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Abstract

We establish a general multiple recurrence theorem for an action
of a nilpotent group by homeomorphisms of a compact space. This
theorem can be viewed as a nilpotent version of our recent polynomial
Hales-Jewett theorem ([BL2]) and contains nilpotent extensions of
many known “abelian” results as special cases.

0. Introduction

0.1. The celebrated van der Waerden theorem on arithmetic progressions, published in
1927 ([vdW]) states that if the set of integers is partitioned into finitely many classes then
at least one of the classes contains arbitrarily long arithmetic progressions. A few years
later Grünwald (=Gallai) obtained the following multidimensional extension of van der
Waerden’s theorem (see [R], p. 123).

0.2. Theorem. Let d ∈ N. For any finite coloring of Zd and any finite set E ⊂ Z
d there

exist v ∈ Z
d and n ∈ N such that the set v + nE =

{

v + nz
∣

∣ z ∈ E
}

is monochromatic.

In [FW] Furstenberg and Weiss offered a new approach, based on methods of topolog-
ical dynamics, to results of this type. A dynamical version of the Gallai theorem proved
in [FW] (from which Theorem 0.2 can be easily derived) reads as follows:

0.3. Theorem. Let (X, ρ) be a compact metric space and let g1, . . . , gk be commuting
self-homeomorphisms of X. Then for any ε > 0 there exist x ∈ X and n ∈ N such that
ρ(gni x, x) < ε for all i = 1, . . . , k.

0.4. More recently, a polynomial extension of Theorem 0.3 was proved in [BL1]:

Theorem. Let (X, ρ) be a compact metric space, let g1, . . . , gl be commuting self-homeo-
morphisms of X and let pi,j , 1 ≤ i ≤ k, 1 ≤ j ≤ l, be polynomials Z −→ Z sat-
isfying pi,j(0) = 0. Then for any ε > 0 there exist x ∈ X and n ∈ N such that

ρ(g
pi,1(n)
1 . . . g

pi,l(n)
l x, x) < ε for all i = 1, . . . , k.

0.5. Corollary. Let d, k ∈ N and let P :Zk −→ Z
d be a polynomial mapping satisfying

P (0) = 0. Then for any finite coloring of Zk and any finite set E ⊂ Z
k there exist v ∈ Z

d

and n ∈ N such that the set v + P (nE) is monochromatic.
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It was S. Yuzvinsky who conjectured in 80’s that Theorem 0.3 might be still true if
one replaces the assumption of commutativity of the homeomorphisms g1, . . . , gk by the
condition that they generate a nilpotent group. Yuzvinsky’s conjecture was confirmed in
[L1], where the following “nilpotent” extension of Theorem 0.4 was proved.

0.6. Theorem. Let self-homeomorphisms g1, . . . , gl of a compact metric space (X, ρ)
generate a nilpotent group and let pi,j , 1 ≤ i ≤ k, 1 ≤ j ≤ l, be polynomials Z −→ Z

satisfying pi,j(0) = 0. Then for any ε > 0 there exist x ∈ X and n ∈ N such that

ρ(g
pi,1(n)
1 . . . g

pi,l(n)
l x, x) < ε for all i = 1, . . . , k.

0.7. Here is a combinatorial corollary of Theorem 0.6:

Corollary. Let G be a nilpotent group, let g1, . . . , gl ∈ G and let pi,j , 1 ≤ i ≤ k, 1 ≤ j ≤ l,
be polynomials Z −→ Z satisfying pi,j(0) = 0. For any finite coloring of G there exist h ∈ G

and n ∈ N such that the elements hg
p1,1(n)
1 . . . g

p1,l(n)
l , . . . , hg

pk,1(n)
1 . . . g

pk,l(n)
l of G are all of the

same color.

0.8. While Theorem 0.6 provides a satisfactory result pertaining to finitely many home-
omorphisms (or, equivalently, to partition theorems involving finitely generated nilpotent
groups), it is desirable to have an extension of Theorem 0.3 which would deal with infinitely
many homeomorphisms (and would have as combinatorial corollaries Ramsey-theoretical
results about infinitely generated (semi)groups). One such extension, the (abelian) IP-van
der Waerden theorem is contained in the paper of Furstenberg and Weiss alluded to above.
To formulate it we need to recall the notion of IP-system, introduced in [FW]. Denote by F
the set of finite subsets of N. An IP-system in a commutative semigroup G (which should
be viewed as a generalized sub-semigroup of G) is a mapping from F into G, α 7→ gα,
α ∈ F , which satisfies gα∪β = gαgβ whenever α ∩ β = ∅. In particular, if {gi}i∈N is a
sequence of elements of G, the IP-system generated by {gi}i∈N is the set of all products of
the form gα =

∏

i∈α gi, α ∈ F . It is easy to see that any IP-system in G can be obtained
in this way.

0.9. Theorem. ([FW]) Let {g
(1)
α }α∈F , . . . , {g

(k)
α }α∈F be IP-systems in an abelian group of

self-homeomorphisms of a compact metric space (X, ρ). For any ε > 0 there exist x ∈ X

and a nonempty α ∈ F such that ρ(g
(i)
α x, x) < ε for all i = 1, . . . , k.

0.10. An equivalent combinatorial form of Theorem 0.9 reads as follows:

Theorem. Let G be an abelian group, and let {g
(1)
α }α∈F , . . . , {g

(k)
α }α∈F be IP-systems in

G. For any finite coloring of G there exist h ∈ G and a nonempty α ∈ F such that the

elements hg
(1)
α , . . . , hg

(k)
α all have the same color.

0.11. The following corollary of Theorem 0.10, which is a special case of the Geometric
Ramsey Theorem, due to Graham, Leeb and Rothschild ([GLR]), deals with infinitely
generated abelian groups of the form

⊕

K, where K is (the additive group of) a finite
field.

Theorem. Let V be an infinite dimensional vector space over a finite field. Then for
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any finite coloring of V there are arbitrarily large monochromatic finite dimensional affine
subspaces.

For a derivation of this theorem from Theorem 0.9 see [B2].

0.12. Our goal in this paper is to establish a nil-IP-multiple recurrence theorem which
would extend all the abelian results mentioned above to a nilpotent setup. We postpone
the formulation of our main result (Theorem 0.24 below) and formulate first some of its
corollaries. We start with nilpotent versions of Theorems 0.9 and 0.10:

0.13. Theorem. Let G be a nilpotent group of self-homeomorphisms of a compact metric

space (X, ρ) and let g
(i)
j ∈ G, i = 1, . . . , k, j ∈ N. For any ε > 0 there exist x ∈ X and a

nonempty finite set α ⊂ N such that ρ
(
∏

j∈α g
(i)
j x, x

)

< ε for all i = 1, . . . , k.

0.14. Theorem. Let G be a nilpotent group and let g
(i)
j ∈ G, i = 1, . . . , k, j ∈ N. For

any finite coloring of G there exist h ∈ G and a nonempty finite set α ⊂ N such that the

elements h
∏

j∈α g
(i)
j , i = 1, . . . , k, all have the same color.

0.15. We will now discuss a nilpotent extension of Theorem 0.11. Let G be a nilpotent
group with uniformly bounded torsion: for some d ∈ N, gd = 1G for all g ∈ G. Let a
finite coloring of G be given. If G is “large” then, in accordance with the principles of
Ramsey theory, one should be able to find in one color arbitrarily large “highly organized”
configurations. In the case of our group G, which has uniformly bounded torsion, it is
natural to look for monochromatic cosets of arbitrarily large subgroups. An even better
result would be not only to get monochromatic cosets of arbitrarily large subgroups, but
to have these subgroups to be as “noncommutative” as G is. We bring here two results of
this type.

0.16. Theorem. Let q ∈ N and let G be the (multiplicative) group of (q + 1) × (q + 1)
upper triangular matrices with unit diagonal over an infinite field of finite characteristic.
For any finite coloring of G and any c ∈ N there exists a subgroup H of G of nilpotency
class q and of cardinality ≥ c such that for some h ∈ G the coset hH is monochromatic.
Moreover, one may require that not only H, but also all q nontrivial terms of its lower
central series have cardinality ≥ c.

0.17. Let p be a prime integer and let q be an integer with q < p. Let us say that a group
G is a free q-step nilpotent group with torsion p if G is defined by a generating set S and
the following relations: gp = 1G for all g ∈ S, and

[

. . . [[g1, g2], g3], . . . , gq+1

]

= 1G for all
g1, . . . , gq+1 ∈ G. (Note that all elements of G have torsion p: gp = 1G for all g ∈ G.) Free
nilpotent groups may be viewed as nilpotent analogue of free abelian groups with torsion p
(which are of the form

⊕

Zp). The following fact demonstrates that free nilpotent groups
with torsion have nice Ramsey-theoretical properties.

Theorem. Let G be an infinite free q-step nilpotent group with torsion p. For any finite
coloring of G and any c ∈ N there exists a free q-step nilpotent subgroup H ⊂ G of
cardinality |H| ≥ c, such that for some h ∈ G the coset hH is monochromatic.
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0.18. We will also be able to obtain a nilpotent version of a classical partition result
of Hilbert which we will presently formulate. The following theorem, arguably the first
non-trivial theorem of Ramsey-theoretical nature, is contained in [H] and reads as follows.

Theorem. ([H]) For any finite coloring of N and for any k ∈ N there is a k-element set
{n1, . . . , nk} ⊂ N such that one can find in one color infinitely many translates of the set

of finite sums FS
(

{nj}
k
j=1

)

=
{
∑k

j=1 ǫjnj

∣

∣ ǫ1, . . . , ǫk ∈ {0, 1}
}

.

(Hilbert needed this theorem in order to prove his irreducibility theorem, stating that if a
polynomial p(x, y) ∈ Z[x, y] is irreducible then for some x0 ∈ N the polynomial p(x0, y) ∈
Z[y] is also irreducible. It is rather curious that although Hilbert’s original proof of this
theorem occupied more than 2 pages, a stronger result containing it as quite a special case
can be proved in few lines by simply iterating a version of the Poincaré recurrence theorem
(see [B1] Proposition 2.5 and Remark 2.6.))

0.19. Given a finite set D = {h1, . . . , hk} in a (non-abelian) group G, let Q(D) denote the

set of the products of h1, . . . , hk in all possible orders: Q(D) =
{
∏k

j=1 hσ(j)

∣

∣ σ ∈ Sk

}

. The
following open question, dealing with a strong noncommutative generalization of Hilbert’s
theorem, very likely has a negative answer for general groups.

Question. Let {gα}α∈F be an IP-set in a group G. Is it true that for any finite coloring
of G and any k ∈ N there exist a k-element set D ⊆ {gα}α∈F and h ∈ G such that the set
hQ(D) is monochromatic?

0.20. For nilpotent groups the answer to Question 0.19 is positive:

Theorem. Let G be an infinite nilpotent group, let k ∈ N and let g
(i)
j ∈ G, 1 ≤ i ≤ k,

j ∈ N. For any r-coloring of G there exist a finite nonempty set α ⊂ N and infinitely many

h ∈ G such that for hi =
∏

j∈α g
(i)
j , i = 1, . . . , k, the products hhi1hi2 . . . hil with 0 ≤ l ≤ k

and distinct i1, i2, . . . , il are all of the same color.

0.21. In the abelian case one gets the proofs of the “linear” results, Theorem 0.9 and its
corollaries, in a self-contained way. The situation is different in nilpotent case: the only
known to us way of deriving the “linear facts”, Theorems 0.13 – 0.20, is to obtain them as
special cases of more general “polynomial” statements.

First, we formulate the general abelian polynomial IP-multiple recurrence theorem
which extends both Theorem 0.4 and Theorem 0.9. Let, again, F be the set of all finite
subsets of N. A mapping P from F into a commutative (semi)group G is an IP-polynomial
of degree 0 if P is constant, and, inductively, is an IP-polynomial of degree ≤ d if for
any β ∈ F there exists an IP-polynomial DβP :F(N \ β) −→ G of degree ≤ d − 1 (where
F(N \ β) is the set of finite subsets of N \ β) such that P (α ∪ β) = P (α) + (DβP )(α) for
every α ∈ F with α∩ β = ∅. (One easily checks that IP-systems introduced in 0.8 are just
IP-polynomials of degree 1 satisfying P (∅) = 1G.)

0.22. Theorem. ([BL2]) Let G be an abelian group of self-homeomorphisms of a compact
metric space (X, ρ) and let P1, . . . , Pk be IP-polynomials F −→ G satisfying P1(∅) =
. . . = Pk(∅) = 1G. For any ε > 0 there exist x ∈ X and a nonempty α ∈ F such that
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ρ
(

P (α)x, x
)

< ε for all i = 1, . . . , k.

0.23. If G is an abelian group, it is proven in [BL2], Theorem 8.3, that a mapping
P :F −→ G is an IP-polynomial of degree ≤ d with P (∅) = 1G if and only if there
exists a family {g(j1,...,jd)}(j1,...,jd)∈Nd of elements of G such that for any α ∈ F one has
P (α) =

∏

(j1,...,jd)∈αd

g(j1,...,jd). It is this characterization of commutative IP-polynomials which

makes sense in the nilpotent setup as well. Namely, let G be a nilpotent group. We
will call a mapping P :F −→ G an IP-polynomial if for some d ∈ N there exist a fam-
ily {g(j1,...,jd)}(j1,...,jd)∈Nd of elements of G and a linear order ≺ on N

d such that for any

α ∈ F one has P (α) =
∏≺

(j1,...,jd)∈αd

g(j1,...,jd). (The entries in the product
∏≺

are multiplied in

accordance with ≺.)

0.24. We may now formulate our main result, which generalizes both Theorem 0.6 and
Theorem 0.13:

Theorem. Let G be a nilpotent group of self-homeomorphisms of a compact metric space
(X, ρ) and let P1, . . . , Pk:F −→ G be polynomial mappings satisfying P1(∅) = . . . =
Pk(∅) = 1G. For any ε > 0, there exist x ∈ X and a nonempty α ∈ F such that
ρ
(

Pi(α)x, x
)

< ε for all i = 1, . . . , k.

0.25. The structure of the paper is as follows. In Sections 1 and 2 we introduce the
necessary definitions and establish some facts about polynomial mappings. Sections 3 and
4 are devoted to the proof of our main theorem (Theorem 4.1). In Section 5 we consider
various corollaries of the main theorem. Finally, in Section 6 we make concluding remarks
and formulate some natural conjectures.

0.26. Acknowledgment. We are thankful to H. Furstenberg and to the referee for
useful comments.

1. Polynomial mappings F(S) −→ G

1.1. Given a set T , F(T ) will denote the set of all finite subsets of T , F=d(T ) the set of
all subsets of T of cardinality d, F≤d(T ) the set of all subsets of T of cardinality ≤ d. In
particular, F=0(T ) = {∅}.

Let {gt}t∈T be a collection of elements of a group G indexed by a finite set T =
{t1, . . . , tn}, let ≺ be a linear order on T (or on some superset of T ). Let i1, i2, . . . , in ∈
{1, . . . , n} satisfy i1 ≺ i2 ≺ . . . ≺ in; we define

∏≺
t∈T gt = gti1 gti2 . . . gtin . If T is empty,

we put
∏≺

t∈T gt = 1G. When the order ≺ is fixed or does not matter (for example, when

G is abelian), we will sometimes write
∏

t∈T gt instead of
∏≺

t∈T gt.

1.2. Let G be a group. The commutator [x, y] of elements x, y ∈ G is x−1y−1xy; so xy =
yx[x, y]. For two subsets A,B ⊆ G, their commutator [A,B] is the subgroup generated
by the set

{

[x, y]
∣

∣ x ∈ A, y ∈ B
}

. The lower central series of G is the sequence G1 ⊇
G2 ⊇ G3 ⊇ . . . of normal subgroups of G defined inductively: G = G1, Gk+1 = [G,Gk],
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k = 1, 2, . . .. It is well known that [Gk, Gl] ⊆ Gk+l for any k, l ∈ N.

A group G is called nilpotent if its lower central series is finite: G is nilpotent of class
q, or q-step nilpotent , if Gq+1 = {1G} and Gq 6= {1G}. In particular, abelian groups are
nilpotent of class 1.

1.3. Let S be a nonempty set, let G be a nilpotent group. A monomial of degree d on
S with values in G is a pair (u,≺) consisting of a mapping u:Sd −→ G and a linear
order ≺ on Sd. When it can not lead to confusion, we will omit ≺ and write u instead
of (u,≺). A monomial (u,≺) induces a monomial mapping Pu:F(S) −→ G by the rule
Pu(α) =

∏≺
s∈αd u(s), α ∈ F(S).

1.4. Examples. Constant mappings F(S) −→ G are monomial of degree 0: they are
induced by monomials S0 = {∅} −→ G.

Given a sequence {gi}j∈N of elements of G, the mapping P :F(N) −→ G defined by
P (α) =

∏

j∈α gj is monomial of degree 1.

Let g ∈ G; put P (α) = g|α|
2

for α ∈ F(S) (where |α| denotes the cardinality of α).
Then P :F(S) −→ G is a monomial mapping of degree 2: it is induced by the constant
monomial which equals g on S2.

1.5. Note that the monomial mapping Pu induced by a monomial (u,≺) of degree d is also
induced by a monomial (u′,≺′) of degree d + 1 which can be constructed as follows. Fix
any s0 ∈ S, put

u′(s1, . . . , sd, sd+1) =

{

u(s1, . . . , sd) if sd+1 = s0
1G otherwise.

Then define an order ≺′ on Sd × {s0} by
(

s1 × {s0}
)

≺′
(

s2 × {s0}
)

if s1 ≺ s2, and lift ≺′

to any linear order on Sd+1.

1.6. Note also that the composition of a monomial mapping and a group homomorphism
is a monomial mapping as well: if Pu:F(S) −→ G is a monomial mapping induced by a
monomial (u,≺) and ϕ:G −→ G′ is a homomorphism of nilpotent groups, then ϕ ◦ Pu is
induced by the monomial (ϕ ◦ u,≺).

1.7. The level of a monomial (u,≺) of degree d is the positive integer l satisfying u(Sd) ⊆
Gl \ Gl+1; we will denote the level of (u,≺) by l(u). If G is nilpotent of class q, then
1 ≤ l(u) ≤ q for nontrivial monomials u; we define the level of the trivial monomial,
u(s) = 1G for all s ∈ S, to be q+1. The weight w(u) of (u,≺) is the pair (l(u), d). The set
W of weights of monomials, that is, the set of pairs (l, d) with l, d ∈ Z, 1 ≤ l ≤ q, d ≥ 0,
is well-ordered by the rule: (l1, d1) ≤ (l2, d2) if either l1 > l2, or l1 = l2 and d1 ≤ d2.

1.8. A polynomial mapping P :F(S) −→ G is the product of finitely many monomial
mappings: P (α) = Pu1

(α) . . . Pum
(α), α ∈ F(S), where Pu1

, . . . , Pum
are monomial map-

pings, corresponding to monomials (u1,≺1), . . . , (um,≺m). The weight w(P ) of a poly-
nomial mapping P is the minimum, taken over the set of all representations of P as the
product P = Pu1

. . . Pum
of monomial mappings, of the maximum of the weights w(ui),

i = 1, . . . ,m, of monomials participating in this representation. If w(P ) = (l, d), we will
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call l the level of P and denote it by l(P ), and we will call d the degree of P . A polynomial
mapping of level l takes values in the subgroup Gl of G.

1.9.Given a set S and a nilpotent groupG, polynomial mappings F(S) −→ G form a group
with respect to the element-wise multiplication. Indeed, it is clear from definition that the
product PQ, (PQ)(α) = P (α)Q(α) of polynomial mappings P and Q is polynomial as
well. The inverse P−1

u , P−1
u (α) = Pu(α)

−1, of the monomial mapping Pu induced by a
monomial (u,≺) of degree d, is also a monomial mapping: it is induced by the monomial
(u−1,≻), where u−1(s) = u(s)−1 and ≻ is the order on Sd which is inverse to ≺.

1.10. Lemma. Let P,Q:F(S) −→ G be polynomial mappings. Then
(i) w(P−1) = w(P );
(ii) w(PQ) ≤ max

(

w(P ), w(Q)
)

;
(iii) if w(Q) < w(P ), then w(PQ) = w(QP ) = w(P ).

Proof. Assertions (i) and (ii) follow from the definition. To prove (iii) note that the
assumption w(PQ) < w(P ) leads to a contradiction, since it implies that

w(P ) = w(PQQ−1) ≤ max
(

w(PQ), w(Q−1)
)

< w(P ).

1.11. Corollary. Given a weight (l, d), polynomial mappings P :F(S) −→ G with w(P ) ≤
(l, d) form a group.

1.12. The following proposition describes the basic properties of monomial mappings: it
tells us that if G is a nilpotent group then certain elementary operations with monomial
mappings taking values in G are “nilpotent”: they are trivial modulo polynomial mappings
of higher levels.

Proposition. Let S be a set and G be a nilpotent group.
(i) Let (u,≺) and (u,≺′) be two monomials of weight (l, d), given by the same mapping
u:Sd −→ G and different linear orders ≺,≺′ on Sd, and let P and P ′ be the corresponding
monomial mappings. Then P = P ′Q where Q is a polynomial mapping F(S) −→ G with
l(Q) > l.
(ii) Let (u1,≺1) and (u2,≺2) be two monomials on S with values in G, and let P1 and P2

be the corresponding monomial mappings. Then P1P2 = P2P1Q, where Q is a polynomial
mapping F(S) −→ G with l(Q) > max

(

l(P1), l(P2)
)

.
(iii) Let u1, u2:F(Sd) −→ G be two mappings, let ≺ be a linear order on Sd, and let
P1, P2 and P be the monomial mappings induced by the monomials (u1,≺), (u2,≺) and
(u1u2,≺) respectively. Then P = P1P2Q, where Q is a polynomial mapping F(S) −→ G
with l(Q) > max

(

l(P1), l(P2)
)

.

1.13. The formal proof of Proposition 1.12 is cumbersome, but its idea is simple: in-
terchanging two products

∏

s∈A gs and
∏

t∈B ht of elements of G creates commutator
expressions indexed by products of several copies of A and B:

∏

s∈A

gs
∏

t∈B

ht =
∏

t∈B

ht

∏

s∈A

gs
∏

(s,t)∈A×B

[gs, ht]
∏

(s1,s2,t)∈A2×B
s1≺s2

[

[gs1 , ht], gs2
]

∏

. . .
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and leads to appearance of monomial mappings of higher levels.
To clarify the idea of the proof we first give the proof in the case whereG has nilpotency

class 2 (that is, G2 = [G,G] is contained in the center of G).

(i) Let (u,≺) and (u,≺′) be two monomials of weight (1, d) and let P and P ′ be the
corresponding monomial mappings. Then for α ∈ F(S) we have

P ′(α) =
∏≺′

s∈αd

u(s) =
∏≺

s∈αd

u(s)
∏

s,t∈αd

s≺′t
t≺s

[

u(s), u(t)
]

= P (α)Q(α),

where Q is the monomial mapping induced by the monomial

(s, t) 7→

{

[

u(s), u(t)
]

if s ≺′ t and t ≺ s
1G otherwise

which is of degree 2d and of level ≥ 2. (The order on S2d does not matter since the range
of this monomial lies in the abelian group G2.)

(ii) Let (u1,≺1) and (u2,≺2) be monomials, u1:S
d1 −→ G, u2:S

d2 −→ G, and P1 and P2

be the corresponding monomial mappings. Then for α ∈ F(S)

P1(α)P2(α) =
∏≺1

s∈αd1

u1(s)
∏≺2

s∈αd2

u2(s) =
∏≺2

s∈αd1

u2(s)
∏≺1

s∈αd2

u1(s)
∏

s∈αd1

t∈αd2

[

u1(s), u2(t)
]

= P2(α)P1(α)Q(α),

where Q is the monomial mapping induced by the monomial (s, t) 7→
[

u1(s), u2(t)
]

of
degree d1 + d2 and level ≥ 2.

(iii) Let P1, P2 and P be the monomial mappings induced respectively by monomials
(u1,≺), (u2,≺) and (u1u2,≺), where u1, u2:S

d −→ G. Then for α ∈ F(S)

P (α) =
∏≺

s∈αd

u1(s)u2(s) =
∏≺

s∈αd

u1(s)
∏≺

s∈αd

u2(s)
∏

s,t∈αd

t≺s

[

u2(t), u1(s)
]

= P1(α)P2(α)Q(α),

where Q is the monomial mapping induced by the monomial

(s, t) 7→

{

[

u2(t), u1(s)
]

if t ≺ s
1G otherwise.

1.14. Proof of Proposition 1.12. We confine ourselves to the proof of statement (i); the
proofs of (ii) and (iii) are similar. Let G be a nilpotent group of class q.

We introduce first some notation. Given a set B, denote by C(B) the set of words
in the alphabet B ∪ {[} ∪ {, } ∪ {]} defined inductively: B ⊂ C(B), and if c1, c2 ∈ C(B)
then [c1, c2] ∈ C(B). C(B) is “the set of commutators with entries from B”. For ex-
ample, if b1, b2 ∈ B, then [b1, b2] ∈ C(B) and

[

b1, [b2, b1]
]

∈ C(B). Also notice that
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C
(

C(B)
)

= C(B). Let the depth d(c) of c ∈ C(B) be defined by d(b) = 1 for b ∈ B and

d([c1, c2]) = d(c1) + d(c2) for c1, c2 ∈ C(B). (Examples: if b1, b2 ∈ B, then d
(

[b1, b2]
)

= 2,

d
([

b1, [b2, b1]
])

= 3.)

Now, let u:B −→ G be a mapping. We can lift u onto C(B) by putting u
(

[c1, c2]
)

=
[

u(c1), u(c2)
]

∈ G, c1, c2 ∈ C(B). (Note that if d(c) > q, then u(c) = 1G.) Let D ⊆
C(B) and let ≺ be a linear order on D; then for any α ∈ F(B) we put uα(D,≺) =
∏≺

c∈D∩C(α) u(c). Let D1, D2 ⊆ B and let ≺1 and ≺2 be linear orders on D1 and D2

respectively. Then we will write u(D1,≺1) = u(D2,≺2) if uα(D1,≺1) = uα(D2,≺2) for all
α ∈ F(B). (Example: let B = {b1, b2}, D1 = {b1, b2}, b1 ≺1 b2, and D2 =

{

b1, b2, [b1, b2]
}

,
b2 ≺2 b1 ≺2 [b1, b2]. Then u(D1,≺1) = u(D2,≺2) for any u.)

1.15. Lemma. For any linear orders ≺1,≺2 on a set B there exist D ⊆ C(B) with
B ⊆ D, and a linear order ≺ on D such that ≺|B =≺2, b ≺ c for any b ∈ B, c ∈ D \ B,
and u(B,≺1) = u(D,≺) for any u:B −→ G.

Proof. The idea of the proof is to “place” the elements of B in accordance with ≺1 and
then “move” them to the left in accordance with ≺2; when b ∈ B passes a commutator
c ∈ C(B), we replace c, b by b, c, [c, b]. To put this more formally, we define

D = B ∪
{

[

. . .
[

[b, b1], b2
]

, . . . , bk
] ∣

∣ k ∈ N, b, b1, b2, . . . , bk ∈ B,

b ≺1 b1, b ≺1 b2, . . . , b ≺1 bk, b1 ≺2 b, b1 ≺2 b2 ≺2 . . . ≺2 bk

}

,

and define a linear order ≺ on D as follows:

b ≺ c for any b ∈ B, c ∈ C(B) \B; for b, b′ ∈ B, b ≺ b′ iff b ≺2 b′;
[

. . .
[

[b, b1], b2
]

, . . . , bk
]

≺
[

. . .
[

[b, b1], b2
]

, . . . , bk
]

, bk+1

]

, . . . , bl
]

;
[

. . .
[

[b, b1], b2
]

, . . . , bk
]

≺
[

. . .
[

[b′, b′1], b
′
2

]

, . . . , b′l
]

iff b ≺ b′;
[

. . .
[

[b, b1], b2
]

, . . . , bk
]

, bk+1

]

, . . . , bl
]

≺
[

. . .
[

[b, b1], b2
]

, . . . , bk
]

, b′k+1

]

, . . . , b′m
]

iff b′k+1 ≺2 bk+1.

Let R = C({∗}). (R is the set of “commutator patterns”; for example, ∗ ∈ R,
[

∗, [∗, ∗]
]

∈ R.) For c ∈ C(B) we will say that c has type r, r ∈ R, if after replacing
all B-entries of c by ∗, c transforms into r. (Example: for b1, b2 ∈ B, b1 has type ∗
and

[

[b1, b2], b1
]

has type
[

[∗, ∗], ∗
]

.) On the other hand, every r ∈ R defines a mapping

Bd(r) −→ C(B) which can be described as follows: ∗(b) = b and

[r1, r2](b1, br1 , br1+1, . . . , bd(r1)+d(r2)) =
[

r1(b1, . . . , bd(r1)), r2(bd(r1+1, . . . , bd(r1)+d(r2))
]

(∗-s are consecutively replaced in r by b1, . . . , bd(r)). Let Rq =
{

r ∈ R
∣

∣ d(r) ≤ q
}

. Rq is
a finite set, let Rq = {r0, r1, . . . , rk} with r0 = ∗ and d(ri−1) ≤ d(ri) for all i = 1, . . . , k.

Now all the preparatory work has been done, and we pass to the proof of Proposi-
tion 1.12(i). Let u be a mapping Sd −→ G, let ≺,≺′ be linear orders on Sd and let P, P ′

be the monomial mappings F(Sd) −→ G induced by the monomials (u,≺) and (u,≺′)
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respectively. First, applying Lemma 1.15 to B0 = Sd, find D1 ⊆ C(B0), B0 ⊆ D1, with
a linear order ≺′

1 on D1 such that ≺′
1 |B0

=≺′, s ≺′
1 c for any s ∈ B0, c ∈ D1 \ B0, and

u(B0,≺) = u(D1,≺
′
1). Let B1 = D1 \B0. Then for any α ∈ F(Sd) we have

P (α) = uα(B0,≺) = uα(D1,≺
′
1) = uα(B0,≺

′)uα(B1,≺
′
1) = P ′(α)uα(B1,≺

′
1).

Now we will “separate” commutators which have type r1. Let S1 =
{

c ∈ B1

∣

∣

c has type r1
}

. Introduce any linear order ≺1 on B1 which satisfies c1 ≺1 c2 for any
c1 ∈ S1, c2 ∈ B1 \ S1. Applying Lemma 1.15 to B1, find D2 ⊆ C(B1) ⊆ C(Sd), B1 ⊆ D2,
and a linear order ≺′

2 on D2 such that ≺′
2 |B1

=≺1, b ≺′
2 c for any b ∈ B1, c ∈ D2 \ B1,

and u(B1,≺
′
1) = u(D1,≺

′
2). Define a monomial u1: (S

d)d(r1) −→ G by

u1(s1, . . . , sd(r1)) =

{

r1
(

u(s1), . . . , u(sd(r1))
)

if r1(s1, . . . , sd(r1)) ∈ S1

1G otherwise

and by the order ≺1, and let P1 be the monomial mappings induced by u1. Let B2 =
D2 \B1. Then for any α ∈ F(Sd) we have

uα(B1,≺
′
1) = uα(D2,≺

′
2) = uα(S1,≺1)uα(B2,≺

′
2) = P1(α)uα(B2,≺

′
2),

and hence, P (α) = P ′(α)P1(α)uα(B2,≺
′
2). Note also that, since d(c) > 1 for all c ∈ S1,

l(P1) > l(u).
After repeating this procedure k − 1 more times, that is, after consecutively sep-

arating commutators having types r1, . . . , rk, we arrive at the representation P (α) =
P ′(α)P1(α) . . . Pk(α)uα(Bk+1,≺

′
k+1), α ∈ F(Sd), where Bk+1 consists of commutators

of depth > q. Hence, the last term of this product vanishes, and we get P = P ′P1 . . . Pk.

1.16. Corollary. Let P1, P2 be polynomial mappings F(S) −→ G. Then P1P2 = P2P1Q,
where Q is a polynomial mapping of level l(Q) > max

(

l(P1), l(P2)
)

.

1.17. Corollary. The group of polynomial mappings F(S) −→ G is nilpotent (and has
the same nilpotency class as G).

1.18. Corollary. Every polynomial mapping PF(S) −→ G can be represented in the
form P = PuQ, where Pu is a monomial mapping induced by a monomial u of weight
w(u) = w(P ) and Q is a polynomial mapping with l(Q) > l(P ).

Proof. Let w(P ) = (l, d) and let Pu1
. . . Pum

be the “minimal” representation of P . That
is, let Pu1

, . . . , Pum
be the monomial mappings corresponding to monomials (u1,≺1), . . . ,

(um,≺m) with w(ui) ≤ (l, d), i = 1, . . . ,m. Let (ui1 ,≺i1), . . . , (uit ,≺it) be the monomials
whose level is l. By 1.5, we may assume that all these monomials are of the same degree
d. Choose a linear order ≺ on Sd, and using Proposition 1.12 (i), replace all ≺i1 , . . . ,≺it

by ≺ using the identity Puij
= PjQj , j = 1, . . . , t, where Pj is the monomial mapping

induced by the monomial (uij ,≺) and Qj is a polynomial mapping of level > l. Using
Proposition 1.12 (ii), write P = P1 . . . PtQ with l(Q) > l. Now, by Proposition 1.12 (iii)
and (ii), P1 . . . Pt = PuQ

′, where Pu is the monomial mapping induced by the monomial
(ui1 . . . uit ,≺).
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2. Triangular monomials

A monomial u carries superfluous information in comparison with the corresponding
monomial mapping P . Indeed, in every product P (α) =

∏

s∈αd u(s) an entry u(s1, . . . , sd)
appears together with u(sσ(1), . . . , sσ(d)) for all permutations σ of (1, . . . , d). We will now
introduce a more compact “encoding” of monomial mappings. As before, let S be a set
and G be a nilpotent group of class q.

2.1. A triangular monomial of degree d is the pair (v,≺) where v is a mapping F=d(S) −→
G and ≺ is a linear order on F=d(S). A triangular monomial (v,≺) induces a mapping
Pv:F(S) −→ G by the rule

Pv(α) =
∏≺

t∈F=d(α)

v(t).

It is clear that Pv is a monomial mapping. Indeed, let < be a linear order on S. Then
F=d(S) can be embedded into Sd by {s1, . . . , sd} −→ (s1, . . . , sd) under the assumption
s1 < s2 < . . . < sd. (This embedding is the source of the term “triangular”.) Now, put
u(s) = v(s) for s ∈ F=d(S) and u(s) = 1G for s ∈ Sd \ F=d(S), and lift the order ≺ from
F(Sd) to a linear order on Sd. Then the obtained monomial (u,≺) induces the mapping
Pv.

On the other hand, any monomial mapping can be represented as a product of mono-
mial mappings induced by triangular monomials. Indeed, let (u,≺) be a monomial of
degree d and let Pu be the corresponding monomial mapping. For s ∈ Sd, let ts be the
set of entries of s (for example, t(1,2,2,1) = {1, 2}). Let, for each i = d, d − 1, . . . , 0, ≺i be

a linear order on F=i(S). Introduce a new linear order ≺′ on Sd in the following way:
(i) if |ts1 | > |ts2 | then s1 ≺′ s2;
(ii) if |ts1 | = |ts2 | = i and ts1 ≺i ts2 , then s1 ≺′ s2;
(iii) if ts1 = ts2 , then s1 ≺′ s2 iff s1 ≺ s2. Let P ′

u be the monomial mapping induced by
the monomial (u,≺′). Then for α ∈ F(S),

P ′
u(α) =

∏≺′

s∈αd

u(s) =
∏≺′

s∈αd

|ts|=d

u(s)
∏≺′

s∈αd

|ts|=d−1

u(s) . . .
∏≺′

s∈αd

|ts|=0

u(s)

=
∏≺d

t∈F=d(α)

∏≺′

s:ts=t

u(s)
∏≺d−1

t∈F=d−1(α)

∏≺′

s:ts=t

u(s) . . .
∏≺0

t∈F=0(α)

∏≺′

s:ts=t

u(s).

For t ∈ F=i(S) put vi(t) =
∏≺′

s:ts=t u(s), i = d, d−1, . . . , 0. Then the triangular monomials
(vi,≺i), i = d, d − 1, . . . , 0, induce monomial mappings Pi such that P ′

u = PdPd−1 . . . P0.
By Proposition 1.12, Pu = P ′

uQ where Q is a polynomial mapping with l(Q) > l(u). We
arrive at the following fact:

2.2. Proposition. Every polynomial mapping P , w(P ) = (l, d), is representable in the
form P = PdPd−1 . . . P0Q, where for each i = d, d − 1, . . . , 0, Pi is either the monomial
mapping induced by a triangular monomial of weight (l, i) or is trivial, and Q is a polyno-
mial mapping of level > l.
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Proof. By Corollary 1.18 P can be represented in the form P = PuP
′, where Pu is the

monomial mapping induced by a monomial of weight (l, d), and P ′ is a polynomial mapping
of weight < (l, d). Write Pu = PvP

′′, where Pv is the monomial mapping induced by a
triangular monomial of degree d, and w(P ′′) < (l, d). Then P = PvP

′′P ′, with w(P ′′P ′) <
(l, d), and we may apply induction on the weight of P . Moreover, w(Pv) = (l, d), since we
would have w(P ) < (l, d) otherwise.

2.3. The representation of a polynomial mapping P in the form P = PdPd−1 . . . P0Q,
where for each i = d, d − 1, . . . , 0, Pi is the monomial mapping induced by a triangular
monomial vi of degree i and Q is a polynomial mapping of a higher level, is still not
unique. The reason for this is the freedom in choosing an order on F=i(S): if we change
the order on F=i(S) corresponding to some of vi, it will affect the mapping Q. However,
this representation is uniquely defined if we deal with an abelian group, because in this
case Q is trivial:

Proposition. Let S be a set, H be an abelian group and P :F(S) −→ H be a polynomial
mapping of weight (l, d). Then P is uniquely representable in the form P = PdPd−1 . . . P0,
where Pi is the monomial mapping induced by a triangular monomial of degree i, i =
d, d− 1, . . . , 0.

Proof. The uniqueness of this representation follows by induction on i from the formula

P (α) = vi(α)
∏

β⊂α

(

Pi−1(β) . . . P0(β)
)

(2.1)

for α ∈ F=i(S).

2.4. It follows that, in the case of an abelian group G, any polynomial mapping of degree
d from F(S) to G is defined by its values at subsets of S of cardinality ≤ d:

Corollary. Let S be a set and H be an abelian group. If polynomial mappings P, P ′:F(S)
−→ H coincide on F≤d(S), then P = P ′.

Proof. Write P = Pd . . . P0, P
′ = P ′

dP
′
d−1 . . . P

′
0, where for each i = d, d− 1, . . . , 0, Pi, P

′
i

are the monomial mappings induced by, respectively, triangular monomials vi, v
′
i of degree

i. Now, it follows from (2.1) by induction on i that vi = v′i for all i = 0, 1, . . . , d.

2.5. Let us return to the case of a general (nonabelian) nilpotent group. We have defined
the weight w(P ) of a polynomial mapping P as the minimal possible weight of the “senior”
monomial in a representation of P as a product of monomial mappings. If w(P ) = (l, d),
we have P (F(S)) ⊆ Gl. But we may not be sure that, in fact, P (F(S)) is not contained in
Gl+1. (Compare with conventional polynomials: for p(x) = x2+x−x2+1 the degree of p is
less than 2, though its senior term has degree 2.) We will now show that the representation
of P described in Proposition 2.2 gives the “correct” weight of P . We fix a set S and a
nilpotent group G of class q and consider polynomial mappings F(S) −→ G.

Lemma. If P is a nontrivial polynomial mapping of level l ≤ q, then P (F(S)) ⊆ Gl\Gl+1.
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Proof. Write P = PvdPvd−1
. . . Pv0Q, where Pvi , i = d, d − 1, . . . , 0, is the monomial

mapping induced by a triangular monomial vi of weight (l, i), and Q is a polynomial
mapping of level > l. We may assume that vd has level l. Let ϕ:Gl −→ Gl/Gl+1 be
the mapping of factorization. Assume that P (F(S)) ⊆ Gl+1. Then we have 1Gl/Gl+1

=
Pϕ◦vdPϕ◦vd−1

. . . Pϕ◦v0 for the monomial mappings Pϕ◦vi = ϕ ◦ Pvi , i = d, d − 1, . . . , 0,
induced by the triangular monomials ϕ ◦ vi, taking values in the abelian group Gl/Gl+1.
Since ϕ ◦ vd is nontrivial, this is impossible by Proposition 2.3.

2.6. Corollary. Let P = PvdP
′, where Pvd is the monomial mapping induced by a tri-

angular monomial vd of weight (l, d), and P ′ is a polynomial mapping of weight < (l, d).
Then w(P ) = (l, d).

Proof. We have w(P ) ≤ (l, d) by definition. Assume that w(P ) < (l, d). Then w(Pvd) =
w(PP ′−1) < (l, d) as well. Write Pvd = Pvd−1

Pvd−2
. . . Pv0Q, where Pvi , i = d − 1, d −

2, . . . , 0, is the monomial mapping induced by a triangular monomial vi of weight (l, i),
and Q is a polynomial mapping of level > l. Let ϕ:Gl −→ Gl/Gl+1 be the mapping
of factorization. Then we have Pϕ◦vd = Pϕ◦vd−1

Pϕ◦vd−2
. . . Pϕ◦v0 , which is impossible by

Proposition 2.3 since ϕ ◦ vd is nontrivial.

3. The principal part of a polynomial mapping, systems and PET-induction

In this section, we fix a set S and a nilpotent group G of class q.

3.1. Let P :F(S) −→ G be a polynomial mapping of weight (l, d). Represent P in the
form P = PvQ, where Pv is the monomial mapping induced by a triangular monomial v,
w(v) = (l, d), and Q is a polynomial mapping of weight < (l, d). Let ϕ:Gl −→ Gl/Gl+1 be
the mapping of factorization. We call the mapping ϕ◦v:Sd −→ Gl/Gl+1 the principal part
of P and denote it byM(P ). We will say that polynomial mappings P and P ′ are equivalent
and write P ∼ P ′ if w(P ) = w(P ′) and their principal parts coincide: M(P ) = M(P ′).
We define the weight of an equivalence class of polynomial mappings as the weight of any
of its members.

3.2. Proposition. Let P, P ′:F(S) −→ G be polynomial mappings. Then P ∼ P ′ if and
only if w(P−1P ′) < w(P ).

(For comparison: if p and p′ are conventional polynomials, then p and p′ have equal senior
terms if and only if deg(p− p′) < deg(p).)

Proof. Let P ∼ P ′. Write P = PvQ, P ′ = Pv′Q′, where Pv and Pv′ are the mono-
mial mappings induced by triangular monomials v and v′ of weight (l, d) and Q,Q′ are
polynomial mappings of weights < (l, d). Then by Proposition 1.12, P−1P ′ = Pv−1v′Q′′,
where Pv−1v′ is the monomial mapping induced by the monomial v−1v′ and Q′′ has weight
< (l, d). Since ϕ ◦ (v−1v′) = (ϕ ◦ v)−1(ϕ ◦ v′) = 1Gl/Gl+1

, the range of v−1v′ lies in Gl+1

and so, v−1v′ has level ≥ l + 1.
Now, let w(P−1P ′) < w(P ) = (l, d). By Lemma 1.10(iii), w(P ′) = (l, d) as well.

As before, represent P = PvQ and P ′ = Pv′Q′, w(v) = w(v′) = (l, d) and w(Q) <
(l, d), w(Q′) < (l, d). Then P−1P ′ = Pv−1v′Q′′, where w(Q′′) < (l, d) and v−1v′ is a
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monomial mapping of degree d. Since we are given that w(P−1P ′) < (l, d), it follows from
Corollary 2.6 that l(v−1v′) > l. Hence, v−1v′ is trivial modulo Gl+1.

3.3. Proposition. (i) If P,Q:F(S) −→ G are polynomial mappings with w(Q) < w(P ),
then PQ ∼ P .
(ii) If P1, P2, Q:F(S) −→ G are polynomial mappings such that P1 ∼ P2 and P1 6∼ Q, then
Q−1P1 ∼ Q−1P2.
(iii) For any polynomial mappings P,Q:F(S) −→ G one has Q−1PQ ∼ P .

(For comparison: (i) if p, q are conventional polynomials with deg(q) < deg(p), then the
senior terms of p + q and p coincide; (ii) if the senior terms of polynomials p1 and p2
are equal but differ from the senior term of a polynomial q, then the senior terms of the
polynomials p1 + q and p2 + q are equal.)

Proof. (i) is obvious: multiplying by Q does not affect the principal part of P . Under the
assumptions of (ii), if w(Q) 6= w(P1), then (ii) follows from (i). If w(Q) = w(P1) = w(P2),
we have M(Q−1P1) = M(Q)−1M(P1) = M(Q)−1M(P2) = M(Q−1P2), since this mapping
is nontrivial.

To prove (iii), write Q−1PQ = PQ−1QQ′ = PQ′, where w(Q′) < w(P ) by Corol-
lary 1.16, and use (i).

3.4. Let γ ∈ F(S), let P be a mapping F(S) −→ G. Define UγP :F(S \ γ) −→ G by
UγP (α) = P (α ∪ γ).

Proposition. Let P be a polynomial mapping and γ ∈ F(S). Then UγP is a polynomial
mapping and UγP ∼ P |F(S\γ)

.

(For comparison: if p is a conventional polynomial, then p(x) and p(x + c) have equal
senior terms.)

Proof.We may assume that P is the monomial mapping induced by a triangular monomial
(v,≺) of weight (l, d). Moreover, we may assume that the order ≺ on F=d(S) is such that
(i) |s1 ∩ γ| < |s2 ∩ γ| implies s1 ≺ s2, and (ii) elements of F=d(S) whose intersections
with γ are equal “arise in succession”, that is, if s1 ∩ γ = s2 ∩ γ and s1 ≺ s3 ≺ s2, then
s3 ∩ γ = s1 ∩ γ. Then for any α ∈ F(S \ γ),

UγP (α) = P (α ∪ γ)

=
∏≺

t∈F=d(α)

v(t)
(

∏≺

r∈F=1(γ)

∏≺

t∈F=d−1(α)

v(r ∪ t)
∏≺

r∈F=2(γ)

∏≺

t∈F=d−2(α)

v(r ∪ t) . . .
∏≺

r∈F=d(γ)

v(r)
)

.

We have
∏≺

t∈F=d(α) v(α) = P (α), and the expression in the large parentheses is a polyno-

mial mapping of weight < (l, d).

3.5. Corollary. w(P−1UγP ) < w(P ).
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3.6. Remark. Given γ ∈ F(S), define on the set of polynomial mappings P :F(S) −→ G
an operator of “differentiation” Dγ by DγP = P−1UγP . It follows from Corollary 3.5 that
every polynomial mapping P cancels out after applying to P several differential operators of
the formDγ , γ ∈ F(S): there exist k ∈ N such that for any pairwise disjoint γ1, γ2, . . . , γk ∈
F(S), Dγk

Dγk−1
. . . Dγ1

P ≡ 1G. In fact, polynomial mappings are characterized by this
property.

3.7. Given a set S and a nilpotent group G, we call a nonempty finite set of polynomial
mappings F(S) −→ G a system.

Denote by W the set of weights of polynomials F(S) −→ G, that is, the set of pairs
(l, d) with l, d ∈ Z, 1 ≤ l ≤ q, d ≥ 0. Let A be a system; the weight vector ω(A) of
A is a function W −→ {0, 1, 2, . . .} defined by ω(A)(w) = the number of equivalence
classes of polynomial mappings F(S) −→ G of weight w having its representatives in A.
Since A is finite, ω(A) has a finite support. We order the weight vector lexicographically:
ω(A) < ω(A′) if for some w ∈ W one has ω(A)(w) < ω(A′)(w) and ω(A)(w′) = ω(A′)(w′)
for all w′ > w. We say that a system A precedes a system A′ if ω(A) < ω(A′).

3.8. We will prove our main result, Theorem 4.1 below, by utilizing the so-called PET-
induction, the induction on the well ordered set of weight vectors. Our application of the
PET-induction is based on the following lemma:

Lemma. Let S be a set, let G be a nilpotent group and let A be a system of polynomial
mappings F(S) −→ G.
(i) If γ ∈ F(S) and a system A′ of polynomial mappings F(S \ γ) −→ G is such that each
element of A′ is equivalent to P |F(S\γ)

for some P ∈ A, then ω(A′) ≤ ω(A).

(ii) If a system A′ consists of polynomial mappings of the form Q−1PQ where P ∈ A and
Q is a polynomial mapping F(S) −→ G, then ω(A′) ≤ ω(A).
(iii) If A′ is formed by polynomial mappings of the form PQ and QP where P ∈ A and Q
is a polynomial mapping F(S) −→ G with w(Q) < w(P ), then ω(A′) ≤ ω(A).
(iv) Let Q ∈ A be a nontrivial polynomial mapping with w(Q) ≤ w(P ) for all P ∈ A. If
A′ is a system of polynomial mappings of the form Q−1P and PQ−1, then ω(A′) < ω(A).

Proof. (i) is clear from the definition. (ii) and (iii) easily follow from Proposition 3.3 (iii)
and (i) respectively. In (iv), the equivalence classes in A change when we pass to A′, but
the equivalence of elements is preserved and their weights remain the same by Proposi-
tion 3.3 (ii) and Proposition 3.2. The only exception is the equivalence class containing Q:
it splits into equivalence classes having smaller weights.

4. The multiple recurrence theorem

4.1. Our main result is the following theorem:

Theorem. Let G be a nilpotent group of self-homeomorphisms of a compact metric space
(X, ρ). For any weight w ∈ W , any k ∈ N and any ε > 0 there is N ∈ N such that if S is a
set of cardinality ≥ N and A is a system of k polynomial mappings F(S) −→ G satisfying
w(P ) ≤ w and P (∅) = IdX , P ∈ A, then there exist a point x ∈ X and a nonempty
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α ∈ F(S) such that ρ
(

P (α)x, x
)

< ε for all P ∈ A.

Proof. We may assume that X is minimal with respect to the action of G, that is, that
X does not contain proper nonempty closed G-invariant subsets. Note that, under the
assumption of minimality of X, we can strengthen the theorem: we can claim that the set
of points x ∈ X satisfying the requirement of the theorem is dense in X. Indeed, let ε > 0
be given and let U ⊆ X be an open set. Since X is minimal under the action of G, the
G-invariant closed subset X \

⋃

g∈G g−1(U) is empty. Thus one can choose g1, . . . , gn ∈ G

such that
⋃n

i=1 g
−1
i (U) = X. Let δ > 0 be such that ρ(x1, x2) < δ implies ρ(gix1, gix2) < ε

for all i = 1, . . . , n. Now, given a system A, let x ∈ X and n ∈ F(S) satisfy the conclusion
of the theorem for the system

⋃n
i=1 giAg−1

i (which has the same weight as A) and δ, that
is, for all P ∈ A and all 1 ≤ i ≤ n, let ρ(g−1

i P (n)gix, x) < δ. Then ρ(P (n)gix, gix) < ε for
all P ∈ A and i = 1, . . . , n, and one of the points g1x, . . . , gnx lies in U .

We will prove the theorem by PET-induction, the induction on the weight vector of
the system. The statement of the theorem is trivial for the system A = {I}, where I is
the trivial mapping; this gives the basis of the PET-induction. Assume that we are given
w, k and ε, that A is a k-element system of polynomial mappings with w(P ) ≤ w and
P (∅) = I for all P ∈ A, and that the theorem holds for all systems preceding A. We may
also assume that A does not contain constant mappings.

Let Q ∈ A be an element of the minimal weight in A. By Lemma 3.8, the system
A1 =

{

PQ−1
∣

∣ P ∈ A
}

precedes A. The PET-induction hypothesis implies that there
is N1 ∈ N such that whenever |S| ≥ N1, there exist y0 ∈ X and a nonempty α1 ∈ F(S)
satisfying ρ

(

P (α1)Q
−1(α1)y0, y0

)

< ε/2 for all P ∈ A. Assuming |S| > N1, choose a
subset S1 ⊆ S with |S1| = N1, and find such y0 ∈ X and α1 ∈ F(S1). Put x0 = y0 and
x1 = Q(α1)

−1y0, then ρ
(

P (α1)x1, x0

)

< ε/2 for all P ∈ A.

Now, let δ1, 0 < δ1 < ε/4, be such that ρ(x, x1) < δ1 implies ρ
(

P (α1)x, x0

)

< ε/2 for
all P ∈ A. By Lemma 3.8 and Proposition 3.4, the system

A2 =
{

PQ−1, P (α1)
−1(Uα1

P )Q−1
∣

∣ P ∈ A
}

precedes A. Thus, by induction hypothesis there is N2 ∈ N such that if |S \ S1| ≥ N2,
then there are y1 ∈ X and a nonempty α2 ∈ F(S \ S1) such that ρ

(

R(α2)y1, y1) < ε/4.
Furthermore, since we assumeX to be minimal under the action ofG, y1 can be found in the
δ1-neighborhood U of x1. Choose S2 ⊆ S \S1 with |S2| = N2, find y1 ∈ U and α2 ∈ F(S2),
and put x2 = Q(α2)

−1y1. Then ρ
(

P (α2)x2, y1
)

< ε/4 and so, ρ
(

P (α2)x2, x1

)

< ε/2 for

all P ∈ A. Also, ρ
(

P (α1)
−1P (α1 ∪ α2)x2, x1

)

< δ1, and hence, by the choice of δ1,

ρ
(

P (α1 ∪ α2)x2, x0

)

< ε/2 for all P ∈ A.
Continuing this process, we find N1, N2, . . . ∈ N, disjoint S1, S2, . . . ⊆ S with |Sj | =

Nj , x0, x1, x2, . . . ∈ X and a nonempty α1 ∈ F(S1), α2 ∈ F(S2), . . . such that for any
0 ≤ l < m,

ρ
(

P (αl+1 ∪ . . . ∪ αm)xm, xl

)

< ε/2

for all P ∈ A. Let K be the cardinality of a finite ε
2 -net in X. Then there exist 0 ≤ l <

m ≤ K for which ρ(xl, xm) < ε/2. For x = xm and α = αl+1 ∪ . . . ∪ αm we will have
ρ(P (α)x, x) < ε, and for all this to be done it is enough to have |S| ≥ N1 + . . .+NK .
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4.2. In order to derive a “coloring” version of Theorem 4.1, fix r ∈ N and consider the
set Ω of all r-colorings of a nilpotent group G, that is, the set of all mappings from G
to a fixed r-element set. Without loss of generality we may assume that G is countable,
G = {g1, g2, . . .}. A metric ρ on Ω is introduced by ρ(χ1, χ2) = 1/k, where k is the minimal
integer for which χ1(gk) 6= χ2(gk); this turns Ω into a compact metric space. G acts on Ω
by (gχ)(h) = χ(hg).

Given an r-coloring χ of G, denote by X the closure of its orbit Gχ in Ω. Let S be a set
and let P1, . . . , Pk:F(S) −→ G be polynomial mappings satisfying Pi(∅) = 1G, i = 1, . . . , k.
Applying Theorem 4.1 to X (under the assumption that S is large enough) find a coloring
χ′ ∈ X and a nonempty set α ∈ F(S) such that the colorings P1(α)χ

′, . . . , Pk(α)χ
′ are all

close to χ′:

χ′(1G) = Pi(α)χ
′(1G) = χ′

(

Pi(α)
)

, i = 1, . . . , k.

Find h ∈ G for which hχ is close enough to χ′: hχ
(

Pi(α)
)

= χ′
(

Pi(α)
)

, i = 1, . . . , k. Then

χ
(

Pi(α)h
)

, i = 1, . . . , k, do all coincide.

4.3. We have obtained the following theorem:

Theorem. Let G be a nilpotent group. For any w ∈ W and any k, r ∈ N there is N ∈ N

such that if S is a set of cardinality ≥ N and P1, . . . , Pk are polynomial mappings F(S) −→
G which satisfy w(Pi) ≤ w and Pi(∅) = 1G, i = 1, . . . , k, then for any r-coloring of G
there exist a nonempty α ∈ F(S) and h ∈ G such that the elements P1(α)h, . . . , Pk(α)h
have the same color.

4.4. Of course, in the formulation of Theorem 4.4 the element h can be placed on the left
of Pi:

Theorem. Let G be a nilpotent group. For any w ∈ W and any k, r ∈ N there is N ∈ N

such that if S is a set of cardinality ≥ N and P1, . . . , Pk are polynomial mappings F(S) −→
G which satisfy w(Pi) ≤ w and Pi(∅) = 1G, i = 1, . . . , k, then for any r-coloring of G
there exist a nonempty α ∈ F(S) and h ∈ G such that the elements hP1(α), . . . , hPk(α)
have the same color.

Proof. Let χ be a finite coloring of G. Put P ′
i = P−1

i , i = 1, . . . , k, and consider
the coloring χ′ of G defined by χ′(g) = χ(g−1). Find h′ ∈ G and n ∈ F(S) such
that P ′

1(n)h
′, . . . , P ′

k(n)h
′ have the same color with respect to χ′. Then for h = h′−1,

hP1(n), . . . , hPk(n) have the same color with respect to χ.

4.5. Also notice that if G is infinite, then hχ is close to χ′ for infinitely many h ∈ G. This
implies that, in the case of an infinite G, one can find a nonempty α ∈ F(S) and infinitely
many h ∈ G for which hPi(α), i = 1, . . . , k, have the same color:

Theorem. Let G be an infinite nilpotent group. For any w ∈ W and any k, r ∈ N there is
N ∈ N such that if S is a set of cardinality ≥ N and P1, . . . , Pk are polynomial mappings
F(S) −→ G which satisfy w(Pi) ≤ w and Pi(∅) = 1G, i = 1, . . . , k, then for any r-coloring
of G there exist a nonempty α ∈ F(S) and infinitely many h ∈ G such that the elements
hP1(α), . . . , hPk(α) have the same color.
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5. Applications

We will now derive from our main combinatorial results, Theorems 4.4 and 4.5, a few
combinatorial corollaries (some of which were mentioned in the introduction).

5.1. The following is the “linear” case of Theorem 4.4:

Theorem. Let G be a nilpotent group. For any k, r ∈ N and linear orders ≺1, . . . ,≺k

on N there is N ∈ N such that for any r-coloring, G =
⋃r

m=1 Cm, of G and any k

collections g(i) = {g
(i)
j }Nj=1, i = 1, . . . , k, of N elements from G, there exist m ∈ {1, . . . , r},

a nonempty set α ⊆ {1, . . . , N} and h ∈ G such that h
∏≺1

j∈α g
(1)
j , . . . , h

∏≺k

j∈α g
(k)
j ∈ Cm.

If G is inifnite, there exist m ∈ {1, . . . , r} and a nonempty α ⊆ {1, . . . , N} for which the

set
{

h
∣

∣ h
∏≺1

j∈α g
(1)
j , . . . , h

∏≺k

j∈α g
(k)
j ∈ Cm

}

is infinite.

5.2. Theorem 5.1 is a special case of the following statement:

Theorem. Let G be a nilpotent group, let F be the free group generated by a (finite)
set {z1, . . . , zt}, let E ⊂ F be finite, let ≺1, . . . ,≺t be linear orders on N and let r ∈ N.

There exists N ∈ N such that for any r-coloring, G =
⋃r

m=1 Cm, of G and any g
(i)
j ∈ G,

1 ≤ i ≤ t, 1 ≤ j ≤ N , there exist m ∈ {1, . . . , r}, a nonempty set α ⊆ {1, . . . , N}

and h ∈ G such that for the homomorhism ϕ:F −→ G defined by ϕ(zi) =
∏≺i

j∈α g
(i)
j ,

i = 1, . . . , t, one has hϕ(E) ⊆ Cm. If G is infinite then there exist m ∈ {1, . . . , r} and a
nonempty α ⊆ {1, . . . , N} for which the set

{

h ∈ G
∣

∣ hϕ(E) ⊆ Cm

}

is infinite.

5.3. For example, taking E to be {z1z
2
2z

−3
1 , z−1

2 z21z2}, one can find N such that for any

r-coloring of G and any g
(1)
1 , . . . , g

(1)
N , g

(2)
1 , . . . , g

(2)
N there exist 1 ≤ j1 < . . . < jl ≤ N ,

1 ≤ m ≤ r and h ∈ G such that for h1 = g
(1)
j1

. . . g
(1)
jl

and h2 = g
(2)
j1

. . . g
(2)
jl

, the products

hh1h
2
2h

−3
1 and hh−1

2 h2
1h2 have the same color.

5.4. Proof of Theorem 5.2. Let F be the free group generated by {z1, . . . , zm}, let E
be a finite subset of F and let χ be an r-coloring of G. Let N satisfy the conclusion of

Theorem 4.4 for w = (1, 1), k = |E| and the given r. Put S = {1, . . . , N}. Given g
(i)
j ∈ G,

1 ≤ i ≤ m, 1 ≤ j ≤ N , for each i = 1, . . . ,m define a monomial ui:S −→ G by ui(j) = g
(i)
j ,

and let Pi be the monomial mapping induced by ui. Then every element z ∈ F defines
a polynomial mapping Pz:S −→ G in the following way: for z =

∏l
t=1 z

ǫt
it
, ǫt = ±1, let

Pz =
∏l

t=1 P
ǫt
it
. Now Theorem 4.4, applied to the system A = {Pz, z ∈ E}, gives the

desired result. If G is infinite, Theorem 4.5 is applicable.

5.5. From Theorem 5.2 one derives Theorem 0.20, the nilpotent generalization of Hilbert’s
theorem:

Theorem. Let G be an infinite nilpotent group. For any k, r ∈ N there exist N ∈ N

such that for any g
(i)
j ∈ G, 1 ≤ i ≤ k, 1 ≤ j ≤ N , and any r-coloring of G there exist

a nonempty α ⊆ {1, . . . , N} and infinitely many h ∈ G such that for hi =
∏

j∈α g
(i)
j ,

i = 1, . . . , k, the products hhi1hi2 . . . hil with 0 ≤ l ≤ k and distinct i1, i2, . . . , il, are all of
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the same color.

Indeed, the theorem follows if in the notation of Theorem 5.2 we put t = k, let each of
≺1, . . . ,≺t be the natural order on N and let E be the set of all possible products of distinct
zi1 , . . . , zil with l ≤ k.

5.6. We now turn to Theorems 0.16 – 0.17. Let G be a nilpotent group with bounded
torsion: gd = 1G for all g ∈ G. Then any finitely generated subgroup H of G is finite.
(If H is generated by a finite set {h1, . . . , ht} and G has nilpotency class q, then |H| <
(t+ t2 + . . .+ tq)d.) Moreover, there is a finite set E of words in the alphabet {z1, . . . , zt}
such that whenever H is a group generated by h1, . . . , ht ∈ G, and ϕ is the homomorphism
from the free group F generated by {z1, . . . , zt} into G which maps zl to hl, l = 1, . . . , t,
one has ϕ(E) = H. Therefore, by Theorem 5.2 for any r there exists N such that,

given an r-coloring of G and t N -element sequences g(i) = {g
(i)
j }Nj=1, i = 1, . . . , t, in

G, one can find a nonempty set α ⊆ {1, . . . , N} such that the group H generated by

h1 =
∏

j∈α g
(1)
j , . . . , ht =

∏

j∈α g
(t)
j has a monochromatic coset. It only remains to choose

the elements g
(i)
j which would guarantee that the rest of the requirements of Theorems 0.16

and 0.17 are satisfied.

5.7. For a group H let Hq be the q-th term of the lower central series of H.

Theorem. Let q ∈ N and let G be the multiplicative group of (q + 1) × (q + 1) upper
triangular matrices with unit diagonal over an infinite field F of finite characteristic. For
any finite coloring of G and any c ∈ N there exists a subgroup H of G with |Hq| ≥ c such
that the cosets hH of H are monochromatic for infinitely many h ∈ G.

Proof. Let t ∈ N satisfy
(

t
q

)

≥ c and let N ∈ N be large enough so that the conclu-

sion of 5.6 is valid. For ∅ 6= α ⊆ {1, . . . , N}, 1 ≤ i1 < . . . < iq ≤ t and x
(i)
j ∈ G,

i = 1, . . . , q, j = 1, . . . , N , let Rα,i1,...,iq (x
(1)
1 , . . . , x

(t)
N ) be the upper-right corner entry of

the commutator expression
[

. . .
[[
∏

j∈α x
(i1)
j ,

∏

j∈α x
(i2)
j

]

,
∏

j∈α x
(i3)
j

]

, . . . ,
∏

j∈α x
(iq)
j

]

. For
∅ 6= α ⊆ {1, . . . , N} and 1 ≤ i1, . . . , iq ≤ t, Rα,i1,...,iq are distinct nonzero polynomials over

F in the entries of the matrices x
(i)
j . Order the pairs (i, j) ∈ N

2 lexicographically. Hav-

ing g
(i)
j ∈ G with (i, j) < (l, n) already chosen, find g

(l)
n ∈ G so that the polynomials

Rα,i1,...,iq (g
(1)
1 , . . . , g

(l)
n , x

(l)
n+1, . . . , x

(t)
N ) (to x

(i)
j with (i, j) ≤ (l, n) the value g

(i)
j is assigned)

for ∅ 6= α ⊆ {1, . . . , N} and 1 ≤ i1, . . . , iq ≤ t, are all distinct. Then for any nonempty

α ⊆ {1, . . . , N} and hi =
∏

j∈α g
(i)
j , i = 1, . . . , t, the elements

[

. . . [[hi1 , hi2 ], hi3 ], . . . , hiq

]

are distinct for different collections {i1, . . . , iq} with 1 ≤ i1 < . . . < iq ≤ t. This guarantees
that for the group H generated by h1, . . . , ht one has |Hq| ≥

(

t
q

)

≥ c. By 5.6, for any finite

coloring of G there exists a nonempty α ⊆ {1, . . . , N} such that the group H generated by
the corresponding h1, . . . , ht has monochromatic cosets.

5.8. In fact, the field F in Theorem 5.7 need not be infinite; it suffices for F to be large
enough:

Theorem. For any r, q, c ∈ N and a prime integer p there exists K ∈ N such that if F
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is a field of characteristic p and of cardinality ≥ K, then for any r-coloring of the group
G of (q + 1) × (q + 1) upper triangular matrices over F with unit diagonal there exist a
subgroup H of G with |Hq| ≥ c and h ∈ G such that the coset hH is monochromatic.

Indeed, let G̃ be the q-step nilpotent group defined by an infinite set S of generators and
relations gp = 1G, g ∈ S. Then for any F of characteristic p, the group G of q × q upper
triangular matrices over F with unit diagonal is a factor of G̃. Therefore, any r-coloring
of G induces an r-coloring of G̃. If we now take N large enough to satisfy 5.6 for G̃, the
result follows by an argument analogous to that employed in Theorem 5.7.

5.9. Let p be a prime integer and let q be a positive integer < p.

Theorem. For any c, r ∈ N there exists k ∈ N such that for any r-coloring of the free
q-step nilpotent group G with torsion p and with k generators there exists a free q-step
nilpotent subgroup H ⊂ G with torsion p having c generators such that a coset hH of H
is monochromatic.

Proof. G/[G,G] is a k-dimensional vector space over Zp. We leave without proof the
following fact: if (the images of) h1, . . . , ht ∈ G are linearly independent in G/[G,G], then
the group generated by h1, . . . , ht is free of nilpotency class q with torsion p. Now, take
t ≥ c, N ∈ N large enough to satisfy 5.6 (for the free q-step nilpotent group with torsion

p and infinitely many generators) and choose g
(i)
j , i = 1, . . . , q, j = 1, . . . , N , so that the

elements g
(i)
j [G,G] are linearly independent in G/[G,G]. Then find α and define h1, . . . , ht

and H as in 5.6.

6. Concluding remarks

6.1. The nil-IP-multiple recurrence results proved in this paper naturally extend to the
nilpotent setup all known to us results pertaining to the multiple recurrence for actions of
abelian groups by homeomorphisms of compact spaces. Taking into account that analogous
statements are in general no longer true if the homeomorphisms involved generate a solvable
group (see, for example, [F], p. 40), it is perhaps of interest to inquire about the general
framework for multiple recurrence and to discuss some new potential directions of research.

6.2. The most natural question which has to be raised is the following: what about the
validity of the corresponding measurable nil-IP-multiple recurrence statements? This ques-
tion leads us to the following conjecture, which is a measurable counterpart of our Theo-
rem 4.1:

6.3. Conjecture. Let G be a nilpotent group of measure preserving transformations of a
probability measure space (X,B, µ), let S be an infinite set and let P1, . . . , Pk:F(S) −→ G
be polynomial mappings. Then for any A ∈ B with µ(A) > 0 there exists a nonempty
α ∈ F(S) such that µ

(

A ∩ P1(α)A ∩ . . . ∩ Pk(α)A
)

> 0.

Conjecture 6.3, if true, will give a simultaneous extension of the results recently ob-
tained in [L2] and [BM1]. The results in [L2] and [BM1] deal with finitely generated
nilpotent groups and abelian IP-systems respectively; the proof of the above conjecture in
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full generality will almost certainly demand introduction of new ideas and methods.

6.4. Like with some other proofs in the theory of measurable multiple recurrence (see,
for example, [FK1], [FK2], [BL1], [L2], [BM1]) an important auxiliary role in the proof of
Conjecture 6.3 will very likely be played by partition results extending our Theorem 4.1.
While Theorem 4.1 can be viewed as a nilpotent version of our recent “PHJ”, the poly-
nomial Hales-Jewett theorem ([BL2]), and moreover, gives nilpotent extensions of those
corollaries of PHJ which deal with abelian groups, it still lacks certain subtlety which the
full-fledged Nil-PHJ should have. To explain this point better, let us formulate first the
“abelian” PHJ:

6.5. Theorem. ([BL2]) Let G be a commutative semigroup. For any k, d, r ∈ N there
exists N such that if S is a set of cardinality ≥ N and P1, . . . , Pk are monomial mappings
induced, respectively, by monomials u1, . . . , uk:S

d −→ G, then for any r-coloring of G
there exist β1, . . . , βk ∈ F(Sd) and a nonempty α ∈ F(S) with βi ∩ αd = ∅, i = 1, . . . , k,
such that for h = u1(β1) . . . uk(βk) the elements hP1(α), . . . , hPk(α) have the same color.

In comparison with our main combinatorial result, Theorem 4.4, Theorem 6.5 has two
additional features. First, in its formulation one deals with a semigroup, whereas G is
assumed to be a group in Theorem 4.4. Second, in the PHJ we have control over “the shift
parameter” h: h is chosen from an a priori given finite set. While the requirement that G
is a group rather than a semigroup does not seem to be a crucial one, the second feature,
namely, the a priori condition on the range of the “shifting” element h, plays a key role in
the known proofs of results similar to the one conjectured in 6.3. So, the general Nil-PHJ
theorem is still ahead.

6.6.We want to conclude this section by discussing a nilpotent version of another important
partition result, Hindman’s finite sums theorem.

Theorem. ([Hi]) Let r ∈ N. If N =
⋃r

m=1 Cm, then there exist m ∈ {1, . . . , r} and an
infinite set {nj}

∞
j=1 ⊆ Cm such that FS

(

{nj}
∞
j=1

)

\ {0} ⊆ Cm.

Hindman’s theorem, similarly to its rather special corollary, Hilbert’s theorem (Theo-
rem 0.18 above) has a version which makes sense in any semigroup. Namely, given a finite
coloring of an infinite semigroup G, one can always find an infinite sequence {hi}

∞
i=1 ⊆ G

such that all the finite products of the form hi1 . . . hik , i1 < . . . < ik, k ∈ N, will be in
the same color. However, a much more interesting and subtle question is whether one
can obtain a noncommutative extension of Hindman’s theorem, which would guarantee
the existence of monochromatic products of elements of a sequence {hi}

∞
i=1 taken in dif-

ferent orders. The only known nontrivial general result of this nature says that if G is an
amenable group, then for any finite coloring of G one can always find a monochromatic
quadruple {x, y, xy, yx} where, for a large class of noncommutative amenable groups, one
can guarantee xy 6= yx ([BM2]).

6.7. Encouraged by the nilpotent Hilbert theorem (Theorem 0.20 above), we formulate
the following conjecture:

Conjecture. Let G be an infinite nilpotent group of nilpotency class q. Then for any
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finite coloring of G there exist an infinite sequence {hi}
∞
i=1 and K ∈ N such that every

K distinct elements of {hi}
∞
i=1 generate a subgroup of G of nilpotency class q, and all the

products of the form hi1 . . . hik , for k ∈ N and distinct i1, . . . , ik ∈ N, are in the same color.
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