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Abstract

It is known that the closure Orbg(x) of the orbit Orbg(x) of a point x of a compact
nilmanifold X under a polynomial sequence g of translations of X is a disjoint finite union
of subnilmanifolds of X. Assume that g(0) = 1G and let A be the group generated by

the elements of g; we show in this paper that for almost all points x ∈ X, Orbg(x) are

congruent (that is, are translates of each other), with connected components of Orbg(x)
equal to (some of) the connected components of OrbA(x).

1. Nilmanifolds, subnilmanifolds, polynomial sequences and orbits

Let X be a compact nilmanifold, that is, a compact homogeneous space of a (not
necessarily connected) nilpotent Lie group G. Then X is isomorphic to (and will be
identified with) G/Γ, where Γ is a closed uniform subgroup of G, with G acting on X by
left translations. We will denote by π the factorization mapping G −→ X, and by 1X the
point π(1G), so that π(a) = a1X , a ∈ G.

We will list, without proofs, some elementary facts about nilmanifolds; for more details
see [M], [L1], [L2] and [L3].

1.1. If X is not connected, it consists of finitely many isomorphic components, which
may be treated independently; throughout the paper we will assume for simplicity that
X is connected. The connectedness of X does not imply that G is connected; let Go be
the identity component of G and let Γo = Γ ∩ Go. Then X = Go/Γo, so that X is a
homogeneous space of the connected group Go. If X is interpreted this way, the elements
of G \Go act on X not as translations but as unipotent affine transformations. (Example:

the nilmanifoldX =
(
1 Z R

0 1 R

0 0 1

)
/
(
1 Z Z

0 1 Z

0 0 1

)
is isomorphic to the torus R2/Z2, on which the element

(
1 1 0
0 1 α
0 0 1

)
of the group G =

(
1 Z R

0 1 R

0 0 1

)
acts as the transformation (x, y) 7→ (x+ α, y + x).)

Conversely, if X is a nilmanifold corresponding to a group G and A is a nilpotent Lie
group of unipotent affine transformations of X, then the semidirect product G̃ = G × A
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is a nilpotent Lie group that contains both G and A, and X is a homogeneous space of G̃
on which it acts by translations.

1.2. If the subgroup Γ is not discrete, then the connected component Γo of Γ is a normal
subgroup of G, and we may pass from G to G/Γo without changing X (see [L1]). Thus,
we may and will assume that Γ is a discrete subgroup of G.

1.3. After replacing the group Go by its universal cover, we may and will assume that Go

is simply connected. One may then introduce Malcev coordinates on Go, that is, a system
of one-parameter subgroups ei(t), t ∈ R, i = 1, . . . , d, such that the elements e11, . . . , e

1
d

generate Γ and any element a of Go is uniquely representable in the form a = et11 . . . etdd ,
t1, . . . , td ∈ R. The “coordinate” mapping η(t1, . . . , td) = a is a homeomorphism Rd −→ G,
with η(Zd) = Γ. In coordinates, the multiplication in Go is given by a polynomial mapping
Rd × Rd −→ Rd.

Let us say that a mapping ϕ:Rk × Zl −→ Go is polynomial if it is polynomial in
coordinates, that is, if η−1

◦ϕ:Rk ×Zl −→ Rd is a polynomial mapping. Since the change-
of-Malcev-coordinates mapping is an invertible bi-polynomial transformation of Rd, this
definition does not depend on the choice of Malcev coordinates on Go.

1.4. A subnilmanifold Y of X is a closed subset of X of the form Y = Hx, where H is a
closed subgroup of G and x ∈ X. Since π(Go) = X, after replacing H by H ∩Go one may
assume that H ⊆ Go. A subnilmanifold Y is a nilmanifold, since Y ≃ H/

(
(aΓa−1) ∩H

)

where a is any element of G with π(a) = x.

1.5. Given a closed subgroup H of Go and a point x ∈ X, the set Hx may not be closed
and so, may not be a subnilmanifold of X; Hx is closed iff (aΓa−1) ∩ H is a uniform
subgroup of H, where a is any element of π−1(x). In particular, H1X = π(H) is closed iff
H∩Γ is uniform in H; we will say that H is rational in this case. There are only countably
many rational closed subgroups in G.

We say that an element a of G is rational if an ∈ Γ for some n ∈ N. A closed subgroup
H of G is rational iff rational elements are dense in H ([L3]).

We say that a point x = π(a) ∈ X is rational if x = π(a) where a is rational in G.
A subnilmanifold Y of X is rational if it contains at least one rational point of X, and in
this case rational points are dense in Y . X has countably many rational subnilmanifolds.
For any point x ∈ X there are only countably many distinct subnilmanifolds in X that
contain x. (See [L3].)

1.6. LetH be a closed connected subgroup ofGo and let τ :Rr −→ H be Malcev coordinates
on H. Then the mapping η−1

◦τ :Rr −→ Rd is polynomial, and thus in coordinates H is the
image of a polynomial mapping. Let us say that a subset S of Go is polynomial if η−1(S)
is an algebraic subset of Rd, that is, is defined by one or several polynomial equations;
this definition does not depend on the choice of Malcev coordinates on Go. Any closed
connected subgroup H of Go is a polynomial subset of Go; indeed, Malcev coordinates
on Go can be constructed so that they extend Malcev coordinates on H, and in these
coordinates η−1(H) is even a linear (coordinate) subspace of Rd. Since a translation by
an element a ∈ Go is an inveretible bi-polynomial transformation of Rd, the set aH is
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polynomial in Go as well.
Let us say that a set P ⊆ X is polynomial in X if P = π(S) where S is a polynomial

subset in Go. Note that a polynomial subset of X does not have to be closed in X. (It
may even be dense in X, as a line with an irrational slope in the 2-dimensional torus
T2 = (R/Z)2.)

Let us say that a subset of Rd, Go or X is countably polynomial if it is a countable (or
finite) union of polynomial subsets. Note that any proper countably polynomial subset is
of zero (Lebesgue) measure and of first category in the corresponding space.

1.7. Let A be a closed (possibly, discrete) subgroup of G. For x ∈ X, we will denote
by OrbA(x) the orbit of x under the action of A, OrbA(x) = Ax, and by OrbA(x) the
closure of OrbA(x). By abuse of language, we will also refer to OrbA(x) as the orbit of x
under the action of A. It is shown in [L1] that for any x ∈ X, OrbA(x) is a (connected or
disconnected) subnilmanifold of X. (See also [Le] and [Sh].) For any x ∈ X, the action
of A on OrbA(x) is minimal, that is, OrbA(y) = OrbA(x) for any y ∈ OrbA(x). It follows
that X =

⋃
x∈X OrbA(x) is a partition of X. In particular, if OrbA(x) = X for a point

x ∈ X, then OrbA(y) = X for all y ∈ X.
The orbits of distinct points may not be translates of each other, and may even have

different dimensions, as the following examples demonstrate:

1.8. Examples.

(1) Let G =
{(1 x1 x3

0 1 x2

0 0 1

)
, x1 ∈ Z, x2, x3 ∈ R

}
and Γ =

{(1 x1 x3

0 1 x2

0 0 1

)
, x1, x2, x3 ∈ Z

}
; then

X = G/Γ is identified with the 2-dimensional torus T2 = (R/Z)2 with coordinates x2, x3 ∈

T. Let a =
(
1 1 0
0 1 0
0 0 1

)
∈ G, then the action of a onX is given by a(x2, x3) = (x2, x3+x2)mod 1,

(x2, x3) ∈ X. (Equivalently, without even mentioning nilpotent groups, X = T2 and a is
the unipotent transformation of X defined by this formula.) Let A = {an}n∈Z. Then for
x = (x2, x3) ∈ X, OrbA(x) =

{
(x2, u), u ∈ T

}
≃ T if x1 is irrational, and is the finite set{

(x2, nx1), n ∈ N
}
if x1 is rational.

(2) Now let G =
{(1 x1 x3

0 1 x2

0 0 1

)
, x1, x2, x3 ∈ R

}
and Γ =

{(1 x1 x3

0 1 x2

0 0 1

)
, x1, x2, x3 ∈ Z

}
; X =

G/Γ is then the 3-dimensional Heisenberg manifold. Let a =
(
1 α 0
0 1 0
0 0 1

)
∈ G where α is an

irrational number; then the action of a on X is given by ax =
(1 x1+α x3+αx2

0 1 x2

0 0 1

)
modΓ,

x =
(1 x1 x3

0 1 x2

0 0 1

)
∈ X. Let A = {an}n∈Z and x =

(1 x1 x3

0 1 x2

0 0 1

)
∈ X. If α and αx2 are rationally

independent, that is, if x2 6∈ Q + 1
α
Q, the orbit of x =

(1 x1 x3

0 1 x2

0 0 1

)
is the 2-dimensional

torus OrbA(x) =
{(

1 u v
0 1 x2

0 0 1

)
, u, v ∈ T

}
. Otherwise OrbA(x) is a 1-dimensional torus or the

union of several 1-dimensional tori; for example, if x2 = 0 or x2 = 1
α
, then OrbA(x) ={(1 u x3

0 1 x2

0 0 1

)
, u ∈ T

}
.

1.9. Let us say that two subsets Y1, Y2 of X are congruent if V2 = aV1 for some a ∈ Go. In
the examples 1.8 we observe that (i) almost all points of X have congruent orbits (which
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we will call “generic” below); (ii) any “non-generic” orbit is a proper subnilmanifold of
the “generic” one; and (iii) the points having a “non-generic” orbit are all contained in
a countable union of proper subnilmanifolds of X. We will show that (i) and (ii) always
hold; (iii) may fail (see example 2.4 below), and must be replaced by a weaker statement:

1.10. Theorem. Let A be a closed subgroup of G. There exists a closed subnilmanifold

YA of X such that

(a) for any x ∈ X the orbit OrbA(x) is congruent to some subset of YA;

(b) there exists a proper countably polynomial subset P ⊂ X such that for all x 6∈ P the

orbit OrbA(x) is congruent to YA.

This theorem will be proven in Section 2. We will refer to the “standard” orbit YA in the
formulation of the theorem as the generic orbit for A.

1.11. A (multiparameter) polynomial sequence in G is a sequence of the form g(n) =

a
p1(n)
1 . . . a

pr(n)
r , n ∈ Zl, where a1, . . . , an ∈ G and p1, . . . , pr are polynomials Zl −→ Z. In

the terminology introduced above, a polynomial sequence is just a polynomial mapping
Zl −→ G. For x ∈ X we will denote by Orbg(x) the orbit of x under the action of g,
Orbg(x) = g(Zl)x =

{
g(n)x, n ∈ Zl

}
, and by Orbg(x) the closure of Orbg(x); by abuse of

language, we will also refer to Orbg(x) as the orbit of x under the action of g. It is shown
in [L2] that Orbg(x) is of the form

⋃s
i=1 Hxi, where H is a connected closed subgroup of

G and x1, . . . , xs ∈ X, and thus is either a connected subnilmanifold of X or the union of
a finite collection of pairwise disjoint connected subnilmanifolds of same dimension. Let
us call such a union a FU-subnilmanifold ; in particular, any (connected or disconnected)
subnilmanifold of X is a FU-subnilmanifold.

Let us say that a FU-subnilmanifold is rational if all its connected components are
rational subnilmanifolds. It is shown in [L3] that for any rational point x of X, Orbg(x)
is a rational FU-subnilmanifold.

1.12. The orbits under the action of a polynomial sequence do not have to partition X; in
the following example, due to Frantzikinakis and Kra, the generic orbit is the whole space
X, whereas nongeneric orbits are proper subnilmanifolds of X.

Example. Let X be the 3-dimensional torus T3 and let a and b be the transformations of
X defined by ax = (x1+α, x2+2x1+α, x3) and bx = (x1, x2, x3+α), x = (x1, x2, x3) ∈ X.
(As mentioned in 1.1 above, since a and b are commuting unipotent transformations
of X they can be viewed as elements of a nilpotent Lie group for which X is a ho-
mogeneous space.) Define g(n) = anbn

2

, n ∈ Z. Then, for x = (x1, x2, x3), one has
g(n)x = (x1 + nα, x2 + 2nx1 + n2α, x3 + n2α). If x1 is irrational, Orbg(x) = X. If x1 is
rational, Orbg(x) is a proper subtorus or a union of several 2-dimensional subtori of X.
For example, if x1 = 0, Orbg(x) =

{
(u, v, v), u, v ∈ T

}
.

1.13. We will show that, like in the case of a linear action, under the action of a polynomial
sequence g almost all points of X have congruent orbits:
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Theorem. Let g be a polynomial sequence in G.

I. There exists a closed FU-subnilmanifold Yg of X such that

(a) for any x ∈ X the orbit Orbg(x) is congruent to some subset of Yg;

(b) there exists a proper countably polynomial subset P ⊂ X such that for all x 6∈ P the

orbit Orbg(x) is congruent to Yg.

II. Assume that g(0) = 1G, let A be the subgroup of G generated by the elements of g and

let YA be the generic orbit for A. Then Yg consists of one or several components of YA;

in particular, if YA is connected, Yg = YA.

Part I of this theorem will be proved in Section 2, Part II will be proved in Section 4.
In Section 3 we study the property of “normality” of generic orbits. In Section 5 we
investigate the orbit of a subnilmanifold of X.

2. The generic orbits

2.1. Theorem 1.10 and (the first part of) Theorem 1.13 are corollaries of the following
simple general fact:

Theorem. Let M be a set and let ϕ:Rk × M −→ G be a mapping; assume that for

each fixed m ∈ M , ϕ is polynomial with respect to Rk, and for each t ∈ Rk the set Yt =
π(ϕ(t,M)) is a rational FU-subnilmanifold of X. Then there exist a FU-subnilmanifold

Yϕ of X and a proper countably polynomial subset S ⊂ Rk such that

(a) Yt ⊆ Yϕ for all t ∈ Rk;

(b) Yt = Yϕ for all t 6∈ S.

Proof. Let Yϕ be the minimal FU-subnilmanifold of X such that Yt ⊆ Yϕ for all t ∈ Rk.
Assume that Z is a rational FU-subnilmanifold ofX such that Z 6⊇ Y ; then there exists t0 ∈
Rk such that Yt0 6⊆ Z. Let Z1, . . . , Zs be connected components of Z and let H1, . . . , Hs be
connected closed subgroups of Go such that Zi = π(Hi), i = 1, . . . , s. There exists m0 ∈ M
such that ϕ(t0,m0) 6∈

⋃s
i=1 Hi. Each Hi is a polynomial subset of Go, and the mapping

t 7→ ϕt(m0), t ∈ Rk, is polynomial, thus the set SZ =
{
t ∈ Rk : ϕ(t,m0) ∈

⋃s
i=1 Hi

}
is a

proper polynomial subset of Rk. For any t 6∈ SZ we have ϕ(t,m0) 6∈ Z and so, Yt 6= Z. We
now put S =

⋃
SZ , where Z runs over the set of rational FU-subnilmanifolds of X (which

is countable by 1.5).

2.2. We will now deduce a generalization of Theorem 1.10:

Theorem. Let V be a connected subnilmanifold of X, let K be a connected component

of π−1(V ) and A be a closed subgroup of G. There exists a closed subnilmanifold YV,A of

X such that

(a) for any x ∈ V one has OrbA(x) ⊆ aYV,A whenever a ∈ K, π(a) = x;

(b) there exists a proper countably polynomial subset P ⊂ V such that for any x ∈ V \ P
one has OrbA(x) = aYV,A whenever a ∈ K, π(a) = x.

We call the subnilmanifold YV,A the generic orbit for A on V ; in the case V = X, YV,A is
just the generic orbit for A and will be denoted by YA.
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Proof. We may assume that dimV ≥ 1, V ∋ 1X and K is a connected closed subgroup
of Go. Let τ :Rr −→ V be a (Malcev) coordinate system on K. Define a mapping
ϕ:Rr × A −→ G by ϕ(t, b) = τ(t)−1bτ(t). Then ϕ is a polynomial mapping, and for
each t ∈ Rk and a = τ(t) the set

Yt = π(ϕ(t, A)) = π(a−1Aa) = a−1Aa1X = Orba−1Aa(1X)

is a rational subnilmanifold of X. By Theorem 2.1, there exist a FU-subnilmanifold YV,A ⊆
X and a proper countably polynomial subset S ⊂ Rk such that Yt ⊆ YV,A for all t ∈ Rk and
Yt = YV,A for all t ∈ Rk \S. Since all Yt are subnilmanifolds, YV,A is also a subnilmanifold.
Finally, for any x ∈ V , x = π(a) with a = τ(t) ∈ K, we have

OrbA(x) = Ax = Aa1X = a(a−1Aa1X) = a(τ(t)−1Aτ(t))1X = aπ(ϕ(t, A)) = aYt,

so OrbA(x) ⊆ aYV,A, and OrbA(x) = aYV,A whenever x 6∈ P = π(τ(S)).

2.3. We generalize Theorem 1.13.I in a similar manner:

Theorem. Let V be a connected subnilmanifold of X, let K be a connected component

of π−1(V ) and let g:Zl −→ G be a polynomial sequence in G. There exists a closed

FU-subnilmanifold YV,g of X such that

(a) for any x ∈ V one has Orbg(x) ⊆ aYV,g whenever a ∈ K, π(a) = x;
(b) there exists a proper countably polynomial subset P ⊂ V such that for any x ∈ V \ P

one has Orbg(x) = aYV,g whenever a ∈ K, π(a) = x.

We call the FU-subnilmanifold YV,g the generic orbit for g on V ; in the case V = X, YV,g

is just the generic orbit for g and will be denoted by Yg.

Proof. We may assume that g(0) = 1G, dimV ≥ 1, V ∋ 1X and K is a connected closed
subgroup of Go. Let τ :Rr −→ V be a (Malcev) coordinate system on K. Define a mapping
ϕ:Rr ×Zl −→ G by ϕ(t, n) = τ(t)−1g(n)τ(t), then ϕ is a polynomial mapping. For t ∈ Rk

let Yt = π(ϕ(t,Zl)). Putting a = τ(t), we get

Yt = π
(
ϕ(t,Zl)

)
= π

(
a−1g(Zl)a

)
= a−1g(Zl)a1X = Orbga(1X),

where ga is the polynomial mapping ga(n) = a−1g(n)a, n ∈ Zl. Hence, Yt is a rational
FU-subnilmanifold of X. By Theorem 2.1, there exist a FU-subnilmanifold YV,g ⊆ X and
a proper countably polynomial subset S ⊂ Rk such that Yt ⊆ YV,g for all t ∈ Rk and
Yt = YV,g for all t ∈ Rk \ S. For any x ∈ V , x = π(a) with a = τ(t) ∈ K, we have

Orbg(x) = g(Zl)x = g(Zl)a1X = a
(
a−1g(Zl)a1X

)
= a

(
τ(t)−1g(Zl)τ(t)1X

)

= a
(
π(ϕ(t,Zl))

)
= aYt,

so Orbg(x) ⊆ aYV,g, and Orbg(x) = aYV,g whenever x 6∈ P = π(τ(S)).

2.4. The following example shows that the set of points having non-generic orbits may not
be a union of subnilmanifolds of X.
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Example. Let G =

{(1 x1,2 x1,3 x1,4

0 1 x2,3 x2,4

0 0 1 x3,4

0 0 0 1

)
, xi,j ∈ R

}
, Γ =

{(1 x1,2 x1,3 x1,4

0 1 x2,3 x2,4

0 0 1 x3,4

0 0 0 1

)
, xi,j ∈ Z

}

and X = G/Γ. Let b =

(
1 α 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
, where α is an irrational number, and A = {bn}n∈Z.

For a =

(
1 x1,2 x1,3 x1,4

0 1 x2,3 x2,4

0 0 1 x3,4

0 0 0 1

)
∈ G one finds that a−1bna =

(1 nα nαx2,3 nαx2,4

0 1 0 0
0 0 1 0
0 0 0 1

)
, n ∈ Z. So,

the generic orbit for A is the 3-dimensional torus YA =

(
1 u v w
0 1 0 0
0 0 1 0
0 0 0 1

)
; when the numbers

α, αx2,3, αx2,4 are rationally dependent, the point π(a) has a nongeneric orbit, which is a

1- or a 2-dimensional subtorus of YA. Let Q =

{(1 x1,2 x1,3 x1,4

0 1 x2,3 0
0 0 1 x3,4

0 0 0 1

)
, xi,j ∈ R

}
⊂ G, then

every x ∈ π(Q) has a 2-dimensional nongeneric orbit. Q is a connected polynomial subset
of G with π(Q) dense in X.

3. The normality of generic orbits

If g is a polynomial sequence in G with generic orbit Yg on X and x is a point of
X having generic orbit under the action of g, then Orbg(x) = aYg for all a ∈ Go with
π(a) = x. This gives us some additional information about generic orbits.

3.1. Let us say that a subnilmanifold Y of X is normal if Y = Hx where x ∈ X and H is
a normal subgroup of Go.

3.2. The importance of the notion of normality is manifested by the following fact:

Proposition. Let Y be a connected subnilmanifold of X, Y = Hx where x ∈ X and H
is a connected closed subgroup of Go. The following are equivalent:

(i) Y is normal;

(ii) the sets Hy are closed in X for all y ∈ X;

(iii) the subnilmanifolds aY , a ∈ Go, partition X.

Proof. If Y is normal then H is normal in Go, so aH = Ha and thus, aY = Hax for all
a ∈ Go. The sets aH, a ∈ Go, are closed and the sets Hax, a ∈ Go, partition X, so we
have (ii) and (iii).

Assume that the sets Hy are all closed. This means that the sets π(Ha), a ∈ Go,
are closed, and so, the sets π(a−1Ha), a ∈ Go, are closed. Thus, for any a ∈ X, a−1Ha
is a rational subgroup of Go; since there are only countably many of such and a−1Ha
continuously depends on a, a−1Ha = H for all a ∈ Go.

Let now the sets aY , a ∈ Go, partition X. We may assume that x = 1X , so that
Y = π(H) and 1X ∈ Y . Then for any γ ∈ Γo, γY contains 1X , thus γY = Y . Let
γ ∈ Γo; then γHΓo = HΓo and, since H is connected, γH = Hγ′ for some γ′ ∈ Γo. So,
γHγ−1 = Hγ′γ−1, and since γHγ−1 is a subgroup of Go, γHγ−1 = H. It remains to
apply the following lemma:
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3.3. Lemma. If a subgroup H of Go is normalized by Γo then H is normal in Go.

Sketch of the proof. Go is an exponential group, which means that for any a ∈ Go there
exists a one-parametric flow t → at, t ∈ R, passing through a. Let a ∈ Go be such that
at0 ∈ Γ for some nonzero t0 ∈ R. The condition “at normalizes H” is polynomial with
respect to t, so, since ant0 normalizes H for all n ∈ Z, at normalizes H for all t ∈ R. Go is
generated by elements a ∈ Go with at0 ∈ Γ for some nonzero t0 ∈ R, thus Go normalizes
H.

3.4. If Y is a normal subnilmanifold of X, the factor-nilmanifold X/Y is defined. Indeed,
assume that 1X ∈ Y and let H be the closed normal subgroup of Go such that Y = π(H).
Then π−1(Y ) = HΓo is a closed uniform subgroup of Go; define Z = Go/(HΓo). Z is a
nilmanifold, and the fibers of the natural mapping X −→ Z are translates of Y .

3.5. We will now show:

Theorem. Let A be a subgroup of G and YA be the generic orbit for A. The connected

components of YA are normal subnilmanifolds of X.

Proof. Let P be the set, introduced in Theorem 2.2, of points whose orbits under the
action of A are nongeneric on X. Let x 6∈ P ; we may assume that x = 1X . Then, by
Theorem 2.2, for any γ ∈ Γo, OrbA(1X) = OrbA(π(γ)) = γYA. So, γYA = YA for all
γ ∈ Γo. Let H be the closed subgroup of Go such that YA = π(H) and let Ho be the
identity component of H. Let γ ∈ Γo, then γHΓo = HΓo, and γHo = Hocγ′ for some
c ∈ H and γ′ ∈ Γo. So γHoγ−1 = Hocγ′γ−1, and since γHoγ−1 is a subgroup of Go,
γHoγ−1 = Ho. Hence, Ho is normalized by Γo; by Lemma 3.3, Ho is normal in Go.

3.6. Similarly, we have

Theorem. If Yg is the generic orbit for a polynomial sequence g in G then the connected

components of Yg are normal subnilmanifolds of X.

Proof. Let P be the set, introduced in Theorem 2.3, of points whose orbits under the
action of g are nongeneric on X. Let x 6∈ P ; we may assume that x = 1X . Then, by
Theorem 2.3, for any γ ∈ Γo, Orbg(1X) = Orbg(π(γ)) = γYg. So, γYg = Yg for all γ ∈ Γo.
Let H be the connected closed subgroup of Go such that Yg =

⋃s
i=1 Hxi. Let γ ∈ Γo, then

γH = Hcγ′ for some c ∈ Go and γ′ ∈ Γo. So γHγ−1 = Hcγ′γ−1, and since γHγ−1 is a
subgroup of Go, γHγ−1 = H. Hence, H is normalized by Γo; by Lemma 3.3, H is normal
in Go.

3.7. Let us informally describe the picture we have got. Let A be a subgroup of G. If
OrbA(x) = X for some point x ∈ X then OrbA(y) = X for all y ∈ X. Otherwise, the
generic orbit YA for A is a proper subnilmanifold of X. Let Y be a connected component
of YA, then Y is normal in X and thus the factor-nilmanifold Z = X/Y is defined; the
fibers of the projection mapping η:X −→ Z are translates of Y . A acts on Z in a finite
way; after passing to a subgroup of finite index in A we may assume that the action of A
on Z is trivial, and A acts only on the fibers of η. For almost every z ∈ Z the action of A
on η−1(z) is minimal, that is, the subnilmanifold η−1(z) is the orbit of all its points. If a
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fiber V = η−1(z) is not the orbit of its points then the generic orbit YV,A of points of V is
a proper subnilmanifold of V , V is partitioned by translates of its connected component,
etc.

For the action on X of a polynomial sequence g the picture is similar. A difference is
that orbits of distinct points do not partition X; they may contain one another, or have
a nontrivial intersection. That is, assuming g(0) = 1G, even if a translate V = aYg of the
generic orbit Yg for g is the orbit of some its point, V = Orbg(x), it does not have to be
true for all other points of V ; however, in this case V = Orbg(y) for almost all y ∈ V .

4. Relation between linear and polynomial generic orbits

Let g:Zl −→ G be a polynomial sequence in G with g(0) = 1G and let A be the
subgroup of G generated by the elements of g. Let Yg ⊆ X be the generic orbit for g and
YA ⊆ X be the generic orbit for A. We will investigate the relation between Yg and YA.
Clearly, Yg ⊆ YA.

4.1. Let us first assume that Yg is connected. Let x ∈ X be a point of X that has generic
orbit under the action of g; let x = π(a), a ∈ Go, so that Orbg(x) = aYg. For any y ∈ aYg

by Theorem 2.3(a) and Theorem 3.6 we have Orbg(y) ⊆ aYg, so g(n)y ∈ aYg for all n ∈ Zl.
It follows that A preserves Orbg(x) and hence, OrbA(x) ⊆ Orbg(x). Since this is true for
almost all points of X, we have YA ⊆ Yg.

4.2. We obtain the following result:

Proposition. Let g:Zl −→ G be a polynomial sequence in G with g(0) = 1G, let A be the

subgroup of G generated by the elements of g, let Yg ⊆ X be the generic orbit for g and

YA ⊆ X be the generic orbit for A. If Yg is connected, then Yg = YA.

4.3. The case where Yg is not connected can be reduced to the previous one. It is proven
in [L2] that, given a point x ∈ X, there exists a subgroup ω of finite index in Zl such that,
for the restriction gω of g on ω the orbit Orbgω (x) is connected. It follows that for some
subgroup ω ⊆ Zl of finite index the generic orbit Ygω for gω is connected. (Indeed, since
Zl has only countably many subgroups, there exists a subgroup ω of finite index for which
the set of x with connected orbits under the action of gω has positive measure.) Ygω is
then a connected component of Yg.

Let Aω be the group generated by the elements of gω; by Proposition 4.2, the generic
orbit for Aω is Ygω . It is easy to see that Aω has finite index in A, thus Ygω coincides
with one of the connected components of Yω. Hence, the connected components of Yg

have the same dimension as components of YA, and so, coincide with them. This proves
Theorem 1.13.II:

4.4. Theorem. Let g:Zl −→ G be a polynomial sequence in G with g(0) = 1G, let A be

the subgroup of G generated by the elements of g, let Yg ⊆ X be the generic orbit for g
and YA ⊆ X be the generic orbit for A. Then Yg is a union of connected components of

YA.
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4.5. Remark. If V is a connected subnilmanifold of X, the generic orbit YV,g for g on V
may not be a union of connected components of the generic orbit YV,A for A on V . This
can already be seen on the trivial example where V is a single point.

4.6. Corollary. The connected components of Yg are all congruent.

4.7. An open question. I cannot answer the following question: are the connected
components of any nongeneric orbit for g also congruent to each other?

4.8. Let L = [Go, Go]\X; we will call L the maximal factor-torus of X.

Let g be a polynomial sequence in G. It is proven in [L2] that if Orbg(u) = L for a
point u ∈ L then Orbg(x) = X for any x ∈ X.

For “linear” actions on X a stronger statement holds. Now let N = [G,G]\X. N is
a factor-torus of L, and dealing with N is easier than with L since G acts on the torus
N by conventional, “abelian” shifts, whereas on L it may act by “sqew-shifts”, that is, by
unipotent affine transformations (see Example 1.81 above). Let A be a subgroup of G;
then, assuming that G is generated by Go and A, one has OrbA(x) = X for all x ∈ X
whenever OrbA(v) = N for some v ∈ N . Example 1.12 shows that an analogous statement
does not hold for a polynomial action; we, however, get the following:

4.9. Corollary. Let g be a polynomial sequence in G and assume that G is generated by

Go and elements of g. Let N = [G,G]\X, and assume that Orbg(v) = N for some v ∈ N .

Then the generic orbit for g is equal to X.

Proof. We may assume that g(0) = 1G. Let A be the group generated by the elements of
g. Then OrbA(v) = N , so the generic orbit for A is X, and by Proposition 4.2, X is the
generic orbit for g.

5. Orbits of a subnilmanifold

Let V be a connected subnilmanifold of X; we will assume for simplicity that V ∋ 1X
and so, V = π(K) where K is a connected closed subgroup of Go. For a subgroup A of G
or a polynomial sequence g:Zl −→ G we may now investigate (the closures of) the orbits

OrbA(V ) = AV and Orbg(V ) = g(Zl)V of V under the action of A and g respectively. It
is shown in [L3] that OrbA(V ) is a subnilmanifold and Orbg(V ) is a FU-subnilmanifold of
X; in this section we will study a relation between these orbits of V and the generic orbits
for A and g on V .

5.1. We first extend the notion of normality of a subnilmanifold introduced in 3.1. Let Y
be a subnilmanifold of X, Y = Hx where x ∈ X and H is a closed subgroup of Go. Let
us say that Y is normal with respect to V if K normalizes H.

5.2. Proposition. Let H be a closed subgroup of Go and let x ∈ V . If the subnilmanifold

Y = Hx of X is normal with respect to V , then

(i) the sets Hy, y ∈ V , are all closed;

(ii) the set W = HV is a subnilmanifold of X with dimW = dimV +dimY −dim(V ∩Y ),

10



and the sets aY , a ∈ K, partition W ;

(iii) the subnilmanifolds aY ∩ V , a ∈ K, of V are all congruent and partition V .

Proof. We may assume that x = 1X and so, Y = π(H). Since K normalizes H, the set
HK = KH is a closed subgroup of Go. Γ∩K is uniform in K and Γ∩H is uniform in H,
thus Γ ∩ (KH) is uniform in KH. Thus, W = π(HK) = HV is a subnilmanifold of X.

H is a normal subgroup of KH, thus Y is a normal subnilmanifold of W . Hence,
the sets Hy, y ∈ V , are equal to the sets aY , a ∈ K, are closed and partition W .
H ∩ K is a normal subgroup of K, thus Y ∩ V is a normal subnilmanifold of V , so
the sets aY ∩ V = aY ∩ aV = a(Y ∩ V ) partition V . The factor-nilmanifold W/Y is
isomorphic to the factor-nilmanifold V/(V ∩ Y ), so dimW = dimY + dim(V/(V ∩ Y )) =
dimY + dimV − dim(V ∩ Y ).

5.3. Let us denote the subnilmanifold W = HV , appearing in Proposition 5.2, by Y V .

5.4. We now have:

Theorem. Let A be a subgroup of G. The connected components of the generic orbit

YV,A of A on V are normal with respect to V .

5.5. We need an extension of Lemma 3.3:

Lemma. Let H and K be subgroups of Go, let Λ be a uniform subgroup of K and assume

that Λ normalizes H. Then K normalizes H.

The proof of this lemma is similar to the proof of Lemma 3.3.

5.6. Proof of Theorem 5.4. Let Λ = Γ ∩K, this is a uniform subgroup of K. Let P be
the set, introduced in Theorem 2.2, of points of V whose orbits under the action of A are
nongeneric on V . Let x ∈ V \P ; we may assume that x = 1X . Then, by Theorem 2.2, for
any λ ∈ Λ, OrbA(1X) = OrbA(π(λ)) = λYV,A. So, λYV,A = YV,A for all λ ∈ Λ. Let H be
the closed subgroup of Go such that YV,A = π(H) and let Ho be the identity component
of H. For λ ∈ Λ we have λHΓo = HΓo, and λHo = Hocγ for some c ∈ H and γ ∈ Γo. So
λHoλ−1 = Hocγλ−1, and since λHoλ−1 is a subgroup of Go, λHoλ−1 = Ho. Hence, Ho

is normalized by Λ; by Lemma 5.5, Ho is normalized by K.

5.7. As a corollary, we get

Theorem. Let A be a subgroup of G and Y be a connected component of the generic orbit

YV,A of A on V . The connected components of the orbit OrbA(V ) of V under the action

of A are translates of Y V .

Proof. If YV,A = Y is connected, it is normal with respect to V , thus Y V is defined
and is a closed subnilmanifold of X. For every point x ∈ V , x = π(a) with a ∈ K,
we have OrbA(x) ⊆ aY ⊆ Y V , thus OrbA(V ) ⊆ Y V . For almost every point x ∈ V ,
x = π(a) with a ∈ K, we have OrbA(x) = aY , thus

⋃
a∈K OrbA(x) is dense in Y V , and

so, OrbA(V ) = Y V .
If YV,A is not connected and Y is its connected component, we can find in A a subgroup

B of finite index such that YV,B = Y . Thus, OrbB(V ) = Y V . Now, A =
⋃s

i=1 biB for
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some b1, . . . , bs ∈ A, and thus OrbA(V ) =
⋃s

i=1 biY V .

5.8. Similarly, we have

Theorem. Let g be a polynomials sequence in G. The connected components of the generic

orbit YV,g of g on V are normal with respcet to V .

Proof. Let g:Zl −→ G; after passing to a subgroup of finite index in Zl we may assume
that YV,g is connected. Next, we may assume that g(0) = 1G. Let P be the set, introduced
in Theorem 2.3, of points whose orbits under the action of g are nongeneric on X. Let
x 6∈ P ; we may assume that x = 1X . Let Λ = Γ ∩ K, this is a uniform subgroup of K.
By Theorem 2.3, for any λ ∈ Λ, Orbg(1X) = Orbg(π(λ)) = λYV,g. So, λYV,g = YV,g for all
λ ∈ Λ. Let H be the connected closed subgroup of Go such that YV,g = π(H). Let λ ∈ Λ,
then λH = Hcγ for some γ ∈ Γo. So γHλ−1 = Hγλ−1, and since λHλ−1 is a subgroup of
Go, λHλ−1 = H. Hence, H is normalized by Λ; by Lemma 5.5, H is normalized by K.

5.9. And as a corollary we obtain

Theorem. Let g be a polynomial sequence in G. Every connected component of the

orbit Orbg(V ) of V under the action of g is a translate of Y V , where Y is a connected

component of the generic orbit YV,g of g on V .

Proof. Again, by passing to a subgroup of finite index in Zl the problem is reduced to
the case YV,g = Y is connected. Y is normal with respect to V , thus Y V is a closed
subnilmanifold of X. For every point x ∈ V , x = π(a) with a ∈ K, we have Orbg(x) ⊆
aY ⊆ Y V , thus Orbg(V ) ⊆ Y V . For almost every point x ∈ V , x = π(a) with a ∈ K, we
have Orbg(x) = aY , thus

⋃
a∈K Orbg(x) is dense in Y V , and so, Orbg(V ) = Y V .
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ment ergodiques, Ergod. Th. and Dynam. Sys. 11 (1991), 379-391.

[Sh] N. Shah, Invariant measures and orbit closures on homogeneous spaces for actions of sub-

groups generated by unipotent elements, Lie groups and ergodic theory (Mumbai, 1996),

229-271, Tata Inst. Fund. Res., Bombay, 1998.

[M] A. Malcev, On a class of homogeneous spaces, Amer. Math. Soc. Transl. 9 (1962), 276-307.

12


