Orbits on a nilmanifold under the action of a polynomial sequence of translations

A. Leibman

Department of Mathematics The Ohio State University Columbus, OH 43210, USA e-mail: leibman@math.ohio-state.edu

September 25, 2006

Abstract

It is known that the closure $\overline{\operatorname{Orb}}_g(x)$ of the orbit $\operatorname{Orb}_g(x)$ of a point x of a compact nilmanifold X under a polynomial sequence g of translations of X is a disjoint finite union of subnilmanifolds of X. Assume that $g(0) = 1_G$ and let A be the group generated by the elements of g; we show in this paper that for almost all points $x \in X$, $\overline{\operatorname{Orb}}_g(x)$ are congruent (that is, are translates of each other), with connected components of $\overline{\mathrm{Orb}}_q(x)$ equal to (some of) the connected components of $\overline{\mathrm{Orb}}_A(x)$.

1. Nilmanifolds, subnilmanifolds, polynomial sequences and orbits

Let X be a compact nilmanifold, that is, a compact homogeneous space of a (not necessarily connected) nilpotent Lie group G. Then X is isomorphic to (and will be identified with) G/Γ , where Γ is a closed uniform subgroup of G, with G acting on X by left translations. We will denote by π the factorization mapping $G \longrightarrow X$, and by 1_X the point $\pi(1_G)$, so that $\pi(a) = a1_X$, $a \in G$.

We will list, without proofs, some elementary facts about nilmanifolds; for more details see [M], [L1], [L2] and [L3].

1.1. If X is not connected, it consists of finitely many isomorphic components, which may be treated independently; throughout the paper we will assume for simplicity that X is connected. The connectedness of X does not imply that G is connected; let G° be the identity component of G and let $\Gamma^{\circ} = \Gamma \cap G^{\circ}$. Then $X = G^{\circ}/\Gamma^{\circ}$, so that X is a homogeneous space of the connected group G° . If X is interpreted this way, the elements of $G \setminus G^{\circ}$ act on X not as translations but as unipotent affine transformations. (Example: the nilmanifold $X = \begin{pmatrix} 1 & \mathbb{Z} & \mathbb{R} \\ 0 & 1 & \mathbb{R} \\ 0 & 0 & 1 \end{pmatrix} / \begin{pmatrix} 1 & \mathbb{Z} & \mathbb{Z} \\ 0 & 1 & \mathbb{Z} \\ 0 & 0 & 1 \end{pmatrix}$ is isomorphic to the torus $\mathbb{R}^2 / \mathbb{Z}^2$, on which the element $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & \alpha \\ 0 & 0 & 1 \end{pmatrix}$ of the group $G = \begin{pmatrix} 1 & \mathbb{Z} & \mathbb{R} \\ 0 & 1 & \mathbb{R} \\ 0 & 0 & 1 \end{pmatrix}$ acts as the transformation $(x, y) \mapsto (x + \alpha, y + x)$.) Conversely, if X is a nilmanifold corresponding to a group G and A is a nilpotent Lie

group of unipotent affine transformations of X, then the semidirect product $\tilde{G} = G \rtimes A$

Supported by NSF grant DMS-0345350.

is a nilpotent Lie group that contains both G and A, and X is a homogeneous space of \hat{G} on which it acts by translations.

1.2. If the subgroup Γ is not discrete, then the connected component Γ° of Γ is a normal subgroup of G, and we may pass from G to G/Γ° without changing X (see [L1]). Thus, we may and will assume that Γ is a discrete subgroup of G.

1.3. After replacing the group G° by its universal cover, we may and will assume that G° is simply connected. One may then introduce Malcev coordinates on G° , that is, a system of one-parameter subgroups $e_i(t)$, $t \in \mathbb{R}$, $i = 1, \ldots, d$, such that the elements e_1^1, \ldots, e_d^1 generate Γ and any element a of G° is uniquely representable in the form $a = e_1^{t_1} \ldots e_d^{t_d}$, $t_1, \ldots, t_d \in \mathbb{R}$. The "coordinate" mapping $\eta(t_1, \ldots, t_d) = a$ is a homeomorphism $\mathbb{R}^d \longrightarrow G$, with $\eta(\mathbb{Z}^d) = \Gamma$. In coordinates, the multiplication in G° is given by a polynomial mapping $\mathbb{R}^d \times \mathbb{R}^d \longrightarrow \mathbb{R}^d$.

Let us say that a mapping $\varphi : \mathbb{R}^k \times \mathbb{Z}^l \longrightarrow G^{\circ}$ is polynomial if it is polynomial in coordinates, that is, if $\eta^{-1} \circ \varphi : \mathbb{R}^k \times \mathbb{Z}^l \longrightarrow \mathbb{R}^d$ is a polynomial mapping. Since the change-of-Malcev-coordinates mapping is an invertible bi-polynomial transformation of \mathbb{R}^d , this definition does not depend on the choice of Malcev coordinates on G° .

1.4. A subnilmanifold Y of X is a closed subset of X of the form Y = Hx, where H is a closed subgroup of G and $x \in X$. Since $\pi(G^{\circ}) = X$, after replacing H by $H \cap G^{\circ}$ one may assume that $H \subseteq G^{\circ}$. A subnilmanifold Y is a nilmanifold, since $Y \simeq H/((a\Gamma a^{-1}) \cap H)$ where a is any element of G with $\pi(a) = x$.

1.5. Given a closed subgroup H of G° and a point $x \in X$, the set Hx may not be closed and so, may not be a subnilmanifold of X; Hx is closed iff $(a\Gamma a^{-1}) \cap H$ is a uniform subgroup of H, where a is any element of $\pi^{-1}(x)$. In particular, $H1_X = \pi(H)$ is closed iff $H \cap \Gamma$ is uniform in H; we will say that H is *rational* in this case. There are only countably many rational closed subgroups in G.

We say that an element a of G is rational if $a^n \in \Gamma$ for some $n \in \mathbb{N}$. A closed subgroup H of G is rational iff rational elements are dense in H ([L3]).

We say that a point $x = \pi(a) \in X$ is rational if $x = \pi(a)$ where a is rational in G. A subnilmanifold Y of X is rational if it contains at least one rational point of X, and in this case rational points are dense in Y. X has countably many rational subnilmanifolds. For any point $x \in X$ there are only countably many distinct subnilmanifolds in X that contain x. (See [L3].)

1.6. Let H be a closed connected subgroup of G° and let $\tau: \mathbb{R}^r \longrightarrow H$ be Malcev coordinates on H. Then the mapping $\eta^{-1} \circ \tau: \mathbb{R}^r \longrightarrow \mathbb{R}^d$ is polynomial, and thus in coordinates H is the image of a polynomial mapping. Let us say that a subset S of G° is polynomial if $\eta^{-1}(S)$ is an algebraic subset of \mathbb{R}^d , that is, is defined by one or several polynomial equations; this definition does not depend on the choice of Malcev coordinates on G° . Any closed connected subgroup H of G° is a polynomial subset of G° ; indeed, Malcev coordinates on G° can be constructed so that they extend Malcev coordinates on H, and in these coordinates $\eta^{-1}(H)$ is even a linear (coordinate) subspace of \mathbb{R}^d . Since a translation by an element $a \in G^{\circ}$ is an invertible bi-polynomial transformation of \mathbb{R}^d , the set aH is polynomial in G° as well.

Let us say that a set $P \subseteq X$ is *polynomial* in X if $P = \pi(S)$ where S is a polynomial subset in G° . Note that a polynomial subset of X does not have to be closed in X. (It may even be dense in X, as a line with an irrational slope in the 2-dimensional torus $\mathbb{T}^2 = (\mathbb{R}/\mathbb{Z})^2$.)

Let us say that a subset of \mathbb{R}^d , G^o or X is *countably polynomial* if it is a countable (or finite) union of polynomial subsets. Note that any proper countably polynomial subset is of zero (Lebesgue) measure and of first category in the corresponding space.

1.7. Let A be a closed (possibly, discrete) subgroup of G. For $x \in X$, we will denote by $\operatorname{Orb}_A(x)$ the orbit of x under the action of A, $\operatorname{Orb}_A(x) = Ax$, and by $\overline{\operatorname{Orb}}_A(x)$ the closure of $\operatorname{Orb}_A(x)$. By abuse of language, we will also refer to $\overline{\operatorname{Orb}}_A(x)$ as the orbit of x under the action of A. It is shown in [L1] that for any $x \in X$, $\overline{\operatorname{Orb}}_A(x)$ is a (connected or disconnected) subnilmanifold of X. (See also [Le] and [Sh].) For any $x \in X$, the action of A on $\overline{\operatorname{Orb}}_A(x)$ is minimal, that is, $\overline{\operatorname{Orb}}_A(y) = \overline{\operatorname{Orb}}_A(x)$ for any $y \in \overline{\operatorname{Orb}}_A(x)$. It follows that $X = \bigcup_{x \in X} \overline{\operatorname{Orb}}_A(x)$ is a partition of X. In particular, if $\overline{\operatorname{Orb}}_A(x) = X$ for a point $x \in X$, then $\overline{\operatorname{Orb}}_A(y) = X$ for all $y \in X$.

The orbits of distinct points may not be translates of each other, and may even have different dimensions, as the following examples demonstrate:

1.8. Examples.

(1) Let $G = \left\{ \begin{pmatrix} 1 & x_1 & x_3 \\ 0 & 1 & x_2 \\ 0 & 0 & 1 \end{pmatrix}, x_1 \in \mathbb{Z}, x_2, x_3 \in \mathbb{R} \right\}$ and $\Gamma = \left\{ \begin{pmatrix} 1 & x_1 & x_3 \\ 0 & 1 & x_2 \\ 0 & 0 & 1 \end{pmatrix}, x_1, x_2, x_3 \in \mathbb{Z} \right\}$; then $X = G/\Gamma$ is identified with the 2-dimensional torus $\mathbb{T}^2 = (\mathbb{R}/\mathbb{Z})^2$ with coordinates $x_2, x_3 \in \mathbb{T}$. Let $a = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in G$, then the action of a on X is given by $a(x_2, x_3) = (x_2, x_3 + x_2) \mod 1$, $(x_2, x_3) \in X$. (Equivalently, without even mentioning nilpotent groups, $X = \mathbb{T}^2$ and a is the unipotent transformation of X defined by this formula.) Let $A = \{a^n\}_{n \in \mathbb{Z}}$. Then for $x = (x_2, x_3) \in X$, $\overline{\operatorname{Orb}}_A(x) = \{(x_2, u), u \in \mathbb{T}\} \simeq \mathbb{T}$ if x_1 is irrational, and is the finite set $\{(x_2, nx_1), n \in \mathbb{N}\}$ if x_1 is rational.

(2) Now let $G = \left\{ \begin{pmatrix} 1 & x_1 & x_3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, x_1, x_2, x_3 \in \mathbb{R} \right\}$ and $\Gamma = \left\{ \begin{pmatrix} 1 & x_1 & x_3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, x_1, x_2, x_3 \in \mathbb{Z} \right\}; X = G/\Gamma$ is then the 3-dimensional Heisenberg manifold. Let $a = \begin{pmatrix} 1 & x_1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in G$ where α is an irrational number; then the action of a on X is given by $ax = \begin{pmatrix} 1 & x_1 + \alpha & x_3 + \alpha & x_2 \\ 0 & 1 & x_2 \\ 0 & 0 & 1 \end{pmatrix} \mod \Gamma$, $x = \begin{pmatrix} 1 & x_1 & x_3 \\ 0 & 1 & x_2 \\ 0 & 0 & 1 \end{pmatrix} \in X$. Let $A = \{a^n\}_{n \in \mathbb{Z}}$ and $x = \begin{pmatrix} 1 & x_1 & x_3 \\ 0 & 1 & x_2 \\ 0 & 0 & 1 \end{pmatrix} \in X$. If α and αx_2 are rationally independent, that is, if $x_2 \notin \mathbb{Q} + \frac{1}{\alpha}\mathbb{Q}$, the orbit of $x = \begin{pmatrix} 1 & x_1 & x_3 \\ 0 & 1 & x_2 \\ 0 & 0 & 1 \end{pmatrix}$ is the 2-dimensional torus or the union of several 1-dimensional tori; for example, if $x_2 = 0$ or $x_2 = \frac{1}{\alpha}$, then $\overline{\operatorname{Orb}}_A(x) = \left\{ \begin{pmatrix} 1 & u & x_3 \\ 0 & 1 & x_2 \\ 0 & 0 & 1 \end{pmatrix}, u \in \mathbb{T} \right\}$.

1.9. Let us say that two subsets Y_1 , Y_2 of X are congruent if $V_2 = aV_1$ for some $a \in G^{\circ}$. In the examples 1.8 we observe that (i) almost all points of X have congruent orbits (which

we will call "generic" below); (ii) any "non-generic" orbit is a proper subnilmanifold of the "generic" one; and (iii) the points having a "non-generic" orbit are all contained in a countable union of proper subnilmanifolds of X. We will show that (i) and (ii) always hold; (iii) may fail (see example 2.4 below), and must be replaced by a weaker statement:

1.10. Theorem. Let A be a closed subgroup of G. There exists a closed subnilmanifold Y_A of X such that

- (a) for any $x \in X$ the orbit $\overline{\operatorname{Orb}}_A(x)$ is congruent to some subset of Y_A ;
- (b) there exists a proper countably polynomial subset $P \subset X$ such that for all $x \notin P$ the orbit $\overline{\operatorname{Orb}}_A(x)$ is congruent to Y_A .

This theorem will be proven in Section 2. We will refer to the "standard" orbit Y_A in the formulation of the theorem as the generic orbit for A.

1.11. A (multiparameter) polynomial sequence in G is a sequence of the form $g(n) = a_1^{p_1(n)} a_r^{p_r(n)}, n \in \mathbb{Z}^l$, where $a_1, \ldots, a_n \in G$ and p_1, \ldots, p_r are polynomials $\mathbb{Z}^l \longrightarrow \mathbb{Z}$. In the terminology introduced above, a polynomial sequence is just a polynomial mapping $\mathbb{Z}^l \longrightarrow G$. For $x \in X$ we will denote by $\operatorname{Orb}_g(x)$ the orbit of x under the action of g, $\operatorname{Orb}_g(x) = g(\mathbb{Z}^l)x = \{g(n)x, n \in \mathbb{Z}^l\}$, and by $\overline{\operatorname{Orb}}_g(x)$ the closure of $\operatorname{Orb}_g(x)$; by abuse of language, we will also refer to $\overline{\operatorname{Orb}}_g(x)$ as the orbit of x under the action of g. It is shown in [L2] that $\overline{\operatorname{Orb}}_g(x)$ is of the form $\bigcup_{i=1}^s Hx_i$, where H is a connected closed subgroup of G and $x_1, \ldots, x_s \in X$, and thus is either a connected subnilmanifold of X or the union of a finite collection of pairwise disjoint connected subnilmanifolds of same dimension. Let us call such a union a FU-subnilmanifold; in particular, any (connected or disconnected) subnilmanifold of X is a FU-subnilmanifold.

Let us say that a FU-subnilmanifold is *rational* if all its connected components are rational subnilmanifolds. It is shown in [L3] that for any rational point x of X, $\overline{\text{Orb}}_g(x)$ is a rational FU-subnilmanifold.

1.12. The orbits under the action of a polynomial sequence do not have to partition X; in the following example, due to Frantzikinakis and Kra, the generic orbit is the whole space X, whereas nongeneric orbits are proper subnilmanifolds of X.

Example. Let X be the 3-dimensional torus \mathbb{T}^3 and let a and b be the transformations of X defined by $ax = (x_1 + \alpha, x_2 + 2x_1 + \alpha, x_3)$ and $bx = (x_1, x_2, x_3 + \alpha), x = (x_1, x_2, x_3) \in X$. (As mentioned in 1.1 above, since a and b are commuting unipotent transformations of X they can be viewed as elements of a nilpotent Lie group for which X is a homogeneous space.) Define $g(n) = a^n b^{n^2}, n \in \mathbb{Z}$. Then, for $x = (x_1, x_2, x_3)$, one has $g(n)x = (x_1 + n\alpha, x_2 + 2nx_1 + n^2\alpha, x_3 + n^2\alpha)$. If x_1 is irrational, $\overline{\operatorname{Orb}}_g(x) = X$. If x_1 is rational, $\overline{\operatorname{Orb}}_g(x)$ is a proper subtorus or a union of several 2-dimensional subtori of X. For example, if $x_1 = 0$, $\overline{\operatorname{Orb}}_g(x) = \{(u, v, v), u, v \in \mathbb{T}\}$.

1.13. We will show that, like in the case of a linear action, under the action of a polynomial sequence g almost all points of X have congruent orbits:

Theorem. Let g be a polynomial sequence in G.

- I. There exists a closed FU-subnilmanifold Y_g of X such that
- (a) for any $x \in X$ the orbit $\overline{\operatorname{Orb}}_q(x)$ is congruent to some subset of Y_q ;
- (b) there exists a proper countably polynomial subset $P \subset X$ such that for all $x \notin P$ the orbit $\overline{\operatorname{Orb}}_q(x)$ is congruent to Y_q .

II. Assume that $g(0) = 1_G$, let A be the subgroup of G generated by the elements of g and let Y_A be the generic orbit for A. Then Y_g consists of one or several components of Y_A ; in particular, if Y_A is connected, $Y_q = Y_A$.

Part I of this theorem will be proved in Section 2, Part II will be proved in Section 4. In Section 3 we study the property of "normality" of generic orbits. In Section 5 we investigate the orbit of a subnilmanifold of X.

2. The generic orbits

2.1. Theorem 1.10 and (the first part of) Theorem 1.13 are corollaries of the following simple general fact:

Theorem. Let M be a set and let $\varphi : \mathbb{R}^k \times M \longrightarrow G$ be a mapping; assume that for <u>each fixed</u> $m \in M$, φ is polynomial with respect to \mathbb{R}^k , and for each $t \in \mathbb{R}^k$ the set $Y_t = \overline{\pi(\varphi(t, M))}$ is a rational FU-subnilmanifold of X. Then there exist a FU-subnilmanifold Y_{φ} of X and a proper countably polynomial subset $S \subset \mathbb{R}^k$ such that (a) $Y_t \subseteq Y_{\varphi}$ for all $t \in \mathbb{R}^k$; (b) $Y_t = Y_{\varphi}$ for all $t \notin S$.

Proof. Let Y_{φ} be the minimal FU-subnilmanifold of X such that $Y_t \subseteq Y_{\varphi}$ for all $t \in \mathbb{R}^k$. Assume that Z is a rational FU-subnilmanifold of X such that $Z \not\supseteq Y$; then there exists $t_0 \in \mathbb{R}^k$ such that $Y_{t_0} \not\subseteq Z$. Let Z_1, \ldots, Z_s be connected components of Z and let H_1, \ldots, H_s be connected closed subgroups of G° such that $Z_i = \pi(H_i), i = 1, \ldots, s$. There exists $m_0 \in M$ such that $\varphi(t_0, m_0) \not\in \bigcup_{i=1}^s H_i$. Each H_i is a polynomial subset of G° , and the mapping $t \mapsto \varphi_t(m_0), t \in \mathbb{R}^k$, is polynomial, thus the set $S_Z = \{t \in \mathbb{R}^k : \varphi(t, m_0) \in \bigcup_{i=1}^s H_i\}$ is a proper polynomial subset of \mathbb{R}^k . For any $t \notin S_Z$ we have $\varphi(t, m_0) \notin Z$ and so, $Y_t \neq Z$. We now put $S = \bigcup S_Z$, where Z runs over the set of rational FU-subnilmanifolds of X (which is countable by 1.5).

2.2. We will now deduce a generalization of Theorem 1.10:

Theorem. Let V be a connected subnilmanifold of X, let K be a connected component of $\pi^{-1}(V)$ and A be a closed subgroup of G. There exists a closed subnilmanifold $Y_{V,A}$ of X such that

- (a) for any $x \in V$ one has $\overline{\operatorname{Orb}}_A(x) \subseteq aY_{V,A}$ whenever $a \in K$, $\pi(a) = x$;
- (b) there exists a proper countably polynomial subset $P \subset V$ such that for any $x \in V \setminus P$ one has $\overline{\operatorname{Orb}}_A(x) = aY_{V,A}$ whenever $a \in K$, $\pi(a) = x$.

We call the subnilmanifold $Y_{V,A}$ the generic orbit for A on V; in the case V = X, $Y_{V,A}$ is just the generic orbit for A and will be denoted by Y_A .

Proof. We may assume that dim $V \ge 1$, $V \ni 1_X$ and K is a connected closed subgroup of G° . Let $\tau: \mathbb{R}^r \longrightarrow V$ be a (Malcev) coordinate system on K. Define a mapping $\varphi: \mathbb{R}^r \times A \longrightarrow G$ by $\varphi(t, b) = \tau(t)^{-1}b\tau(t)$. Then φ is a polynomial mapping, and for each $t \in \mathbb{R}^k$ and $a = \tau(t)$ the set

$$Y_t = \overline{\pi(\varphi(t,A))} = \overline{\pi(a^{-1}Aa)} = \overline{a^{-1}Aa1_X} = \overline{\operatorname{Orb}}_{a^{-1}Aa}(1_X)$$

is a rational subnilmanifold of X. By Theorem 2.1, there exist a FU-subnilmanifold $Y_{V,A} \subseteq X$ and a proper countably polynomial subset $S \subset \mathbb{R}^k$ such that $Y_t \subseteq Y_{V,A}$ for all $t \in \mathbb{R}^k \setminus S$. Since all Y_t are subnilmanifolds, $Y_{V,A}$ is also a subnilmanifold. Finally, for any $x \in V$, $x = \pi(a)$ with $a = \tau(t) \in K$, we have

$$\overline{\operatorname{Orb}}_A(x) = \overline{Ax} = \overline{Aa1_X} = \overline{a(a^{-1}Aa1_X)} = \overline{a(\tau(t)^{-1}A\tau(t))1_X} = \overline{a\pi(\varphi(t,A))} = aY_t,$$

so $\overline{\operatorname{Orb}}_A(x) \subseteq aY_{V,A}$, and $\overline{\operatorname{Orb}}_A(x) = aY_{V,A}$ whenever $x \notin P = \pi(\tau(S))$.

2.3. We generalize Theorem 1.13.I in a similar manner:

Theorem. Let V be a connected subnilmanifold of X, let K be a connected component of $\pi^{-1}(V)$ and let $g: \mathbb{Z}^l \longrightarrow G$ be a polynomial sequence in G. There exists a closed FU-subnilmanifold $Y_{V,g}$ of X such that

- (a) for any $x \in V$ one has $\overline{\operatorname{Orb}}_g(x) \subseteq aY_{V,g}$ whenever $a \in K$, $\pi(a) = x$;
- (b) there exists a proper countably polynomial subset $P \subset V$ such that for any $x \in V \setminus P$ one has $\overline{\operatorname{Orb}}_g(x) = aY_{V,g}$ whenever $a \in K$, $\pi(a) = x$.

We call the FU-subnilmanifold $Y_{V,g}$ the generic orbit for g on V; in the case V = X, $Y_{V,g}$ is just the generic orbit for g and will be denoted by Y_q .

Proof. We may assume that $g(0) = 1_G$, dim $V \ge 1$, $V \ni 1_X$ and K is a connected closed subgroup of G° . Let $\tau: \mathbb{R}^r \longrightarrow V$ be a (Malcev) coordinate system on K. Define a mapping $\varphi: \mathbb{R}^r \times \mathbb{Z}^l \longrightarrow G$ by $\varphi(t, n) = \tau(t)^{-1}g(n)\tau(t)$, then φ is a polynomial mapping. For $t \in \mathbb{R}^k$ let $Y_t = \overline{\pi(\varphi(t, \mathbb{Z}^l))}$. Putting $a = \tau(t)$, we get

$$Y_t = \overline{\pi(\varphi(t, \mathbb{Z}^l))} = \overline{\pi(a^{-1}g(\mathbb{Z}^l)a)} = \overline{a^{-1}g(\mathbb{Z}^l)a1_X} = \overline{\operatorname{Orb}}_{g^a}(1_X),$$

where g^a is the polynomial mapping $g^a(n) = a^{-1}g(n)a$, $n \in \mathbb{Z}^l$. Hence, Y_t is a rational FU-subnilmanifold of X. By Theorem 2.1, there exist a FU-subnilmanifold $Y_{V,g} \subseteq X$ and a proper countably polynomial subset $S \subset \mathbb{R}^k$ such that $Y_t \subseteq Y_{V,g}$ for all $t \in \mathbb{R}^k$ and $Y_t = Y_{V,g}$ for all $t \in \mathbb{R}^k \setminus S$. For any $x \in V$, $x = \pi(a)$ with $a = \tau(t) \in K$, we have

$$\overline{\operatorname{Orb}}_g(x) = \overline{g(\mathbb{Z}^l)x} = \overline{g(\mathbb{Z}^l)a1_X} = a\big(\overline{a^{-1}g(\mathbb{Z}^l)a1_X}\big) = a\big(\overline{\tau(t)^{-1}g(\mathbb{Z}^l)\tau(t)1_X}\big) \\ = a\big(\overline{\pi(\varphi(t,\mathbb{Z}^l))}\big) = aY_t,$$

so $\overline{\operatorname{Orb}}_g(x) \subseteq aY_{V,g}$, and $\overline{\operatorname{Orb}}_g(x) = aY_{V,g}$ whenever $x \notin P = \pi(\tau(S))$.

2.4. The following example shows that the set of points having non-generic orbits may not be a union of subnilmanifolds of X.

Example. Let
$$G = \left\{ \begin{pmatrix} 1 & x_{1,2} & x_{1,3} & x_{1,4} \\ 0 & 1 & x_{2,3} & x_{2,4} \\ 0 & 0 & 1 & x_{3,4} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
, $x_{i,j} \in \mathbb{R} \right\}$, $\Gamma = \left\{ \begin{pmatrix} 1 & x_{1,2} & x_{1,3} & x_{1,4} \\ 0 & 1 & x_{2,3} & x_{2,4} \\ 0 & 0 & 0 & 1 \end{pmatrix}$, $x_{i,j} \in \mathbb{Z} \right\}$
and $X = G/\Gamma$. Let $b = \begin{pmatrix} 1 & \alpha & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$, where α is an irrational number, and $A = \{b^n\}_{n \in \mathbb{Z}}$.
For $a = \begin{pmatrix} 1 & x_{1,2} & x_{1,3} & x_{1,4} \\ 0 & 1 & x_{2,3} & x_{2,4} \\ 0 & 0 & 1 & x_{3,4} \\ 0 & 0 & 0 & 1 \end{pmatrix} \in G$ one finds that $a^{-1}b^n a = \begin{pmatrix} 1 & n\alpha & n\alpha x_{2,3} & n\alpha x_{2,4} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$, $n \in \mathbb{Z}$. So,
the generic orbit for A is the 3-dimensional torus $Y_A = \begin{pmatrix} 1 & u & v & w \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$; when the numbers
 $\alpha, \alpha x_{2,3}, \alpha x_{2,4}$ are rationally dependent, the point $\pi(a)$ has a nongeneric orbit, which is a
1- or a 2-dimensional subtorus of Y_A . Let $Q = \left\{ \begin{pmatrix} 1 & u_{1,2} & x_{1,3} & x_{1,4} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & x_{3,4} \\ 0 & 0 & 1 & x_{3,4} \end{pmatrix}, x_{i,j} \in \mathbb{R} \right\} \subset G$, then
every $x \in \pi(Q)$ has a 2-dimensional nongeneric orbit. Q is a connected polynomial subset
of G with $\pi(Q)$ dense in X .

3. The normality of generic orbits

If g is a polynomial sequence in G with generic orbit Y_g on X and x is a point of X having generic orbit under the action of g, then $\overline{\operatorname{Orb}}_g(x) = aY_g$ for all $a \in G^{\circ}$ with $\pi(a) = x$. This gives us some additional information about generic orbits.

3.1. Let us say that a subnilmanifold Y of X is normal if Y = Hx where $x \in X$ and H is a normal subgroup of G° .

3.2. The importance of the notion of normality is manifested by the following fact:

Proposition. Let Y be a connected subnilmanifold of X, Y = Hx where $x \in X$ and H is a connected closed subgroup of G° . The following are equivalent: (i) Y is normal;

(ii) the sets Hy are closed in X for all $y \in X$;

(iii) the subnilmanifolds aY, $a \in G^{\circ}$, partition X.

Proof. If Y is normal then H is normal in G° , so aH = Ha and thus, aY = Hax for all $a \in G^{\circ}$. The sets aH, $a \in G^{\circ}$, are closed and the sets Hax, $a \in G^{\circ}$, partition X, so we have (ii) and (iii).

Assume that the sets Hy are all closed. This means that the sets $\pi(Ha)$, $a \in G^{\circ}$, are closed, and so, the sets $\pi(a^{-1}Ha)$, $a \in G^{\circ}$, are closed. Thus, for any $a \in X$, $a^{-1}Ha$ is a rational subgroup of G° ; since there are only countably many of such and $a^{-1}Ha$ continuously depends on a, $a^{-1}Ha = H$ for all $a \in G^{\circ}$.

Let now the sets aY, $a \in G^{\circ}$, partition X. We may assume that $x = 1_X$, so that $Y = \pi(H)$ and $1_X \in Y$. Then for any $\gamma \in \Gamma^{\circ}$, γY contains 1_X , thus $\gamma Y = Y$. Let $\gamma \in \Gamma^{\circ}$; then $\gamma H \Gamma^{\circ} = H \Gamma^{\circ}$ and, since H is connected, $\gamma H = H \gamma'$ for some $\gamma' \in \Gamma^{\circ}$. So, $\gamma H \gamma^{-1} = H \gamma' \gamma^{-1}$, and since $\gamma H \gamma^{-1}$ is a subgroup of G° , $\gamma H \gamma^{-1} = H$. It remains to apply the following lemma:

3.3. Lemma. If a subgroup H of G° is normalized by Γ° then H is normal in G° .

Sketch of the proof. G° is an exponential group, which means that for any $a \in G^{\circ}$ there exists a one-parametric flow $t \to a^t$, $t \in \mathbb{R}$, passing through a. Let $a \in G^{\circ}$ be such that $a^{t_0} \in \Gamma$ for some nonzero $t_0 \in \mathbb{R}$. The condition " a^t normalizes H" is polynomial with respect to t, so, since a^{nt_0} normalizes H for all $n \in \mathbb{Z}$, a^t normalizes H for all $t \in \mathbb{R}$. G° is generated by elements $a \in G^{\circ}$ with $a^{t_0} \in \Gamma$ for some nonzero $t_0 \in \mathbb{R}$, thus G° normalizes H.

3.4. If Y is a normal subnilmanifold of X, the factor-nilmanifold X/Y is defined. Indeed, assume that $1_X \in Y$ and let H be the closed normal subgroup of G° such that $Y = \pi(H)$. Then $\pi^{-1}(Y) = H\Gamma^{\circ}$ is a closed uniform subgroup of G° ; define $Z = G^{\circ}/(H\Gamma^{\circ})$. Z is a nilmanifold, and the fibers of the natural mapping $X \longrightarrow Z$ are translates of Y.

3.5. We will now show:

Theorem. Let A be a subgroup of G and Y_A be the generic orbit for A. The connected components of Y_A are normal subnilmanifolds of X.

Proof. Let P be the set, introduced in Theorem 2.2, of points whose orbits under the action of A are nongeneric on X. Let $x \notin P$; we may assume that $x = 1_X$. Then, by Theorem 2.2, for any $\gamma \in \Gamma^{\circ}$, $\overline{\operatorname{Orb}}_A(1_X) = \overline{\operatorname{Orb}}_A(\pi(\gamma)) = \gamma Y_A$. So, $\gamma Y_A = Y_A$ for all $\gamma \in \Gamma^{\circ}$. Let H be the closed subgroup of G° such that $Y_A = \pi(H)$ and let H° be the identity component of H. Let $\gamma \in \Gamma^{\circ}$, then $\gamma H \Gamma^{\circ} = H \Gamma^{\circ}$, and $\gamma H^{\circ} = H^{\circ} c \gamma'$ for some $c \in H$ and $\gamma' \in \Gamma^{\circ}$. So $\gamma H^{\circ} \gamma^{-1} = H^{\circ} c \gamma' \gamma^{-1}$, and since $\gamma H^{\circ} \gamma^{-1}$ is a subgroup of G° , $\gamma H^{\circ} \gamma^{-1} = H^{\circ}$. Hence, H° is normalized by Γ° ; by Lemma 3.3, H° is normal in G° .

3.6. Similarly, we have

Theorem. If Y_g is the generic orbit for a polynomial sequence g in G then the connected components of Y_g are normal subnilmanifolds of X.

Proof. Let P be the set, introduced in Theorem 2.3, of points whose orbits under the action of g are nongeneric on X. Let $x \notin P$; we may assume that $x = 1_X$. Then, by Theorem 2.3, for any $\gamma \in \Gamma^{\circ}$, $\overline{\operatorname{Orb}}_g(1_X) = \overline{\operatorname{Orb}}_g(\pi(\gamma)) = \gamma Y_g$. So, $\gamma Y_g = Y_g$ for all $\gamma \in \Gamma^{\circ}$. Let H be the connected closed subgroup of G° such that $Y_g = \bigcup_{i=1}^s Hx_i$. Let $\gamma \in \Gamma^{\circ}$, then $\gamma H = Hc\gamma'$ for some $c \in G^{\circ}$ and $\gamma' \in \Gamma^{\circ}$. So $\gamma H\gamma^{-1} = Hc\gamma'\gamma^{-1}$, and since $\gamma H\gamma^{-1}$ is a subgroup of G° , $\gamma H\gamma^{-1} = H$. Hence, H is normalized by Γ° ; by Lemma 3.3, H is normal in G° .

3.7. Let us informally describe the picture we have got. Let A be a subgroup of G. If $\overline{\operatorname{Orb}}_A(x) = X$ for some point $x \in X$ then $\overline{\operatorname{Orb}}_A(y) = X$ for all $y \in X$. Otherwise, the generic orbit Y_A for A is a proper subnilmanifold of X. Let Y be a connected component of Y_A , then Y is normal in X and thus the factor-nilmanifold Z = X/Y is defined; the fibers of the projection mapping $\eta: X \longrightarrow Z$ are translates of Y. A acts on Z in a finite way; after passing to a subgroup of finite index in A we may assume that the action of A on Z is trivial, and A acts only on the fibers of η . For almost every $z \in Z$ the action of A on $\eta^{-1}(z)$ is minimal, that is, the subnilmanifold $\eta^{-1}(z)$ is the orbit of all its points. If a

fiber $V = \eta^{-1}(z)$ is not the orbit of its points then the generic orbit $Y_{V,A}$ of points of V is a proper subnilmanifold of V, V is partitioned by translates of its connected component, etc.

For the action on X of a polynomial sequence g the picture is similar. A difference is that orbits of distinct points do not partition X; they may contain one another, or have a nontrivial intersection. That is, assuming $g(0) = 1_G$, even if a translate $V = aY_g$ of the generic orbit Y_g for g is the orbit of some its point, $V = \overline{\operatorname{Orb}}_g(x)$, it does not have to be true for all other points of V; however, in this case $V = \overline{\operatorname{Orb}}_g(y)$ for almost all $y \in V$.

4. Relation between linear and polynomial generic orbits

Let $g: \mathbb{Z}^l \longrightarrow G$ be a polynomial sequence in G with $g(0) = 1_G$ and let A be the subgroup of G generated by the elements of g. Let $Y_g \subseteq X$ be the generic orbit for g and $Y_A \subseteq X$ be the generic orbit for A. We will investigate the relation between Y_g and Y_A . Clearly, $Y_g \subseteq Y_A$.

4.1. Let us first assume that Y_g is connected. Let $x \in X$ be a point of X that has generic orbit under the action of g; let $x = \pi(a)$, $a \in G^{\circ}$, so that $\overline{\operatorname{Orb}}_g(x) = aY_g$. For any $y \in aY_g$ by Theorem 2.3(a) and Theorem 3.6 we have $\overline{\operatorname{Orb}}_g(y) \subseteq aY_g$, so $g(n)y \in aY_g$ for all $n \in \mathbb{Z}^l$. It follows that A preserves $\overline{\operatorname{Orb}}_g(x)$ and hence, $\overline{\operatorname{Orb}}_A(x) \subseteq \overline{\operatorname{Orb}}_g(x)$. Since this is true for almost all points of X, we have $Y_A \subseteq Y_g$.

4.2. We obtain the following result:

Proposition. Let $g: \mathbb{Z}^l \longrightarrow G$ be a polynomial sequence in G with $g(0) = 1_G$, let A be the subgroup of G generated by the elements of g, let $Y_g \subseteq X$ be the generic orbit for g and $Y_A \subseteq X$ be the generic orbit for A. If Y_q is connected, then $Y_q = Y_A$.

4.3. The case where Y_g is not connected can be reduced to the previous one. It is proven in [L2] that, given a point $x \in X$, there exists a subgroup ω of finite index in \mathbb{Z}^l such that, for the restriction g_{ω} of g on ω the orbit $\overline{\operatorname{Orb}}_{g_{\omega}}(x)$ is connected. It follows that for some subgroup $\omega \subseteq \mathbb{Z}^l$ of finite index the generic orbit $Y_{g_{\omega}}$ for g_{ω} is connected. (Indeed, since \mathbb{Z}^l has only countably many subgroups, there exists a subgroup ω of finite index for which the set of x with connected orbits under the action of g_{ω} has positive measure.) $Y_{g_{\omega}}$ is then a connected component of Y_q .

Let A_{ω} be the group generated by the elements of g_{ω} ; by Proposition 4.2, the generic orbit for A_{ω} is $Y_{g_{\omega}}$. It is easy to see that A_{ω} has finite index in A, thus $Y_{g_{\omega}}$ coincides with one of the connected components of Y_{ω} . Hence, the connected components of Y_g have the same dimension as components of Y_A , and so, coincide with them. This proves Theorem 1.13.II:

4.4. Theorem. Let $g: \mathbb{Z}^l \longrightarrow G$ be a polynomial sequence in G with $g(0) = 1_G$, let A be the subgroup of G generated by the elements of g, let $Y_g \subseteq X$ be the generic orbit for g and $Y_A \subseteq X$ be the generic orbit for A. Then Y_g is a union of connected components of Y_A .

4.5. Remark. If V is a connected subnilmanifold of X, the generic orbit $Y_{V,g}$ for g on V may not be a union of connected components of the generic orbit $Y_{V,A}$ for A on V. This can already be seen on the trivial example where V is a single point.

4.6. Corollary. The connected components of Y_g are all congruent.

4.7. An open question. I cannot answer the following question: are the connected components of any nongeneric orbit for g also congruent to each other?

4.8. Let $L = [G^{\circ}, G^{\circ}] \setminus X$; we will call L the maximal factor-torus of X.

Let g be a polynomial sequence in G. It is proven in [L2] that if $\overline{\operatorname{Orb}}_g(u) = L$ for a point $u \in L$ then $\overline{\operatorname{Orb}}_g(x) = X$ for any $x \in X$.

For "linear" actions on X a stronger statement holds. Now let $N = [G, G] \setminus X$. N is a factor-torus of L, and dealing with N is easier than with L since G acts on the torus N by conventional, "abelian" shifts, whereas on L it may act by "sqew-shifts", that is, by unipotent affine transformations (see Example 1.81 above). Let A be a subgroup of G; then, assuming that G is generated by G° and A, one has $\overline{\operatorname{Orb}}_A(x) = X$ for all $x \in X$ whenever $\overline{\operatorname{Orb}}_A(v) = N$ for some $v \in N$. Example 1.12 shows that an analogous statement does not hold for a polynomial action; we, however, get the following:

4.9. Corollary. Let g be a polynomial sequence in G and assume that G is generated by G° and elements of g. Let $N = [G, G] \setminus X$, and assume that $\overline{\operatorname{Orb}}_g(v) = N$ for some $v \in N$. Then the generic orbit for g is equal to X.

Proof. We may assume that $g(0) = 1_G$. Let A be the group generated by the elements of g. Then $\overline{\text{Orb}}_A(v) = N$, so the generic orbit for A is X, and by Proposition 4.2, X is the generic orbit for g.

5. Orbits of a subnilmanifold

Let V be a connected subnilmanifold of X; we will assume for simplicity that $V \ni 1_X$ and so, $V = \pi(K)$ where K is a connected closed subgroup of G° . For a subgroup A of G or a polynomial sequence $g: \mathbb{Z}^l \longrightarrow G$ we may now investigate (the closures of) the orbits $\overline{\operatorname{Orb}}_A(V) = \overline{AV}$ and $\overline{\operatorname{Orb}}_g(V) = \overline{g(\mathbb{Z}^l)V}$ of V under the action of A and g respectively. It is shown in [L3] that $\overline{\operatorname{Orb}}_A(V)$ is a subnilmanifold and $\overline{\operatorname{Orb}}_g(V)$ is a FU-subnilmanifold of X; in this section we will study a relation between these orbits of V and the generic orbits for A and g on V.

5.1. We first extend the notion of normality of a subnilmanifold introduced in 3.1. Let Y be a subnilmanifold of X, Y = Hx where $x \in X$ and H is a closed subgroup of G° . Let us say that Y is normal with respect to V if K normalizes H.

5.2. Proposition. Let H be a closed subgroup of G° and let $x \in V$. If the subnilmanifold Y = Hx of X is normal with respect to V, then (i) the sets Hy, $y \in V$, are all closed;

(ii) the set W = HV is a subnilmanifold of X with $\dim W = \dim V + \dim Y - \dim(V \cap Y)$,

and the sets aY, $a \in K$, partition W; (iii) the subnilmanifolds $aY \cap V$, $a \in K$, of V are all congruent and partition V.

Proof. We may assume that $x = 1_X$ and so, $Y = \pi(H)$. Since K normalizes H, the set HK = KH is a closed subgroup of G° . $\Gamma \cap K$ is uniform in K and $\Gamma \cap H$ is uniform in H, thus $\Gamma \cap (KH)$ is uniform in KH. Thus, $W = \pi(HK) = HV$ is a subnilmanifold of X.

H is a normal subgroup of *KH*, thus *Y* is a normal subnilmanifold of *W*. Hence, the sets Hy, $y \in V$, are equal to the sets aY, $a \in K$, are closed and partition *W*. $H \cap K$ is a normal subgroup of *K*, thus $Y \cap V$ is a normal subnilmanifold of *V*, so the sets $aY \cap V = aY \cap aV = a(Y \cap V)$ partition *V*. The factor-nilmanifold W/Y is isomorphic to the factor-nilmanifold $V/(V \cap Y)$, so dim $W = \dim Y + \dim(V/(V \cap Y)) =$ dim $Y + \dim V - \dim(V \cap Y)$.

5.3. Let us denote the subnilmanifold W = HV, appearing in Proposition 5.2, by YV.

5.4. We now have:

Theorem. Let A be a subgroup of G. The connected components of the generic orbit $Y_{V,A}$ of A on V are normal with respect to V.

5.5. We need an extension of Lemma 3.3:

Lemma. Let H and K be subgroups of G° , let Λ be a uniform subgroup of K and assume that Λ normalizes H. Then K normalizes H.

The proof of this lemma is similar to the proof of Lemma 3.3.

5.6. Proof of Theorem 5.4. Let $\Lambda = \Gamma \cap K$, this is a uniform subgroup of K. Let P be the set, introduced in Theorem 2.2, of points of V whose orbits under the action of A are nongeneric on V. Let $x \in V \setminus P$; we may assume that $x = 1_X$. Then, by Theorem 2.2, for any $\lambda \in \Lambda$, $\overline{\operatorname{Orb}}_A(1_X) = \overline{\operatorname{Orb}}_A(\pi(\lambda)) = \lambda Y_{V,A}$. So, $\lambda Y_{V,A} = Y_{V,A}$ for all $\lambda \in \Lambda$. Let H be the closed subgroup of G° such that $Y_{V,A} = \pi(H)$ and let H° be the identity component of H. For $\lambda \in \Lambda$ we have $\lambda H \Gamma^{\circ} = H \Gamma^{\circ}$, and $\lambda H^{\circ} = H^{\circ} c \gamma$ for some $c \in H$ and $\gamma \in \Gamma^{\circ}$. So $\lambda H^{\circ} \lambda^{-1} = H^{\circ} c \gamma \lambda^{-1}$, and since $\lambda H^{\circ} \lambda^{-1}$ is a subgroup of G° , $\lambda H^{\circ} \lambda^{-1} = H^{\circ}$. Hence, H° is normalized by Λ ; by Lemma 5.5, H° is normalized by K.

5.7. As a corollary, we get

Theorem. Let A be a subgroup of G and Y be a connected component of the generic orbit $Y_{V,A}$ of A on V. The connected components of the orbit $\overline{\operatorname{Orb}}_A(V)$ of V under the action of A are translates of YV.

Proof. If $Y_{V,A} = Y$ is connected, it is normal with respect to V, thus YV is defined and is a closed subnilmanifold of X. For every point $x \in V$, $x = \pi(a)$ with $a \in K$, we have $\overline{\operatorname{Orb}}_A(x) \subseteq aY \subseteq YV$, thus $\overline{\operatorname{Orb}}_A(V) \subseteq YV$. For almost every point $x \in V$, $x = \pi(a)$ with $a \in K$, we have $\overline{\operatorname{Orb}}_A(x) = aY$, thus $\bigcup_{a \in K} \overline{\operatorname{Orb}}_A(x)$ is dense in YV, and so, $\overline{\operatorname{Orb}}_A(V) = YV$.

If $Y_{V,A}$ is not connected and Y is its connected component, we can find in A a subgroup B of finite index such that $Y_{V,B} = Y$. Thus, $\overline{\operatorname{Orb}}_B(V) = YV$. Now, $A = \bigcup_{i=1}^s b_i B$ for

some $b_1, \ldots, b_s \in A$, and thus $\overline{\operatorname{Orb}}_A(V) = \bigcup_{i=1}^s b_i Y V$.

5.8. Similarly, we have

Theorem. Let g be a polynomials sequence in G. The connected components of the generic orbit $Y_{V,g}$ of g on V are normal with respect to V.

Proof. Let $g: \mathbb{Z}^l \longrightarrow G$; after passing to a subgroup of finite index in \mathbb{Z}^l we may assume that $Y_{V,g}$ is connected. Next, we may assume that $g(0) = 1_G$. Let P be the set, introduced in Theorem 2.3, of points whose orbits under the action of g are nongeneric on X. Let $x \notin P$; we may assume that $x = 1_X$. Let $\Lambda = \Gamma \cap K$, this is a uniform subgroup of K. By Theorem 2.3, for any $\lambda \in \Lambda$, $\overline{\operatorname{Orb}}_g(1_X) = \overline{\operatorname{Orb}}_g(\pi(\lambda)) = \lambda Y_{V,g}$. So, $\lambda Y_{V,g} = Y_{V,g}$ for all $\lambda \in \Lambda$. Let H be the connected closed subgroup of G° such that $Y_{V,g} = \pi(H)$. Let $\lambda \in \Lambda$, then $\lambda H = Hc\gamma$ for some $\gamma \in \Gamma^{\circ}$. So $\gamma H \lambda^{-1} = H \gamma \lambda^{-1}$, and since $\lambda H \lambda^{-1}$ is a subgroup of G° , $\lambda H \lambda^{-1} = H$. Hence, H is normalized by Λ ; by Lemma 5.5, H is normalized by K.

5.9. And as a corollary we obtain

Theorem. Let g be a polynomial sequence in G. Every connected component of the orbit $\overline{\operatorname{Orb}}_g(V)$ of V under the action of g is a translate of YV, where Y is a connected component of the generic orbit $Y_{V,g}$ of g on V.

Proof. Again, by passing to a subgroup of finite index in \mathbb{Z}^l the problem is reduced to the case $Y_{V,g} = Y$ is connected. Y is normal with respect to V, thus YV is a closed subnilmanifold of X. For every point $x \in V$, $x = \pi(a)$ with $a \in K$, we have $\overline{\operatorname{Orb}}_g(x) \subseteq aY \subseteq YV$, thus $\overline{\operatorname{Orb}}_g(V) \subseteq YV$. For almost every point $x \in V$, $x = \pi(a)$ with $a \in K$, we have $\overline{\operatorname{Orb}}_g(x) = aY$, thus $\bigcup_{a \in K} \overline{\operatorname{Orb}}_g(x)$ is dense in YV, and so, $\overline{\operatorname{Orb}}_g(V) = YV$.

Acknowledgment. I thank the anonymous referee for comments and suggestions.

Bibliography

- [L1] A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold, *Ergodic Theory and Dynamical Systems* **25** (2005), 201-213.
- [L2] A. Leibman, Pointwise convergence of ergodic averages for polynomial actions of \mathbb{Z}^d by translations on a nilmanifold, *Ergodic Theory and Dynamical Systems* **25** (2005), 215-225.
- [L3] A. Leibman, Rational sub-nilmanifolds of a compact nilmanifold, Ergodic Theory and Dynamical Systems 26 (2006), 787-798.
- [Le] E. Lesigne, Sur une nil-variété, les parties minimales assocées à une translation sont uniquement ergodiques, *Ergod. Th. and Dynam. Sys.* **11** (1991), 379-391.
- [Sh] N. Shah, Invariant measures and orbit closures on homogeneous spaces for actions of subgroups generated by unipotent elements, *Lie groups and ergodic theory (Mumbai, 1996)*, 229-271, Tata Inst. Fund. Res., Bombay, 1998.
- [M] A. Malcev, On a class of homogeneous spaces, Amer. Math. Soc. Transl. 9 (1962), 276-307.