow G$ be a polynomial mapping and let $x \in X$. The point g(0)x is IP^* -recurrent for $\{g(n)x\}_{n\in\mathbb{Z}^d}$.

2. Proofs

2.1. By [a, b] we will denote $a^{-1}b^{-1}ab$. If B is a subset of a group G, we will denote by $\langle B \rangle$ the subgroup of G generated by B. Given a group G, by G_2 we will denote the derived subgroup [G, G] of G.

When G is a nilpotent Lie group we will denote by G^o the identity component of G. Any connected nilpotent Lie group is exponential and so, for any $a \in G^o$ there exists a one-parameter group $\{\alpha_t\}_{t \in \mathbb{R}} \subseteq G^o$ with $\alpha(1) = a$. We will denote $\alpha(t)$ by a^t (ignoring the fact that a^t may not be uniquely defined).

2.2. Let \mathcal{F} be the free group generated by continuous generators a_1, \ldots, a_l and discrete generators e_1, \ldots, e_m , that is, the group of words in the alphabet $\{a_1^{t_1}, \ldots, a_l^{t_l}, e_1^{k_1}, \ldots, e_m^{k_m}\}_{\substack{t_i \in \mathbb{R} \\ k_j \in \mathbb{Z}}}$. Let $\mathcal{F} = \mathcal{F}_1 \supseteq \mathcal{F}_2 \supseteq \ldots$ be the lower central series of \mathcal{F} : $\mathcal{F}_{i+1} = [\mathcal{F}_i, \mathcal{F}], i \in \mathbb{N}$. Let $r \in \mathbb{N}$; we will call the nilpotent Lie group $F = \mathcal{F}/\mathcal{F}_{r+1}$ the free nilpotent Lie group (of class r, with continuous generators a_1, \ldots, a_l and discrete generators e_1, \ldots, e_m). The discrete subgroup of F generated by the set $\{a_1, \ldots, a_l, e_1, \ldots, e_m\}$ is uniform in F; we will denote it by $\Gamma(F)$.

2.3. Lemma. Let G be a nilpotent Lie group of class $\leq r$ and let F be a free nilpotent Lie group of class r with continuous generators a_1, \ldots, a_l and discrete generators e_1, \ldots, e_m . Any mapping $\eta: \{a_1, \ldots, a_l, e_1, \ldots, e_m\} \longrightarrow G$ with $\eta(\{a_1, \ldots, a_l\}) \subseteq G^o$ extends to a homomorphism $F \longrightarrow G$.

Proof. Put $\eta(a_i^t) = (\eta(a_i))^t$, $t \in \mathbb{R}$, i = 1, ..., l, then η extends to a homomorphism $\eta: \mathcal{F} \longrightarrow G$ from the free group \mathcal{F} generated by $\{a_1^{t_1}, \ldots, a_l^{t_l}, e_1, \ldots, e_m\}_{t_i \in \mathbb{R}}$. Since $\eta(\mathcal{F}_{r+1}) \subseteq G_{r+1} = \{\mathbf{1}_G\}$, η factors to a homomorphism $F \longrightarrow G$.

2.4. Let G be a nilpotent Lie group such that G/G^o is finitely generated. Then G is generated by a set of the form $\{a_1^{t_1}, \ldots, a_l^{t_l}, e_1, \ldots, e_m\}_{t_i \in \mathbb{R}}$, where $a_1^{t_1}, \ldots, a_l^{t_l}$ generate G^o and e_1, \ldots, e_m generate G/G^o . It follows from Lemma 2.3 that G is a factor of the free nilpotent Lie group of the same nilpotency class as G with continuous generators a_1, \ldots, a_l and discrete generators e_1, \ldots, e_m .

2.5. Lemma. Let G be a nilpotent group and let H be a subgroup of G such that $HG_2 = G$. Then H = G.

Proof. Let $G = G_1 \supseteq G_2 \supseteq \ldots \supseteq G_r \supseteq G_{r+1} = \{\mathbf{1}_G\}$ be the lower central series of G. By induction on r, $HG_r = G$, and it is only to be checked that $G_r \subseteq H$. G_r is generated by elements of the form [b, a] with $a \in G$ and $b \in G_{r-1}$. Let $c \in H$ be such that $cG_2 = aG_2$ and $d \in H \cap G_{r-1}$ be such that $dG_r = bG_r$. Then $[d, c] \in H$ and [d, c] = [b, a].

2.6. Lemma. Let F be a free nilpotent Lie group and let a self-homomorphism τ of F be such that the induced self-homomorphism of F/F_2 is invertible. Then τ is also invertible.

Proof. Since $\tau(F)F_2 = F$, $\tau(F) = F$ by Lemma 2.5. It follows from Lemma 2.3 that there exists a homomorphism $\sigma: F \longrightarrow F$ such that $\tau \circ \sigma = \operatorname{Id}_F$. Since σ induces an automorphism of F/F_2 , σ is also surjective. Hence, $\sigma = \tau^{-1}$.

2.7. We say that an automorphism τ of a group G is *unipotent* if the mapping $\xi: G \longrightarrow G$ defined by $\xi(a) = \tau(a)a^{-1}, a \in G$, satisfies $\xi^{\circ q} \equiv \mathbf{1}_G$ for $q \in \mathbb{N}$ large enough.

2.8. Proposition. Let G be a nilpotent group and let τ_1, \ldots, τ_k be automorphisms of G such that the automorphisms induced by τ_1, \ldots, τ_k on G/G_2 are unipotent and commute. Then the group extension of G by τ_1, \ldots, τ_k is nilpotent. In particular, τ_1, \ldots, τ_k generate a nilpotent group.

Proof. Let \mathcal{T} be the group of automorphisms of G generated by τ_1, \ldots, τ_k . For $\delta \in \mathcal{T}$ let $\xi_{\delta}: G \longrightarrow G$ be defined by $\xi_{\delta}(a) = \delta(a)a^{-1}$, $a \in G$. Since τ_1, \ldots, τ_k are unipotent and commuting on G/G_2 , there exists $q \in \mathbb{N}$ such that $\xi_{\delta}^{\circ q}(G) \subseteq G_2$ for any $\delta \in \mathcal{T}$. For $j = 0, 1, \ldots$ let $A_{1,j}$ be the subgroup of G generated by G_2 and the set $\{\xi_{\delta_1} \circ \ldots \circ \xi_{\delta_j}(G), \delta_1, \ldots, \delta_j \in \mathcal{T}\}$. We then have a \mathcal{T} -invariant series $G = A_{1,0} \supseteq A_{1,1} \supseteq \ldots \supseteq A_{1,q-1} \supseteq A_{1,q} = G_2$ such that for any j < q, $a \in A_{1,j}$ and $\delta \in \mathcal{T}$ one has $\delta(a) = ca$ with $c \in A_{1,j+1}$.

Let $G = G_1 \supseteq G_2 \supseteq \ldots \supseteq G_r \supseteq G_{r+1} = \{\mathbf{1}_G\}$ be the lower central series of G. For each $s = 2, \ldots, r$ and $j \ge 0$ let $A_{s,j}$ be the subgroup of G_s generated by G_{s+1} and $\{[A_{s-1,l}, A_{1,m}] : l+m=j\}$. Then $A_{s,sq} = G_{s+1}$ and we get the \mathcal{T} -invariant series $G_s = A_{s,0} \supseteq A_{s,1} \supseteq \ldots \supseteq A_{s,sq-1} \supseteq A_{s,sq} = G_{s+1}$.

Lemma. For any $s \leq r$, j < sq, $a \in A_{s,j}$ and $\delta \in \mathcal{T}$ one has $\delta(a) = ba$ with $b \in A_{s,j+1}$.

Proof. Let a = [v, u] where $u \in A_{1,l}$ and $v \in A_{s-1,m}$ with l + m = j. Then $\delta(u) = cu$ with $c \in A_{1,l+1}$, and, by induction on s, $\delta(v) = dv$ with $d \in A_{s-1,m+1}$. Thus $\delta(a) = \delta([v, u]) = [dv, cu] = [d, c][v, c][d, u]w[v, u]$ with $w \in G_{s+1}$, and so, $\delta(a) = ba$ where $b = [d, c][v, c][d, u]w \in A_{s,j+1}$.

Let us now consider the "long" series

$$G = A_{1,0} \supseteq A_{1,1} \supseteq \ldots \supseteq A_{1,q-1} \supseteq A_{1,q} = A_{2,0} \supseteq A_{2,1} \supseteq \ldots \supseteq A_{2,q-1} \supseteq A_{2,2q} = A_{3,0} \supseteq \ldots$$
$$\ldots \supseteq A_{r-1,(r-1)q} = A_{r,0} \supseteq A_{r,1} \supseteq \ldots \supseteq A_{r,rq-1} \supseteq A_{r,rq} = \{\mathbf{1}_G\}.$$

Denote the distinct terms of this series by A_1, A_2, \ldots, A_p so that $G = A_1 \supseteq A_2 \supseteq \ldots \supseteq A_p = \{\mathbf{1}_G\}$ is a \mathcal{T} -invariant central series in G such that for any j < p, $a \in A_j$ and $\delta \in \mathcal{T}$ one has $\delta(a) = ba$ with $b \in A_{j+1}$. Also, define $A_{p+1} = A_{p+2} = \ldots = \{\mathbf{1}_G\}$. Let $\mathcal{T} = \mathcal{T}_1 \supseteq \mathcal{T}_2 \supseteq \ldots$ be the lower central series of \mathcal{T} .

Lemma. For any $l, j \in \mathbb{N}$, $\tau \in \mathcal{T}_l$ and $a \in A_j$ one has $\tau(a) = ca$ with $c \in A_{j+l}$.

Proof. We will use induction on l. Assume that the statement is true for some l; let $\tau \in \mathcal{T}_l$, $\delta \in \mathcal{T}$, $a \in A_j$, $\delta(a) = ba$ and $\tau(a) = ca$ with $b \in A_{j+1}$ and $c \in A_{j+l}$. Then $\delta^{-1}(a) = \delta^{-1}(b^{-1})a$ and $\tau^{-1}(a) = \tau^{-1}(c^{-1})a$. Also, we have $\tau(b) \equiv b \mod A_{j+l+1}$ and $\delta(c) \equiv c \mod A_{j+l+1}$. Performing calculations modulo A_{j+l+1} we obtain

$$\begin{aligned} [\tau,\delta](a) &\equiv \tau^{-1}\delta^{-1}\tau\delta(a) \equiv \tau^{-1}\delta^{-1}\tau(ba) = \tau^{-1}\delta^{-1}(bca) \equiv \tau^{-1}\left(\delta^{-1}(b)c\delta^{-1}(b^{-1})a\right) \\ &\equiv \tau^{-1}\left(\delta^{-1}(b)c\delta^{-1}(b^{-1})\right)\tau^{-1}(c^{-1})a \equiv \tau^{-1}\left(\left[\delta^{-1}(b^{-1}),c^{-1}\right]\right)a \equiv a \operatorname{mod} A_{j+l+1}. \end{aligned}$$

It follows that $\tau(a) = a$ for all $\tau \in \mathcal{T}_p$ and $a \in G$. Hence, \mathcal{T}_p is trivial and \mathcal{T} is nilpotent.

Now let \widehat{G} be the extension of G by \mathcal{T} , that is, $\widehat{G} = \{(a, \delta), a \in G, \delta \in \mathcal{T}\}$ with $(a_1, \delta_1)(a_2, \delta_2) = (a_2\delta_1(a_2), \delta_1\delta_2)$. We will identify G and \mathcal{T} with their images in \widehat{G} ; then $(a, \delta) = a\delta, \delta(a) = \delta a\delta^{-1}$ and $[a, \delta] = a^{-1}\delta^{-1}(a)$. Given $j \in \mathbb{N}$, $b \in A_j$, $\tau \in \mathcal{T}_j$, $a \in G$ and $\delta \in \mathcal{T}$, one has $\delta b\delta^{-1} = \delta(b) \in A_j$, $[b, \delta] = b^{-1}\delta^{-1}(b) \in A_{j+1}$ and $[\tau, a] = \tau^{-1}(a^{-1})a \in A_{j+1}$. Thus,

$$[b\tau, a\delta] = \left(\tau^{-1}[b,\delta]\tau\right) \left(\tau^{-1}\delta^{-1}[b,a]\delta\tau\right) \left([\tau,\delta]\delta^{-1}[\tau,a]\delta[\tau,\delta]^{-1}\right) [\tau,\delta] \in A_{j+1}\mathcal{T}_{j+1}.$$

Hence $\widehat{G} = A_1 \mathcal{T}_1 \supseteq A_2 \mathcal{T}_2 \supseteq \ldots \supseteq A_p \mathcal{T}_p = \{\mathbf{1}_{\widehat{G}}\}$ is a central series in \widehat{G} and \widehat{G} is nilpotent.

2.9. We want also to mention the following fact. Assume that $\eta: \widetilde{G} \longrightarrow G$ is a group homomorphism and $\widetilde{\Gamma}$ and Γ are closed subgroups of \widetilde{G} and G respectively such that $\eta(\widetilde{\Gamma}) \subseteq \Gamma$. Then η factors to a homomorphism of homogeneous spaces $\widetilde{X} = \widetilde{G}/\widetilde{\Gamma} \xrightarrow{\eta} X = G/\Gamma$. Assume that the set $\{\varphi(a)\}_{a \in A}$ of values of a mapping $\varphi: A \longrightarrow \widetilde{X}$ from an amenable group A is well distributed in \widetilde{X} . Then $\{\eta(\varphi(a))\}_{a \in A}$ is well distributed in $Y = \eta(\widetilde{X})$. Indeed, for any $f \in C(Y)$ and any Følner sequence $\{\Phi_N\}_{N=1}^{\infty}$ in A we have

$$\lim_{N \to \infty} \frac{1}{|\Phi_N|} \sum_{a \in \Phi_N} f(\eta \circ \varphi(a)) = \lim_{N \to \infty} \frac{1}{|\Phi_N|} \sum_{a \in \Phi_N} f \circ \eta(\varphi(a)) = \int_{\widetilde{X}} f \circ \eta \, d\mu_{\widetilde{X}} = \int_Y f \, d(\eta_* \mu_{\widetilde{X}}),$$

where $\mu_{\widetilde{X}}$ is the \widetilde{G} -invariant probability measure on \widetilde{X} . $\eta_*(\mu_{\widetilde{X}})$ is therefore the $\eta(\widetilde{G})$ -invariant probability measure on Y, that is, μ_Y .

2.10. From now on let G be a nilpotent Lie group with identity component G^o , Γ be a closed uniform subgroup of G and $X = G/\Gamma$. We may and will assume that G/G^o is finitely generated and that Γ is discrete; see [L] for more detail.

The group G possesses a basis, that is, a system $a_1, \ldots, a_l \in G^o, e_1, \ldots, e_m \in G$, such that any element of G is representable in the form $a_1^{t_1} \ldots a_l^{t_l} e_1^{k_1} \ldots e_m^{k_m}$ with $t_1, \ldots, t_l \in \mathbb{R}$ and $k_1, \ldots, k_m \in \mathbb{Z}$, and Γ is a subgroup of finite index in $\langle a_1, \ldots, a_l, e_1, \ldots, e_m \rangle$. (For the case of a connected G see [M], for the general case see [L].) We will refer to a_1, \ldots, a_l as to continuous generators and to e_1, \ldots, e_m as to discrete generators. The multiplication in a nilpotent group is polynomial; this implies that any polynomial mapping $g: \mathbb{Z}^d \longrightarrow G$ can be written in the basis $\{a_1, \ldots, a_l, e_1, \ldots, e_m\}$ in the form $g(n) = a_1^{p_1(n)} \ldots a_l^{p_l(n)} e_1^{q_1(n)} \ldots e_m^{q_m(n)}$, where p_1, \ldots, p_l are polynomial mappings $\mathbb{Z}^d \longrightarrow \mathbb{R}$ and q_1, \ldots, q_m are polynomial mappings $\mathbb{Z}^d \longrightarrow \mathbb{Z}$.

2.11. Proof of Theorem B*. Let $g: \mathbb{Z}^d \to G$ be a polynomial mapping and let $x \in X$. Our plan is to represent X as a factor, $\widetilde{\widetilde{X}} \xrightarrow{\widetilde{\eta}} X$, of a "larger" nilmanifold $\widetilde{\widetilde{X}} = \widehat{\widehat{G}}/\widehat{\widehat{\Gamma}}$ and find a homomorphism $\varphi: \mathbb{Z}^d \longrightarrow \widehat{\widehat{G}}$ so that the "polynomial orbit" $\{g(n)x\}_{n\in\mathbb{Z}^d}$ would be the projection, $g(n)x = \widetilde{\widetilde{\eta}}(\varphi(n)\widetilde{\widetilde{x}})$, of the "linear orbit" $\{\varphi(n)\widetilde{\widetilde{x}}\}_{n\in\mathbb{Z}^d}$ in $\widetilde{\widetilde{X}}$. (Let us remark that in the construction that follows G is not a factor-group of $\widehat{\widehat{G}}$ and g is not a projection of φ .) This will allow us to derive Theorem B* from Theorem 1.4.

Let $\pi: G \longrightarrow X$ be the factorization mapping and let $a \in \pi^{-1}(x)$. Choose a basis $\{a_1, \ldots, a_K\}$ in G, where some of a_k may be continuous and some may be discrete, and $s \in \mathbb{N}$ such that $c^s \in \Gamma$ for any $c \in \langle a_1, \ldots, a_K \rangle$. Write $g(n)a = a_1^{p_1(n)} \ldots a_K^{p_K(n)}$, where $p_k, k = 1, \ldots, K$, is a polynomial mapping $\mathbb{Z}^d \longrightarrow \mathbb{Z}$ if a_k is a discrete generator and $\mathbb{Z}^d \longrightarrow \mathbb{R}$ if a_k is a continuous generator. Any polynomial mapping $p: \mathbb{Z}^d \longrightarrow \mathbb{R}$ is representable in the form $p(n_1, \ldots, n_d) = \sum_j \lambda_j (\prod_{i=1}^d {n_i \choose r_{j,i}}), r_{i,j} \in \{0, 1, \ldots\}, \lambda_j \in \mathbb{R}$, with all $\lambda_j \in \mathbb{Z}$ if $p(\mathbb{Z}^d) \subseteq \mathbb{Z}$. This allows us to write

$$g(n)a = \prod_{j=1}^{J} a_{k_j}^{\lambda_j \prod_{i=1}^{d} \binom{n_i}{r_{j,i}}}, \quad n = (n_1, \dots, n_d) \in \mathbb{Z}^d,$$

where $\lambda_j \in \mathbb{R}$ if a_{k_j} is a continuous generator and $\lambda_j \in \mathbb{Z}$ if a_{k_j} is a discrete generator. For each $j = 1, \ldots, J$ define $V_j = \prod_{i=1}^d \{0, \ldots, r_{j,i}\}$, and let \widetilde{G} be the free nilpotent Lie group of same nilpotency class as G, with generators $\alpha_{j,v}, v \in V_j, j \in \{1, \ldots, J\}$, such that $\alpha_{j,v}$ is continuous if a_{k_j} is continuous, and discrete if a_{k_j} is discrete. Define an epimorphism $\eta: \widetilde{G} \longrightarrow G$ by

$$\eta(\alpha_{j,v}) = \begin{cases} a_{k_j} \text{ if } v = (r_{j,1}, \dots, r_{j,d}) \\ \mathbf{1}_G \text{ otherwise} \end{cases}, \quad v \in V_j, \ j \in \{1, \dots, J\}$$

Let $\Gamma(\widetilde{G})$ be the lattice $\langle \alpha_{j,v}, j \in \{1, \ldots, J\}, v \in V_j \rangle$ in \widetilde{G} and let $\widetilde{\Gamma} = \langle \gamma^s, \gamma \in \Gamma(\widetilde{G}) \rangle$. Then $\widetilde{\Gamma}$ is a discrete uniform subgroup of \widetilde{G} invariant under all automorphisms of $\Gamma(\widetilde{G})$ and $\eta(\widetilde{\Gamma}) \subseteq \Gamma$. Define $\widetilde{X} = \widetilde{G}/\widetilde{\Gamma}$ and let $\widetilde{\pi}: \widetilde{G} \longrightarrow \widetilde{X}$ be the factorization mapping; then η factors to a mapping $\widetilde{X} \longrightarrow X$ so that $\eta \circ \widetilde{\pi} = \pi \circ \eta$.

We will now define automorphisms τ_1, \ldots, τ_d of \tilde{G} . For each $i = 1, \ldots, d$ let ϵ_i be the *i*-th basis vector $(0, \ldots, 0, 1, 0, \ldots, 0)$ in \mathbb{Z}^d and let

$$\tau_i(\alpha_{j,v}) = \begin{cases} \alpha_{j,v}\alpha_{j,v+\epsilon_i} \text{ if } v = (v_1, \dots, v_d) \text{ with } v_i < r_{j,i} \\ \alpha_{j,v} \text{ if } v_i = r_{j,i} \end{cases}, \quad v \in V_j, \ j \in \{1, \dots, K\}.$$

(The following diagram shows how $\alpha^{-1}\tau_i(\alpha)$ act; here d = 2, $r_{j,1} = 2$, $r_{j,2} = 3$, " \rightarrow " stands for $\alpha^{-1}\tau_1(\alpha)$ and " \downarrow " stands for $\alpha^{-1}\tau_2(\alpha)$:

$$\begin{array}{cccc} \alpha_{j,(0,0)} \rightarrow \alpha_{j,(1,0)} \rightarrow \alpha_{j,(2,0)} \\ \downarrow & \downarrow & \downarrow \\ \alpha_{j,(0,1)} \rightarrow \alpha_{j,(1,1)} \rightarrow \alpha_{j,(2,1)} \\ \downarrow & \downarrow & \downarrow \\ \alpha_{j,(0,2)} \rightarrow \alpha_{j,(1,2)} \rightarrow \alpha_{j,(2,2)} \\ \downarrow & \downarrow & \downarrow \\ \alpha_{j,(0,3)} \rightarrow \alpha_{j,(1,3)} \rightarrow \alpha_{j,(2,3)}. \end{array}$$

By Lemmas 2.3 and 2.6, τ_1, \ldots, τ_d are extendible to automorphisms of \widetilde{G} . One checks that for any $j \in \{1, \ldots, J\}$, $i \in \{1, \ldots, d\}$, $v = (v_1, \ldots, v_d)$ with $v_i = 0$, $\lambda \in \mathbb{R}$ if a_{k_j} is continuous and $\lambda \in \mathbb{Z}$ if a_{k_j} is discrete one has $\tau_i^n(\alpha_{j,v}^{\lambda}) = \prod_{m=0}^{r_{j,i}} \alpha_{j,v+m\epsilon_i}^{\lambda\binom{n}{m}}$, $n \in \mathbb{Z}$. It follows that for any $(n_1, \ldots, n_d) \in \mathbb{Z}^d$ one has $\tau_1^{n_1} \ldots \tau_d^{n_d}(\alpha_{j,(0,\ldots,0)}^{\lambda}) = \prod_{m_d=0}^{r_{j,d}} \ldots \prod_{m_1=0}^{r_{j,1}} \alpha_{j,(m_1,\ldots,m_d)}^{\binom{n_1}{m_1} \ldots \binom{n_d}{m_d}}$, and $\eta((\prod_{i=1}^d \tau_i^{n_i})(\alpha_{j,(0,\ldots,0)}^{\lambda})) = a_{k_j}^{\lambda} \prod_{i=1}^d \binom{n_i}{r_{j,i}}$. Define $\alpha = \prod_{j=1}^J \alpha_{j,(0,\ldots,0)}^{\lambda_j}$, then

$$\eta\Big(\Big(\prod_{i=1}^{d}\tau_i^{n_i}\Big)(\alpha)\Big) = \prod_{j=1}^{J} a_{k_j}^{\lambda_j \prod_{i=1}^{d} \binom{n_i}{r_{j,i}}} = g(n)a, \quad n = (n_1, \dots, n_d) \in \mathbb{Z}^d.$$
(2.1)

The automorphisms induced by τ_1, \ldots, τ_d on $\widetilde{G}/\widetilde{G}_2$ are unipotent and commute. (The automorphisms τ_i themselves do not commute: $\tau_1 \tau_2 \alpha_{j,(0,0)} = \alpha_{j,(0,0)} \alpha_{j,(1,0)} \alpha_{j,(0,1)} \alpha_{j,(1,1)}$, whereas $\tau_1 \tau_2 \alpha_{j,(0,0)} = \alpha_{j,(0,0)} \alpha_{j,(0,1)} \alpha_{j,(1,0)} \alpha_{j,(1,1)}$.) Let \widehat{G} be the extension of \widetilde{G} by the discrete group of automorphisms generated by τ_1, \ldots, τ_d ; by Proposition 2.8, \widehat{G} is nilpotent. \widetilde{G} is normal in \widehat{G} , so $(\prod_{i=1}^d \tau_i^{n_i}) \alpha (\prod_{i=1}^d \tau_i^{n_i})^{-1} \in \widetilde{G}$ and by (2.1),

$$\eta\left(\left(\prod_{i=1}^{d}\tau_{i}^{n_{i}}\right)\alpha\left(\prod_{i=1}^{d}\tau_{i}^{n_{i}}\right)^{-1}\right) = g(n)a, \quad n = (n_{1},\dots,n_{d}) \in \mathbb{Z}^{d}.$$
(2.2)

Define $\widehat{\Gamma} = \langle \widetilde{\Gamma}, \tau_1, \dots, \tau_k \rangle$; since τ_i preserve $\widetilde{\Gamma}$ one has $\widehat{\Gamma} \cap \widetilde{G} = \widetilde{\Gamma}$. Hence, $\widehat{\Gamma}$ is a discrete subgroup in \widehat{G} and $\widehat{G}/\widehat{\Gamma} \simeq \widetilde{G}/\widetilde{\Gamma} = \widetilde{X}$; let $\widehat{\pi}: \widehat{G} \longrightarrow \widetilde{X}$ be the factorization mapping. We get the commutative diagram

$$\begin{array}{l} \widetilde{G} \subseteq \widehat{G} \\ \eta \downarrow \widehat{\pi} \searrow \downarrow \widehat{\pi} \\ G \qquad \widetilde{X} \\ \pi \searrow \downarrow \eta \\ X \end{array}$$

Let $\widetilde{x} = \widehat{\pi}(\alpha) \in \widetilde{X}$ and $\widetilde{g}(n) = \prod_{i=1}^{d} \tau_i^{n_i}$, $n = (n_1, \dots, n_d) \in \mathbb{Z}^d$. Then, since $\prod_{i=1}^{d} \tau_i^{n_i} \in \widehat{\Gamma}$, we have by (2.2):

$$\widetilde{g}(n)\widetilde{x} = \widehat{\pi}\left(\left(\prod_{i=1}^{d} \tau_i^{n_i}\right)\alpha\right) = \widehat{\pi}\left(\left(\prod_{i=1}^{d} \tau_i^{n_i}\right)\alpha\left(\prod_{i=1}^{d} \tau_i^{n_i}\right)^{-1}\right) \xrightarrow{\eta} \pi\left(g(n)a\right) = g(n)x,\tag{2.3}$$

 $n = (n_1, \ldots, n_d) \in \mathbb{Z}^d.$

The polynomial mapping $\widetilde{g}: \mathbb{Z}^d \longrightarrow \widehat{G}$ is not a homomorphism since τ_i do not commute. We will now repeat the procedure described above. Let $\widetilde{\widehat{G}}$ be the free nilpotent group of same nilpotency class as \widehat{G} with generators $\alpha_{j,v}$ for $v \in V_j$, $j \in \{1, \ldots, J\}$, and discrete generators τ_i and δ_i for $i = 1, \ldots, d$. Define an epimorphism $\widetilde{\eta}: \widetilde{\widehat{G}} \longrightarrow \widehat{G}$ by

$$\widetilde{\eta}(\alpha_{j,v}) = \alpha_{j,v}, \quad v \in V_j, \ j \in \{1, \dots, J\},\\ \widetilde{\eta}(\tau_i) = \tau_i \text{ and } \widetilde{\eta}(\delta_i) = \mathbf{1}_{\widetilde{G}}, \quad i = 1, \dots, d$$

Define automorphisms σ_i , $i = 1, \ldots, d$, of \hat{G} by

$$\sigma_i(\alpha_{j,v}) = \alpha_{j,v}, \quad v \in V_j, \ j \in \{1, \dots, J\},$$

$$\sigma_i(\tau_l) = \tau_l, \ \sigma_i(\delta_l) = \begin{cases} \delta_l \text{ if } l \neq i \\ \delta_i \tau_i \text{ if } l = i \end{cases}, \quad l = 1, \dots, d.$$

 $\sigma_1, \ldots, \sigma_d$ commute and the automorphisms induced by $\sigma_1, \ldots, \sigma_d$ on $\widetilde{\widehat{G}}/\widetilde{\widehat{G}}_2$ are unipotent. For any *i* one has $\sigma_i^n(\delta_i) = \delta_i \tau_i^n$, $n \in \mathbb{Z}$. Put $\delta = (\prod_{i=1}^d \delta_i) \alpha$, then $(\prod_{i=1}^d \sigma_i^{n_i})(\delta) = (\prod_{i=1}^d \delta_i \tau_i^{n_i}) \alpha$ and

$$\widetilde{\eta}\Big(\Big(\prod_{i=1}^{d}\sigma_{i}^{n_{i}}\Big)(\delta)\Big) = \Big(\prod_{i=1}^{d}\tau_{i}^{n_{i}}\Big)\alpha, \quad (n_{1},\ldots,n_{d}) \in \mathbb{Z}^{d}.$$
(2.4)

Now let $\widehat{\widehat{G}}$ be the extension of $\widehat{\widehat{G}}$ by the discrete group generated by $\sigma_1, \ldots, \sigma_d$. By Proposition 2.8, $\widehat{\widehat{G}}$ is nilpotent. $\widehat{\widehat{G}}$ is normal in $\widehat{\widehat{G}}$, so $(\prod_{i=1}^d \sigma_i^{n_i}) \delta(\prod_{i=1}^d \sigma_i^{n_i})^{-1} \in \widehat{\widehat{G}}$ and by (2.4),

$$\widetilde{\eta}\Big(\big(\prod_{i=1}^{d}\sigma_{i}^{n_{i}}\big)\delta\big(\prod_{i=1}^{d}\sigma_{i}^{n_{i}}\big)^{-1}\Big)=\big(\prod_{i=1}^{d}\tau_{i}^{n_{i}}\big)\alpha,\quad(n_{1},\ldots,n_{d})\in\mathbb{Z}^{d}.$$
(2.5)

Let $\tilde{\widehat{\Gamma}} = \langle \widehat{\Gamma}, \delta_1, \dots, \delta_d \rangle \subseteq \tilde{\widehat{G}}$ and $\hat{\widehat{\Gamma}} = \langle \widetilde{\widehat{\Gamma}}, \sigma_1, \dots, \sigma_d \rangle \subseteq \hat{\widehat{G}}$. Then $\tilde{\widehat{\Gamma}}$ and $\hat{\widehat{\Gamma}}$ are discrete uniform subgroups of $\tilde{\widehat{G}}$ and $\hat{\widehat{G}}$ respectively, and $\tilde{\widetilde{X}} := \tilde{\widehat{G}}/\tilde{\widehat{\Gamma}} \simeq \hat{\widehat{G}}/\tilde{\widehat{\Gamma}}$; let $\hat{\widehat{\pi}}: \hat{\widehat{G}} \longrightarrow \tilde{\widetilde{X}}$ be the factorization mapping. We have the commutative diagram

Put $\widetilde{\widetilde{x}} = \widehat{\pi}(\delta)$ and define $\varphi(n) = \prod_{i=1}^{d} \sigma_i^{n_i}$, $n = (n_1, \ldots, n_d) \in \mathbb{Z}^d$. Then, since $\prod_{i=1}^{d} \sigma_i^{n_i} \in \widehat{\widehat{\Gamma}}$, we have by (2.5):

$$\varphi(n)\widetilde{\widetilde{x}} = \widehat{\pi}\Big(\Big(\prod_{i=1}^d \sigma_i^{n_i}\Big)\delta\Big) = \widehat{\pi}\Big(\Big(\prod_{i=1}^d \sigma_i^{n_i}\Big)\delta\Big(\prod_{i=1}^d \sigma_i^{n_i}\Big)^{-1}\Big) \xrightarrow{\widetilde{\eta}} \widehat{\pi}\Big(\Big(\prod_{i=1}^d \tau_i^{n_i}\Big)\alpha\Big) = \widetilde{g}(n)\widetilde{x},$$

 $n = (n_1, \ldots, n_d) \in \mathbb{Z}^d$. Combining this with (2.3) we get $\eta \circ \widetilde{\eta}(\varphi(n)\widetilde{\widetilde{x}}) = g(n)x, n \in \mathbb{Z}^d$.

Since $\sigma_1, \ldots, \sigma_d$ commute, $\varphi: \mathbb{Z}^d \longrightarrow \widehat{G}$ is a group homomorphism. By Theorem 1.4, there exists a closed subgroup E of \widehat{G} such that $\varphi(\mathbb{Z}^d) \subseteq E$ and $\{\varphi(n)\tilde{\widetilde{x}}\}_{n\in\mathbb{Z}^d}$ is well distributed in Ex. Let $\widetilde{\widetilde{H}}$ be the identity component of E; since \widehat{G}/\widehat{G} is discrete, $\widetilde{\widetilde{H}} \subseteq \widetilde{G}$. $\widetilde{\widetilde{H}}\tilde{\widetilde{x}}$ is a connected component of $E\tilde{\widetilde{x}}$; since $E\tilde{\widetilde{x}}$ is compact it consists of finitely many translates of $\widetilde{\widetilde{H}}\tilde{\widetilde{x}}$ and so, the stabilizer $\operatorname{Stab}(\widetilde{\widetilde{H}}\tilde{\widetilde{x}})$ of $\widetilde{\widetilde{H}}\tilde{\widetilde{x}}$ has finite index in E. Let W be the finite group $\mathbb{Z}^d/\varphi^{-1}(\operatorname{Stab}(\widetilde{\widetilde{H}}\tilde{\widetilde{x}}))$, let $\omega: \mathbb{Z}^d \longrightarrow W$ be the factorization mapping, for each $w \in W$ let $n_w \in \mathbb{Z}^d$ be a representative of w and $\tilde{\widetilde{x}}_w = \varphi(n_w)\tilde{\widetilde{x}}$. Then $Ex = \bigcup_{w \in W} \widetilde{\widetilde{H}}\tilde{\widetilde{x}}_w$, $\widetilde{\widetilde{H}}\tilde{\widetilde{x}}_w$ is closed and $\{\varphi(n)\tilde{\widetilde{x}}\}_{n\in\omega^{-1}(w)}$ is well distributed in $\widetilde{\widetilde{H}}\tilde{\widetilde{x}}_w$ for any $w \in W$.

Now let $\widetilde{H} = \widetilde{\eta}(\widetilde{H}) \subseteq \widehat{G}$. Since \widetilde{H} is connected, $\widetilde{H} \subseteq \widetilde{G}$; let $H = \eta(\widetilde{H})$. Let $x_w = \eta \circ \widetilde{\eta}(\widetilde{\widetilde{x}}_w), w \in W$. For each $w \in W$, since $\widetilde{\widetilde{H}}\widetilde{\widetilde{x}}_w$ is compact, $Hx_w = \eta \circ \widetilde{\eta}(\widetilde{\widetilde{H}}\widetilde{\widetilde{x}}_w)$ is closed in X. Let $b \in \pi^{-1}(Hx_0)$; since Γ is discrete, Hb is a connected component of the closed set $\pi^{-1}(Hx_0)$, and thus H is closed in G. By 2.9, $\{g(n)x\}_{n\in\omega^{-1}(w)} = \{\eta \circ \widetilde{\eta}(\varphi(n)\widetilde{\widetilde{x}})\}_{n\in\omega^{-1}(w)}$ is well distributed in Hx_w for any $w \in W$.

2.12. Remark. Note that the components Hx_w of $\overline{\{g(n)x\}}_{n\in\mathbb{Z}^d}$ do not have to be distinct though $\widetilde{H}\widetilde{\widetilde{x}}_w$ are all distinct. Here is a simple example: let $G = \mathbb{R}$, $\Gamma = \mathbb{Z}$, x = 0, d = 1, $g(n) = \frac{n^2}{3} \in \mathbb{R}$; then H = 0, $x_0 = 0$ and $x_1 = x_2 = \frac{1}{3}$, so that $\{g(n)x\}_{n\in\mathbb{Z}} = \{0, \frac{1}{3}\}$.

2.13. Proof of Theorem D. In the notation of 2.11, the action of \mathbb{Z}^d on X by $x \mapsto \varphi(n)x$, $x \in X$, $n \in \mathbb{Z}^d$, is distal. (See, for example, [L].) It follows that the point $\varphi(0)\widetilde{\widetilde{x}}$ is IP*-recurrent for the sequence $\{\varphi(n)\widetilde{\widetilde{x}}\}_{n\in\mathbb{Z}^d}$. ([F], Theorem 9.11.) Hence, the point g(0)x is IP*-recurrent for the sequence $\{g(n)x\}_{n\in\mathbb{Z}^d} = \{\eta\circ\widetilde{\eta}(\varphi(n)\widetilde{\widetilde{x}})\}_{n\in\mathbb{Z}^d}$.

2.14. Proof of Theorem C. Let X be connected and let $g: \mathbb{Z}^d \longrightarrow G$ be a polynomial mapping. Let $x \in X$ and let, by Theorem B, H be a connected closed subgroup of G such that $\overline{\{g(n)x\}}_{n\in\mathbb{Z}^d} = \bigcup_{j=1}^k Hx_j$ for some $x_1, \ldots, x_k \in X$.

Let $T = [G^o, G^o] \setminus X$ and $p: X \longrightarrow T$ be the factorization mapping. Assume that $\{g(n)p(x)\}_{n \in \mathbb{Z}^d}$ is dense in T. Then $T = \bigcup_{j=1}^k Hp(x_j)$, and since T is connected, $Hp(x_j) = T$ for some j. Thus $H[G^o, G^o](\Gamma \cap G^o) = G^o$, and since Γ is countable, $H[G^o, G^o] = G^o$. By Lemma 2.5, $H = G^o$, so $\overline{\{g(n)x\}}_{n \in \mathbb{Z}^d} = Hx_1 = X$.

Acknowledgment. I thank V. Bergelson for useful communications.

Bibliography

- [F] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, 1981.
- [L] A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold, preprint. Available at http://www.math.ohio-state.edu/~leibman/preprints
- [Sh1] N. Shah, Limit distributions of polynomial trajectories on homogeneous spaces, Duke Math. J. 75 (1994), no.3, 711-732.
- [Sh2] N. Shah, Invariant measures and orbit closures on homogeneous spaces for actions of subgroups generated by unipotent elements, *Lie groups and ergodic theory (Mumbai, 1996)*, 229-271, Tata Inst. Fund. Res., Bombay, 1998.
- [M] A. Malcev, On a class of homogeneous spaces, Izvestiya Akad. Nauk SSSR, Ser. Mat. 13 (1949), 9-32.