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Abstract

Let X be a nilmanifold, that is, a compact homogeneous space of a nilpotent Lie group G, and
let a ∈ G. We study the closure of the orbit of the diagonal of Xr under the action (ap1(n), . . . , apr(n)),
where pi are integer-valued polynomials in m integer variables. (Knowing this closure is crucial
for finding limits of the form limN→∞

1
Nm

P
n∈{1,...,N}m µ(T p1(n)A1 ∩ . . . ∩ T pr(n)Ar) where T

is a measure preserving transformation of a finite measure space (Y, µ) and Ai are subsets of Y ,
and limits of the form limN→∞

1
Nm

P
n∈{1,...,N}m d((A1 + p1(n))∩ . . .∩ (Ar + pr(n))) where Ai

are subsets of Z and d(A) is the density of A in Z.) We give a simple description of the closure
of the orbit of the diagonal in the case all pi are linear, in the case G is connected, and in the
case the identity component of G is commutative; in the general case our description of the orbit
is not explicit.

0. Introduction

0.1. Multiple ergodic averages MN = 1
N

∑N
n=1 µX(A ∩ T−nA ∩ . . . ∩ T−rnA), where T

is a measure preserving transformation of a probability measure space (X,B, µX) and
A ∈ B, µX(A) > 0, had appeared in Furstenberg’s proof of Szemerédi’s theorem ([Fu]).
Furstenberg proved in [Fu] that lim infN→∞MN > 0; the question whether limN→∞MN
exists remained open for a long time. A way of solving this problem was already outlined
in [Fu]: one has to find a characteristic factor of (X, T ) with respect to the system of
actions {IdX , Tn, . . . , T rn}, n ∈ Z, that is, a factor (X ′, T ) of (X, T ) such that

lim
N→∞

1
N

N
∑

n=1

∣

∣

∣

∫

X
f0Tnf1 . . . T rnfrdµX−

∫

X′
E(f0|X ′)TnE(f1|X ′) . . . T rnE(fr|X ′)dµX′

∣

∣

∣ = 0

for any f0, f1, . . . , fr ∈ L∞(X). If the system (X ′, T ) has a simple enough structure so
that the limits limN→∞

1
N

∑N
n=1

∫

X′ h0Tnh1 . . . T rnhrdµX with hi ∈ L∞(X ′) can be easily
determined, then limN→∞MN will also be found by taking hi = E(1A|X ′), i = 0, 1, . . . , r.
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0.2. A d-step nilsystem is a measure preserving system realized by a translation on a d-
step nilmanifold, a compact homogeneous space of a d-step nilpotent Lie group equipped
with the Haar measure. A d-step pro-nilsystem is the inverse limit of a sequence of d-
step nilsystems. It was proven by Host and Kra in [HK1] and, independently, by Ziegler
in [Z2] that any ergodic probability measure preserving system (X, T ) possesses a factor
characteristic with respect to {IdX , Tn, . . . , T rn} and isomorphic to an (r − 1)-step pro-
nilsystem. It was then shown in [HK2] and [L5] that pro-nilsystems are also characteristic
for any system of “polynomial actions” of the form {T p1(n), . . . , T pr(n)}, n ∈ Zm, where
pi are integer-valued polynomials on Zm. Thus, the problem of identifying the limit of
polynomial multiple ergodic averages 1

N

∑N
n=1 µX

(

T−p1(n)A ∩ . . . ∩ T−pr(n)A
)

is reduced
to the case where (X,T ) is a nilsystem.

0.3. Let (X, a) be a nilsystem, that is, X is a nilmanifold and a is a translation on X, and
let µX be the Haar measure on X. Let p1, . . . , pr be integer-valued polynomials on Zm. It
is proved in [L4] that under any polynomial action ϕ of Zm on X, the closure Y = Orb(D)
of the orbit OrbD = {ϕ(n)D}n∈Zm of a subnilmanifold D of X is either a subnilmanifold
or a finite union of subnilmanifolds of X. Moreover, “the sequence” {ϕ(n)D}n∈Zm is well
distributed on Y , that is, C-limn ϕ(n)µD = µY where µD is the Haar measure on D, µY

is a Haar measure on Y (more exactly, a linear combination of the Haar measures on
the connected components of Y ), and C-limn = limN→∞

1
|ΦN |

∑

n∈ΦN
where {ΦN} is any

Følner sequence in Zm. This, in particular, is applicable to the closure Y = OrbP (∆Xr )

of the orbit of the diagonal ∆Xr =
{(x...

x

)

: x ∈ X
}

under the polynomial action

ϕ(n)





x1...
xr



 =





ap1(n)x1...
apr(n)xr



, n ∈ Zm, (0.1)

of Zm on the nilmanifold Xr. It follows that for any f1, . . . , fr ∈ C(X),

C-lim
n

∫

X
ap1(n)f1 · . . . · apr(n)frdµX = C-lim

n

∫

∆Xr

ap1(n)f1 ⊗ . . .⊗ apr(n)frdµ∆Xr

= C-lim
n

∫

∆Xr

ϕ(n)
(

f1 ⊗ . . .⊗ fr
)

dµ∆Xr = C-lim
n

∫

ϕ(n)∆Xr

f1 ⊗ . . .⊗ frdµϕ(n)∆Xr

=
∫

Y
f1 ⊗ . . .⊗ frdµY ,

where µY is the Haar measure on Y = OrbP (∆Xr). It then follows that

C-lim
n

∫

X
ap1(n)f1 · . . . · apr(n)frdµX =

∫

Y
f1 ⊗ . . .⊗ frdµY (0.2)

for any f1, . . . , fr ∈ L∞(X). Hence, for any measurable sets A1, . . . , Ar ⊆ X,

C-lim
n

µX
(

a−p1(n)A1 ∩ . . . ∩ a−pr(n)Ar
)

= µY
(

(A1 × . . .×Ar) ∩ Y
)

,

and thus the problem of evaluating limN→∞
1

|ΦN |
∑

n∈ΦN
µX

(

a−p1(n)A1 ∩ . . .∩ a−pr(n)Ar
)

is reduced to the problem of finding Y = OrbP (∆Xr).
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0.4. Once OrbP (∆Xr ) with respect to the action defined by a system P = {p1, . . . , pr}
of integer-valued polynomials has been found, it is immediately possible to determine the
“optimal” characteristic factor corresponding to P . Any nilmanifold X has a natural tower
of factors, X = Xs −→ Xs−1 −→ . . . −→ X1 −→ X0 = {·}, where for each d, Xd is a d-step
nilmanifold. It is of interest to learn what is the minimal d for which Xd is characteristic
for P . In terms of the orbit OrbP (∆Xr ) of the diagonal in Xr, characteristic factors of X
are easily characterizable: Xd is characteristic for the action defined by P iff OrbP (∆Xr )
contains the fiber of the projection X −→ Xd.

If d ∈ N is such that the factor Xd is characteristic for P for any nilsystem (X, a), we
call d the complexity of P ; by [HK1] and [Z2], if d is the complexity of P , then any ergodic
measure preserving system (X,T ) has a factor characteristic for P that is isomorphic to a
d-step pro-nilsystem.

Remark. The complexity, as well as the W-complexity (Weyl complexity) of P that we
introduce in this paper differ from those in [BLLe1]: the complexities defined here are less
by 1 than the corresponding complexities in [BLLe1].

Knowing OrbP (∆Xr ), one can also determine conditions on the sets A1, . . . , Ar to
guarantee that µX

(

a−p1(n)A1 ∩ . . . ∩ a−pr(n)Ar
)

is positive, or is greater than a certain
constant, for some n. Examples of such application of OrbP (∆Xr ) can be found in [BHK],
[BLLe1], [FK], or [F].

0.5. Here is a list of earlier results.
OrbP (∆Xr ) for the “linear” system P = {0, n, . . . , rn} was first found in [Z1], and, in

a much simpler way, in [BHK]. For the system P =
{

n1, . . . , nl, n1+n2, . . . , n1+. . .+nl
}

of
linear functions in l integer variables n1, . . . , nl consisting of all sums of distinct variables,
OrbP (∆Xr ) was described in [HK1]. The complexity of any system of r+1 (distinct) linear
functions in one variable {0, c1n, . . . , crn} was shown to be ≤ r in [HK1] and = r − 1 in
[Z2]; the complexity of any system of r + 1 linear functions in several variables was proven
to be ≤ r − 1 in [L6].

In [FK], the complexity of a system of linearly independent polynomials in one variable
was shown to be 0 with respect to any totally-ergodic system and ≤ 1 in the general case.

In [BLLe1], OrbP (∆Xr ) for a polynomial system P = {0, p1(n), . . . , pr(n)} was found
in the case where (X, a) is a Weyl system, that is, when X is a torus and a is a unipotent
linear transformation of X.

In [F], OrbP (∆Xr ) was found in the case where (X, a) is a general nilsystem and P is
a system with three nonzero polynomials, P = {0, p1, p2, p3}.

A finitary analog of the problem of determining the complexity of a system of linear
forms is considered in [GW]. (In [GW], G is taken to be a finite group, specifically Zn

p
for an odd prime p, and, given a system P = {p1, . . . , pr} of linear forms Gm −→ G, it is
asked what the degree of “uniformity” of a subset A ⊆ G has to be in order to guarantee
that it contains approximately “the right number”, |A|r|G|m−r, of configurations of the
form {p1(n), . . . , pr(n)}, n ∈ Gm.) The case of systems of complexity 2 is studied and the
obtained result agrees with the results of the present paper.
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0.6. Our goal in this paper is to find OrbP (∆Xr ) for a system P = {p1, . . . , pr} of poly-
nomials in several variables. It is natural to confine ourselves to ergodic transformations,
and thus assume that the translation a of the nilmanifold X is ergodic. We will go farther
and assume throughout the paper that X is connected; this implies that the action of
a is totally ergodic on X. Doing this, we do not lose much generality. Indeed, if X is
disconnected, it consists of several connected components, permuted by a; a power ak of
a preserves the components, and after replacing a by ak we may treat each component of
X individually.

0.7. Let π:G −→ X be the natural projection; we will denote by π×r the corresponding
projection Gr −→ Xr. “To find OrbP (∆Xr )” means to find a subgroup H of Gr (or a
finite union of right cosets of H, – if OrbP (∆Xr ) is disconnected) such that π×r(H) =
OrbP (∆Xr ). In the case where the polynomials pj :Zm −→ Z are linear we give a simple
explicit description of such H. (See Theorem 6.3). Let pj(n1, . . . , nm) =

∑m
i=1 cj,inm,

j = 1, . . . , r; put v0 =
(1...

1

)

and vi =
(

c1,i...
cr,i

)

, i = 1, . . . ,m. For two vectors u =
(c1...

cr

)

and

v =
(e1...

er

)

in Zr we define the product uv =
(c1e1...

crer

)

. Let V̂ be the subgroup of Zr generated

by v0, v1, . . . , vr. For each k ∈ N let Polk(Zm) be the space of polynomials Zm −→ Z
(with rational coefficients) of degree ≤ k, and let PkV̂ be the subgroup of Zr given by

PkV̂ =
{

q(v1, . . . , vm), q ∈ Polk(V̂ )
}

. For a vector u =
(c1...

cr

)

∈ Zr and an element b ∈ G

we define bu =
(

bc1...
bcr

)

∈ Gr. Let G = G1 ⊃ G2 ⊃ . . . ⊃ Gs+1 = {1G} be the lower central

series of G. We define H as the subgroup of Gr generated by ∆Gr and the elements of the
form bv with b ∈ Gk and v ∈ PkV̂ for some k ∈ N. If, for each k = 1, . . . , s, {qk,1, . . . , qk,lk}
is a set of generators in PkV̂ , then H can also be defined in the following way:

H =
{

bv0
0

s
∏

k=1

lk
∏

i=1

bqk,i(v1,...,vm)
k,i , bk,i ∈ Gk for every k, i

}

. (0.3)

(In the case m = 1, pj(n) = jn, j = 1, . . . , r, we have v =
(1...

r

)

and H =
{

b0
∏s

k=1 b(
v
k)

k , b0 ∈
G, bk ∈ Gk, k = 1, . . . , s

}

, which coincides with the result in [Z1].)
Our proof of the fact that π×r(H) = OrbP (∆Xr ) is easy; it consists of three parts.

First, we show that the subset H defined by (0.3) is a subgroup of Gr such that the set
π×r(H) is closed in Xr. (We say that H is a rational subgroup of Gr.) Then we notice

that H contains ∆Gr and all elements of the form
(

ap1(n)
...

apr(n)

)

, thus π×r(H) ⊇ OrbP (∆Xr ).

The nilmanifold X1 = G2\X is a torus on which G acts by rotations, thus it is easy to

find the closure OrbP (∆Xr
1
) of the orbit of the diagonal of Xr

1 under the action
(

ap1(n)
...

apr(n)

)

:

this is the projection to Xr
1 of the subgroup (G/G2)[V ] =

{

bv, b ∈ G/G2, v ∈ V } of
(G/G2)r. Comparing dimensions, we show that H is a minimal rational subgroup of Gr

with the property that the group H/Gr
2 contains the identity component of the preimage
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of (G/G2)[V ] in (G/G2)r and the elements avG2, v ∈ V̂ . It follows that π×r(H) =
OrbP (∆Xr ).

Using the above description of H, we see that the complexity of P is the minimal
integer d for which Pd+1V̂ ⊗ R = Rr. As it is noticed in [GW], this is equivalent to
saying that d is the minimal integer such that the polynomial vectors (1, p1, . . . , pd+1

1 ), . . .,
(1, pr, . . . , pd+1

r ) are linearly independent.

0.8. When pj are not necessarily linear but the group G is connected (or, rather, a is
contained in the identity component of G), the description of H remains as simple as
in the linear case, – with distinct monomials playing the role of independent variables.
(See Theorem 8.3). We simply represent pj =

∑m
i=1 cj,iui, cj,i ∈ Q, where u1, . . . , um

are distinct (nonconstant) monomials (with trivial coefficient), put V to be the subspace

of Rr spanned by the vectors
(1...

1

)

and vi =
(

c1,i...
cr,i

)

, i = 1, . . . , m, and use V instead of

V̂ . The complexity of a polynomial system P with respect to nilsystems corresponding to
connected G can therefore be easily computed; we call it the C-complexity of P .

0.9. For a polynomial system P and disconnected G we first consider the case where the
identity component Gc of G is commutative. In this case X = Gc/(Γ∩Gc) is a torus on which
G acts by skew-product transformations. We call the system (X, a) a Weyl system. (The
2-dimensional torus with the transformation a(x, y) = (x+α, y+x) is the simplest example
of such a system.) For Weyl systems the problem of determining OrbP (∆Xr) is an easy
linear algebra problem; but the answer we obtain is not elegant (see Theorem 9.4). Based
on Theorem 9.7, the complexity of any polynomial system P with respect to Weyl systems
(we call it the W-complexity of P ) can, in principle, be computed, but these computations
are cumbersome, and leave some questions unanswered. In particular, it is not even clear
to us whether the complexity of a polynomial system P is always ≤ |P | − 2.

0.10. The situation with the Weyl systems demonstrates that a simple description of
OrbP (∆Xr ) is hardly possible in the general case, – when P is a polynomial system and
no assumptions about G have been made. We attempt to write out a formula defining the
subgroup H of Gcr for which π×r(H) = OrbP (∆Xr ), similar to that for Weyl systems (see
subsections 11.2–11.4). However, for this formula to work it must be that H is “defined
by its linear part”, as it is when P is a system of linear functions, and we don’t know
whether this is so (see Conjecture 11.4); in addition, the polynomials involved in this
formula are not explicit and are only defined recurrently. We do not also know whether
OrbP (∆Xr ) is always connected; these question can also be resolved by affirming or refuting
Conjecture 11.4.

We also describe a method of finding OrbP (∆Xr ) for concrete (X, a) and P (see sub-
section 11.10); it is based on successive construction of the orbits of the diagonal on certain
factor-tori of certain subgroups of G. In principle, this method can be practically used to
find OrbP (∆Xr ) when the complexity of P is relatively small, but such a computation for
a concrete system does not look to be of any interest. It can also be utilized to establish
some properties of OrbP (∆Xr). (We do this in [BLLe2] to prove that if the polynomials
constituting P have nonzero constant terms but are jointly intersective, then OrbP (∆Xr )
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contains ∆Xr .)
Finally, we obtain a rough estimate of the complexity of P (see Theorem 13.13). As a

corollary we get that it does not exceed cWc(c+1)/2, where cW and c are the W-complexity
and the C-complexity of P respectively. (We, actually, suspect that the complexity of P
is always equal to cW, but cannot confirm this conjecture either.)

0.11. We only deal with “discrete” linear and polynomial actions, that is, actions of the
group Zm. The obtained results are also applicable to continuous (polynomial) actions of
the group Rm. Moreover, in the case of continuous actions the Lie group G acting on X
can be assumed to be connected, which essentially simplifies the situation, and the case of
polynomial actions of Rm is completely covered by Section 8.

0.12. Here is the plan of the paper: Sections 1 and 2 are preparatory; we consider there,
in more detail, properties of the orbits of points and of subnilmanifolds in a nilsystem,
characteristic factors of a nilsystem, and relations between them. In Section 3 we introduce
some algebraic notation. In Sections 4 and 5 we introduce the group G[V ]. In Section 6
we find OrbP (∆Xr ) in the case where P is a system of linear polynomials. In Section 7 we
remind the reader how polynomial orbits on a torus look. In Section 8 we find OrbP (∆Xr)
for a general polynomial system P in the case where the Lie group G acting on X is
connected. In Section 9 we find OrbP (∆Xr ) for the case of a Weyl system. (The results
of this section partially repeat results from [BLLe1].) In Section 10 we describe how the
closure of the orbit of a point of a nilmanifold under a polynomial action can be found.
In Section 11 we describe a method of constructing OrbP (∆Xr ) for a general nilsystem.
In Section 12 we introduce a filtration in the group Gc that we use in the next section. In
Section 13 we find an estimate of the complexity of a general polynomial system.

1. Orbits in a nilmanifold

In this section we introduce some notation and collect some facts related to nilmanifolds.
For more details see [M], [L2], [L4], [L7] and [L8].

1.1. Throughout the paper, X will be a connected nilmanifold , that is, a connected com-
pact homogeneous space of a nilpotent Lie group. X can be represented as a factor
X = G/Γ, where G is a simply-connected (not necessarily connected) nilpotent Lie group
and Γ is a discrete uniform subgroup of G. The group G acts on X by left translations:
for a ∈ G and x ∈ X we have ax ∈ X.

By π we will denote the natural projection G −→ X, and by 1X the point π(1G) ∈ X.

1.2. We will denote by Gc the connected component of G. (We have chosen such an
unusual symbol instead of the standard Gc or Go in order to be able to attach sub- and
superscripts to Gc , like Gcd or Gcr.) Since X is connected, it is a homogeneous space of Gc
as well, X = Gc/(Gc ∩ Γ).

Here is an example of a disconnected nilpotent Lie group G with a connected nilman-

ifold X = G/Γ. Let G =
{(1 k y

0 1 x
0 0 1

)

, k ∈ Z, x, y ∈ R
}

and Γ =
{(

1 k l
0 1 m
0 0 1

)

, k, l, m ∈ Z
}

.
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Then G is disconnected, with Gc =
{(1 0 y

0 1 x
0 0 1

)

, x, y ∈ R
}

isomorphic to R2. The nilmanifold

X = G/Γ = Gc/(Gc ∩ Γ) is isomorphic to the 2-dimensional torus R2/Z2, with G acting on

X by skew-product transformations:
(

1 k b
0 1 a
0 0 1

)

(x, y) = (x + a, y + kx + b).

1.3. The connected simply-connected nilpotent group Gc is exponential, which implies that
for every b ∈ Gc there exists a unique homomorphism R −→ Gc , t 7→ bt, such that b1 = b.
We will constantly use this notation.

1.4. The commutator of two elements b1, b2 ∈ G is [b1, b2] = b−1
1 b−1

2 b1b2. For b1, b2, . . . , bd ∈
G we put [b1, b2, . . . , bd] =

[[

. . . [[b1, b2], b3], . . .
]

, bd
]

.
If B1, B2, . . . , Bd are subsets of G, we denote by [B1, B2, . . . , Bd] the subgroup of G

generated by the elements [b1, b2, . . . , bd] with b1 ∈ B1, b2 ∈ B2, . . ., bd ∈ Bd.

1.5. We will denote by Gd, d ∈ N, the terms of the lower central series of G, G1 = G,
G2 = [G,G], G3 = [G,G,G], . . .. If G is s-step nilpotent, Gs+1 = {1G}. The groups
Gd are normal closed Lie subgroups of G, and for each d, Gd/Gd−1 is a commutative
simply-connected Lie group.

The terms of the lower central series of Gc will be denoted by Gcd, d ∈ N.

1.6. When A is a group and C is a normal subgroup of A, for an element b ∈ A or
for a subset B ⊆ A we will denote by b mod C, respectively by B mod C, the image of
b, respectively of B, in A/C. We will write b ∈ B mod C if bmod C ∈ B mod C; B1 ⊆
B2 mod C if B1 mod C ⊆ B2 mod C, etc.

1.7. One can find a Malcev basis in G compatible with Γ and with the lower central
series of G, namely, elements ed,j ∈ Γ, d = 1, . . . , s, j = 1, . . . , kd, such that for each
d = 1, . . . , s, the elements ed,j mod Gd+1, j = 1, . . . , kd, form a basis in Gd/Gd+1. Every
element b ∈ Gc is then uniquely representable in the form b =

∏s
d=1

∏kd
j=1 eud,j

d,j where the
coordinate ui,j ∈ R if ei,j ∈ Gc and ui,j ∈ Z otherwise. Thus, Malcev coordinates define a
diffeomorphism G ' Zm × Rl.

1.8. The multiplication in G, written in Malcev coordinates, is polynomial: if b =
∏s

d=1

∏kd
j=1 eud,j

d,j and c =
∏s

d=1

∏kd
j=1 evd,j

d,j , then bc =
∏s

d=1

∏kd
j=1 ewd,j

d,j where for each
d, j, the coordinate wd,j is a polynomial in the variables ud′,j′ and vd′′,j′′ with d′, d′′ ≤ d,
taking on integer values when the arguments are integer, and having total degree d if it is
assumed that each variable ud′,j′ has degree d′ and each variable vd′′,j′′ has degree d′′. (In
the case of connected G this follows from Campbell-Hausdorff’s formula; a disconnected
G can be considered as a subgroup of a connected nilpotent Lie group.)

1.9. A subnilmanifold Y of X is a closed subset of X of the form Y = Hx, where H is a
closed subgroup of G and x ∈ X; one may always assume that H ⊆ Gc . A subnilmanifold
Y is a nilmanifold, since Y ' H/

(

(bΓb−1)∩H
)

where b is any element of G with π(b) = x.
We will denote by µY the normalized Haar measure on Y .

Given a closed subgroup H of G and a point x ∈ X, the set Hx may not be closed
and so, be a subnilmanifold of X; Hx is closed iff (bΓb−1) ∩H is a uniform subgroup of
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H, where b is any element of π−1(x). In particular, H1X = π(H) is closed iff H ∩ Γ is
uniform in H; we will say that H is rational in this case.

1.10. Any mapping ϕ:Zm −→ G defines an “action” x 7→ ϕ(n)x, n ∈ Zm, x ∈ X, of Zm

on X. (This notion of action we use is not too conventional.) For a point x ∈ X the orbit
of x under ϕ is the set Orbϕ x =

{

ϕ(n)x : n ∈ Zm
}

; for a subset D ⊆ X the orbit of D
under ϕ is Orbϕ D =

⋃

n∈Zm ϕ(n)D.

1.11. If ϕ is a homomorphism, we say that ϕ is a linear action of Zm on X. Under a
linear action, the closure Z = Orbϕ(x) of the orbit of any point x ∈ X is a subnilmanifold
of X, and “the sequence” ϕ(n)x is well distributed on Z, C-limn f(ϕ(n)) =

∫

Z f dµZ
for any f ∈ C(Z). (See, for example, [L3].) If D is a subnilmanifold of X, the closure
Y = Orbϕ(D) of the orbit Orbϕ(D) =

⋃

n∈Zm ϕ(n)D of D is also a subnilmanifold of X,
and “the sequence” ϕ(n)D is well distributed on Y : C-limn

∫

ϕ(n)D f dµϕ(n)D =
∫

Y f dµY

for any f ∈ C(Y ).

1.12. A mapping ϕ:Zm −→ G is polynomial, and defines a polynomial action of Zm on
X, if it has the form ϕ(n) =

∏k
i=1 bpi(n)

i , n ∈ Zm, where bi ∈ G and pi are polynomials
on Zm. (When writing such an expression we always assume that it makes sense, that is,
that the polynomial pi takes only integer values whenever bi 6∈ Gc .)

We will call a closed subset of X of the form
⋃l

j=1 Hxj where x1, . . . , xl ∈ X and H
is a closed subgroup of G, a fu-subnilmanifold of X.

Under a polynomial action, the closure Orbϕ(x) of the orbit of a point x ∈ X is
a fu-subnilmanifold of X, and ϕ(n)x is well distributed on the connected components
of Orbϕ(x). (See [L4]. This fact is in complete analogy with Weyl’s theorem about
distribution of polynomial sequences on tori; see subsection 7.2.) The simplest example
where the orbit of a polynomial sequence is not a subtorus but a finite union of subtori is
given by the sequence

{1
3n2

}

in the torus X = R/Z.)
For a subnilmanifold D of X an analogous fact holds: Orbϕ(D) is a fu-subnilmanifold

of X, and ϕ(n)D is well distributed on Orbϕ(D).

1.13. Let ϕ be a linear action of Zm on X and let x ∈ X; for simplicity, let x = 1X .
Then Y = Orbϕ(x) is a (not necessarily connected) subnilmanifold of X, and has the form
Y = π(H) where H is a rational subgroup of G. The maximal subgroup of G with this
property is M = {b ∈ G : bY = Y }; since Y is ϕ(Zm) invariant, we have ϕ(Zm) ⊆ M .
Thus, in order to determine Y , we may look for the minimal rational subgroup H of G
that contains ϕ(Zm).

Similarly, if D is a subnilmanifold of X with 1X ∈ D, then D has the form D = π(K)
where K is a rational subgroup of G, and in order to determine Orbϕ(D) we have to find
the minimal rational subgroup H of G that contains both K and ϕ(Zm).

1.14. If ϕ is a polynomial action, the problem of finding Y = Orbϕ(x) or Y = Orbϕ(D)
is more difficult. In this case Y may not be a subnilmanifold of X, but only a fu-
subnilmanifold. And even in the case where Y is a connected subnilmanifold, the elements
ϕ(n) may not preserve Y , and hence the group H = {b ∈ G : bY = Y } may not contain
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ϕ(Zm). (See [L8].) Thus, even in this case (and assuming ϕ(0) = 1G, x = 1X , D 3 1X),
in order to find Y we need to find the minimal rational subgroup H of G such that π(H)
contains ϕ(n)x, or respectively ϕ(n)D, for all n ∈ Zm.

1.15. Let ϕ be a polynomial action of Zm on X and let D be a connected subnilmanifold of
X. Then almost all points of D have the same orbit under ϕ in the following sense: there
is a fu-subnilmanifold Z such that for almost all x ∈ D, Orbϕ(x) = bZ where b ∈ π−1(x),
and Orbϕ(x) ⊆ bZ, b ∈ π−1(x), for the other points x ∈ D. We will call Z the generic
orbit of points of D under the action ϕ. (Let us also remark that in the case where ϕ is a
linear action, Z is a subnilmanifold and Orbϕ(x) = Z for all x ∈ D.)

Assume that Z 3 1X , let Zc be the identity component of Z and let K be the
connected rational subgroup of G such that π(K) = Zc. Assume that D 3 1X , let L be
the connected rational subgroup of G such that π(L) = D. Assume that ϕ(0) = 1G, let
Y = Orbϕ(D), let Y c be the identity component of Y and let H be the connected rational
subgroup of G such that π(H) = Y c. Then K is a normal subgroup of H, H = LK, and
thus Y c = LZc. (See [L8].)

2. Characteristic factors, natural factors of nilmanifolds, and complexity

In this section we define characteristic factors of dynamical systems related to a system of
polynomials P and the complexity of P .

2.1. We fix a ∈ G such that the action of a on X is ergodic. Consider the nilsystem
(X, a). The subgroup of G generated by Gc and a acts transitively on X, thus we may and
will assume that G is generated by Gc and a. Under this assumption, the groups Gd are
connected for d ≥ 2.

2.2. Given a set S and r ∈ N, we will denote by ∆Sr the diagonal
{(x...

x

)

: x ∈ S
}

of Sr.

Given a mapping τ : B −→ C and r ∈ N, we will denote by τ×r the mapping Br −→ Cr

defined by τ×r(b1, . . . , br) =
(

τ(b1), . . . , τ(br)
)

.

2.3. Let P = {p1, . . . , pr} be a system of (distinct) polynomials Zm −→ Z with zero
constant term. We are interested in the closure Y = OrbP (∆Xr ) of the orbit of the
diagonal of Xr under the action (0.1). In the case where pi are linear polynomials Y is a
subnilmanifold of Xr, and has the form Y = π(H) where H is a rational subgroup of Gr

containing ∆Gr . If (some of) pi are non-linear, Y is a fu-subnilmanifold of Xr. Let Y c be
the connected component of Y that contains ∆Xr ; then Y c has the form Y c = π(H) where
H is a rational subgroup of Gcr containing ∆Gcr and Y is a finite union of subnilmanifolds
of the form Hx, x ∈ X.

2.4. Let L be a normal rational subgroup of G, let D = π(L), and let X ′ = L\X =
G/(LΓ). Then the nilmanifold X ′ is a factor of X, and the fibers of the natural projection
η: X −→ X ′ are subnilmanifolds of X of the form bD, b ∈ G. We will call D the fiber of η.
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2.5. The factor X ′ is characteristic for P if for any f1, . . . , fr ∈ L∞(X) one has

C-lim
n

∫

X
T p1(n)f1 · . . . · T pr(n)frdµX

= C-lim
n

∫

X′
T p1(n)E(f1|X ′) · . . . · T pr(n)E(fr|X ′)dµX′ .

Let Y ′ = η×r(Y ) = OrbP (∆(X′)r ) ⊆ (X ′)r. By formula (0.2), X ′ is characteristic for P iff

∫

Y
f1 ⊗ . . .⊗ frdµY =

∫

Y ′
E(f1|X ′)⊗ . . .⊗E(fr|X ′)dµY ′ ,

for any f1, . . . , fr ∈ L∞(X), and thus iff
∫

Y f̃ dµY =
∫

Y ′ E
(

f̃ |(X ′)r
)

dµY ′ for any f̃ ∈
L1(Xr). This means that Y = π−1(Y ′), that is, Y consists of entire fibers b̃Dr, b̃ ∈ Gr, of
the projection η×r: Xr −→ (X ′)r. If L is connected, this is so iff H ⊇ Lr.

2.6. By Xd, d = 0, 1, . . ., we will denote the dth natural factor Gd+1\X = G/(ΓGd+1) of X.
If G is s-step nilpotent, one has the tower X = Xs −→ Xs−1 −→ . . . −→ X1 −→ X0 = {·}
of natural factors of X. The fiber of the projection πd: X −→ Xd is the subnilmanifold
Dd = π(Gd+1) = Gd+1/(Γ ∩ Gd+1), d = 0, 1, . . . , s − 1. Since, by our assumption, the
groups Gd are connected for d ≥ 2, the fibers Dd are connected for d ≥ 1. The fiber of
π0: X −→ X0 is D0 = X, which is also connected.

The fiber of the projection Xd −→ Xd−1 is Fd = Gd/((Γ∩Gd)Gd+1), d = 1, . . . , s. For
each d, Fd is a factor of Gd−1, and is therefore connected. Since Gd/Gd+1 is a commutative
group, Fd is a torus.

2.7. We will call the minimal integer d for which Xd is characteristic for P , that is, the
minimal d for which Gr

d+1 ⊆ H, the complexity of P with respect to (X, a).
If d is the minimal integer for which P has complexity ≤ d with respect to all connected

nilsystems, we will say that P has complexity d. (It is proved in [HK2] and [L5] that the
complexity of P is always finite.)

2.8. Here are some evident properties of the complexity (with respect to a nilsystem (X, a))
as a function of a polynomial system P :
(i) If P ′ ⊆ P , the complexity of P ′ ≤ the complexity of P .
(ii) If a polynomial systems P ′ is such that OrbP ′(∆Xr ) ⊆ OrbP (∆Xr ), then the complex-
ity of P ′ ≥ the complexity of P .
(iii) The complexity of the system P = {p1, . . . , pr} is equal to the complexity of the system
{

0, p2 − p1, . . . , pr − p1
}

.

2.9. The notions of a characteristic factor for and of the complexity of a system of poly-
nomials P = {p1, . . . , pr} can also be introduced with respect to the “non-integrated”
product T p1(n)f1 · . . . ·T pr(n)fr. Let us say that a factor X ′ of X is p-characteristic (point
characteristic) for P if for any f1, . . . , fr ∈ L∞(X) one has

C-lim
n

T p1(n)f1 · . . . · T pr(n)fr = C-lim
n

T p1(n)E(f1|X ′) · . . . · T pr(n)E(fr|X ′)
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in L1(X), and call the minimal d such that Xd is p-characteristic for P the p-complexity
of P with respect to (X, a). We are going to show that there is no need in studying the
“p-”versions of the notions of the characteristic factor and of the complexity, since they
are closely related to the ones already introduced.

2.10. For a system of polynomials P , let Z ⊆ Xr be the generic orbit of points of ∆Xr

under the action (0.1). Let Zc be the identity component of Z and let K be the connected
rational subgroup of Gr such that π(K) = Zc. By subsection 1.15, H = ∆GcrK and
Y c = ∆GcrZc.

Thus, knowing the generic orbit of points of ∆Xr , one can easily find Orb(∆Xr ). On
the other hand, the generic orbit Z of points of ∆Xr can be found by determining the orbit

Orb
P̂

(∆Xr+1) where ̂P = {0} ∪ P . Indeed, for every point ¯̄x =
(x

x...
x

)

=
(

x
x̄

)

∈ ∆Xr+1 one

has Orb
P̂

(¯̄x) =
(

x
OrbP (x̄)

)

; thus for almost all x ∈ X, Orb
P̂

(¯̄x) =
(

bx

b̄xZ

)

and for all x ∈

X, Orb
P̂

(¯̄x) ⊆
(

bx

b̄xZ

)

, where bx ∈ Gc with π(bx) = x, and b̄x =
(

bx...
bx

)

∈ ∆Gcr . It follows

that Orb
P̂

(∆Xr+1) =
⋃

x∈X

(

x
b̄xZ

)

, and in particular,
(

1X

Z

)

= Orb
P̂

(∆Xr+1)∩
(

1X

Xr

)

.

2.11. Now let X ′ = L\X where L is a connected normal rational subgroup of G; the
fiber of the projection X −→ X ′ is then D = π(L). Then X ′ is p-characteristic for P
iff for almost every point x̄ ∈ ∆Xr , OrbP (x̄) consists of entire fibers b̃Dr, b̃ ∈ Gcr, of the
projection Xr −→ (X ′)r. It follows that X ′ is p-characteristic for P iff K ⊇ Lr.

It now follows that X ′ is p-characteristic for P iff it is characteristic for ̂P . Indeed,
let ̂H be the connected rational subgroup of G such that π( ̂H) is the identity component

of Orb
P̂

(∆Xr+1); then ̂H =
⋃

b∈Gc

(

b
b̄K

)

, where, for b ∈ Gc , b̄ =
(

b...
b

)

∈ ∆Gcr . If X ′ is

p-characteristic for P then K ⊇ Lr, so ̂H ⊇
⋃

b∈Gc

(

b
b̄Lr

)

⊇
⋃

b∈L

(

b
b̄Lr

)

= Lr+1, and X ′

is characteristic for ̂P . If X ′ is characteristic for ̂P , then ̂H ⊇ Lr+1, so
(

1G

Lr

)

⊆
(

1G
K

)

,

so Lr ⊆ K, and hence, X ′ is p-characteristic for P .

As a corollary, we obtain that the p-complexity of a polynomial system P equals the
complexity of the system ̂P = {0} ∪ P .

2.12. Let us also clarify why one may confine oneself to the case of a connected nil-
manifold. Assume that the nilmanifold X is disconnected; since X is compact, it con-
sists of finitely many connected components, X = X1 ∪ . . . ∪ Xk. Since the transla-
tion by a is ergodic, it cyclically permutes the components Xj ; thus akXj = Xj for
all j. Consider the nilsystems (Xj , ak|Xj

), j = 1, . . . , k, and the polynomial systems
Pi =

{ 1
k (p1(kn+ i)−p1(i)), . . . , 1

k (pr(kn+ i)−pr(i))
}

, i ∈ {0, . . . , k−1}m, of polynomials
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in n with zero constant term. Then

OrbP (∆Xr ) =
k

⋃

j=1

k−1
⋃

i=0

(

ap1(i)
...

apr(i)

)

OrbPi(∆Xr
j
),

and the study of the orbit of the diagonal in the disconnected nilsystem (X, a) is reduced
to that in the connected nilsystems (Xj , ak|Xj

).
In particular, if the fiber D of a projection X −→ X ′ is connected, it is contained

in OrbP (∆Xr) if it is contained in OrbP0(∆Xr
1
) (assuming X1 3 1X). Since even in the

case of disconnected X the fibers Dd are connected for d ≥ 1, we see that the complexity
of P with respect to (X, a), if positive, does not exceed the complexity of the system
P0 =

{ 1
kp1(kn), . . . , 1

kpr(kn)
}

with respect to (X1, ak|X1
), and thus does not exceed the

complexity of P0. One can show that the complexity of P0 with respect to any connected
nilsystem is equal to the complexity of P with respect to this nilsystem. Hence, the
complexity of P with respect to all, including disconnected, nilsystems, if positive, equals
the complexity of P with respect to connected nilsystems only.

3. Spans

In this section we introduce some linear algebra notation.

3.1. Given a set S ⊆ Zr we will denote by spanZ S the subgroup of Zr generated by S.

For an integer matrix B =
(b1,1 ... b1,l... ...

br,1 ... br,l

)

we will denote by spanZB the subgroup of Zr

generated by the columns of B,

spanZB = spanZ

{(

b1,1...
br,1

)

, . . . ,
(b1,l...

br,l

)}

.

If B is a polynomial matrix, B =
(p1,1 ... p1,l... ...

pr,1 ... pr,l

)

where pi,j are are integer-valued poly-

nomials on Zm with zero constant term, we will denote by SpanZB the subgroup of Zr

generated by the values of the columns of B,

SpanZB =
∑

n∈Zm

spanZ

(p1,1(n) ... p1,l(n)... ...
pr,1(n) ... pr,l(n)

)

.

3.2. Similarly, for S ⊆ Rr we will denote by spanR S the subspace of Rr spanned by S, for

a real matrix B =
(

b1,1 ... b1,m... ...
br,1 ... br,m

)

we define

spanRB = spanR

{(

b1,1...
br,1

)

, . . . ,
(

b1,m...
br,m

)}

,
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and for a matrix B =
(p1,1 ... p1,l... ...

pr,1 ... pr,l

)

with pi,j being polynomials Zm −→ Rr we put

SpanRB =
∑

n∈Zm

spanR

(p1,1(n) ... p1,l(n)... ...
pr,1(n) ... pr,l(n)

)

.

Note that if pi,j =
∑k

t=1 bi,j,tqt, i = 1, . . . , r, j = 1, . . . , l, where q1, . . . , qt are distinct
monomials with trivial coefficient (or just linearly independent polynomials), then

SpanR

(p1,1(n) ... p1,l(n)... ...
pr,1(n) ... pr,l(n)

)

= spanR

(b1,1,1 ... b1,m,1 ... ... b1,1,k ... b1,m,k... ... ... ...
br,1,1 ... br,m,1 ... ... br,1,k ... br,m,k

)

.

(Since Z is disconnected, an analogous fact does not hold for SpanZ.)

3.3. More generally, let Z be an abelian group. For a vector v =
(

b1...
br

)

∈ Zr, we will denote

by spanZ v the subgroup

{vz : z ∈ Z} =
{(

b1z...
brz

)

: z ∈ Z
}

of Zr. For an integer matrix B =
(

b1,1 ... b1,m... ...
br,1 ... br,m

)

we define

spanZ B = spanZ

{(

b1,1...
br,1

)

, . . . ,
(

b1,m...
br,m

)}

.

If B is a polynomial matrix, B =
(p1,1 ... p1,l... ...

pr,1 ... pr,l

)

where pi,j are are integer-valued polynomials

on Zm with zero constant term, we put

SpanZ B =
∑

n∈Zm

spanZ

(p1,1(n) ... p1,l(n)... ...
pr,1(n) ... pr,l(n)

)

.

3.4. Now let A1, . . . , Ar be endomorphisms of Z and let v =
(

A1...
Ar

)

; then for z ∈ Z the

vector vz =
(

A1z...
Arz

)

∈ Zr makes sense, and we again may define spanZ v = {vz : z ∈ Z}.

For B =
(

A1,1 ... A1,m... ...
Ar,1 ... Ar,m

)

where Ai,j ∈ End(Z) we define

spanZ B = spanZ

{(

A1,1...
Ar,1

)

, . . . ,
(

A1,m...
Ar,m

)}

,

and if B =
(Q1,1 ... Q1,l... ...

Qr,1 ... Qr,l

)

where Qi,j are mappings Zm −→ End(Z), we put

SpanZ B =
∑

n∈Zm

spanZ

(Q1,1(n) ... Q1,l(n)... ...
Qr,1(n) ... Qr,l(n)

)

.
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4. A group of polynomial mappings to a nilpotent group

In this section we describe the group Pol(K,G) of polynomial mappings from K = Zl or
Rl to the nilpotent Lie group G; it will be used in the next section to construct the group
G[V ] whose projection to Xr is OrbP (∆Xr ).

4.1. Let K be one of the groups Zl or Rl, l ∈ N. We will denote by Pol(K) the set of
polynomials on K, and for d ∈ N we will denote by Pold(K) the set of polynomials on K
of degree ≤ d.

Given b ∈ G and q ∈ Pol(K), we may consider the mapping bq:K −→ G, u 7→ bq(u)

for u ∈ K. To avoid complicated notation, let us make the following agreement: when we
write bq with b 6∈ Gc , we assume that K = Zl and q(K) ⊆ Z; then q(u) ∈ Z and bq(u) makes
sense for all u ∈ K.

A polynomial mapping ϕ: K −→ G is a mapping of the form ϕ(u) =
∏k

i=1 bqi(u)
i ,

u ∈ K, where bi ∈ G and qi ∈ Pol(K), i = 1, . . . , k. With respect to the element-wise
multiplication, polynomial mappings from K to G form a group Pol(K, G).

4.2. Given subsets S1, . . . , Sl of a group R, we will denote by 〈S1, . . . , Sl〉 the subgroup of
R generated by S1, . . . , Sl. We have Pol(K,G) =

〈

bq : b ∈ G, q ∈ Pol(K)
〉

.

4.3. We define a subgroup Pol∗(K,G) of the group Pol(K,G) in the following way:

Pol∗(K,G) =
〈

bq : b ∈ Gd, q ∈ Pold(K) for some d
〉

.

Let
{

ed,j ∈ Γ : d = 1, . . . , s, j = 1, . . . , kd
}

be a Malcev basis in G compatible with
Γ and with the lower central series of G, such that for each d = 1, . . . , s, the elements
ed,j mod Gd+1, j = 1, . . . , kd, form a basis in Gd/Gd+1. The following proposition clearly
follows from subsection 1.8:

Proposition. Every polynomial mapping ϕ ∈ Pol∗(K, G) is uniquely representable in
the form ϕ =

∏s
d=1

∏kd
j=1 eqd,j

d,j with qd,j ∈ Pold(K) for all d and j. In particular,
if ϕ ∈ Pol∗(K, G) satisfies Im(ϕ) ⊆ Gd0 for some d0 ∈ N, then ϕ has the form
ϕ =

∏s
d=d0

∏kd
j=1 eqd,j

d,j with qd,j ∈ Pold(K) for all d and j.

4.4. Let u1, . . . , ur ∈ K; consider the subgroup

Pol∗(K,G)
(u1...

ur

)

=
{

(

ϕ(u1)...
ϕ(ur)

)

: ϕ ∈ Pol∗(K, G)
}

of Gr.
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Corollary. Any b̃ ∈ Pol∗(K, G)
(u1...

ur

)

is uniquely representable in the form

b̃ =





∏s

d=1

∏kd
j=1

e
qd,j(u1)

d,j...
∏s

d=1

∏kd
j=1

e
qd,j(ur)

d,j



 (4.1)

with qd,j ∈ Pold(K) for all d and j. In particular, if b̃ ∈ Pol∗(K, G)
(u1...

ur

)

∩ Gr
d0

for some
d0 ∈ N, then

b̃ =





∏s

d=d0

∏kd
j=1

e
qd,j(u1)

d,j...
∏s

d=d0

∏kd
j=1

e
qd,j(ur)

d,j



 (4.2)

with qd,j ∈ Pold(K) for all d and j.

4.5. A polynomial sequence in G is a polynomial mapping Z −→ G. For a mapping
g:Z −→ G we define the derivative Dg:Z −→ G of ϕ by Dg(n) = g(n)−1g(n + 1). It is
easy to see that ϕ is polynomial iff Dkg = const for some k ∈ N (see [L1] or [L2]); we call
the minimal k with this property the degree of g. If g is an element of Pol∗(Z, G) and the
nilpotency class of G is ≤ s, then the degree of g is ≤ s.

4.6. The following fact can be easily proved by induction on the degree of a polynomial
sequence:

Lemma. Any polynomial sequence g of degree ≤ k is uniquely determined by its initial
values g(0), g(1), . . . , g(k).

4.7. Any polynomial sequence g ∈ Pol∗(Z, G) is uniquely representable in the form g(n) =
∏s

k=0 b(
n
k)

k , n ∈ Z, with bk ∈ Gk for all k (where
(n

k

)

= 1
k!n(n − 1) . . . (n − k + 1)). The

elements bk can be found inductively in the following way. We put b0 = g(0). Assume that

elements b0, b1, . . . , bd−1 ∈ G have already been found so that g(n) =
∏d−1

k=0 b(
n
k)

k mod Gd,
n ∈ Z. We then define

bd =
(

d−1
∏

k=0

b(
n
k)

k

)−1
g(d),

and get bd ∈ Gd. The sequence
∏d

k=0 b(
n
k)

k mod Gd+1 has degree ≤ d and coincides with

g(n)mod Gd+1 for n = 0, . . . , d; by Lemma 4.6, g(n) =
∏d

k=0 b(
n
k)

k mod Gd+1 for all n ∈ Z.

After determining all of b0, b1, . . . , bs, we obtain g(n) =
∏s

k=0 b(
n
k)

k , n ∈ Z.

Remark. An analogous fact holds for polynomial mappings ϕ ∈ Pol∗(K,G) with l > 1
and can be derived similarly, but we do not need it in this paper.
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5. A subgroup of Gr associated with a subgroup of Zr

In this section we construct and study the subgroup G[V ] ⊆ Gr, for V being a subgroup of
Zr or a subspace of Rr; this group can be seen as an analogue of spanG V for non-abelian
G.

5.1. We introduce the coordinate-wise multiplication on Rr: for vectors v1 =
(

c1,1...
c1,r

)

and

v2 =
(

c2,1...
c2,r

)

in Rr let v1v2 =
(

c1,1c2,1...
c1,rc2,r

)

. For vectors v1 =
(

c1,1...
c1,r

)

, . . ., vl =
(cl,1...

cl,r

)

in Rr

and a polynomial q ∈ Pol(Rl) we then have q(v1, . . . , vl) =
(q(c1,1,...,cl,1)...

q(c1,r,...,cl,r)

)

∈ Rr.

5.2. Let V̂ be a subgroup of Zr. For d ∈ N we define

PdV̂ =
{

q(v1, . . . , vl) : l ∈ N, q ∈ Pold(Zl), q(Zl) ⊆ Z, and v1, . . . , vl ∈ V̂
}

.

PdV̂ is a subgroup of Zr. If V̂ is generated by vectors v1, . . . , vl, then PdV̂ is generated
by the vectors

∏l
i=1

(vi
di

)

with
∑l

i=1 di ≤ d (where
(v
k

)

= 1
k!v(v − 1) . . . (v − k + 1)).

Note that if V̂ ⊇ ∆Zr , then P1V̂ = V̂ ; we will only need to deal with subgroups V̂
having this property.

We also define

V̂ ∗d = spanZ
{

v1v2 . . . vl : 0 ≤ l ≤ d, v1, . . . , vl ∈ V̂
}

(where we assume that the empty product is equal to
(1...

1

)

). If V̂ is generated by vectors

v1, . . . , vl, then V̂ ∗d is generated by the vectors
∏l

i=1 vdi
i with

∑l
i=1 di ≤ d. Therefore,

V̂ ∗d is a subgroup of finite index in PdV̂ .

5.3. Now let V be a subspace of Rr. For d ∈ N let

PdV =
{

q(v1, . . . , vl) : l ∈ N, q ∈ Pold(Rl) and v1, . . . , vl ∈ V
}

and
V ∗d = spanR

{

v1v2 . . . vl : 0 ≤ l ≤ d, v1, . . . , vl ∈ V
}

.

Then PdV = V ∗d. If V is spanned by vectors v1, . . . , vl, then V ∗d is spanned by the vectors
∏l

i=1 vdi
i with

∑l
i=1 di ≤ d.

If V̂ is a subgroup of Zr and V is the subspace of Rr spanned by V̂ , then, for any
d ∈ N, spanR PdV̂ = PdV = V ∗d.

5.4. Let b be an element of a group M and let v =
(c1...

cr

)

∈ Zr. We define bv =
(

bc1...
bcr

)

∈ Mr.

If M is a Lie group and b ∈ M is such that bt is defined for all t ∈ R, then bv =
(

bc1...
bcr

)

∈ Mr

is defined for v =
(c1...

cr

)

∈ Rr.

16



5.5. Let M be a commutative group and let V̂ be a subgroup of Zr. We define a subgroup
M [V̂ ] of Mr in the following way:

M [V̂ ] =
〈

bv : b ∈ M, v ∈ V̂
〉

.

(M [V̂ ] is the same as spanM (V̂ ) in additive notation.)
If M is a connected simply-connected commutative Lie group (that is, a vector space),

then the subgroup
M [V ] =

〈

bv : b ∈ M, v ∈ V
〉

of Mr is also defined for any subspace V of Rr. In this case, if V̂ is a subgroup of Zr

and V = spanR V̂ , we have M [V ] = M [V̂ ]. The dimension of M [V ] is dim M · dim V , and
M [V ] = Mr iff V = Rr.

We would prefer to always deal with the R-space V instead of the Z-module V̂ , but
we have to use V̂ when our group M is disconnected.

5.6. Now let G be a simply-connected nilpotent Lie group with a discrete uniform subgroup
Γ, and let V̂ be a subgroup of Zr. We define

G[V̂ ] =
〈

bw : w ∈ PdV̂ and b ∈ Gd for some d
〉

=
〈

bq(v1,...,vl) : l ∈ N, q ∈ Pold(Zl), b ∈ Gd for some d, and vj ∈ V̂ , j = 1, . . . , l
〉

.

5.7. Proposition. G[V̂ ] is a closed rational subgroup of Gr,

G[V̂ ] =
{

s
∏

d=1

ld
∏

j=1

bwd,j
d,j : bd,j ∈ Gd and wd,j ∈ PdV̂ for all d and j

}

, (5.1)

and for any d0 ∈ N,

G[V̂ ] ∩Gr
d0

=
{

s
∏

d=d0

ld
∏

j=1

bwd,j
d,j : bd,j ∈ Gd and wd,j ∈ PdV̂ for all d and j

}

. (5.2)

Proof. Let V̂ be generated by vectors v1 =
(

c1,1...
c1,r

)

, . . . , vl =
(cl,1...

cl,r

)

. Put u1 = (c1,1, . . . , cl,1),

. . ., ur = (c1,r, . . . , cl,r) ∈ Zl. Then

G[V̂ ] =
〈

bq(v1,...,vl) : q ∈ Pold(Zl) and b ∈ Gd for some d
〉

=
〈

(

bq(u1)
...

bq(ur)

)

: q ∈ Pold(Zl) and b ∈ Gd for some d
〉

= Pol∗(Zl, G)
(u1...

ur

)

in the notation of subsection 4.4. Hence, G[V̂ ] is a subgroup of Gr, and (5.1), (5.2) follow
from (4.1), (4.2) respectively; it also follows from (4.1) that G[V̂ ] is closed. Clearly, Γ[V̂ ] is
uniform in G[V̂ ], and thus G[V̂ ] is rational with respect to Γr.

17



5.8. Corollary. Let, for each d, the group PdV̂ is generated modulo Pd−1V̂ by elements
wd,1, . . . , wd,ld ∈ PdV̂ . (We assume here that P0V̂ = {0}.) Then

G[V̂ ] =
{

s
∏

d=1

ld
∏

j=1

bwd,j
d,j : bd,j ∈ Gd for all d and j

}

.

Proof. Let b̃ ∈ G[V̂ ]. Since the vectors w1,1, . . . , w1,l1 generate P1V̂ , the element b̃mod Gr
2

can be written in the form

b̃ =
l1
∏

j=1

bw1,j
1,j mod Gr

2,

with b1,1, . . . , b1,l1 ∈ G.
Consider the element b̃1 =

∏l1
j=1 bw1,j

1,j . We have b̃b̃−1
1 ∈ G[V̂ ] ∩ Gr

2, thus, by Proposi-
tion 5.7 and since the vectors w1,1, . . . , w1,l1 , w2,1, . . . , w2,l2 generate P2V̂ , we can write

b̃b̃−1
1 =

l1
∏

j=1

dw1,j
1,j

l2
∏

j=1

bw2,j
2,j mod Gr

3

with d1,1, . . . , d1,l1 , b2,1, . . . , b2,l2 ∈ G2. Put

b̃2 =
l1
∏

j=1

(b1,jd1,j)w1,j

l2
∏

j=1

bw2,j
2,j ,

then b̃ = b̃2 mod G3.
And so on, by induction, until we get b̃s ∈ G[V̂ ] representable in the desired form and

such that b̃ = b̃s mod Gs+1. Since Gs+1 = {1G}, b̃ = b̃s.

5.9. If G is connected, the closed rational subgroup

G[V ] =
〈

bw : w ∈ V ∗d and b ∈ Gd for some d
〉

=
〈

bq(v1,...,vl) : l ∈ N, q ∈ Pold(Zl), b ∈ Gd for some d, and vj ∈ V , j = 1, . . . , l
〉

of Gr is defined for any subspace V of Rr. If V = spanR V̂ for a subgroup V̂ of Zr, then
G[V ] = G[V̂ ].

5.10. Let V̂ be a subgroup of Zr. For d ∈ N let Md = Gd/Gd+1; Md is then a commutative
Lie group. It follows from (5.2) that for any d,

(G[V̂ ] ∩Gr
d)mod Gr

d+1 = M [PdV̂ ]
d .

If, for some d, Md is connected (and thus is a vector space), we have

(G[V̂ ] ∩Gr
d)mod Gr

d+1 = M [PdV ]
d = M [V ∗d]

d

where V = spanR(V̂ ).
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5.11. Let V̂ be a subgroup of Zr and let V = spanR(V̂ ). If, for some d, Pd(V̂ ) = Zr or

Md is connected and V ∗d = Rr, then M [Pd(V̂ )]
k = Mr

k for all k ≥ d, and so

G[V̂ ] =
〈

bw : w ∈ PdV̂ and b ∈ Gk for some k < d
〉

·Gr
d.

5.12. The following technical lemma says that if H is a subgroup of Gr, then knowing “the
linear part” H/Gr

2 of H one may “estimate from below” the other “graduated components”
(H ∩Gr

d)mod Gr
d+1, d = 2, 3, . . ., of H.

Lemma. Let V̂ be a subgroup of Zr with V̂ ⊇ ∆Zr and let H be a subgroup of Gr such
that H mod Gr

2 ⊇ M [V̂ ]
1 . Then (H ∩Gr

d)mod Gr
d+1 ⊇ M [V ∗d]

d for all d.

Proof. Let d ≥ 2, k ≤ d and v1, . . . , vk ∈ V̂ ; put vk+1 = . . . = vd =
(

1...
1

)

. Then for any

b = [b1, b2, . . . , bd
]

∈ Gd we have

bv1v2...vk = bv1v2...vd =
[

bv1
1 , bv2

2 , . . . , bvd
d

]

mod Gr
d+1.

Since bvi
i mod Gr

2 ∈ M [V̂ ]
1 ⊆ H mod Gr

2 for i = 1, . . . , d, we obtain bv1v2...vk ∈ H mod Gr
d+1.

5.13. The elements bv, b ∈ G, v ∈ V̂ , of Gr belong to the group G[V̂ ]. Actually, G[V̂ ] is
generated by these elements; this fact is algebraic and is true for a general nilpotent group
G without any topology assumed on it. We do not need this fact here; what we will need
is the following weaker proposition:

Proposition. Assume that the subgroups Gd are connected for d ≥ 2. Let V̂ be a subgroup
of Zr with V̂ ⊇ ∆Zr and let H be a subgroup of Gr such that H ⊆ G[V̂ ] and H mod Gr

2 ⊇
M [V̂ ]

1 . Then H = G[V̂ ].

Proof. For any d ≥ 2, by Lemma 5.12 and since Md is connected,

(H ∩Gr
d)mod Gr

d+1 ⊇ M [V̂ ∗d]
d = M [V ∗d]

d = M [PdV ]
d = M [PdV̂ ]

d = (G[V̂ ] ∩Gr
d)mod Gr

d+1,

where V = spanR V̂ . Since also H mod Gr
2 ⊇ M [V̂ ]

1 = G[V̂ ] mod Gr
2, we obtain H ⊇ G[V̂ ].

5.14. Below we will also need the following lemma:

Lemma. Let V̂ be a subgroup of Zr. Then [G[V̂ ]
d , ∆Gr ] = G[V̂ ]

d+1 mod Gr
d+2 for any d ∈ N.

Proof. Put e =
(1...

1

)

∈ ∆Zr . For any b1 ∈ Gd, b2 ∈ G, and v ∈ V̂ ,

[b1, b2]v = [bv
1, b

e
2]mod Gr

d+2 ∈ [G[V̂ ]
d , ∆Gr ]mod Gr

d+2,

and G[V̂ ]
d+1 mod Gr

d+2 is generated by these elements.

19



6. The orbit of the diagonal under a system of linear actions

In this section we find OrbP (∆Xr) in the case where P = {p1, . . . , pr} is a system of linear
functions.

6.1. We assume that G is a simply-connected (but not necessarily connected) nilpotent
Lie group, Γ is a discrete uniform subgroup of G, X is the nilmanifold G/Γ and a is an
element of G whose action on X is ergodic. We also assume that X is connected and that
G is generated by Gc and a; this implies that the groups Gd with d ≥ 2 are connected.

We denote by π is the natural projection G −→ X, by Xd, d = 0, 1, 2, . . ., the factor
Gd+1\X of X, by πd: X −→ Xd the corresponding projection, and by Dd the fiber π(Gd)
of πd−1. We also denote by Md, d = 1, 2, . . ., the factor group Gd/Gd+1 and by Fd the
fiber of the projection Xd −→ Xd−1, so that Fd = Md/((Γ ∩ Gd) mod Gd+1). Let also
M0 = (M1)c = Gc/(Gc ∩G2).

6.2. Let P = {p1, . . . , pr} be a system of linear functions Zm −→ Z, pj(n1, . . . , nm) =
cj,1n1 + . . . + cj,mnm, cj,i ∈ Z, j = 1, . . . , r. We need to find a rational subgroup H of Gr

such that π(H) = OrbP (∆Xr ). We will thus look for the minimal rational subgroup H of

Gr that contains all elements
(

ap1(n)b...
apr(n)b

)

, n ∈ Zm, b ∈ G. Let V̂ = SpanZ

(

1 p1... ...
1 pr

)

; then H is

the minimal rational subgroup of Gr that contains all the elements av, v ∈ V̂ .

6.3. G[V̂ ] is a rational subgroup of Gr and contains av, v ∈ V̂ . Thus, H ⊆ G[V̂ ].

Theorem. H = G[V̂ ], and so, OrbP (∆Xr ) = π×r(G[V̂ ]).

Proof. X1 is a torus on which G acts by translations. Since the action of a is ergodic
on X, the induced action is ergodic on X1, and thus the closure of OrbP (∆Xr

1
) of the

orbit of ∆Xr
1

under the action (0.1) is X [V̂ ]
1 . M [V̂ ]

0 is the identity component of the group

(π×r)−1(X [V̂ ]
1 ), thus H mod Gr

2 must contain M [V̂ ]
0 . Since G is generated by Gc and a, M1 is

generated by M0 and by the element amod G2. Since both M [V̂ ]
0 ⊆ H mod Gr

2 and av ∈ H

for all v ∈ V̂ , we obtain that M [V̂ ]
1 ⊆ H mod Gr

2. By Proposition 5.13, H = G[V̂ ].

6.4. For every d ∈ N we have (G[V̂ ]∩Gr
d)mod Gr

d+1 = M [PdV̂ ]
d , thus OrbP (∆Xr ) is a (finite)

tower of extensions whose fibers are the groups π×r(M [PdV̂ ]
d ) = F [PdV̂ ]

d . Let V = spanR V̂ ;

since Fd are connected, π×r(M [PdV̂ ]
d ) = F [V ∗d]

d for all d.

6.5. Corollary. OrbP (∆Xr ) is connected.

6.6. Xd is a characteristic factor for P iff OrbP (∆Xr ) ⊇ Dr
d+1, iff F [V ∗k]

k = F r
k for all

k ≥ d + 1, iff V ∗k = Rr for all k ≥ d + 1 (such that Fk is nontrivial), iff V ∗(d+1) = Rr. We
therefore obtain:

Corollary. The complexity of a system P = {p1, . . . , pr} is the minimal integer d for
which V ∗(d+1) = Rr.
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6.7. Examples. (1) Let P be a system of r different linear functions in 1 variable, P =

{c1n, . . . , crn}. For this system we have V = spanR

(

1 c1... ...
1 cr

)

, and thus

V ∗d = spanR

(

1 c1 ... cd
1... ... ...

1 cr ... cd
r

)

for any d ∈ N. Since c1, . . . , cr are all distinct, dim V ∗d = d+1, d = 1, 2, . . ., and V ∗(d) = Rr

iff d ≥ r − 1. Thus, the complexity of P is r − 2 (which agrees with the results from [Z2]
and [BHK]), and the subgroup H ⊂ Gr for which we have OrbP (∆Xr ) = π×r(H) is, by
Corollary 5.8 and subsection 5.11





























b0bc1
1 bc2

1
2 . . . bcr−2

1
r−2

b0bc2
1 bc2

2
2 . . . bcr−2

2
r−2...

b0bcr
1 bc2

r
2 . . . bcr−2

r
r−2











: b0 ∈ G, b1 ∈ G1, . . . , br−2 ∈ Gr−2



















·Gr
r−1.

(2) Consider a system P =
{

c1n1 + d1n2, . . . , c7n1 + d7n2
}

of 7 linear functions in 2

variables. Here V = spanR

(1 c1 d1...
...

...
1 c7 d7

)

, V ∗2 = spanR

(

1 c1 d1 c2
1 c1d1 d2

1...
...

...
...

...
...

1 c7 d7 c2
7 c7d7 d2

7

)

, and V ∗3 =

spanR

(

1 c1 d1 c2
1 c1d1 d2

1 c3
1 c2

1d1 c1d2
1 d3

1...
...

...
...

...
...

...
...

...
...

1 c7 d7 c2
7 c7d7 d2

7 c3
7 c2

7d7 c7d2
7 d3

7

)

, which equals R7 if the vectors
(

1...
1

)

,
(c1...

c7

)

and
(d1...

d7

)

are in the “general position” (in the sense, clear from the context). Thus, the complexity
of a generic system of 7 linear equations in 2 variables is equal to 2 and

H =

















b0bc1
1 bd1

2 bc2
1

3 bc1d1
4 bd2

1
5

...
b0bc7

1 bd7
2 bc2

7
3 bc7d7

4 bd2
7

5





 : b0, b1, b2 ∈ G, b3, b4, b5 ∈ G2











·G7
3.

The complexity of P may vary if the vectors e =
(

1...
1

)

, v =
(c1...

c7

)

and w =
(d1...

d7

)

are not in the general position. If these vectors are linearly dependent, say, w is a linear

combination of e and v, then V = spanR

(1 c1...
...

1 c7

)

, and the complexity of P equals 5 as in

Example (1) above. If, say, w = v2, one checks that the complexity of P is 3, etc.

(3) It can be observed from the preceding example that the complexity of the generic
system of r linear functions in m variables is equal to the minimal integer d such that
(m+d+1

m

)

≥ r.

(4) Let m ∈ N and let P =
{

pS : S ⊆ {1, . . . , m}
}

be the system of 2m linear func-
tions pS =

∑

i∈S ni in the variables n1, . . . , nm. (Systems of this form, introduced in
[B] under the name of Khintchine’s systems , play a crucial role in [HK1].) Let S be
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the power set of {1, . . . ,m} and let {uS : S ∈ S} be the natural basis in RS . Then
V = spanR{v∅, v{1}, . . . , v{m}}, where v{i} =

∑

S3i ui and v∅ =
∑

S∈S uS . For any d ∈ N,
V ∗d = spanR

{

vR : R ⊆ {1, . . . ,m}, |R| ≤ d
}

, where vR =
∑

S⊇R uS . For d < m,
V ∗(d) is spanned by less than 2m vectors, and thus is a proper subspace of RS . On the
other hand, the set of all vectors vR, R ∈ S, spans RS ; indeed, for any S ∈ S one has
uS =

∑

R⊇S(−1)|R|−|S|vR. Hence, the complexity of P is m − 1 (which agrees with the
result from [BHK]) and

H =
{

(
∏

R⊆S

bR
)

S∈S : b∅ ∈ G, bR ∈ G|R|, R ∈ S
}

=
{

(
∏

R⊆S

bR
)

S∈S : b∅ ∈ G, bR ∈ G|R|, R ∈ S, |R| ≤ m− 1
}

·Gr
m

(where, in the products
∏

R⊆S bR, the order of elements bR is arbitrary, but is, of course,
the same for all entries of the vector

(∏

R⊆S bR
)

S∈S).
For instance, for m = 2 we have P = {0, n1, n2, n1 +n2} and S =

{

∅, {1}, {2}, {1, 2}
}

.

Ordering the basis in RS accordingly we have V = spanR{v∅, v{1}, v{2}} = spanR

(1 0 0
1 1 0
1 0 1
1 1 1

)

and V ∗2 = spanR{v∅, v{1}, v{2}, v{1,2}} = spanR

(1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

)

. Thus,

G[V̂ ] =

















a∅
a∅a{1}
a∅a{2}

a∅a{1}a{2}a{1,2}





 : a∅ ∈ G, a{1}, a{2} ∈ G1, a{1,2} ∈ G2











.

(5) The following two concrete examples are called upon to demonstrate that the com-
plexity of a system of linear functions may depend not only on “the linear” but also on
“the polynomial” properties of the corresponding space V̂ . Let

P =
{

n1 + n2, 2n1 + 4n2, 3n1 + 9n2, 4n1 + 16n2, 5n1 + 25n2, 6n1 + 36n2
}

.

For this system V = spanR





1 1 1
1 2 4
1 3 9
1 4 16
1 5 25
1 6 36



 6= R6, V ∗2 = spanR





1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256
1 5 25 125 625
1 6 36 216 1296



 6= R6, and finally

V ∗3 = R6, so that the complexity of P equals 2.

Now let

P =
{

n1 + n2, 2n1 + 4n2, 3n1 + 9n2, 4n1 + 16n2, 5n1 + 25n2, 6n1 + 37n2
}

.

For this system V = spanR





1 1 1
1 2 4
1 3 9
1 4 16
1 5 25
1 6 37



 and already V ∗2 = spanR





1 1 1 1 1 1
1 2 4 4 8 16
1 3 9 9 27 81
1 4 16 16 64 256
1 5 25 25 125 625
1 6 36 37 222 1369



 = R6, so

that the complexity of P is 1.
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7. Polynomial orbits on tori

In this section we remind the reader how polynomial orbits on tori look; we will use this
information in subsequent sections.

7.1. In this section let X be a torus, X = G/Γ where G is a finite dimensional R-vector
space and Γ is a uniform lattice in G. We will use additive notation for G and X. Any
element α ∈ X acts on X by a translation, and the system (X, α) is a special case of a
nilsystem. An advantage of a torus in comparison with a general nilmanifold is that it is a
group, which allows one to easily compute linear and polynomial orbits of its points. We
are going to discuss here some details related to this.

7.2. If ϕ is a linear (conventional) action of Zm by translations on X, then Y = Orbϕ(x)
where x is a point of X (or Y = Orbϕ(D) where D is a subtorus of X) is a coset of a
closed subgroup of X, and so, is either a subtorus or a disjoint finite union of subtori of
X. If ϕ is a polynomial action, then Y is a “fu-subtorus” of X, and so, again, is either
a subtorus or a disjoint finite union of subtori of X. This is so since X is a nilmanifold,
but also can be easily seen independently. Indeed, let ϕ be a polynomial mapping of Zm

to X; assume that ϕ(0) = 1X and take x = 1X . For each character χ on X, χ◦ϕ is a
polynomial Zm −→ T = R/Z, and thus, by a theorem of Weyl, either χ(ϕ(Zm)) is dense
and uniformly distributed in T, or χ(ϕ(Zm)) is a finite set of rational points in T. If the
first option holds for all characters on X, then Orbϕ(x) = ϕ(Zm) = X. If the second
option holds for a nonzero character on X, then it also holds for a primitive character χ
(that is, a nonzero character that is not a multiple of any other character). In this case
there exists a subgroup F of finite index in Zm such that χ◦ϕ is constant on the cosets of
F , and for each c ∈ Im(χ◦ϕ) one can consider the restriction of ϕ on each of the cosets of
F on which χ◦ϕ takes the value c, replace X by the torus χ−1(c), and use induction on
the dimension of X.

7.3. An element α ∈ X will be said to be irrational if α is not contained in any proper
closed subgroup of X; or equivalently, if χ(α) is irrational for any character χ on X; or
equivalently, if the coordinates of α are linearly independent over Q. Clearly, almost all
(in any sense) elements of X are irrational. If α is irrational, then the set Zα is dense in
X.

If Y is a closed subgroup of X, we will say that an element α ∈ X is irrational modulo
Y if α mod Y is an irrational element of X/Y . If this is the case, α + β is an irrational
element of X for almost all β ∈ Y .

7.4. Lemma. Let α be an irrational element of X and let pi,j be polynomials Zm −→ Z
with zero constant term, i = 1, . . . , k, j = 1, . . . , r. Then











∑k

j=1
p1,j(n)α

...
∑k

j=1
pr,j(n)α











n∈Zm

= SpanX





∑k

j=1
p1,j

...
∑k

j=1
pr,j



.

Proof. Denote the left-hand side of this equality by Y and the right-hand side by Z.
Clearly, Y ⊆ Z. Hence, Y is either a closed subgroup of Z or a union of several components
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of a closed subgroup of Z. On the other hand, since Zα is dense in X, ZY is dense in Z;
this is only possible if Y = Z.

7.5. In the notation from subsection 3.4, same argument proves the following more general
statement:

Lemma. Let α be an irrational element of X, let pi,j be polynomials Zm −→ Z with zero
constant term, and let Ai,j be linear transformations of X, i = 1, . . . , k, j = 1, . . . , r. Then











∑k

j=1
p1,j(n)A1,jα

...
∑k

j=1
pr,j(n)Ar,jα











n∈Zm

= SpanX





∑k

j=1
p1,jA1,j

...
∑k

j=1
pr,jAr,j



.

8. A system of polynomial actions – the case of a connected group

In this section we find OrbP (∆Xr ) in the case where P is a polynomial system and G is
connected.

8.1. Let P = {p1, . . . , pr} where pi are distinct polynomials Zm −→ Z with pi(0) = 0,
i = 1, . . . , r. We will, again, look for a subgroup (or a union of several – shifted – subgroups)
H of Gr such that π(H) = OrbP (∆Xr ). A problem is that now H does not have to contain

the elements ϕ(n) =
(

ap1(n)
...

apr(n)

)

, n ∈ Zm, of Gr (see subsection 1.14), and the argument used

in Section 6 no longer works.

8.2. We do not, however, meet this problem if the group G is connected. Indeed, let this be

the case, and let V̂ = SpanZ

(

1 p1... ...
1 pr

)

. Then ϕ(n) ∈ GV̂ for every n, so we may assume that

H ⊆ G[V̂ ]. On the other hand, if M1 = G/G2 and X1 is the torus M1/(ΓG2) = G2\X, we

have OrbP (∆Xr
1
) = X [V̂ ]

1 by Lemma 7.4. Thus H mod Gr
2 contains the subgroup M [V̂ ]

1 ; by

Proposition 5.13, H = G[V̂ ].

8.3. We obtain:

Theorem. If G is connected, then OrbP (∆Xr ) = π(G[V̂ ]).

8.4. Let V = spanR V̂ . We define the C-complexity of the system P = {p1, . . . , pr} as the
minimal d for which Xd is characteristic for the action (0.1) with respect to any ergodic
nilsystem (X = G/Γ, a ∈ G) with a connected G. Copying Corollary 6.6, we get

Corollary. The C-complexity of P is the minimal integer d for which V ∗(d+1) = Rr.

8.5. Recall that if pj = cj,1u1 + . . . + cj,lul, j = 1, . . . , r, where u1, . . . , ul are distinct

monomials (with trivial coefficient) and cj,i ∈ Q, then V = spanR

(

1 c1,1 ... c1,m... ... ...
1 cr,1 ... cr,m

)

.
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Examples. (1) For the system

P =
{

n + n2, 2n + 4n2, 3n + 9n2, 4n + 16n2, 5n + 25n2, 6n + 36n2}

we have V̂ = spanZ





1 1 1
1 2 4
1 3 9
1 4 16
1 5 25
1 6 36



 6= R6. Thus, OrbP (∆X6) with respect to this action is the

same as for the linear system
{

n1 + n2, 2n1 + 4n2, 3n1 + 9n2, 4n1 + 16n2, 5n1 + 25n2, 6n1 + 36n2
}

considered in the Example 6.7(3), and the C-complexity of P equals 2.

(2) The same is true for, say, the system
{

n5
1 + n2

1n
3
2, 2n5

1 + 4n2
1n

3
2, 3n5

1 + 9n2
1n

3
2, 4n

5
1 + 16n2

1n
3
2, 5n

5
1 + 25n2

1n
3
2, 6n5

1 + 36n2
1n

3
2

}

.

9. A system of polynomial actions – the case of a Weyl system

In this section we will describe OrbP (∆Xr ) in the case X is a torus and a is a skew-product
transformation of X.

9.1. We will now investigate a situation that is, in some sense, opposite to one considered
in Section 8: assume now that Gc is commutative and a 6∈ Gc . In this case X is a torus, on
which a acts as an affine unipotent transformation. Indeed, let γ ∈ Γ be such that γ−1

belongs to the same connected component as a, so that a = cγ with c ∈ Gc . For any x ∈ X,
x = π(b), we have ax = π(ab) = π(abγ) = cπ(γ−1bγ). The mapping b 7→ γ−1bγ, b ∈ Gc , is
a linear transformation of Gc . For b ∈ Gc let Ab = b−1ϕ(b) = [b, γ]; since Gc is commutative,
A is also a linear transformation of Gc . Let s be the nilpotency class of G; then As = 0, so
that A is nilpotent.

9.2. We start using additive notation for the group Gc and for the torus X. The action
of A on Gc factorizes to an action on X, Ax = γx − x, and we have ax = x + Ax + α,
x ∈ X, where α = π(c) ∈ X and A is a nilpotent linear transformation of X. We call such
a system a Weyl system. The orbit of the diagonal of a power of a Weyl system under a
system of polynomial Z-actions was studied in [BLLe1]; in this section we partly repeat
the argument from [BLLe1].

9.3. For x ∈ X we have ax = (A + 1)x + α, and thus for n ∈ Z,

anx = (A + 1)nx +
(

(A + 1)n−1 + . . . + (A + 1) + 1
)

α
= (A + 1)nx + A−1((A + 1)n − 1

)

α

=
s−1
∑

d=0

(n
d

)

Adx +
s−1
∑

d=1

(n
d

)

Ad−1α = x +
s

∑

d=1

(n
d

)

Ad−1(Ax + α),
(9.1)

where
(n

d

)

= n(n−1)...(n−d+1)
d! .
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9.4. Let P = {p1, . . . , pr} be a system of polynomials Zm −→ Z with zero constant
term. For a polynomial p and an integer d let us write p[d] for the polynomial

(p
d

)

=
1
d!p(p− 1) . . . (p− d + 1). The orbit OrbP (x̄) of a point x̄ =

(x...
x

)

∈ ∆Xr is

OrbP (x̄) =











x+
∑s

d=1
p[d]
1 (n)Ad−1(Ax+α)

...
x+

∑s

d=1
p[d]

r (n)Ad−1(Ax+α)











n∈Zm

= x̄ +











∑s

d=1
p[d]
1 (n)Ad−1(Ax+α)

...
∑s

d=1
p[d]

r (n)Ad−1(Ax+α)











n∈Zm

.

The action of a is ergodic on X, thus it is ergodic on X/AX. Since ax = x+α mod AX,
α is irrational modulo AX. Thus, for almost all x ∈ X the element α + Ax is irrational in
X. When x is such that Ax+α ∈ X is irrational in X, by Lemma 7.5, OrbP x̄ is the torus

OrbP (x̄) = x̄ + SpanX





∑s

d=1
p[d]
1 Ad−1

...
∑s

d=1
p[d]

r Ad−1



,

(and is contained in this torus if Ax + α is not irrational). We obtain:

Theorem. In the case of a Weyl system,

OrbP (∆Xr ) = ∆Xr + SpanX





∑s

d=1
p[d]
1 Ad−1

...
∑s

d=1
p[d]

r Ad−1



. (9.2)

In particular, OrbP (∆Xr ) is connected.

9.5. Remark. Notice that OrbP (∆Xr ) depends not only on the system P but on the
transformation A, that is, on the element a ∈ G that defines the nil-rotation of X. This is
in contrast to the “linear” and the “connected polynomial” cases, considered in Sections 6
and 8, where OrbP (∆Xr ) only depended on P .

9.6. The W-complexity of a system P = {p1, . . . , pr} is the minimal d for which the dth

natural factor Xd is characteristic with respect to the action (0.1) for any ergodic Weyl
system (X, a). In the case of a Weyl system Xd = X/Ad+1X, and Xd is characteristic iff
the torus H = OrbP (∆Xr ) contains (Ad+1X)r.

To compute the W -complexity of P we replace (X, A) by a more convenient system,
for which (X,A) is a factor. Put ˜X = Xs and define ˜A: ˜X −→ ˜X by ˜A(x1, . . . , xs) =
(0, x1, . . . , xs−1), x1, . . . , xs ∈ X. Define σ: ˜X −→ X by σ(x1, x2, . . . , xs) = x1 + Ax2 +
. . . + As−1xs, x1, . . . , xs ∈ X. Then σ◦ ˜A = A◦σ, so that the system (X, A) is a factor of
the system ( ˜X, ˜A).

Consider the torus ˜Xr. For the point
(

x̃...
x̃

)

∈ ˜Xr, x̃ = (x1, . . . , xs) ∈ ˜X, and n ∈ Zm

we have
(∑s

d=1
p[d]
1 (n)Ad−1x̃

...
∑s

d=1
p[d]

r (n)Ad−1x̃

)

=

(

p1(n)x1, p1(n)x2+p[2]
1 (n)x1, ...,

∑s

d=1
p[d]
1 (n)xs−d+1

...
p1(n)x1, p1(n)x2+p[2]

1 (n)x1, ...,
∑s

d=1
p[d]
1 (n)xs−d+1

)

,

26



and so,

˜H = ∆
X̃r + Span

X̃

(∑s

d=1
p[d]
1 Ad−1

...
∑s

d=1
p[d]

r Ad−1

)

= SpanX



































1 0 . . . 0 0 p1 0 . . . 0 0

0 1 . . . 0 0 p[2]
1 p1 . . . 0 0

...
...

...
...

...
...

...
...

0 0 . . . 1 0 p[s−1]
1 p[s−2]

1 . . . p1 0

0 0 . . . 0 1 p[s]
1 p[s−1]

1 . . . p[2]
1 p1......

......

......

......

......

......

......

......
1 0 . . . 0 0 pr 0 . . . 0 0
0 1 . . . 0 0 p[2]

r pr . . . 0 0
...
...

...
...

...
...

...
...

0 0 . . . 1 0 p[s−1]
r p[s−2]

r . . . pr 0

0 0 . . . 0 1 p[s]
r p[s−1]

r . . . p[2]
r pr



































⊆ ˜Xr.

For convenience, let us now rearrange the coordinates of ˜Xr so that it is identified
with (Xr)s instead of (Xs)r. Then ˜H = spanX W where

W = SpanR









































1 0 ... 0 0 p1 0 0 . . . 0 0...
...

...
...

...
...

...
...

...
1 0 ... 0 0 pr 0 0 . . . 0 0

0 1 ... 0 0 p[2]
1 p1 0 . . . 0 0

...
...

...
...

...
...

...
...

...
0 1 ... 0 0 p[2]

r pr 0 . . . 0 0
......

......

......

......

......

......

......

......

......
0 0 ... 1 0 p[s−1]

1 p[s−2]
1 p[s−3]

1 . . . p1 0
...
...

...
...

...
...

...
...

...
0 0 ... 1 0 p[s−1]

r p[s−2]
r p[s−3]

r . . . pr 0

0 0 ... 0 1 p[s]
1 p[s−1]

1 p[s−2]
1 . . . p[2]

1 p1...
...

...
...

...
...

...
...

0 0 ... 0 1 p[s]
r p[s−1]

r p[s−2]
r . . . p[2]

r pr









































⊆ (Rr)s. (9.3)

The dth natural factor ˜Xd, d = 0, . . . , s, of the system ( ˜X, ˜A) is the torus Xd, with the
projection πd: ˜X −→ ˜Xd given by πd(x1, . . . , xs) = (x1, . . . , xd), xi ∈ X; the fiber of πd is
the subtorus ˜Dd+1 = ˜Ad

˜X = {0}d×Xs−d of ˜X. For 0 ≤ d ≤ s, let Rd = {0}d−1×Rs−d+1;
then ˜Dd+1 = spanX Rd+1 and ˜Dr

d+1 ∩ ˜H = spanX(Rr
d+1 ∩ W ), so that ˜Dr

d+1 ⊆ ˜H iff
Rr

d+1 ⊆ W . Let Wd = (W ∩ Rr
d)mod Rr

d+1, viewed as a subspace of Rr
d/Rr

d+1 ' Rr. It is
seen from formula (9.3) that the spaces Wd ⊆ Rr are nested, W0 ⊆ W1 ⊆ . . . ⊆ Ws, thus
W ⊇ Rr

d+1 iff Wd+1 = Rr. We obtain:
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9.7. Theorem. The W-complexity of P equals the minimal d for which the subspace

W mod Rr
d+2 = SpanR









































1 0 ... 0 0 p1 0 0 ... 0 0...
...

...
...

...
...

...
...

...
1 0 ... 0 0 pr 0 0 ... 0 0

0 1 ... 0 0 p[2]
1 p1 0 ... 0 0

...
...

...
...

...
...

...
...

...
0 1 ... 0 0 p[2]

r pr 0 ... 0 0
......

......

......

......

......

......

......

......

......
0 0 ... 1 0 p[d]

1 p[d−1]
1 p[d−2]

1 ... p1 0
...
...

...
...

...
...

...
...

...
0 0 ... 1 0 p[d]

r p[d−1]
r p[d−2]

r ... pr 0

0 0 ... 0 1 p[d+1]
1 p[d]

1 p[d−1]
1 ... p[2]

1 p1...
...

...
...

...
...

...
...

0 0 ... 0 1 p[d+1]
r p[d]

r p[d−1]
r ... p[2]

r pr









































of (Rr)d+1 contains the r-dimensional subspace {0}rd × Rr.

When the W-complexity of P is d, formula (9.2) can be rewritten as

OrbP (∆Xr ) = ∆Xr + SpanX





∑d

k=1
p[k]
1 Ak−1

...
∑d

k=1
p[k]

r Ak−1



 + Dr
d+1,

where Dd+1 = Ad(X).

9.8. Examples. Consider the systems P1 = {0, n, 2n, n3} and P2 = {0, n, 2n, n2}. If G is

connected, then, for both systems, OrbP (∆X4) = G[V ] where V = spanR

(1 0 0
1 1 0
1 2 0
1 0 1

)

; we thus

have V ∗2 = spanR

(1 0 0 0
1 1 0 1
1 2 0 4
1 0 1 0

)

= R4 and the C-complexity of both P1 and P2 is equal to 1.

(1) Now let (X, a) be a Weyl system. For the space W from (9.3) corresponding to the
system P1 we have

W1 = W mod R4
2 = SpanR

(1 0
1 n
1 2n
1 n3

)

= spanR

(1 0 0
1 1 0
1 2 0
1 0 1

)

and

W mod R4
3 = SpanR















1 0 0 0
1 0 n 0
1 0 2n 0
1 0 n3 0
0 1 0 0
0 1 n(n−1)

2 n

0 1 2n(2n−1)
2 2n

0 1 n3(n3−1)
2 n3















= spanR













1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 2 0 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 1 −1

2
1
2 0 0 1 0

0 1 −1 2 0 0 2 0
0 1 0 0 −1

2
1
2 0 1













,

thus W2 = (W ∩R4
2)mod R4

3 = spanR

(

1 0 0 0
1 1

2 1 0
1 2 2 0
1 0 0 1

)

= R4, the W-complexity of P1 is 1 and

OrbP (∆X4) = spanX

(1 0 0
1 1 0
1 2 0
1 0 1

)

+ D4
2.
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(2) For the system P2 we have

W1 = W mod R4
2 = SpanR

(1 0
1 n
1 2n
1 n2

)

= spanR

(1 0 0
1 1 0
1 2 0
1 0 1

)

and

W mod R4
3 = SpanR















1 0 0 0
1 0 n 0
1 0 2n 0
1 0 n2 0
0 1 0 0
0 1 n(n−1)

2 n

0 1 2n(2n−1)
2 2n

0 1 n2(n2−1)
2 n2















= spanR













1 0 0 0 0 0 0
1 0 1 0 0 0 0
1 0 2 0 0 0 0
1 0 0 1 0 0 0
0 1 0 0 0 0 0
0 1 −1

2
1
2 0 1 0

0 1 −1 2 0 2 0
0 1 0 −1

2
1
2 0 1













,

thus W3 = spanR

(1 0 0
1 1 0
1 2 0
1 0 1

)

6= R4 yet. W mod R4
4 is spanned by a 12× 6 polynomial or by a

12 × 13 numerical matrix (which we do not want to write out) from which one sees that
W3 = (W ∩R4

3)mod R4
4 = R4. (See [BLLe1] for more detail.) Hence the W-complexity of

P2 is 2 and

OrbP (∆X4) = ∆X4 + SpanX







0
n+ n(n−1)

2 A

2n+ 2n(2n−1)
2 A

n2+ n2(n2−1)
2 A





 + D4
3 = spanX

(

1 0 0
1 2−A A
1 4−2A 4A
1 0 2−A

)

+ D4
3.

9.9. We see from formula (9.3) that for any d,

τd(W ) = SpanR

(

1 p[d]
1 ... p[2]

1 p1...
...

...
...

1 p[d]
r ... p[2]

r pr

)

= SpanR

(

1 p1 p2
1 ... pd

1...
...

...
...

1 pr p2
r ... pd

r

)

⊆ V ∗d,

where V = SpanR

(

1 p1... ...
1 pr

)

. Thus, if Wd = Rr, then all the more V ∗d = Rr. Recalling

Corollary 8.4, we obtain:

Proposition. For any system of polynomials, the C-complexity does not exceed the
W-complexity.

10. Construction of a polynomial orbit of a point

We now return to the general situation, that is, we no longer assume that G is connected or
that Gc is commutative. In this section we describe a process which allows one to construct
Orbϕ(x) = {ϕ(n)x}n∈Zm for a polynomial action ϕ of Zm on X and a point x ∈ X.

10.1. We need the following fact:

Proposition. ([L4]) Let T be the “maximal factor-torus of X”, T = Gc2\X, and let
η: X −→ T be the natural projection. If a polynomial mapping ϕ:Zm −→ G is such
that {η(ϕ(n))}n∈Zm = T , then {ϕ(n)}n∈Zm = X.
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10.2. Let ϕ be a polynomial mapping Zm −→ G and let x = π(b) ∈ X. Define
ϕ̃(n) = b−1ϕ(0)−1ϕ(n)b; then ϕ̃ is a polynomial mapping Zm −→ G with ϕ̃(0) = 1G, and
Orbϕ(x) = bϕ(0) Orbϕ̃(1X). We will therefore look for the fu-subnilmanifold Orbϕ̃(1X) =
{π(ϕ̃(n))}n∈Zm .

Next, we rewrite ϕ̃ in terms of Gc . Namely, if ϕ̃(n) =
∏l

i=1 bpi(n)
i , choose βi ∈ Γ

such that biβ−1
i ∈ Gc , i = 1, . . . , l, and put ϕ1(n) = ϕ̃(n)

(∏l
i=1 βpi(n)

i

)−1
; then π(ϕ̃(n)) =

π(ϕ1(n)) for all n ∈ Zm and ϕ1 takes values in Gc .
We now start with K1 = Gc , Z1 = Zm, and ϕ1:Z1 −→ K1. Let M1 be the commutative

group K1/[K1, K1], and let η1: K1 −→ M1 be the natural projection. Let T1 be the torus
M1/η1(Γ) and let τ1: M1 −→ T1 be the natural projection. Let ψ1 = η1◦ϕ1 and ξ1 = τ1◦ψ1,
then ψ1 and ξ1 are polynomial mappings from Z1 to M1 and to T1 respectively. The orbit
S1 = {ξ1(n)}n∈Z1

in the torus T1 can be easily determined, as described in subsection 7.2.
If S1 = T1, then by Proposition 10.1 the set {π(ϕ1(n))}n∈Z1 is dense in X, and we are
done with Orbϕ1(1X) = X. Assume that S1 6= T1. If S1 is connected, we put Z2 = Z1. If
S1 is disconnected, we can find a subgroup of finite index Z2 in Z1 such that {ξ1(n)}n∈Z
is connected for any coset of Z2 in Z1 (see subsection 7.2). We may now deal with distinct
components of S1 individually, replacing Z1 by the corresponding cosets of Z2. Let us
consider the component S′1 = {ξ1(n)}n∈Z2

only.
S′1 is a proper subtorus of T1. Let L1 ⊆ M1 be the identity component of τ−1

1 (S′1).
There exists a polynomial mapping ψ′1:Z2 −→ L1 such that τ1(ψ′1) = ξ1. Then the
polynomial mapping δ1(n) = ψ1(n)−1ψ′1(n), n ∈ Z2, takes values in η1(Γ). Let γ1 be any
polynomial mapping Z1 −→ Γ such that η1◦γ1 = δ1.

Now let K2 = η−1
1 (L1); then K2 is a proper connected subgroup of K1, and the map-

ping ϕ2(n) = ϕ1(n)γ1(n), n ∈ Z2, takes values in K2 and satisfies π(ϕ2(n)) = π(ϕ1(n)),
n ∈ Z2. We replace the group K1 and the polynomial mapping ϕ1 by the group K2 and
the polynomial mapping ϕ2.

If needed, we repeat this procedure, until after, say, k repetitions we get Sk = Tk;
then by Proposition 10.1, Orbϕ′|Zk

(1X) = Orbϕk(1X) = π(Kk). The other components of

Orbϕ′(1X) can be found similarly.

10.3. In the process of the construction above we obtained the following result:

Proposition. Let ϕ:Zm −→ G be a polynomial mapping with ϕ(0) = 1G, let x ∈ X,
and assume that Y = Orbϕ(x) is connected. Let K be the closed connected subgroup of
G such that Kx = Y . Then there exists a polynomial mapping ϕ′:Zm −→ K such that
ϕ′(n)x = ϕ(n)x for all n ∈ Zm.

11. The general case – an algorithm

We will now consider a general nilsystem (X, a) (assuming, as before, for simplicity that
X is connected and that G is generated by Gc and a). In this case we are unable to obtain
simple formulas for OrbP (∆Xr); we will only describe a procedure which, in principle,
allows one to find OrbP (∆Xr ). This procedure, however, involves too much computation,
and can only be really applied in the simplest situations.
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11.1. The case of the Weyl system hints that we have to represent the action of a on X
as a unipotent affine transformation of X. Let a = αγ−1 where α ∈ Gc and γ ∈ Γ, then
G is generated by Gc and γ. Let us determine the orbit of 1X under the action of a. We
have a1X = π(αγ−1) = π(α), a21X = π(aα) = π(αγ−1α) = π(αγ−1αγ) = π(αBα), where
B(b) = γ−1bγ, b ∈ Gc . By induction, an1X = π(αBαB2α . . . Bn−1α), n ∈ N.

11.2. For b ∈ Gc , define gb(n) = (bγ−1)nγn, n ∈ Z; gb is a polynomial sequence in Gc , with
gb ∈ Pol∗(Z, Gc), and for n ≥ 1 one has gb(n) = bBbB2b . . . Bn−1b. Let Ab = b−1Bb = [b, γ],
b ∈ Gc ; we would like to write gb as a polynomial sequence in terms of the elements Akb,
k ≥ 0, and their commutators, that is, in the form

∏∞
j=1 bqj(n)

j , where bj are commutator
expressions of the elements Akb, k ≥ 0, and qj are polynomials Zm −→ Z. We cannot
find simple formulas for the polynomials qj , but can only suggest a recurrent process that
allows one to compute them one by one. We have Dgb(n) = gb(n)−1gb(n + 1) = Bnb for
n ∈ N and hence, for all n ∈ Z. On the other hand,

gAb(n) = (b−1Bb)B(b−1Bb)B2(b−1Bb) . . . Bn−1(b−1Bb)
= (b−1Bb)

(

(Bb)−1B2b
)(

(B2b)−1B3b
)

. . .
(

(Bn−1b)−1Bnb
)

= b−1Bnb,

n ∈ N, thus
Dgb = bgAb. (11.1)

This equation, with the “initial condition” gb(0) = 1, defines g uniquely.
Let us write gb in the form

gb(n) =
∏

1≤k<s

(Ak−1b)qk(n)
∏

1≤l<k<s

[Ak−1b, Al−1b]qk,l(n) . . . , (11.2)

where qk, qk,l, . . . are polynomials Z −→ Z with deg qk ≤ k, deg qk,l ≤ k + l, . . .. Then

Dgb(n) = g(n)−1g(n + 1) =
(

. . .
∏

1≤l<k<s

[Ak−1b, Al−1b]qk,l(n)
∏

1≤k<s

(Ak−1b)qk(n)
)−1

·
(

∏

1≤k<s

(Ak−1b)qk(n+1)
∏

1≤l<k<s

[Ak−1b, Al−1b]qk,l(n+1) . . .
)

=
∏

1≤k<s

(Ak−1b)Dqk(n)
∏

1≤l<k<s

[Ak−1b, Al−1b]Dqk,l(n)−qk(n)Dql(n) . . . ,

n ∈ Z, where we put Dq(n) = q(n + 1)− q(n). By (11.1), this is equal to

bgAb(n) = b
∏

1≤k<s

(Akb)qk(n)
∏

1≤l<k<s

[Akb, Alb]qk,l(n) . . .

Comparing similar terms, we get
Dq1 ≡ b; Dqk = qk−1 for k ≥ 2;
Dqk,1 = qk for k ≥ 2; Dqk,l = qk−1,l−1 + qkDql for k > l ≥ 2; etc.

From this equations, we obtain qk(n) =
(n

k

)

for k ≥ 1 (which agrees with formula (9.1) in
Section 9); qk,1(n) =

( n
k+1

)

for k ≥ 2; qk,2(n) = (k + 1)
(n+1

k+2

)

for k ≥ 3; etc. Thus, the
beginning of (11.2) is

gb(n) = bn(Ab)(
n
2)(A2b)(

n
3) . . . [Ab, b](

n
3)[A2b, b](

n
4) . . . [A2b, Ab]4(

n+1
5 )[A3b, Ab]5(

n+1
6 ) . . .

(11.3)
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11.3. We have π(an1X) = π(gα(n)), n ∈ Z. Let x ∈ X, x = π(b) with b ∈ Gc . Then

anb = b(b−1ab)n = b(b−1αbb−1γ−1b)n = b
(

α[α, b][b, γ]γ−1)n
= b(αbγ−1)n

where αb = α[α, b] Ab. Hence, anx = bπ(gαb(n)).
Now, given a system P = {p1, . . . , pr} of polynomials Zm −→ Z with zero constant

term, the orbit OrbP (x̄) of the point x̄ =
(x...

x

)

∈ ∆Xr is
{

b̄π×r(ϕx(n)) : n ∈ Zm
}

where

b̄ =
(

b...
b

)

∈ Gcr and

ϕx(n) =

(

gαb (p1(n))
...

gαb (pr(n))

)

, n ∈ Zm.

Assuming that OrbP (∆Xr ) may be disconnected, we will, for simplicity, confine our-
selves to its identity component. For x ∈ X, x = π(b) with b ∈ Gc , let Yx be the identity
component of {π×r(ϕx(n))}n∈Zm in Xr. Then the identity component of OrbP (x) is b̄Yx.
By subsection 1.15, Yx is the same, up to translation, for almost all x, that is, there exists
a subnilmanifold Y of Xr such that Yx ⊆ Y for all x ∈ X and Yx = Y for almost all x ∈ X.

Let H ⊆ Gcr be the identity component of (π×r)−1(OrbP (∆Xr )). By 1.15, π×r(H) =
∆GcrY .

11.4. Consider the orbits OrbP (∆Xr ) corresponding to different elements α ∈ Gc . It follows
from subsection 1.15 that these orbits are equal for almost all α, but, in principle, they
may be smaller for some α. This cannot happen if the group

̂H =
〈

∆Gc r ,
(

gα(p1(n))...
gα(pr(n))

)

, n ∈ Zm, α ∈ Gc
〉

is a minimal subgroup of Gcr with the property that

̂H = ∆Gcr ·

〈







∏s

k=1
(Ak−1α′)(

p1(n)
k )

...
∏s

k=1
(Ak−1α′)(

pr(n)
k )





, n ∈ Zm

〉

mod Gcr
2,

where α′ is any irrational element of Gc/Gc2. Indeed, in this case ̂H both contains H and
is contained in H, and thus H = ̂H independently of the choice of α. This minimality will
follow if the following conjecture is true:

Conjecture. For any d ∈ N, ̂H ∩Gcd = ̂Hd.

All our efforts to either prove or disprove this proposition failed. If it is true, then
OrbP (∆Xr ) is connected, does not depend on α, and is equal to π×r( ̂H). If it is not true,
OrbP (∆Xr ) depends on α, and, though this is not automatic, there is a good chance that
it may be disconnected.
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11.5. We will now get some evident properties of H. Let ā =
(a...

a

)

∈ Gr; then for any
b ∈ Gc and any n ∈ Zm we have

ā−1
(

ap1(n)b...
apr(n)b

)

ā =

(

ap1(n)(a−1ba)...
apr(n)(a−1ba)

)

,

and so, ā−1 OrbP (x̄)ā = OrbP (x̄′) where x̄ = π×r
(

b...
b

)

and x̄′ = π×r
(

a−1ba...
a−1ba

)

. So, H =

ā−1Hā. Since H ⊇ ∆Gcr , we obtain:

Proposition. [H, ∆Gr ] ⊆ H; in particular, AH ⊆ H.

11.6. Corollary. If for some d ∈ N and a subgroup V̂ ⊆ Zr one has H ⊇ G[V̂ ]
d mod Gr

d+1,

then H ⊇ G[V̂ ]
k mod Gr

k+1 for all k ≥ d.

Proof. We have

H ⊇ [H, ∆Gr ] ⊇ [G[V̂ ]
d , ∆Gr ]mod Gr

d+2 = G[V̂ ]
d+1 mod Gr

d+2

by Lemma 5.14.

11.7. Corollary. If, for some d ≥ 2, H ⊇ Gr
d mod Gr

d+1, then H ⊇ Gr
d.

Proof. By Corollary 11.6, H ⊇ Gr
k mod Gr

k+1 for all k ≥ d, so H ⊇ Gr
d.

11.8. Lemma. Let the C-complexity of P with respect to (X, a) be equal to l. Then
Gc l+1\X is a characteristic factor of X for P .

Proof. Let V = SpanR

(

1 p1... ...
1 pr

)

, then V ∗(l+1) = Rr. Applying Theorem 9.4 to the Weyl

system Gc2\X, we see that H ⊇ Gc [V ] mod Gc [V ]
2 . By Lemma 5.12, H ⊇ Gc [V ∗(l+1)]

l+1 = Gcr
l+1.

Hence, when computing H, we may replace G by G/Gc l+1.

11.9. Example. If the C-complexity of P is 1, then H ⊇ Gc2, so we may factorize G
by Gc2 and assume that Gc is commutative. The system

(

Gc\X, a
)

is a Weyl system, so
OrbP (∆Xr ) = π(H) is connected and H = Gc [W ]Gcr

2, where W is given by (9.3). In
particular, it follows that the complexity of P equals its Weyl complexity. We thus obtain
from 9.8 that the complexity of {0, n, 2n, n3} is 1 and the complexity of {0, n, 2n, n2} is 2.

11.10. To find H, we may simplify the general procedure described in subsection 10.2
as follows. First, we replace G by G/Gc l+1, where l is the C-complexity of P . Then we
replace α by αb = α[α, b] Ab where b is a “generic” element of Gc . (Practically, this simply
means that the coordinates of b are algebraically independent over Q(α)).) Then we define

ϕ(n) =

(

gα(p1(n))...
gα(p1(n))

)

, n ∈ Zm.
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We start with H1 = Gcr, Z1 = Zm, M1 = H1/Gcr
2, η1:H1 −→ M1 and ϕ1 = ϕ, and, as

in subsection 10.2, determine a subgroup Z2 ⊆ Z1, a connected subgroup L1 ⊆ M1, and a
polynomial mapping ϕ2:Z2 −→ η−1

1 (L1) such that π×r(ϕ2(n)) = π×r(ϕ1(n)), n ∈ Z2, and
the image of {ϕ2(n)}n∈Z2 is dense in the torus L1/(η1(Γ)r ∩ L1). Then we replace H1 by
the group H2 = η−1

1 (L1)∆Gcr and the mapping ϕ1 by ϕ2. In the next step, we define M2

to be the factor H2/([H2,H2]Gcr
3), and repeat the procedure.

Now assume that after d steps we obtain a connected group Hd ⊆ Gc and a poly-
nomial mapping ϕd:Zd −→ Hd such that Hd ⊇ Gcr

d, π×r◦ϕd = π×r◦ϕ1 and the image of
{ϕd(n)}n∈Zd is dense in the torus Hd/

(

[Hd,Hd]Gcr
d+1(Γ

r∩Hd)
)

. Then, by Proposition 10.1,
the image of {ϕd(n)}n∈Zd is dense in the nilmanifold Hd/

(

Gcr
d+1(Γ

r∩Hd)
)

. Since Hd ⊇ Gcr
d,

we have H ⊇ Gcr
d mod Gcr

d+1. By Corollary 11.7, H ⊇ Gcr
d, so H = Hd.

12. A filtration of Gc

For the needs of the next section, in which we will give an estimate of the complexity of a
general polynomial system, we will now introduce a filtration of Gc .

12.1. Assume that the group G is generated by Gc and an element γ ∈ Γ. We define a
mapping A: Gc −→ Gc by Ab = [b, γ], b ∈ Gc . For k1, k2, . . . , kl ∈ N we define

Gc (k1,k2,...,kl) =
[

Ak1−1Gc , Ak2−1Gc , . . . , Akl−1Gc
]

.

For k, l ∈ N with k ≥ l we put

Gck,l =
〈

Gc (k1,...,ki) : i ≥ l, k1 + . . . + ki ≥ k
〉

.

Clearly, Gc l,l = Gc l for all l. We will also assume Gck,l = Gc l for k < l.

12.2. Using, when needed, the standard commutator identities

[b1, b2b3] = [b1, b2][b1, b2, b3][b1, b3], [b1b2, b3] = [b1, b3][b1, b3, b2][b2, b3],

[b−1
1 , b2] = [b1, b2]−1[b2, b1, b−1

1 ] and [b1, b−1
2 ] = [b1, b2]−1[b2, b1, b−1

2 ],
(12.1)

one gets:

Lemma. For any k, l ∈ N with k ≥ l,
(i) Gck,l is normal in G;
(ii) [Gck,l, Gc j,i] ⊆ Gck+j,l+i for any j, i ∈ N, j ≥ i;
(iii) AjGck,l ⊆ Gck+j,l for any j ∈ N;
(iv) the factor groups Gck,l/Gck,l+1 and Gck,l/Gck+1,l are commutative.

12.3. Lemma. For all k ≥ 2, Gk = Gck,1.

Proof. Clearly, Gck,1 ⊆ Gk for all k. For k = 2, using Lemma 12.2, we have

G2 = [G,G] =
[

〈Gc , γ〉, 〈Gc , γ〉
]

=
〈

[Gc , γ], [Gc , Gc ], Gc3,1
〉

⊆ Gc2,1,

so G2 = Gc2,1. If, by induction, Gk = Gck,1 for some k ≥ 2, then

Gk+1 = [Gk, G] =
[

Gck,1, 〈Gc , γ〉
]

=
〈

[Gck,1, γ], [Gck,1, Gc ], Gck+2,1
〉

⊆ Gck+1,1,

so Gk+1 = Gck+1,1.
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12.4. Thus, we have the following filtration of Gc :

Gc1

Gc = Gc1,1 Gc2

∪
G2 = Gc2,1⊇Gc2,2 Gc3

∪ ∪
G3 = Gc3,1⊇Gc3,2⊇Gc3,3... ... ... ... Gcs

∪ ∪ ∪
Gs = Gcs,1⊇Gcs,2⊇Gcs,3⊇ . . .⊇Gcs,s

∪
{1G} =Gs+1= Gcs+1,1

12.5. Lemma. For any k, l ∈ N with k ≥ l ≥ 2 one has Gck,l =
〈

AGck−1,l, [Gck−1,l−1, Gc ]
〉

.

Proof. Denote
〈

AGck−1,l, [Gck−1,l−1, Gc ]
〉

by Q. By Lemma 12.2, Gck,l ⊇ Q.
Let k1, . . . , kl ∈ N with k1 + . . . + kl = k. If kl = 1, then

Gc (k1,...,kl−1,kl) = [Gc (k1,...,kl−1), Gc ] ⊆ [Gck−1,l−1, Gc ] ⊆ Q.

Let kl ≥ 2. For any b1, b2, . . . , bl−1, bl ∈ Gc one gets from formulas (12.1) that

A
[

Ak1−1b1, Ak2−1b2, . . . , Akl−1−1bl−1, Akl−2bl
]

=
[

Ak1b1, Ak2−1b2, . . . , Akl−1−1bl−1, Akl−2bl
]

[

Ak1−1b1, Ak2b2, . . . , Akl−1−1bl−1, Akl−2bl
]

. . .
[

Ak1−1b1, Ak2−1b2, . . . , Akl−1bl−1, Akl−2bl
]

[

Ak1−1b1, Ak2−1b2, . . . , Akl−1−1bl−1, Akl−1bl
]

mod Gck+1,l+1,

and thus
[

Ak1−1b1, Ak2−1b2, . . . , Akl−1−1bl−1, Akl−1bl
]

=
[

Ak1−1b1, Ak2−1b2, . . . , Akl−1bl−1, Akl−2bl
]−1

. . .
[

Ak1−1b1, Ak2b2, . . . , Akl−1−1bl−1, Akl−2bl
]−1

[

Ak1b1, Ak2−1b2, . . . , Akl−1−1bl−1, Akl−2bl
]−1

A
[

Ak1−1b1, Ak2−1b2, . . . , Akl−1−1bl−1, Akl−2bl
]

mod Gck+1,l+1.

We have A
[

Ak1−1b1, Ak2−1b2, . . . , Akl−1−1bl−1, Akl−2bl
]

∈ AGck−1,l, and by induction on
kl (with fixed k),
[

Ak1b1, Ak2−1b2, . . . , Akl−1−1bl−1, Akl−2bl
]

,
[

Ak1−1b1, Ak2b2, . . . , Akl−1−1bl−1, Akl−2bl
]

, . . . ,
[

Ak1−1b1, Ak2−1b2, . . . , Akl−1bl−1, Akl−2bl
]

∈ Q mod Gck+1,l+1,

thus
[

Ak1−1b1, Ak2−1b2, . . . , Akl−1−1bl−1, Akl−1bl
]

∈ Q mod Gck+1,l+1.
We have obtained that for any k1, . . . , kl with k1 + . . . + kl = k, Gc (k1,k2,...,kl−1,kl) ⊆

Qmod Gck+1,l+1. Hence, Gck,l ⊆ Q mod(Gck+1,lGck,l+1). By induction on decreasing
k, Gck+1,l ⊆

〈

AGck,l, [Gck,l−1, Gc ]
〉

⊆ Q, and by induction on decreasing l, Gck,l+1 ⊆
〈

AGck−1,l+1, [Gck−1,l, Gc ]
〉

⊆ Q, thus Gck,l ⊆ Q.
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12.6. Corollary. For any r, k, l ∈ N with k ≥ l ≥ 2 one has Gcr
k,l =

〈

A×rGck−1,l,
[Gcr

k−1,l−1, ∆Gcr ]
〉

.

Proof. It follows from Lemma 12.2 that Gcr
k,l ⊇

〈

A×rGck−1,l, [Gcr
k−1,l−1, ∆Gcr ]

〉

. For any
i ∈ {1, . . . , r} we have











1G...
1G

row i — Gck,l
1G...
1G











=











1G...
1G

〈AGck−1,l,[Gck−1,l−1,Gc]〉
1G...
1G











=

〈











1G...
1G

AGck−1,l
1G...
1G











,











1G...
1G

[Gck−1,l−1,Gc]
1G...
1G











〉

=

〈

A×r











1G...
1G

Gck−1,l
1G...
1G











,





















1G...
1G

Gck−1,l−1
1G...
1G











,∆Gcr











〉

⊆
〈

A×rGck−1,l, [Gcr
k−1,l−1, ∆Gcr ]

〉

.

13. The general case – estimation of complexity

The algorithm described in subsection 11.10 is too complicated for practical usage. We
are therefore going to obtain (in Theorem 13.13 and Corollary 13.14) some estimates of
the complexity of P .

13.1. We will introduce more linear algebra notation. Let r ∈ N. We put R = Rs, and

sometimes interpret Rr as (Rr)s. For w1, . . . , wl ∈ Rr = (Rr)s, where wi =
(

vi,1...
vi,s

)

with

vi,j =
(

ci,j,1...
ci,j,r

)

∈ Rr, i = 1, . . . , l, j = 1, . . . , r, let w1 ⊗ . . .⊗ wl be the element















(

c1,1,1...
c1,s,1

)

⊗ . . .⊗
(cl,1,1...

cl,s,1

)

......
(

c1,1,r...
c1,s,r

)

⊗ . . .⊗
(cl,1,r...

cl,s,r

)















∈ (R⊗l)r.

For subspaces W1, . . . , Wl of Rr we define

W1 ⊗ . . .⊗Wl = spanR
{

w1 ⊗ . . .⊗ wl : w1 ∈ W1, . . . , wl ∈ Wl
}

⊆ (R⊗l)r,

and for a subspace W of Rr and l ∈ N we define W⊗l = W ⊗ . . .⊗W .

13.2. Consider the filtration R = R1 ⊂ R2 ⊂ . . . ⊂ Rs ⊂ Rs+1 = Rs+2 = . . . = {0}
of R, where Rk = {0}k−1 × (R)s−k+1 for k ∈ {1, . . . , s}. For l, k1, . . . , kl ∈ N we define
R(k1,...,kl) = Rk1⊗. . .⊗Rkl , and for k, l ∈ N, k ≥ l, we define Rk,l =

∑

k1+...+kl=k R(k1,...,kl).
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13.3. Let W be a subspace of Rr; it will be important for us to know for what k, l ∈ N
one has W⊗l ⊇ Rr

k,l. The following lemma helps determine such k, l:

Lemma. (i) For any l, k1, . . . , kl ∈ N, W⊗l ⊇ Rr
(k1,...,kl)

implies W⊗l ⊇ Rr
(kσ(1),...,kσ(l))

for any permutation σ of {1, . . . , l}.
(ii) Assume that W ⊇ ∆Rr . Then for any l, k1, . . . , kl ∈ N, W⊗l ⊇ Rr

(k1,...,kl)
implies

W⊗(l+1) ⊇ Rr
(k1,...,kl,kl+1)

for all kl+1 ∈ N.

(iii) Assume that W is such that for all k ∈ N one has (W ∩ Rr
k+1) mod Rr

k+2 ⊇ (W ∩
Rr

k)mod Rr
k+1 (both interpreted as subspaces of Rr). Then for any k, l ∈ N with k ≥ l,

W⊗l ⊇ Rr
k,l mod Rr

k+1,l implies W⊗l ⊇ Rr
k,l.

Proof. (i) follows from the fact that the product W⊗l is invariant with respect to permu-
tations of its factors. (ii) follows from the fact that Rr

(k1,...,kl)
⊗∆Rr

kl+1
= Rr

(k1,...,kl,kl+1)
.

(iii) Let S: R −→ R be the coordinate shift, S(c1, c2, . . . , cs) = (0, c1, . . . , cs−1); by the
assumption, S×r(W ) ⊆ W . Assume that W⊗l ⊇ Rr

k,l mod Rr
k+1,l for some k, l. Then for

any k1, . . . , kl ∈ N with k1 + . . . + kl = k,

W⊗l ⊇
(

S×r ⊗ IdRr ⊗ . . .⊗ IdRr

)

W⊗l ⊇
(

S×r ⊗ IdRr ⊗ . . .⊗ IdRr

)

(Rr
(k1,...,kl) mod Rr

k+1,l)
= Rr

(k1+1,...,kl) mod Rr
k+2,l.

Similarly, W⊗l ⊇ Rr
(k1,...,ki−1,ki+1,ki+1,...kl)

mod Rr
k+2,l for any i ∈ {1, . . . , l}. Hence,

W⊗l ⊇ Rr
k+1,l mod Rr

k+2,l. By induction on j, W⊗l ⊇ Rr
j,l mod Rr

j+1,l for all j ≥ k,
and thus W⊗l ⊇ Rr

k,l.

13.4. Now let a ∈ G, and let γ ∈ Γ is such that aγ−1 ∈ Gc ; then G = 〈Gc , γ〉. We start using
the filtration of Gc introduced in Section 12. We define M = Gc/Gc2 and Ml = Gc l/Gc l+1, l ∈
N. For l, k1, . . . , kl ∈ N we define M(k1,...,kl) = Gc (k1,...,kl) mod Gc l+1, and for k, l ∈ N with
k ≥ l we put Mk,l = Gck,l mod Gc l+1. We then have Mk,l =

〈

M(k1,...,kl) : k1 + . . . + kl = k
〉

.

Since AGc2 ⊆ Gc2, the mapping A: M −→ M is defined. For b ∈ M and w =
(v1...

vs

)

∈
Rr = (Rs)r, we define bw = bv1(Ab)v2 . . . (As−1b)vs ∈ Mr. If W is a subspace of Rr, we
define M [W ] =

〈

bw : b ∈ M, w ∈ W
〉

⊆ Mr.
Now let l ∈ N and b1, . . . , bl ∈ M ; we then have a mapping (Rr)l −→ Mr

l ,
(w1, . . . , wl) 7→

[

bw1
1 , . . . , bwl

l

]

. Since this mapping is multilinear, it extends to a homo-
morphism (R⊗l)r −→ Mr

l , u 7→ [b1, . . . , bl]u, with [b1, . . . , bl]w1⊗...⊗wl =
[

bw1
1 , . . . , bwl

l

]

.
For U ⊆ R⊗l we define M [U ] =

〈

[b1, . . . , bl]u : b1, . . . , bl ∈ M, u ∈ U
〉

.

Clearly, for any l, k1, . . . , kl ∈ N, M [Rr
(k1,...,kl)

] = Mr
(k1,...,kl)

, and for any k, l ∈ N,

k ≥ l, M [Rr
k,l] = Mr

k,l.

13.5. We now return to our nilsystem (X, a) and a system P = {p1, . . . , pr} of poly-
nomials Zm −→ Z with zero constant term. Let H ⊆ Gcr be the identity component of
π−1(OrbP (∆Xr )); our goal is to find an estimate of the complexity of P , that is, an integer
d such that H ⊇ Gr

d+1.
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13.6. By Theorem 9.4, H mod Gcr
2 = M [W ], where W ⊆ Rr is given by formula (9.3).

(Notice that W satisfies the assumptions of items (ii) and (iii) of Lemma 13.3.) Our
further argument will be based on the following proposition:

Proposition. For any l ∈ N, (H ∩Gcr
l ) mod Gcr

l+1 ⊇ M [W⊗l].

Proof. For any b1, . . . , bl ∈ Gc and any w1, . . . , wl ∈ W , bwi
i ∈ H mod Gcr

2. Hence,
[

bw1
1 , . . . , bwl

l

]

∈ (H ∩Gcr
l ) mod Gcr

l+1.

13.7. For each l = 1, . . . , s let dl be the minimal integer such that Rr
dl,l ⊆ W⊗l. Then for

each l,
Gcr

dl,l mod Gcr
l+1 = Mr

dl,l = M [Rr
dl,l] ⊆ M [W⊗l] ⊆ H mod Gcr

l+1,

and so
Gcr

dl,l ⊆ H mod Gcr
l+1. (13.1)

Note that d1 = cW + 1, where cW is the W-complexity of P . We will assume that
d1 ≥ 2. (If d1 = 1 then cW = 0, the polynomials from P are linearly independent, and the
complexity of P is equal to 0 (or is ≤ 1 if we take into account disconnected nilsystems).)

13.8. Lemma. For any l, dl ≤ ld1.

Proof. If k1 ≥ d1 then Rr
k1
⊆ W , thus by Lemma 13.3(ii), Rr

(k1,k2,...,kl)
⊆ W⊗l for any

k2, . . . , kl. If k1 + . . .+kl = k ≥ ld1, then ki ≥ d1 for some i, and thus Rr
(k1,k2,...,kl)

⊆ W⊗l

by Lemma 13.3 (i). So, Rld1,l ⊆ W⊗l.

13.9. Lemma. Assume that Gcr
k,l ⊆ H mod Gcr

j,l+1 for some k, j, l ∈ N. Then
(i) [Gcr

k,l, ∆Gcr ] ⊆ H mod Gcr
j+1,l+2;

(ii) A×rGcr
k,l ⊆ H mod Gcr

j+1,l+1.

Proof. (i) By the second formula in (12.1),

[Gcr
k,l, ∆Gcr ] ⊆ [HGr

j,l+1, ∆Gcr ] ⊆ [H, ∆Gcr ][H, ∆Gcr , Gcr
j,l+1][Gc

r
j,l+1, ∆Gcr ].

By Proposition 11.5, [H, ∆Gcr ] ⊆ H, and by Lemma 12.2(ii), [H, ∆Gcr , Gcr
j,l+1], [Gc

r
j,l+1, ∆Gcr ] ⊆

Gcr
j+1,l+2. Hence, [Gcr

k,l, ∆Gcr ] ⊆ H mod Gcr
j+1,l+2.

(ii) By the second formula in (12.1),

A×rGcr
k,l ⊆ A×r(HGr

j,l+1) ⊆ A×rH[A×rH, Gcr
j,l+1]A

×rGcr
j,l+1.

By Proposition 11.5, A×rH ⊆ H, and by Lemma 12.2(iii), [A×rH, Gcr
j,l+1], A

×rGcr
j,l+1 ⊆

Gcr
j+1,l+1. Hence, A×rGcr

k,l ⊆ H mod Gcr
j+1,l+1.

13.10. As a corollary of Lemma 13.9 and Corollary 12.6, we get:

Proposition. Assume that for certain k, l, j ∈ N, l ≥ 2, one has Gcr
k,l−1 ⊆ H mod Gcr

j,l
and Gcr

k,l ⊆ H mod Gcr
j,l+1. Then Gcr

k+1,l ⊆ H mod Gcr
j+1,l+1.

13.11. For each l = 1, . . . , s put kl = max{dl, dl−1 + 1, . . . , d1 + l − 1}.
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Proposition. For any l and any j ∈ N, Gcr
kl+j,l ⊆ H mod Gcr

j+l+1,l+1.

Proof. We will use induction on l. For l = 1 we have k1 = d1, Gcr
d1,1 ⊆ H mod Gcr

2,2 by
(13.1), and thus for any j ∈ N,

Gcr
k1+j,1 = (A×r)jGcr

k1,1 mod Gcr
k1+j,2 ⊆ H mod Gcr

2+j,2

by Lemma 13.9(ii).
Assume by induction that for certain l ≥ 2 one has

Gcr
kl−1+j,l−1 ⊆ H mod Gcr

l+j,l (13.2)

for all j ∈ N. We have kl = max{dl, kl−1 + 1}. Thus, by (13.1), Gcr
kl,l ⊆ H mod Gcr

l+1,l+1,
and since Gcr

kl,l−1 ⊆ Gcr
kl−1+1,l−1 ⊆ H mod Gcr

l+1,l by (13.2), we get

Gcr
kl+1,l ⊆ H mod Gcr

l+2,l+1 (13.3)

by Proposition 13.10. Next, since (13.3) holds and since Gcr
kl+1,l−1 ⊆ Gcr

kl−1+2,l−1 ⊆
H mod Gcr

l+2,l by (13.2), we get

Gcr
kl+2,l ⊆ H mod Gcr

l+3,l+1

by Proposition 13.10. Using induction on j, we obtain Gcr
kl+j,l ⊆ H mod Gcr

l+j+1,l+1 for all
j ∈ N.

13.12. Now let c be the C-complexity of P , then Gcr
c+1 ⊆ H by Lemma 11.8. By (13.1),

Gcr
dc,c ⊆ HGcr

c+1 = H. (13.4)

By Proposition 13.11 and by (13.4),

Gcr
kc−1+dc−c,c−1 ⊆ HGcr

c+dc−c,c = HGcr
dc,c = H. (13.5)

By Proposition 13.11 and by (13.5),

Gcr
kc−2+kc−1+dc−c−(c−1),c−2 ⊆ HGcr

c−1+kc−1+dc−c−(c−1),c−1 = HGcr
kc−1+dc−c,c−1 = H.

After repeating this c− 1 times, we get Gr
d = Gcr

d,1 ⊆ H for d = k1 + . . . + kc−1 + dc − c−
(c− 1)− . . .− 2. Hence, the complexity of P does not exceed d− 1, and we obtain:

13.13. Theorem. Let c be the C-complexity of P , let W be the subspace of Rs defined
by formula (9.3), and for each l = 1, . . . , s let dl be the minimal integer such that Rr

dl,l ⊆
W⊗l and kl = max{dl, dl−1 + 1, . . . , d1 + l − 1}. The complexity of P does not exceed
k1 + . . . + kc−1 + dc − c(c + 1)/2.

13.14. Using Lemma 13.8 and the fact that d1 = cW + 1, we get
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Corollary. The complexity of P does not exceed cWc(c + 1)/2, where cW is the W-
complexity and c is the C-complexity of P .

13.15. Remark. Our estimation of the complexity of P was based on our knowledge
of the orbit OrbP (∆(Gc2\X)r ) = M [W ] of the diagonal of the torus (Gc2\X)r, obtained in
Section 9. Better estimates of the complexity of P can be made if one first finds the orbits
OrbP (∆(Gci\X)r ) of the diagonals of the nilmanifolds (Gc i\X)r for i > 2.

13.16. Examples. Consider two simple examples: P1 = {0, n, 2n, 3n, n2} and P2 =

{0, n, 2n, 3n, n3}. For both systems, the space V introduced in Section 8 is spanR

(1 0 0
1 1 0
1 2 0
1 3 0
1 0 1

)

,

so V ∗2 = spanR

(1 0 0 0
1 1 0 1
1 2 0 4
1 3 0 9
1 0 1 0

)

, V ∗3 = spanR

(1 0 0 0 0
1 1 0 1 1
1 2 0 4 8
1 3 0 9 27
1 0 1 0 0

)

= R5, and the C-complexity is equal to

2. Thus, we may confine ourselves to the groups Gck,l with l ≤ 2.
For the system P1 one checks that the W-complexity is also equal to 2 (thus d1 = 3)

and that

W mod R5
3 = spanR















1 0 0 0 0 0
1 0 1 0 0 0
1 0 2 0 0 0
1 0 3 0 0 0
1 0 0 2 0 0
0 1 0 0 0 0
0 1 0 1 1 0
0 1 0 4 2 0
0 1 0 9 3 0
0 0 0 0 0 1















.

Since W ⊇ R5
3, we have W⊗2 ⊇ R5

(k1,k2)
whenever k1 ≥ 3 or k2 ≥ 3, and it only remains

to investigate whether W⊗2 contains the spaces R5
(1,1), R5

(1,2), R5
(2,1), and R5

(2,2). We have

W⊗2 mod R5
3,2 = spanR

(1 0 0 0 0
1 1 0 1 0
1 2 0 4 0
1 3 0 9 0
1 0 2 0 4

)

6= R5

and

W⊗2 mod(R(1,3)R(3,1)R4,2)5 = spanR







































1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0
1 0 2 0 0 0 1 0 2 0 0 0 4 0 0 0 0 — (1,1)

1 0 3 0 0 0 1 0 3 0 0 0 9 0 0 0 0
1 0 0 2 0 0 1 0 0 2 0 0 0 4 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 2 1 0 1
0 1 0 4 2 0 0 0 0 0 0 0 0 8 8 0 4 — (1,2)

0 1 0 9 3 0 0 0 0 0 0 0 0 18 27 0 9
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 . . . . . .
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 1 0 0 2 0 1 0
0 0 0 0 0 0 0 1 0 4 2 0 0 8 0 8 0 — (2,1)

0 0 0 0 0 0 0 1 0 9 3 0 0 18 0 27 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 — (2,2)

0 0 0 0 0 0 0 0 0 0 0 0 0 81 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0







































(13.6)

from which it is already seen that W⊗2 ⊇ R5
(1,2) mod R5

4,2. (The complete matrix in
the right hand part of (13.6) contains 62 columns.) By Lemma 13.3(i) this implies that
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W⊗2 ⊇ R5
(2,1) mod R5

4,2, so W⊗2 ⊇ R5
(2,1) mod R5

4,2, and by Lemma 13.3(iii), that W⊗2 ⊇
R5

3,2. Hence, d2 = 3. By Theorem 13.13, the complexity of P1 is ≤ d1 + d2 − 3 = 3.
(A more careful analysis, based on the method from subsection 11.10, shows that P1 has
complexity 2.)

The system P2 has W-complexity 3 with

W mod R5
3 = spanR



























1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0
1 0 0 2 0 0 0 0 0 0 0
1 0 0 3 0 0 0 0 0 0 0
1 0 0 0 0 6 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 1 0 0
0 1 0 0 4 0 0 0 2 0 0
0 1 0 0 9 0 0 0 3 0 0
0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 1 1
0 0 1 0 0 8 0 0 0 4 2
0 0 1 0 0 27 0 0 0 9 3
0 0 1 0 0 0 0 1 0 0 0



























.

Again, one checks that W⊗2 6⊇ R5
2,1 and that W⊗2 ⊇ R5

3,2, from which d2 = 3 and the
complexity of P2 is ≤ 4. (Using the method from subsection 11.10 one can see that P2 has
complexity 3.)
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uniquement ergodiques, Ergodic Theory and Dynam. Syst. 11 (1991), 379-391.

[Sh] N. Shah, Invariant measures and orbit closures on homogeneous spaces for actions of
subgroups generated by unipotent elements, Lie groups and ergodic theory (Mumbai,
1996), 229-271, Tata Institute of Fundamental Research, Bombay, 1998.

[M] A. Malcev, On a class of homogeneous spaces, Amer. Math. Soc. Transl. 9 (1962), 276-
307.

[Z1] T. Ziegler, A non-conventional ergodic theorem for a nilsystem, Ergodic Theory and Dy-
nam. Syst. 25 (2005), 1357-1370.

[Z2] T. Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc.
20 (2007), no. 1, 53-97.

42


