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Abstract

We show that the orbit of a point on a compact nilmanifold X under the action of
a polynomial sequence of translations on X is well distributed on the union of several
sub-nilmanifolds of X. This implies that the ergodic averages of a continuous function
on X along a polynomial sequence of translations on X converge pointwise.

1. Formulations

1.1. Let G be a nilpotent Lie group and X be a compact homogeneous space of G, that is, X = G/Γ where
Γ is a closed uniform (=cocompact) subgroup of G; we will call X a nilmanifold. G acts on X by left
translations: for a ∈ G and x = bΓ ∈ X one defines ax = abΓ.

1.2. Let x ∈ X and a ∈ G; it is proved in [Le] that the orbit {anx}n∈Z of x under the action of a is uniformly
distributed on a sub-nilmanifold of X. A much more general result of this sort was obtained in [R]: if X
is a finite volume homogeneous space of a (not necessarily nilpotent) Lie group G and W is a connected
subgroup of G generated by one-parameter subgroups whose AdG-actions are unipotent, then for any x ∈ X
there exists a closed subgroup F ⊆ G such that Fx = Wx and Wx is uniformly distributed on Fx. In [Sh2]
this theorem is extended to the case where W is not necessarily connected. In [Sh1] an analogous result was
obtained for continuous polynomial trajectories {P (u)x}u∈Rk , with P being a polynomial mapping Rk −→ G.
We consider here discrete polynomial trajectories {g(n)x}n∈Z on nilmanifolds only.

1.3. A sequence {g(n)}n∈Z in G of the form g(n) = a
p1(n)
1 . . . a

pm(n)
m , where a1, . . . , am ∈ G and p1, . . . , pm are

polynomials taking on integer values on the integers, is called polynomial. Polynomial sequences in nilpotent
groups arise very naturally, and many classical ergodic-theoretical results remain valid after replacing the
sequence of powers Tn of a (unitary, continuous, measure preserving) transformation T by a polynomial
sequence in a nilpotent group of transformations (see [L1], [L2], [BL]).

1.4. Our main goal is to establish the following fact:

Theorem A. Let g be a polynomial sequence in G. For any x ∈ X, f ∈ C(X) and Følner sequence
{ΦN}∞N=1 in Z, lim

N→∞

1
|ΦN |

∑
n∈ΦN

f
(
g(n)x

)
exists.

1.5. We will denote by µ the G-invariant probability measure on X. A sequence {xn}n∈Z of points of X is
said to be well distributed on X if for any open subset U of X the set

{
n ∈ Z : xn ∈ U

}
has density µ(U) with

respect to any Følner sequence in Z. Equivalently, {xn}n∈Z is well distributed on X if for any continuous
function f on X and any Følner sequence {ΦN}∞N=1 in Z one has lim

N→∞

1
|ΦN |

∑
n∈ΦN

f
(
xn

)
=

∫
X
f dµ.
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1.6. A closed subset Y of X of the form Y = Hx, where x ∈ X and H is a closed subgroup of G, will be
called a sub-nilmanifold of X. We will show that the orbit of any point of X under the action of a polynomial
sequence of translations on X is well distributed on the union of several sub-nilmanifolds of X:

Theorem B. Let g be a polynomial sequence in G and let x ∈ X. There exist a connected closed subgroup
H of G and points x1, x2, . . . , xk ∈ X, not necessarily distinct, such that the sets Yj = Hxj, j = 1, . . . , k,

are closed sub-nilmanifolds of X, Orb(x) = {g(n)x}n∈Z
=

⋃k
j=1 Yj, the sequence g(n)x, n ∈ Z, cyclically

visits the sets Y1, . . . , Yk and for each j = 1, . . . , k the sequence {g(j + nk)}n∈Z is well distributed on Yj.

1.7. Example. The following simple example demonstrates that, unlike the linear case, in the polynomial

case Orb(x) need not be a sub-nilmanifold of X: for G = R, Γ = Z and g(n) = n2

3 ∈ R one has Orb(0) ={
0, 1

3

}
⊂ R/Z.

1.8. Regarding Theorem B the following question remains open to us: if k ≥ 2, are the nilmanifolds Y1, . . . , Yk

isomorphic to each other?

1.9. If Y is a sub-nilmanifold of X, Y = Hx, let µY denote the H-invariant probability measure on Y . Using
this notation, we get the following corollary of Theorem B:

Corollary. For any f ∈ C(X) and any Følner sequence {ΦN}∞N=1 in Z, lim
N→∞

1
|ΦN |

∑
n∈ΦN

f
(
g(n)x

)
=

1
k

∑k
j=1

∫
Yj

f dµYj
.

In particular, Theorem A follows.

1.10. Assume that X is connected, and let Go be the identity component of G. Then X is a homogeneous
space of Go, X = Go/(Γ ∩ Go). Let T = [Go, Go]\X = Go

/(
(Γ ∩ Go)[Go, Go]

)
. T is a compact connected

abelian Lie group, that is, a torus; we will refer to it as to the maximal factor-torus of X. Let p:X −→ T
be the factorization mapping. In this situation we obtain a simple criterion of “ergodicity” of a polynomial
sequence of translations of X (cf. [P1] and [P2]):

Theorem C. Assume that X is connected, let x ∈ X and let g be a polynomial sequence in G. The
following are equivalent:

(i) the sequence {g(n)x}n∈Z is dense in X;

(ii) {g(n)x}n∈Z is well distributed on X;

(iii) the sequence {g(n)p(x)}n∈Z is dense/well distributed on T .

1.11. Let G be a nilpotent Lie group with a uniform subgroup Γ and let the discrete group G/Go be finitely

generated. Then one can show that G is a factor, η: G̃ −→ G, of a simply-connected nilpotent Lie group G̃.
Let Γ̃ = η−1(Γ). Further, there exists a connected simply-connected nilpotent Lie group Ĝ with a uniform

subgroup Γ̂ such that G̃ ⊆ Ĝ and Γ̃ = Γ̂ ∩ G̃. So, X = G/Γ is isomorphic to a sub-nilmanifold of X̂ = Ĝ/Γ̂,

with all translations from G represented in Ĝ. It follows that when proving Theorem B, one may restrict
himself to the case of a connected simply-connected G. We will not utilize this fact.

1.12. We first prove analogs of Theorems B and C in the “linear” case, where g is not a polynomial sequence
but a group homomorphism from a finitely generated amenable group. These results are a very special case
of general theorems of Ratner and Shah ([R], [Sh2]), but using a method of Parry ([P1] and [P2]) we can
obtain a simple and independent proof thereof. Then we exploit Furstenberg’s idea ([F], p. 31) to represent
a “polynomial” orbit of a point on a nilmanifold as a projection of the “linear” orbit of a point on a “larger”
nilmanifold.

2. Linear case

We suppose that G is a nilpotent Lie group, Γ is a closed uniform subgroup of G and X = G/Γ is a
compact nilmanifold.
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2.1. We will denote by Go the identity component of G. If X is connected, then X = (GoΓ)/Γ and G = GoΓ.
If X is disconnected then Xo = (GoΓ)/Γ ≃ Go/(Γ ∩ Go) is a connected component of X and, since X is

compact, X is a disjoint union of finitely many translates of Xo: X =
⋃l

j=1 bjX
o, b1, . . . , bl ∈ G. Thus, X

is a homogeneous space of the group generated by Go and b1, . . . , bl. When we study the action on X of
a finitely generated subgroup A of G, we may replace G by the group generated by Go, b1, . . . , bl and the
generators of A. Therefore, we may and will assume that the group G/Go is finitely generated.

2.2. Let π be the factorization mapping G −→ X = G/Γ and let x = π(1G) ∈ X. Let H be a closed
subgroup of G. In general, the image of H in X, π(H) = Hx = (HΓ)/Γ, need not be a submanifold of
X. H acts on Hx with Stab(x) = Γ ∩ H, so one has a continuous bijection ξ:H

/
(Γ ∩ H) −→ Hx. If

Γ ∩ H is uniform in H then H
/
(Γ ∩ H) is compact, so ξ is a homeomorphism and Hx is a homogeneous

space of H. On the other hand, H is locally compact and separable, so when Hx is locally compact ξ is a
homeomorphism ([MZ] Theorem 2.13). Thus, if Hx is closed, that is, if HΓ is closed in G, then ξ is again
a homeomorphism. It follows that the statements “Hx is a closed sub-nilmanifold of X”, “HΓ is closed in
G” and “Γ ∩H is uniform in H” are equivalent.

2.3. We will now list some properties of nilpotent Lie groups which we are going to use in the sequel. Most
of this can be found in, or deduced from, [M].

2.4. Any connected nilpotent Lie group G is exponential, that is, the exponential mapping G −→ G from
the Lie algebra G of G is surjective. It follows that for any a ∈ G there exists a one-parameter subgroup
{α(t)}t∈R in G such that α(1) = a. We will write at for α(t), assuming that α is fixed for a.

2.5. Let G be a connected simply-connected nilpotent Lie group and Γ be a closed uniform subgroup of G.
Then G possesses a Malcev basis, a finite set {a1, . . . , al} ⊆ Γ such that any a ∈ G is uniquely representable
in the form a = at11 . . . a

tl
l , t1, . . . , tl ∈ R.

The correspondence a 7→ (t1, . . . , tl) produces a homeomorphism G −→ R
l. Under this homeomorphism

the multiplication in G is given by a polynomial mapping R
l × R

l −→ R
l. It follows that any polynomial

sequence g in G can be written in the basis {a1, . . . , al}: g(n) = a
p1(n)
1 . . . a

pl(n)
l , p1, . . . , pl ∈ R[n].

2.6. Any connected nilpotent Lie group G is a factor group of a connected simply-connected nilpotent Lie
group G̃. (One can take as G̃ the universal cover of G.) Choose a Malcev basis in G̃ and let {a1, . . . , al}
be the projection of this basis to G. Then any a ∈ G is representable (not necessarily uniquely) in the form
a = at11 . . . a

tl
l , t1, . . . , tl ∈ R.

If G is not connected, then the finitely generated group G/Go also has a basis, that is, a subset
{e1, . . . , em} ⊆ G such that every element of G/Go is representable in the form en1

1 . . . e
nm
m Go, n1, . . . , nm ∈ Z.

Every element of G is then representable in the form at11 . . . a
tl
l e

n1

1 . . . e
nm
m , t1, . . . , tl ∈ R, n1, . . . , nm ∈ Z. In

the coordinates (t1, . . . , tl, n1, . . . , nm) the multiplication in G is given by ordinary polynomials; it follows

that any polynomial sequence in G can be written as g(n) = a
p1(n)
1 . . . a

pl(n)
l e

q1(n)
1 . . . e

qm(n)
m , where p1, . . . , pl are

polynomials Z −→ R and q1, . . . , qm are polynomials Z −→ Z.

2.7. If Γ is a uniform subgroup of G then, in the notation of 2.6, a1, . . . , al can be taken from Γ. If G = GoΓ
then e1, . . . , em can also be chosen from Γ. Otherwise GoΓ has finite index in G and so, there exists d ∈ N

such that bd ∈ GoΓ for any b ∈ G.

Lemma. For any b ∈ G there exists c ∈ Go such that (bc)d ∈ Γ.

Proof. Let G = G1 ⊃ G2 ⊃ . . . ⊃ Gr ⊃ Gr+1 = {1G} be the lower central series of G, and let Go
i be the

identity component of Gi, i = 1, . . . , r. Assume that bd = cγ with c ∈ Go
i and γ ∈ Γ. Then (bc−1/d)d = c′γ

with c′ ∈ Go
i+1. By the (descending) induction on i, we are done.

Now let {e1, . . . , em} ⊆ G be a basis of G/Go. After replacing each ej by ejcj with an appropriate
cj ∈ Go we will have edj ∈ Γ, j = 1, . . . ,m.
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2.8. Assume that Γ is not discrete and let Γo be the identity component of Γ. Then Γo is a normal subgroup
of G. This fact is proved in [M] only in the case of connected G, but the argument works in the general
case as well, and we will repeat it now. Let G be the Lie algebra of G and let Ad:G −→ Aut(G), a 7→ Ada,
be the adjoint representation of G. Let a ∈ G. Since Ada is unipotent, in a proper basis in G the matrix
representing Ada is upper triangular with unit diagonal. It follows that (in any basis) the entries of the
matrix representing Adat , t ∈ R, (or Adan , n ∈ Z, if a 6∈ Go) are polynomials in t (respectively, in n). Let
L ⊆ G be the tangent space of Γo. Then a−tΓoat = Γo iff Adat(L) = L; this is a linear condition on the
entries of Adat and so, a polynomial condition Pa(t) = 0 on t. Now, choose a basis a1, . . . , al, e1, . . . , em in G
with a1, . . . , al, e

d
1, . . . , e

d
m ∈ Γ. Then for each ai, Pai

(t) = 0 for all t ∈ Z, hence, Pai
≡ 0 and a−tΓoat = Γo

for all t ∈ R. Similarly, for each ej , Pej (n) = 0 for all n ∈ dZ, so Pej ≡ 0 and e−nΓoen = Γo for all n ∈ Z.
Since a1, . . . , al, e1, . . . , em generate G, Γo is normal in G.

After replacing G by G/Γo and Γ by Γ/Γo we arrive at the situation where Γ is discrete. We thus may
and will assume that Γ is a discrete uniform subgroup of G.

2.9. [a, b] will stand for a−1b−1ab. We will denote by Gi the members of the lower central series of G,
G1 = G, G2 = [G,G] and Gi = [Gi−1, G], i = 3, . . . , r, where r is the nilpotency class of G. For each
i = 1, . . . , r, let Go

i be the identity component of Gi. Note that (Go)i ⊆ Go
i and that this inclusion may

be strict: for G =
{(

1ny
0 1 x
0 0 1

)
: n ∈ Z, x, y ∈ R

}
one has Go =

{(
10y
01x
00 1

)
: x, y ∈ R

}
and (Go)2 = {1G}, whereas

Go
2 = G2 =

{(
10y
010
001

)
: y ∈ R

}
.

2.10. Given S ⊆ G, by 〈S〉 we will denote the subgroup of G generated by S. Let S ⊆ G be any set
such that G = 〈Go, S〉. Then Gi is generated by elements of the form b =

[
. . . [[b1, b2], b3], . . . , bi

]
with

b1, . . . , bi ∈ Go ∪ S. If at least one of b1, . . . , bi belongs to Go, then b ∈ Go
i . If all b1, . . . , bi ∈ S, then

b ∈ Ri := 〈S〉 ∩Gi. Hence,

Lemma. Gi = 〈Go
i , Ri〉.

2.11. For each i = 1, . . . , r, Gi and GiΓ are closed subgroups of G and (GiΓ)
/
Γ is a closed submanifold of

X. This fact is well known in the case where G is connected and simply-connected ([M]); here is the sketch
of the proof in the general case.

Define Γi = Γ ∩Gi, i = 1, . . . , r. Fix i. We have a continuous mapping Gi/Γi −→ (GiΓ)
/
Γ. If Gi/Γi is

compact, then (GiΓ)
/
Γ ≃ Gi/Γi is a closed submanifold of X, and so, GiΓ is a closed subgroup of G. In this

case GiΓ is locally compact and since Γ is countable, Gi is closed in GiΓ and therefore in G. Hence, we are
done if we show that there exists a compact subsetKi inGi such thatGi = KiΓi. Following 2.6 and 2.7 above,
choose a basis B = {a1, . . . , al, e1, . . . , em} in G with a1, . . . , al, e

d
1, . . . , e

d
m ∈ Γ. Gi/Gi+1 is an abelian group

generated by finitely many continuous and/or discrete generators of the form b =
[
. . . [[b1, b2], b3], . . . , bi

]

with b1, . . . , bi ∈ B. For any such b, bd
i

∈ ΓiGi+1, thus Gi = K ′
iΓiGi+1 = K ′

iGi+1Γi, where K ′
i is the image

of a “cube” [0, di]n × {0, . . . , di}k in Gi/Gi+1. By (the descending) induction on i, Gi+1 = Ki+1Γi+1 with
compact Ki+1, so Gi = K ′

iKi+1Γi.

2.12. We define Xi = Gi\X = G/(GiΓ). Then X decomposes into a tower X = Xr+1 −→ Xr −→ . . . −→
X2 −→ X1 = {·} of compact nilmanifolds. In particular, X2 is a compact abelian Lie group, that is, a
finite dimensional torus or a union of several tori. For each i, the fibers of the projection Xi+1 −→ Xi are
isomorphic to the compact abelian Lie group Gi

/
(Gi+1Γi).

2.13. Example. Let G =
{(

1ny
0 1 x
0 0 1

)
: n ∈ Z, x, y ∈ R

}
and Γ =

{(
1n k
0 1m
0 0 1

)
: n,m, k ∈ Z

}
. Then r = 2, X is

the 2-dimensional torus
{
(x, y), x, y ∈ R/Z

}
, G2 =

{(
10y
010
001

)
: y ∈ R

}
and X2 is the 1-dimensional torus

{
(x), x ∈ R/Z

}
.

2.14. Theorem. (Cf. [AGH], Ch.4, Theorem 3.) The action of G on X is distal.
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Proof. X −→ Xr −→ . . . −→ X2 is a tower of isometric extensions, which implies the result. In more detail,
let x, y ∈ X, x 6= y, and let i ≤ r be such that the images of x and y in Xi+1 are distinct whereas their
images in Xi coincide. Let us factor G by Gi+1 and replace X by Xi+1, then Gi is in the center of G. We
have y = cx with c ∈ Gi. Let dist(·, ·) be a distance on X. Since X is compact, dist(z, cz) > δ > 0 for all
z ∈ X. So, dist(ax, ay) = dist(ax, acx) = dist(ax, cax) > δ for all a ∈ G.

2.15. We now fix a finitely generated amenable group A and a homomorphism ϕ:A −→ G. A acts on X by
translations: (ϕ(u))(x) = ϕ(u)x, u ∈ A, x ∈ X.

2.16. Since the action of A on X is distal, we have:

Corollary. (See, for example, [F], Corollary on page 160.) X decomposes into the union of disjoint closed
subsets, X =

⋃
Yθ, which are invariant and minimal with respect to the action of A, that is, for any θ and

any x ∈ Yθ, ϕ(A)x = Yθ.

2.17. By µ we denote the G-invariant probability measure on X.

Theorem. Let N = 〈Go, ϕ(A)〉. The action of A is ergodic on X (with respect to µ) iff it is ergodic on
Z = [N,N ]\X.

Proof. We may assume that G = N , then Z = X2. We follow the line of the proof of Theorem 3 in [P2].
We use induction on r, the nilpotency class of G; for r = 1 the statement is trivial. Assume that the action
of A is ergodic on X2 and assume that f ∈ L2(X) is A-invariant, ϕ(u)f = f for any u ∈ A. The compact
abelian group D = Gr/Γr acts on X and this action commutes with the action of G. Therefore L2(X)
decomposes into a direct sum of A-invariant eigenspaces of D. We may assume that f belongs to one of
these eigenspaces, that is, that cf = λ(c)f , λ(c) ∈ C, |λ(c)| = 1, for all c ∈ Gr. Also, we may assume that
|f | ≡ 1.

We have c(af) = λ(c)(af) for any a ∈ G and c ∈ Gr, and ϕ(u)(bf) = λ
(
[ϕ(u), b]

)
(bf) for any b ∈ Gr−1

and u ∈ A. Hence, for any b ∈ Gr−1 the function (bf)f−1 factors throughXr = Gr\X and is an eigenfunction
for A. Let E be the group of eigenfunctions of A on Xr under multiplication, and let C be the subgroup
of constants in E. By induction on r, the action of A is ergodic on Xr = Gr\X. Hence, the eigenspaces of
A in L2(Xr) are one-dimensional, and so, E/C is discrete. We have a continuous mapping λ:Gr−1 −→ E,
b 7→ (bf)f−1. By the connectedness argument, λ(Go

r−1) ⊆ C. Put λ(a) = 1 for all a ∈ ϕ(A). Since
G =

〈
Go, ϕ(A)

〉
, Lemma 2.10 implies that Gr−1 ⊆

〈
Go

r−1, ϕ(A)
〉
, and hence λ(Gr−1) ⊆ C.

It follows that f isGr-invariant. Indeed, Gr is generated by [Gr−1, G
o] and [Gr−1, ϕ(A)]. On [Gr−1, ϕ(A)],

λ is identically 1. Extend λ to a mapping G −→ C by λ(a) =
∫
X
(af)f−1dµ, a ∈ G. For any b ∈ Gr−1

and a ∈ Go we have λ(ab) =
∫
X
(abf)f−1dµ = λ(b)

∫
X
(af)f−1dµ = λ(b)λ(a) and λ(ba) =

∫
X
(baf)f−1dµ =∫

X
(af)(b−1f−1)dµ = λ(b)

∫
X
(af)f−1dµ = λ(b)λ(a) = λ(ab). On the other hand, λ(ba) = λ(ab)λ([b, a]).

Since λ is continuous, there exists a neighborhood V of 1G ∈ Go such that for any a ∈ V one has λ(a) 6= 0
and so, λ([b, a]) = 1. Since Go is exponential, for any d ∈ Go there exist m ∈ N and a ∈ V such that am = d,
and so, λ([b, d]) = λ([b, am]) = λ([b, a]m) = λ([b, a])m = 1. We obtain that λ|Gr

≡ 1. Hence, f factors
through Xr and by induction on r, f = const.

2.18. Assume that X is connected and consider T = [Go, Go]\X, the maximal factor-torus of X. Since Z
is a factor of T , we have

Corollary. If X is connected, then the action of A is ergodic on X iff it is ergodic on T .

2.19. Theorem. (Cf. [P1].) If the action of A is ergodic on X then the action of A is uniquely ergodic on
X. Hence, {ϕux}u∈A is well distributed on X for any x ∈ X.

Proof. We argue as in [F], proof of Proposition 3.10. A point x ∈ X is said to be generic for µ (with respect
to ϕ) if {ϕ(u)x}u∈A is well distributed on X with respect to µ, that is, for any f ∈ C(X) and any Følner
sequence {ΦN}∞N=1, lim

N→∞

1
|ΦN |

∑
u∈ΦN

f
(
ϕ(u)x

)
=

∫
X
f dµ. Let P ⊆ X be the set of points generic for µ; since

the action of A is ergodic, µ(P ) = 1. Let πr be the projection X −→ X/Gr = Xr and let Q = πr(P ). Since
the elements of Gr commute with ϕ(A) and preserve µ, if x ∈ X is generic for µ, then cx is also generic for
µ for any c ∈ Gr. So, GrP = P and so, P = π−1

r (Q).
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Let µ′ be another measure on X ergodic with respect to the action of A. By induction on r, the
action of A is uniquely ergodic on Xr, and so, the projections of µ and µ′ onto Xr coincide. It follows that
µ′(P ) = µ′(Q) = µ(Q) = 1. That is, almost all (with respect to µ′) points of X are not generic for µ′. This
contradicts the ergodicity of µ′.

2.20. Corollary. (Cf. [P1].) Let N =
〈
Go, ϕ(A)

〉
and Z = [N,N ]\X. The action of A is ergodic on X iff

X is minimal with respect to the action of A, and iff Z is minimal with respect to the action of A.

Proof. If X is minimal with respect to the action of A, then Z is also minimal. If Z is minimal, then, since
Z is a compact abelian group, the action of A is ergodic on Z, and by Theorem 2.17 the action of A is
ergodic on X.

Now assume that X is not minimal; then by Theorem 2.14 we have a nontrivial decomposition of X into
closed A-invariant subsets. It follows that the action of A is not uniquely ergodic on X and by Theorem 2.19,
is not ergodic.

2.21. Theorem. (Cf. [Sh2], Theorem 1.3.) For any x ∈ X there exists a closed subgroup E ⊆ G such that
ϕ(A)x = Ex. Consequently, Y = ϕ(A)x is a nilmanifold, and {ϕ(u)x}u∈A is well distributed on Y .

Proof. Let π:G −→ X be the factorization mapping; we may assume that x = π(1G). After passing to a
subgroup of finite index in A we may assume that ϕ(A) preserves the connected component Xo of x in X.
We may therefore assume that X is connected.

Let N =
〈
Go, ϕ(A)

〉
, Z = [N,N ]\X and p:X −→ Z be the factorization mapping. If ϕ(A)x 6= X, then

by Corollary 2.20, ϕ(A)0 = p
(
ϕ(A)x

)
is not dense in the torus Z. Hence it is contained in a proper closed

subtorus Z ′ ⊂ Z. The projection p◦π:G −→ Z is a homomorphism, thus G′ = (π2◦π)
−1(Z ′) is a closed

subgroup of G with dimG′ < dimG and ϕ(A) ⊆ G′. Induction on dimG proves the first statement.

We obtain that Y ≃ E
/
(Γ ∩ E) is a nilmanifold; the last statement of the theorem now follows from

Corollary 2.20 and Theorem 2.19.

2.22. Remark. The group E in Theorem 2.21 is not uniquely determined, and does not have to contain
ϕ(A). However, among the groups E satisfying the conclusion of the theorem there is a maximal one,
E =

{
a ∈ G : a(ϕ(A)x) = ϕ(A)x

}
, and for this E one has ϕ(A) ⊆ E.

3. Reduction of the polynomial case to the linear case

We start with some group theoretical preliminaries.

3.1. Let F be the free group generated by continuous generators a1, . . . , al and discrete generators e1, . . . , em,
that is, the group of words in the alphabet

{
at11 , . . . , atll , e

n1

1 , . . . , enm
m

}
ti∈R

nj∈Z

. Let F = F1 ⊃ F2 ⊃ . . . be the

lower central series of F : Fi+1 = [Fi,F ], i ∈ N. Let r ∈ N; we will call the nilpotent Lie group F = F/Fr+1

the free nilpotent Lie group (of class r, with l continuous and m discrete generators). The discrete subgroup
of F generated by the set {a1, . . . , al, e1, . . . , em} is uniform in F ; we will denote it by Γ(F ).

3.2. Proposition. Let G be a nilpotent Lie group of class ≤ r, let Go be the identity component of G,
and let F be a free nilpotent Lie group of class r with continuous generators a1, . . . , al and discrete gen-
erators e1, . . . , em. Any mapping η: {a1, . . . , al, e1, . . . , em} −→ G with η

(
{a1, . . . , al}

)
⊆ Go extends to a

homomorphism F −→ G.

Proof. The connected nilpotent Lie group Go is exponential, and so, for any i = 1, . . . , l there exists a
one-parameter subgroup {αi(t)}t∈R in G such that η(ai) = αi(1). Thus, η extends to a homomorphism
η:F −→ G from the free group F generated by {at11 , . . . , atll , e1, . . . , em}ti∈R so that η(ati) = αi(t), t ∈ R,
i = 1, . . . , l. Since η(Fr+1) ⊆ Gr+1 = {1G}, η factors to a homomorphism F −→ G.

3.3. Let us say that a Lie group G is finitely generated if G is generated by a set of the form
{
at11 , . . . , atll ,

e1, . . . , em
}
ti∈R

. (If Go is the identity component of G, then G is finitely generated iff the discrete group

G/Go is finitely generated in the conventional sense.)

6



Proposition. Let G be a finitely generated nilpotent Lie group. Then G is a factor of a finitely generated
free nilpotent Lie group.

Proof. Let G have nilpotency class r, a1, . . . , al ∈ Go be the continuous and e1, . . . , em ∈ G the discrete
generators of G. Let F be the free nilpotent Lie group of class r with continuous generators a1, . . . , al
and discrete generators e1, . . . , em. By Proposition 3.2, there exists a homomorphism η:F −→ G which is
identical on a1, . . . , al, e1, . . . , em. Clearly, η is surjective.

3.4. Lemma. Let G be a nilpotent group, G2 = [G,G], and let H be a subgroup of G such that HG2 = G.
Then H = G.

Proof. Let G = G1 ⊃ G2 ⊃ . . . ⊃ Gr ⊃ Gr+1 = {1G} be the lower central series of G. By induction on r,
HGr = G, and it is only to be checked that Gr ⊆ H. Gr is generated by elements of the form [b, a] with
a ∈ G and b ∈ Gr−1. Let c ∈ H be such that cG2 = aG2 and d ∈ H ∩Gr−1 be such that dGr = bGr. Then
[d, c] ∈ H and [d, c] = [b, a].

3.5. Proposition. Let F be a free nilpotent Lie group, let F2 = [F, F ] and let a self-homomorphism τ of
F be such that the induced self-homomorphism of F/F2 is invertible. Then τ is also invertible.

Proof. Since τ(F )F2 = F , τ(F ) = F by Lemma 3.4. It follows from Proposition 3.2 that there exists a
homomorphism σ:F −→ F such that τ◦σ = IdF . Since σ induces an automorphism of F/F2, σ is also
surjective. Hence, σ = τ−1.

3.6. Remark. Actually, Proposition 3.5 holds for any simply-connected finitely generated nilpotent Lie
group; we do not need this in such generality.

3.7. We say that an automorphism τ of a group G is unipotent if the mapping ξ:G −→ G defined by
ξ(a) = τ(a)a−1, a ∈ G, satisfies ξ◦q ≡ 1G for q ∈ N large enough.

3.8. Proposition. Let τ be an automorphism of a nilpotent group G and let G2 = [G,G]. Then τ is
unipotent iff the automorphism induced by τ on G/G2 is unipotent.

Proof. Let G = G1 ⊃ G2 ⊃ . . . ⊃ Gr ⊃ Gr+1 = {1G} be the lower central series of G. By induction on
the nilpotency class r of G, assume that τ is unipotent on G/Gr, that is, ξ◦q(G) ⊆ Gr for q large enough.
We only have to check that τ is unipotent on Gr. Let Ai = ξ◦i(G), Bi = Ai ∩ Gr−1, i = 0, . . . , q − 1, and
let Ck =

〈
[Bj , Ai], j + i ≥ k

〉
, k = 0, . . . , 2q − 1. We claim that ξ(Ck) ⊆ Ck+1, k = 0, . . . , 2q − 2, and so,

ξ◦(2q−1)(Gr) = ξ◦(2q−1)(C0) ⊆ C2q−1 = {1G}. Indeed, the mapping Gr−1 × G −→ Gr, (b, a) 7→ [b, a], is
bilinear; since τ and ξ commute, τ(Ai) = Ai for all i; so, if b ∈ Bj and a ∈ Ai, then

ξ([b, a]) = τ([b, a]) · [b, a]−1 =
[
τ(b), τ(a)

]
·
[
b, τ(a)

]−1
·
[
b, τ(a)

]
· [b, a]−1

=
[
τ(b)b−1, τ(a)

]
·
[
b, τ(a)a−1

]
=

[
ξ(b), τ(a)

]
·
[
b, ξ(a)

]

∈ [Bj+1, τ(Ai)] · [Bj , Ai+1] = [Bj+1, Ai] · [Bj , Ai+1] ⊆ Cj+i+1.

3.9. Proposition. Let G be a finitely generated nilpotent Lie group and let τ be a unipotent automorphism
of G. Then the extension Ĝ of G by τ is a nilpotent Lie group.

Proof. Ĝ is a solvable Lie group (G ⊳ Ĝ and Ĝ/G ≃ Z); it therefore suffices to show that Ĝ is generated by
Engel elements. (An element a of a group H is said to be Engel if for any b ∈ H,

[
. . .

[
[b, a], a

]
, . . .

]
= 1G

if the number of brackets is large enough. Engel elements in a finitely generated solvable Lie group form a
nilpotent subgroup.) Ĝ is generated by G and the element τ̂ representing τ ; τ̂ is Engel since τ is a unipotent

automorphism of G, and each b ∈ G is Engel since G is nilpotent and normal in Ĝ.

3.10. Starting from this point, let, again, G be a nilpotent Lie group, Go be the identity component of G,

Γ be a discrete uniform subgroup of G and X = G/Γ. Any polynomial sequence g(n) = a
p1(n)
1 . . . a

pm(n)
m in G

is contained in the group of G generated by the finite set {a1, . . . , am}. Studying the action of g on X we
may, therefore, assume that G is a finitely generated Lie group.
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3.11. We now deduce from Theorem 2.21 the following fact:

Theorem. Let τ be a unipotent measure-preserving automorphism of G with τ(Γ) = Γ; then τ acts on
X. For any x ∈ X there exist a connected closed subgroup H of G and points x1, x2, . . . , xk ∈ X such
that Yj = Hxj, j = 1, . . . , k, are closed sub-nilmanifolds of X, and for each j = 1, . . . , k the sequence
{τ j+knx}n∈Z is well distributed on Yj.

Proof. Let Ĝ be the extension of G by τ ; by Proposition 3.9 Ĝ is a nilpotent Lie group. Let τ̂ be the
element in Ĝ representing τ , so that τ(a) = τ̂ aτ̂−1 for any a ∈ G. Let Γ̂ =

〈
Γ, τ̂

〉
⊆ Ĝ. Since τ(Γ) = Γ one

has Γ̂ ∩ G = Γ, so Γ̂ is a discrete subgroup of Ĝ and X = Ĝ/Γ̂. For any a ∈ G and x = aΓ̂ ∈ X one has

τ(x) = τ(a)Γ̂ = τ̂ aτ̂−1Γ̂ = τ̂ aΓ̂ = τ̂x. By Theorem 2.21, there exists a closed subgroup E of Ĝ such that

Ex is closed and {τnx}n∈Z is well distributed on Ex. Let H be the identity component of E; since Ĝ/G
is discrete, H ⊆ G. Hx is a connected component of Ex; since Ex is compact, it consists of finitely many
translates of Hx and so, the stabilizer Stab(Hx) of Hx has finite index in E. Let b1, . . . , bk ∈ E be a set of
representatives of E/Stab(Hx) and let xj = bjx, j = 1, . . . , k. Since H is normal in E, bjHx = Hbjx = Hxj ,
j = 1, . . . , k. Put Yj = Hxj , j = 1, . . . , k, these are connected disjoint subnilmanifolds of X and we have

Ex =
⋃k

j=1 bjHx =
⋃k

j=1 Yj .
τ transitively acts on the set {Y1, . . . , Yk} and thus, cyclically permutes these sub-nilmanifolds. Reorder

Y1, . . . , Yk so that τx ∈ Y1 and τ(Yj) = Yj+1, j = 1, . . . , k − 1. Then τ j+knx ∈ Yj for all j and all n ∈ Z.
The sequence {τ j+knx}n∈Z = {(τk)n(τ jx)}n∈Z is therefore well distributed on Yj for each j.

3.12. The following simple example demonstrates that in Theorem 3.11, {τn(x)}n∈Z
need not be of the form

Hx where H is a subgroup of G.

Example. Let G = X = (Z3)
3 and a unipotent automorphism τ ofX be defined by τ(a, b, c) = (a, b+a, c+b),

then τ3 = IdX . Take x = (1, 0, 0) ∈ X. Then τ(x) = (1, 1, 0), τ2(x) = (1, 2, 1), and {τn(x)}n∈Z ={
(1, 0, 0), (1, 1, 0), (1, 2, 1)

}
is not a coset of a subgroup of X.

3.13. Following 2.6 and 2.7, choose a basis {a1, . . . , al, e1, . . . , em} in G, where a1, . . . , al ∈ Γ ∩ Go and
ed1, . . . , e

d
m ∈ Γ for some d ∈ N, such that every element a ofG can be written in the form a = at11 . . . a

tl
l e

n1

1 . . . e
nm
m

with t1, . . . , tl ∈ R and n1, . . . , nm ∈ Z. Any polynomial sequence g in G is then representable in the form

g(n) = a
p1(n)
1 . . . a

pl(n)
l e

q1(n)
1 . . . e

qm(n)
m , where p1, . . . , pl are polynomials Z −→ R and q1, . . . , qm are polynomials

Z −→ Z.
Let D =

〈
a1, . . . , al, e1, . . . , em

〉
. In a finitely generated nilpotent group any subgroup generated by

nontrivial powers of the generators has finite index, so Γ∩D has finite index in D. Thus, there exists s ∈ N

such that bs ∈ Γ for any b ∈ D.

3.14. Proposition. Let g be a polynomial sequence in G. There exists a nilpotent Lie group G̃ with a
discrete uniform subgroup Γ̃, an epimorphism η: G̃ −→ G with η(Γ̃) ⊆ Γ, a unipotent automorphism τ of G̃

with τ(Γ̃) = Γ̃, and an element c ∈ G̃ such that g(n) = η
(
τn(c)

)
, n ∈ Z.

Proof. Let {a1, . . . , al, e1, . . . , em} be a basis of G described in 3.13 and let s ∈ N be such that bs ∈ Γ for
any b from the (discrete) group generated by {a1, . . . , al, e1, . . . , em}. Let F be a free nilpotent Lie group
with continuous generators a1, . . . , al and discrete generators e1, . . . , em, and let η′:F −→ G be the natural
epimorphism. Then η′(bs) ∈ Γ for any b ∈ Γ(F ).

Let g(n) = a
p1(n)
1 . . . a

pl(n)
l e

q1(n)
1 . . . e

qm(n)
m , where p1, . . . , pl are polynomials Z −→ R and q1, . . . , qm are

polynomials Z −→ Z. Let G̃ be the free nilpotent Lie group with continuous generators {bi,0 = ai, bi,1, . . . ,
bi,deg pi

}i=1,...,l and discrete generators {dj,0 = ej , dj,1, . . . , dj,deg qj}j=1,...,m. Let B be the normal closure in

G̃ of the group generated by {bti,1, . . . , b
t
i,deg pi

} i=1,...,l
t∈R

and {dj,1, . . . , dj,deg qj}j=1,...,m; then F ≃ G̃/B. Let

η′′: G̃ −→ F be the factorization mapping and let η = η′′◦η′.
Let Γ̃ be the subgroup of Γ(G̃) generated by the s-th powers of the elements of G̃, Γ̃ =

〈
{γs, γ ∈ Γ(G̃)}

〉
.

Then Γ̃ has finite index in Γ(G̃) and so, is uniform in G̃. One has η(Γ̃) ⊆ Γ and τ(Γ̃) = Γ̃ for any

automorphism τ of Γ(G̃).

We define τ : G̃ −→ G̃ by τ(ai) = ai (i = 1, . . . , l), τ(bi,k) = bi,kbi,k−1 (k = 1, . . . , deg pi, i = 1, . . . , l),
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τ(ej) = ej (j = 1, . . . ,m), τ(dj,k) = dj,kdj,k−1 (k = 1, . . . , deg qj , j = 1, . . . ,m). So defined, τ induces a

unipotent automorphism of G̃/G̃2. By Propositions 3.2, 3.5 and 3.8, τ is a unipotent automorphism of G̃.

For i ∈ {1, . . . , l} let pi(n) = α0+α1

(
n
1

)
+α2

(
n
2

)
+. . .+αk

(
n
k

)
, α0, . . . , αk ∈ R. Define ui = aα0

i bα1

i,1 . . . b
αk

i,k,

then τn(ui) = a
α0+α1(n1)+α2(n2)+...+αk(nk)
i h(n) = a

pi(n)
i h(n), where h(n) ∈ B, n ∈ Z. Similarly, if for j ∈

{1, . . . ,m}, qj(n) = β0 + β1

(
n
1

)
+ β2

(
n
2

)
+ . . . + βk

(
n
k

)
, β0, . . . , βk ∈ Z, define vj = eβ0

j dβ1

j,1 . . . d
βk

j,k; then

τn(vj) = e
qj(n)
j h′(n) with h′(n) ∈ B, n ∈ Z. Put c = u1 . . . ulv1 . . . vm, then η(τn(c)) = g(n), n ∈ Z.

3.15. Proof of Theorem B. Let π:G −→ X be the factorization mapping. Let us assume that x = π(1G);

otherwise, if x = π(a) for a ∈ G, we write g(n)x = g(n)aπ(1G) and replace g(n) by g(n)a. Find G̃, Γ̃ and

c as in Proposition 3.14 and let X̃ = G̃/Γ̃. The epimorphism η: G̃ −→ G factors to η: X̃ −→ X, so that if

π̃: G̃ −→ X̃ is the factorization mapping, then π◦η = η◦π̃. Let x̃ = π̃(1
G̃
), then η

(
τn(cx̃)

)
= g(n)x, n ∈ Z.

By Theorem 3.11, there exist a connected closed subgroup H̃ of G̃ and points x̃1, x̃2, . . . , x̃k ∈ X̃ such that, for
each j = 1, . . . , k, {τ j+kn(cx̃)}n∈Z is well distributed on H̃x̃j . Let H = η(H̃) and xj = η(x̃j), j = 1, . . . , k.

Since, for each j = 1, . . . , k, H̃x̃j is compact, Yj = Hxj = η(H̃x̃j) is a connected sub-nilmanifold of X,

and the H-invariant measure on Yj is the η-image of the H̃-invariant measure on H̃x̃j . Hence, for each
j = 1, . . . , k,

{
η(τ j+kn(cx̃))

}
n∈Z

=
{
g(j + kn)x

}
n∈Z

is well distributed on Yj .

3.16. Proof of Theorem C. Let, in accordance with Theorem B, a connected closed subgroup H of G and
points x1, . . . , xk ∈ X be such that {g(n)x}n∈Z

=
⋃k

j=1 Hxj . If (i) holds, then {g(n)x}n∈Z
= X and since

X is connected, Hx1 = . . . = Hxk = X. So, Hx = X and {g(n)x}n∈Z is well distributed on X. Hence (i)
implies (ii).

Let T = [Go, Go]\X and p:X −→ T be the factorization mapping. Assume that the sequence

{g(n)p(x)}n∈Z is dense in T . Then T =
⋃k

j=1 Hp(xj), and since T is connected, Hp(xj) = T for some
j. Hence, H[Go, Go](Γ ∩Go) = Go, and since Γ is countable, H[Go, Go] = Go. By Lemma 3.4, H = Go, so
{g(n)x}n∈Z

= Hx1 = X, and (iii) implies (i).
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