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Abstract

Let X be a nilmanifold, that is, a compact homogeneous space of a nilpotent Lie group G, and

let a € G. We study the closure of the orbit of the diagonal of X" under the action (a” 1,(.7?). ,aP ”(")),
where p; are integer-valued polynomials in m integer variables. (Knowing this closure is crucial

for finding limits of the form limN_)OOﬁ S el N} M(Tpl(”)Al N...N pr(n)AT) where T
is a measure preserving transformation of a finite measure space (Y, u) and A; are subsets of Y,
and limits of the form limN_)OONLm Zne{l,...,N}m d((A1 +p1 (n)) Nn...N (AT —i—pr(n))) where A;

are subsets of Z and d(A) is the density of A in Z.) We give a simple description of the closure
of the orbit of the diagonal in the case all p; are linear, in the case G is connected, and in the
case the identity component of G is commutative; in the general case our description of the orbit
is not explicit.

0. Introduction

0.1. Multiple ergodic averages My = + Zﬁ[:l pux(ANT"AN...NT""™A), where T
is a measure preserving transformation of a probability measure space (X,B,ux) and
A € B, ux(A) > 0, had appeared in Furstenberg’s proof of Szemerédi’s theorem ([Fu]).
Furstenberg proved in [Fu] that liminfy_,.o My > 0; the question whether limy_,oo My
exists remained open for a long time. A way of solving this problem was already outlined
in [Fu]: one has to find a characteristic factor of (X,T) with respect to the system of
actions {Idx,T™,...,T™}, n € Z, that is, a factor (X', T) of (X, T) such that

N
: 1 n TN n ™™
Jim S| [T T i [ BGRIXT BRI T EG X | = 0
e n=1 X X’

for any fo, f1,...,fr € L(X). If the system (X’,T) has a simple enough structure so
that the limits imy oo & Sony [y hoT ™1 ... T™h.dpx with h; € L(X’) can be easily
determined, then limy_,o, My will also be found by taking h; = E(14|X’),i=0,1,...,r.
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0.2. A d-step nilsystem is a measure preserving system realized by a translation on a d-
step nilmanifold, a compact homogeneous space of a d-step nilpotent Lie group equipped
with the Haar measure. A d-step pro-nilsystem is the inverse limit of a sequence of d-
step nilsystems. It was proven by Host and Kra in [HK1] and, independently, by Ziegler
in [Z2] that any ergodic probability measure preserving system (X,7T") possesses a factor
characteristic with respect to {Idx,T™,...,T"™} and isomorphic to an (r — 1)-step pro-
nilsystem. It was then shown in [HK2] and [L5] that pro-nilsystems are also characteristic
for any system of “polynomial actions” of the form {T?1(™) . . TP} n c Z™ where
p; are integer-valued polynomials on Z". Thus, the problem of identifying the limit of
polynomial multiple ergodic averages % Zivzl X (T‘pl(")A N...N T‘pr(”)A) is reduced
to the case where (X, T) is a nilsystem.

0.3. Let (X, a) be a nilsystem, that is, X is a nilmanifold and « is a translation on X, and
let pux be the Haar measure on X. Let pq,...,p, be integer-valued polynomials on Z™. It
is proved in [L4] that under any polynomial action ¢ of Z™ on X, the closure Y = Orb(D)
of the orbit Orbp = {¢(n)D},czm of a subnilmanifold D of X is either a subnilmanifold
or a finite union of subnilmanifolds of X. Moreover, “the sequence” {¢(n)D},eczm is well
distributed on Y, that is, C-lim,, o(n)up = py where up is the Haar measure on D, py
is a Haar measure on Y (more exactly, a linear combination of the Haar measures on
the connected components of V'), and C-lim,, = limy_, o ﬁ > ncwy Where {®x} is any

Fglner sequence in Z™. This, in particular, is applicable to the closure Y = Orbp(Axr)
of the orbit of the diagonal Ax» = {(I) rxe X } under the polynomial action

T apl(n)xl
emn)| | = : , nez", (0.1)

z, aPr (n) X

of Z™ on the nilmanifold X". It follows that for any f1,..., f, € C(X),

C—lim/ aP ™M aP ™ fdpy = C-lim e, ® ap’“(”)de,uAXT
n X n Axr

= C-lim e(n)(fi®...® fr)dpay, = C—lim/ f1®...® frdppm)a
" e(n)Axr

Z/f1®.--®frduy,
Y

where py is the Haar measure on Y = Orbp(Axr). It then follows that

C—lim/ apl(n)fl PR ap”"(n)de,UJX = / fi®...Q frduy (0.2)
" X Y

for any f1,..., fr € L®(X). Hence, for any measurable sets A4;,..., A, C X,
C-lim px (a_pl(”)Al Nn...N a_p”(”)Ar) = /Ly((Al X ... xX AN Y),

and thus the problem of evaluating limNﬁiﬁ ZnE‘PN px (a—pl(n)Al N...N a—pr(n)Ar)
is reduced to the problem of finding Y = Orbp(Axr).
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0.4. Once Orbp(Ax+) with respect to the action defined by a system P = {p1,...,p,}
of integer-valued polynomials has been found, it is immediately possible to determine the
“optimal” characteristic factor corresponding to P. Any nilmanifold X has a natural tower
of factors, X = X, — X1 — ... — X1 — X = {-}, where for each d, X, is a d-step
nilmanifold. It is of interest to learn what is the minimal d for which X, is characteristic
for P. In terms of the orbit Orbp(Ax+) of the diagonal in X", characteristic factors of X
are easily characterizable: X, is characteristic for the action defined by P iff mp(A xr)
contains the fiber of the projection X — X,.

If d € N is such that the factor Xy is characteristic for P for any nilsystem (X, a), we
call d the complexity of P; by [HK1] and [Z2], if d is the complexity of P, then any ergodic
measure preserving system (X, 7T") has a factor characteristic for P that is isomorphic to a
d-step pro-nilsystem.

Remark. The complexity, as well as the W-complexity (Weyl complexity) of P that we
introduce in this paper differ from those in [BLLel]: the complexities defined here are less
by 1 than the corresponding complexities in [BLLel].

Knowing Orbp(Axr), one can also determine conditions on the sets Aj,..., A, to
guarantee that px (a‘pl(”)Al N...N a‘pr(”)Ar) is positive, or is greater than a certain

constant, for some n. Examples of such application of Orbp(A x+) can be found in [BHK],
[BLLel], [FK], or [F].

0.5. Here is a list of earlier results.

Orbp(Axr) for the “linear” system P = {0,n,...,rn} was first found in [Z1], and, in
a much simpler way, in [BHK]. For the system P = {nl, R VI 7 R = £ L VU ¢ P S .—|—nl} of

linear functions in [ integer variables ny,...,n; consisting of all sums of distinct variables,
Orbp(Axr) was described in [HK1]. The complexity of any system of r+1 (distinct) linear
functions in one variable {0, cin,...,c.n} was shown to be < 7 in [HK1] and =r — 1 in

[Z2]; the complexity of any system of 7 + 1 linear functions in several variables was proven
to be <r —1in [L6].

In [FK], the complexity of a system of linearly independent polynomials in one variable
was shown to be 0 with respect to any totally-ergodic system and < 1 in the general case.

In [BLLel], Orbp(Ax-) for a polynomial system P = {0,pi(n),...,p.(n)} was found
in the case where (X, a) is a Weyl system, that is, when X is a torus and a is a unipotent
linear transformation of X.

In [F], Orbp(Axr) was found in the case where (X, a) is a general nilsystem and P is
a system with three nonzero polynomials, P = {0, p1, p2, p3}-

A finitary analog of the problem of determining the complexity of a system of linear
forms is considered in [GW]. (In [GW], G is taken to be a finite group, specifically Z;
for an odd prime p, and, given a system P = {pq,...,p,} of linear forms G™ — G, it is
asked what the degree of “uniformity” of a subset A C G has to be in order to guarantee
that it contains approximately “the right number”, |A|"|G|™~", of configurations of the
form {p1(n),...,pr(n)}, n € G™.) The case of systems of complexity 2 is studied and the
obtained result agrees with the results of the present paper.
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0.6. Our goal in this paper is to find Orbp(Ax-) for a system P = {py,...,p,} of poly-
nomials in several variables. It is natural to confine ourselves to ergodic transformations,
and thus assume that the translation a of the nilmanifold X is ergodic. We will go farther
and assume throughout the paper that X is connected; this implies that the action of
a is totally ergodic on X. Doing this, we do not lose much generality. Indeed, if X is
disconnected, it consists of several connected components, permuted by a; a power a® of
a preserves the components, and after replacing a by a* we may treat each component of
X individually.

0.7. Let m:G — X be the natural projection; we will denote by 7*" the corresponding
projection G — X". “To find Orbp(Ax+)” means to find a subgroup H of G" (or a
finite union of right cosets of H, — if Orbp(Ax-) is disconnected) such that 7%"(H) =
Orbp(Ax+). In the case where the polynomials pj: 4™ — 7 are linear we give a simple
explicit description of such H. (See Theorem 6.3). Let pj(ni,...,nm) = Y vy ¢ ilm,
) and

C1,i C1

1
g=1,....r; put vg = <> and v; = ( ,1=1,...,m. For two vectors u = (
1

Cr,q Cr

ci1€éq

v = ( 21) in Z" we define the product uv = ( : > Let V be the subgroup of Z" generated

by wvo,v1,...,v.. For each k € N let Polx(Z™) be the space of polynomials Z™ — Z
(with rational coefficients) of degree < k, and let PV be the subgroup of Z" given by

PV = {q(vl, ceyUm), q € Polk(V)}. For a vector u = <51> € Z" and an element b € G
Cl "

we define b* = | ¢ | € G". Let G =G1 D G2 D ... D Gsy1 = {1} be the lower central
ber

series of G. We define H as the subgroup of G” generated by Agr and the elements of the

form b* with b € Gy, and v € P,V for some k € N. If, for each k = 1, ..., s, {q1, - e}
is a set of generators in PV, then H can also be defined in the following way:

S

{bvo H Hbqk RICIRERE m), bri € Gy, for every k, z} (0.3)

k=11:=1

(In the casem =1, pj(n) = jn,j=1,...,r, we have v = <1> and H = {bo -, blg'“), by €

G, bpe Gy, k=1,... ,3}, which coincides with the result in [Z1].)

Our proof of the fact that 7*"(H) = Orbp(Ax+) is easy; it consists of three parts.
First, we show that the subset H defined by (0.3) is a subgroup of G” such that the set
7" (H) is closed in X". (We say that H is a rational subgroup of G".) Then we notice

aP1(n) -
that H contains Agr and all elements of the form ( ), thus 7*"(H) 2O Orbp(Axr).

apr(n)

The nilmanifold X; = G5\ X is a torus on which G acts by rotations, thus it is easy to
aP1(n)
find the closure Orbp(Axr) of the orbit of the diagonal of X{ under the action ( : ):

apr(”)
this is the projection to X{ of the subgroup (G/G2)V) = {b*, b € G/G2, v € V} of
(G/G2)". Comparing dimensions, we show that H is a minimal rational subgroup of G”
with the property that the group H/G% contains the identity component of the preimage
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of (G/G2)V! in (G/Gy)" and the elements a*Gy, v € V. Tt follows that 7" (H) =
Orbp(Axe).

Using the above description of H, we see that the complexity of P is the minimal
integer d for which P4,V ® R = R”. As it is noticed in [GW], this is equivalent to

saying that d is the minimal integer such that the polynomial vectors (1,pi,...,p¢""), ...,
(1,pr,...,p%*1) are linearly independent.

0.8. When p; are not necessarily linear but the group G is connected (or, rather, a is
contained in the identity component of G), the description of H remains as simple as
in the linear case, — with distinct monomials playing the role of independent variables.
(See Theorem 8.3). We simply represent p; = Y . ¢;iti, ¢j; € Q, where ug,..., up,
are distinct (nonconstant) monomials (with trivial coefficient), put V' to be the subspace

1
of R” spanned by the vectors <) and v; = <
1

C1,i
: ), 1 =1,...,m, and use V instead of

V. The complexity of a polynomial system P with respect to nilsystems corresponding to
connected G can therefore be easily computed; we call it the C-complexity of P.

0.9. For a polynomial system P and disconnected G we first consider the case where the
identity component @ of G is commutative. In this case X = @/(I'N@) is a torus on which
G acts by skew-product transformations. We call the system (X, a) a Weyl system. (The
2-dimensional torus with the transformation a(x,y) = (z+«, y+x) is the simplest example
of such a system.) For Weyl systems the problem of determining Orbp(Ax-) is an easy
linear algebra problem; but the answer we obtain is not elegant (see Theorem 9.4). Based
on Theorem 9.7, the complexity of any polynomial system P with respect to Weyl systems
(we call it the W-complezity of P) can, in principle, be computed, but these computations
are cumbersome, and leave some questions unanswered. In particular, it is not even clear
to us whether the complexity of a polynomial system P is always < |P| — 2.

0.10. The situation with the Weyl systems demonstrates that a simple description of
Orbp(Ax+) is hardly possible in the general case, — when P is a polynomial system and
no assumptions about G have been made. We attempt to write out a formula defining the
subgroup H of @" for which 7*7(H) = Orbp(Ax-), similar to that for Weyl systems (see
subsections 11.2-11.4). However, for this formula to work it must be that H is “defined
by its linear part”, as it is when P is a system of linear functions, and we don’t know
whether this is so (see Conjecture 11.4); in addition, the polynomials involved in this
formula are not explicit and are only defined recurrently. We do not also know whether
Orbp(Ax-) is always connected; these question can also be resolved by affirming or refuting
Conjecture 11.4.

We also describe a method of finding Orbp (A x-) for concrete (X, a) and P (see sub-
section 11.10); it is based on successive construction of the orbits of the diagonal on certain
factor-tori of certain subgroups of G. In principle, this method can be practically used to
find Orbp (A x-) when the complexity of P is relatively small, but such a computation for
a concrete system does not look to be of any interest. It can also be utilized to establish
some properties of Orbp(Ax-). (We do this in [BLLe2] to prove that if the polynomials
constituting P have nonzero constant terms but are jointly intersective, then Orbp(Ax+)
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contains Axr.)

Finally, we obtain a rough estimate of the complexity of P (see Theorem 13.13). As a
corollary we get that it does not exceed cwc(c+1)/2, where ¢y and ¢ are the W-complexity
and the C-complexity of P respectively. (We, actually, suspect that the complexity of P
is always equal to ¢y, but cannot confirm this conjecture either.)

0.11. We only deal with “discrete” linear and polynomial actions, that is, actions of the
group Z"™. The obtained results are also applicable to continuous (polynomial) actions of
the group R™. Moreover, in the case of continuous actions the Lie group G acting on X
can be assumed to be connected, which essentially simplifies the situation, and the case of
polynomial actions of R™ is completely covered by Section 8.

0.12. Here is the plan of the paper: Sections 1 and 2 are preparatory; we consider there,
in more detail, properties of the orbits of points and of subnilmanifolds in a nilsystem,
characteristic factors of a nilsystem, and relations between them. In Section 3 we introduce
some algebraic notation. In Sections 4 and 5 we introduce the group GIV). In Section 6
we find Orbp(Ax-) in the case where P is a system of linear polynomials. In Section 7 we
remind the reader how polynomial orbits on a torus look. In Section 8 we find Orbp(Ax+)
for a general polynomial system P in the case where the Lie group G acting on X is
connected. In Section 9 we find Orbp(Ax+) for the case of a Weyl system. (The results
of this section partially repeat results from [BLLel].) In Section 10 we describe how the
closure of the orbit of a point of a nilmanifold under a polynomial action can be found.
In Section 11 we describe a method of constructing Orbp(Ax-) for a general nilsystem.
In Section 12 we introduce a filtration in the group @ that we use in the next section. In
Section 13 we find an estimate of the complexity of a general polynomial system.

1. Orbits in a nilmanifold

In this section we introduce some notation and collect some facts related to nilmanifolds.
For more details see [M], [L2], [L4], [L7] and [L8].

1.1. Throughout the paper, X will be a connected nilmanifold, that is, a connected com-
pact homogeneous space of a nilpotent Lie group. X can be represented as a factor
X = G/T', where G is a simply-connected (not necessarily connected) nilpotent Lie group
and T is a discrete uniform subgroup of G. The group G acts on X by left translations:
for a € G and x € X we have axr € X.

By 7 we will denote the natural projection G — X, and by 1x the point 7(1¢) € X.

1.2. We will denote by @ the connected component of G. (We have chosen such an
unusual symbol instead of the standard G° or G° in order to be able to attach sub- and
superscripts to @, like @4 or ¢".) Since X is connected, it is a homogeneous space of @
as well, X = @/(@NT).

Here is an example of a disconnected nilpotent Lie group G with a connected nilman-

X lky 1k 1
ifold X = G/T. Let G = {(01m), keZ aye R} and T = {<86’?)’ ko lm e Z}.
001
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10
Then G is disconnected, with ¢ = {(0 1 Z), TS ]R} isomorphic to R2. The nilmanifold
001
X =G/T' = G/(GNT) is isomorphic to the 2-dimensional torus R?/Z?, with G acting on
. )
X by skew-product transformations: (8 1 gf) (z,y) = (x + a,y + kx + b).

1.3. The connected simply-connected nilpotent group (¢ is exponential, which implies that
for every b € @ there exists a unique homomorphism R — @, t — b*, such that b! = b.
We will constantly use this notation.

1.4. The commutator of two elements by, bs € G is [by, ba| = b;lbglblbg. For by,bo,...,bq €
G we put [by,bo,...,bg] = [[...[[b1,b2], b3],...],ba].

If By, Bs,..., By are subsets of G, we denote by [By, Ba, ..., By| the subgroup of G
generated by the elements [by, b, ..., by] with by € By, ba € Ba, ..., by € By.

1.5. We will denote by Gy, d € N, the terms of the lower central series of G, Gy = G,
Gy, = [G,G], Gs = [G,G,G], .... If G is s-step nilpotent, G541 = {1g}. The groups
G4 are normal closed Lie subgroups of G, and for each d, G4/G4—1 is a commutative
simply-connected Lie group.

The terms of the lower central series of ¢ will be denoted by (=4, d € N.

1.6. When A is a group and C' is a normal subgroup of A, for an element b € A or
for a subset B C A we will denote by bmod C, respectively by Bmod C, the image of
b, respectively of B, in A/C. We will write b € BmodC' if bmodC € BmodC; By C
Bsmod C if BymodC C BymodC, etc.

1.7. One can find a Malcev basis in G compatible with I' and with the lower central
series of GG, namely, elements eq; € I', d = 1,...,s, j = 1,...,kq, such that for each
d=1,...,s, the elements e; ; mod G441, j = 1,...,kq, form a basis in Gq/Gg4y1. Every
element b € @ is then uniquely representable in the form b = [])_, Hfil erﬁj where the
coordinate u; ; € Rif e; ; € @ and u; ; € Z otherwise. Thus, Malcev coordinates define a

diffeomorphism G ~ Z™ x R!.

1.8. The multiplication in G, written in Malcev coordinates, is polynomial: if b =
I, Hfil eqs and ¢ = []5_4 H?L ey, then be = T3, Hfil ey’ where for each
d, j, the coordinate wq ; is a polynomial in the variables ug ; and vgr j» with d',d” < d,
taking on integer values when the arguments are integer, and having total degree d if it is
assumed that each variable ug ;» has degree d’ and each variable vy~ ;» has degree d”. (In
the case of connected G this follows from Campbell-Hausdorff’s formula; a disconnected
G can be considered as a subgroup of a connected nilpotent Lie group.)

1.9. A subnilmanifold Y of X is a closed subset of X of the form Y = Hz, where H is a
closed subgroup of G and = € X; one may always assume that H C (§. A subnilmanifold
Y is a nilmanifold, since Y ~ H/((bI'b~*) N H) where b is any element of G with 7 (b) = x.
We will denote by py the normalized Haar measure on Y.

Given a closed subgroup H of G and a point x € X, the set Hz may not be closed
and so, be a subnilmanifold of X; Hzx is closed iff (b['b~1) N H is a uniform subgroup of
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H, where b is any element of 77!(z). In particular, Hlx = w(H) is closed iff H N T is
uniform in H; we will say that H is rational in this case.

1.10. Any mapping ¢: Z™ — G defines an “action” x — p(n)z, n € Z™, x € X, of Z™
on X. (This notion of action we use is not too conventional.) For a point x € X the orbit
of = under ¢ is the set Orb, z = {¢(n)z : n € Z™}; for a subset D C X the orbit of D
under ¢ is Orby, D = J,,cym ©(n)D.

1.11. If ¢ is a homomorphism, we say that ¢ is a linear action of Z™ on X. Under a
linear action, the closure Z = Orb,,(x) of the orbit of any point € X is a subnilmanifold
of X, and “the sequence” ¢(n)z is well distributed on Z, C-lim, f(¢(n)) = [, fduz
for any f € C(Z). (See, for example, [L3].) If D is a subnilmanifold of X, the closure
Y = Orby, (D) of the orbit Orby, (D) = J,,czm ©(n)D of D is also a subnilmanifold of X,
and “the sequence” p(n)D is well distributed on Y: C-lim,, fw(n)D fdugmyp = [y fdpy
for any f € C(Y).

1.12. A mapping p: Z™ — G is polynomial, and defines a polynomial action of Z™ on
X, if it has the form ¢(n) = []F o' n e Zm, where b; € G and p; are polynomials

=1 "1
on Z™. (When writing such an expression we always assume that it makes sense, that is,

that the polynomial p; takes only integer values whenever b; € G.)

We will call a closed subset of X of the form U;’:1 Hz; where x1,...,2; € X and H
is a closed subgroup of G, a fu-subnilmanifold of X.

Under a polynomial action, the closure Orb,(z) of the orbit of a point z € X is
a fu-subnilmanifold of X, and ¢(n)z is well distributed on the connected components
of Orb,(x). (See [L4]. This fact is in complete analogy with Weyl’s theorem about
distribution of polynomial sequences on tori; see subsection 7.2.) The simplest example
where the orbit of a polynomial sequence is not a subtorus but a finite union of subtori is
given by the sequence {3n?} in the torus X = R/Z.)

For a subnilmanifold D of X an analogous fact holds: Orb, (D) is a fu-subnilmanifold
of X, and ¢(n)D is well distributed on Orb, (D).

1.13. Let ¢ be a linear action of Z™ on X and let € X; for simplicity, let z = 1x.
Then Y = Orby(z) is a (not necessarily connected) subnilmanifold of X, and has the form
Y = m(H) where H is a rational subgroup of G. The maximal subgroup of G' with this
property is M = {b € G : bY = Y}; since Y is p(Z™) invariant, we have p(Z™) C M.
Thus, in order to determine Y, we may look for the minimal rational subgroup H of G
that contains p(Z™).

Similarly, if D is a subnilmanifold of X with 1x € D, then D has the form D = 7(K)
where K is a rational subgroup of G, and in order to determine Orb, (D) we have to find
the minimal rational subgroup H of G that contains both K and p(Z™).

1.14. If ¢ is a polynomial action, the problem of finding Y = Orby,(z) or Y = Orby,(D)
is more difficult. In this case Y may not be a subnilmanifold of X, but only a fu-
subnilmanifold. And even in the case where Y is a connected subnilmanifold, the elements
©(n) may not preserve Y, and hence the group H = {b € G : bY = Y} may not contain
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©(Z™). (See [L8].) Thus, even in this case (and assuming ¢(0) = 1¢, z = 1x, D > 1x),
in order to find Y we need to find the minimal rational subgroup H of G such that w(H)
contains p(n)z, or respectively ¢(n)D, for all n € Z™.

1.15. Let ¢ be a polynomial action of Z™ on X and let D be a connected subnilmanifold of
X. Then almost all points of D have the same orbit under ¢ in the following sense: there
is a fu-subnilmanifold Z such that for almost all € D, Orb,(z) = bZ where b € 7~ !(x),
and Orby(x) C bZ, b € 7 1(x), for the other points z € D. We will call Z the generic
orbit of points of D under the action . (Let us also remark that in the case where ¢ is a
linear action, Z is a subnilmanifold and Orby,(z) = Z for all z € D.)

Assume that Z > 1x, let Z¢ be the identity component of Z and let K be the
connected rational subgroup of G such that 7(K) = Z°. Assume that D > 1x, let L be
the connected rational subgroup of G such that 7(L) = D. Assume that ¢(0) = 1g, let
Y = Orby, (D), let Y be the identity component of Y and let H be the connected rational
subgroup of G such that 7(H) = Y°. Then K is a normal subgroup of H, H = LK, and
thus Y¢ = LZ°. (See [L8].)

2. Characteristic factors, natural factors of nilmanifolds, and complexity

In this section we define characteristic factors of dynamical systems related to a system of
polynomials P and the complexity of P.

2.1. We fix a € G such that the action of a on X is ergodic. Consider the nilsystem
(X, a). The subgroup of G generated by @ and a acts transitively on X, thus we may and
will assume that G is generated by @ and a. Under this assumption, the groups G, are
connected for d > 2.

T

2.2. Given a set S and r € N, we will denote by Agr the diagonal {() rx € S} of S".
Given a mapping 7: B — C and r € N, we will denote by 7*" the mapping B" — C”
defined by 77 (by,...,b,) = (7(b1),...,7(by)).

2.3. Let P = {p1,...,p-} be a system of (distinct) polynomials Z™ — 7 with zero
constant term. We are interested in the closure Y = Orbp(Ax:) of the orbit of the
diagonal of X" under the action (0.1). In the case where p; are linear polynomials Y is a
subnilmanifold of X", and has the form Y = 7(H) where H is a rational subgroup of G"
containing Agr. If (some of) p; are non-linear, Y is a fu-subnilmanifold of X”. Let Y be
the connected component of Y that contains A xr; then Y has the form Y°¢ = 7(H) where
H is a rational subgroup of ¢" containing Ae- and Y is a finite union of subnilmanifolds
of the form Hx, x € X.

2.4. Let L be a normal rational subgroup of G, let D = n(L), and let X' = L\X =
G/(LT"). Then the nilmanifold X’ is a factor of X, and the fibers of the natural projection
n: X — X’ are subnilmanifolds of X of the form bD, b € G. We will call D the fiber of .
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2.5. The factor X’ is characteristic for P if for any fi,..., f € L°°(X) one has

C-lim / TP g TP f g
n X

= C-lim [ TPME(f X)) .. - TP E(f, | X dpx .
n X/

Let Y/ = n*"(Y) = Orbp(A(x-) C (X')". By formula (0.2), X’ is characteristic for P iff
[ s fuday = [ B(RIX) 0.0 B X duy,
% Y

for any fi,...,f, € L>(X), and thus iff [, fduy = fy,E(f|(X’)’”) duy for any f €
LY(X™). This means that Y = 7~ 1(Y”), that is, Y consists of entire fibers bD", b € G", of
the projection n*": X" — (X’)". If L is connected, this is so iff H D L".

2.6. By X4, d = 0,1,. .., we will denote the d*® natural factor G4, \X = G/(TG411) of X.
If G is s-step nilpotent, one has the tower X = X, — X1 — ... — X7 — X ={-}
of natural factors of X. The fiber of the projection m4: X — X, is the subnilmanifold
Dy = 7(Gay1) = Gar1/ (TN Ggy1), d = 0,1,...,s — 1. Since, by our assumption, the
groups G4 are connected for d > 2, the fibers D, are connected for d > 1. The fiber of
mo: X — Xg is Dy = X, which is also connected.

The fiber of the projection Xg — X4_11is Fy = G4/(I'NG4)Gas1), d=1,...,s. For
each d, Fy is a factor of G4_1, and is therefore connected. Since G4/G 441 is a commutative
group, Fj is a torus.

2.7. We will call the minimal integer d for which X, is characteristic for P, that is, the
minimal d for which G}, C H, the complexity of P with respect to (X, a).

If d is the minimal integer for which P has complexity < d with respect to all connected
nilsystems, we will say that P has complezity d. (It is proved in [HK2] and [L5] that the
complexity of P is always finite.)

2.8. Here are some evident properties of the complexity (with respect to a nilsystem (X, a))
as a function of a polynomial system P:

(i) If P! C P, the complexity of P’ < the complexity of P.

(ii) If a polynomial systems P’ is such that Orbp:(Ax-) C Orbp(Ax+), then the complex-
ity of P’ > the complexity of P.

(iii) The complexity of the system P = {p1,...,p,} is equal to the complexity of the system

{0,p2 —p1,....pr — 1}

2.9. The notions of a characteristic factor for and of the complexity of a system of poly-
nomials P = {p1,...,p,} can also be introduced with respect to the “non-integrated”
product TP+ (M) fy ... TPr(") £ Let us say that a factor X’ of X is p-characteristic (point
characteristic) for P if for any f,..., f. € L°°(X) one has

C-im TP fy TP = Clim TP MW E(f1]X') ... TP E(f,|X)

10



in L'(X), and call the minimal d such that X, is p-characteristic for P the p-complexity
of P with respect to (X,a). We are going to show that there is no need in studying the
“p-"versions of the notions of the characteristic factor and of the complexity, since they
are closely related to the ones already introduced.

2.10. For a system of polynomials P, let Z C X" be the generic orbit of points of Axr
under the action (0.1). Let Z¢ be the identity component of Z and let K be the connected
rational subgroup of G” such that 7(K) = Z°¢. By subsection 1.15, H = Ag-K and
Y¢=AgrZ°.

Thus, knowing the generic orbit of points of A xr, one can easily find Orb(Ax-). On
the other hand, the generic orbit Z of points of A x» can be found by determining the orbit

mﬁ(AXTH) where P = {0} U P. Indeed, for every point T = (”3) — (;) € Axri1 one
Otbp(Z) ), thus for almost all z € X, Orb5(7) (l_)mZ) and for all = €

_ by
beZ , where b, € @ with w(b,) =z, and b, = [ i | € Agr. It follows
x b

- N x\ _ o !
that Orbs(Axr+1) = U,ex (B:Z)’ and in particular, ( g) = Orbs(Axr+1)N (X)i )

has %ﬁ(i’) = (

X, Orb5(3) C (

2.11. Now let X’ = L\X where L is a connected normal rational subgroup of G; the
fiber of the projection X — X’ is then D = w(L). Then X’ is p-characteristic for P
iff for almost every point Z € Axr, Orbp(Z) consists of entire fibers bD", b € G", of the
projection X" — (X’)". It follows that X’ is p-characteristic for P iff K O L.

It now follows that X "' is p-characteristic for P iff it is characteristic for P. Indeed,
let H be the connected rational subgroup of G such that w(H) is the identity component

S ~ - b
of Orb5(Axr+1); then H = (Jyce (b?()’ where, for b € @, b = (b) € Agr. If X' is
p-characteristic for P then K D L", so H D Usce (EET) 2 Urer (l—)zr) =L and X'

is characteristic for P. If X’ is characteristic for ﬁ, then H D L™ so <}J§f) - (1[? >,

so L™ C K, and hence, X’ is p-characteristic for P.

As a corollary, we obtain that the p-complexity of a polynomial system P equals the
complexity of the system P = {0} U P.

2.12. Let us also clarify why one may confine oneself to the case of a connected nil-
manifold. Assume that the nilmanifold X is disconnected; since X is compact, it con-
sists of finitely many connected components, X = X; U ... U Xj. Since the transla-
tion by a is ergodic, it cyclically permutes the components X;; thus aka = X, for
all j. Consider the nilsystems (Xj,ak| Xj), j = 1,...,k, and the polynomial systems

P, = {%(pl(k:n—}—i) —p1(2)), ..., %(p,ﬂ(k:n%—z') —pr(i))}, i€{0,...,k—1}", of polynomials
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in n with zero constant term. Then

o kok=1 N
OI‘bp(AXT) = U U ( : ) Oeri (AX;")a
j=1

ap'r(i)

1=

and the study of the orbit of the diagonal in the disconnected nilsystem (X, a) is reduced
to that in the connected nilsystems (X}, ak| Xj).

In particular, if the fiber D of a projection X — X'’ is connected, it is contained
in Orbp(Ax-) if it is contained in Orbp, (Axr) (assuming X; 3 1x). Since even in the
case of disconnected X the fibers D, are connected for d > 1, we see that the complexity
of P with respect to (X, a), if positive, does not exceed the complexity of the system
Py = {ip1(kn),..., +pr(kn)} with respect to (Xl,ak|X1), and thus does not exceed the
complexity of Py. One can show that the complexity of Py with respect to any connected
nilsystem is equal to the complexity of P with respect to this nilsystem. Hence, the
complexity of P with respect to all, including disconnected, nilsystems, if positive, equals
the complexity of P with respect to connected nilsystems only.

3. Spans

In this section we introduce some linear algebra notation.
3.1. Given a set S C Z" we will denote by span; .S the subgroup of Z" generated by S.
bl,l bl,l
For an integer matrix B = < : : ) we will denote by span, B the subgroup of Z"
br,l br,l
generated by the columns of B,
b1,1 b1,
spanZB:spanZ{( : ),...,( : )}
br,l br,l
P1,1 --- P1,1
If B is a polynomial matrix, B = ( : : ) where p; ; are are integer-valued poly-
Pr1 ... Prl
nomials on Z" with zero constant term, we will denote by Span, B the subgroup of Z"
generated by the values of the columns of B,
pl’l(n) pl,l(n)
Span, B = Z spanZ< : : )

nezm pr,l(n) pr,l(n)

3.2. Similarly, for S C R" we will denote by spang S the subspace of R" spanned by S, for
b171 bl,m
a real matrix B = ( : : ) we define

by .o brom

b1,1 bi,m
spanp B = spanp bi ey bS ,
r,1 r,m

12



P1,1 --- P1,1
and for a matrix B = ( : : ) with p; ; being polynomials Z™ — R" we put
Pr,1 ... Prl

p1,1(n) ... p1,1(n)
Spang B = Z spanR( : : )

nezm pT‘,l(n) "‘p’l‘,l(n)

Note that if p; ; = Zle bijiq, t=1,...,r,7=1,...,1, where qq,...,q are distinct
monomials with trivial coefficient (or just linearly independent polynomials), then

p171(7’7,) ...plll(n) bl,l,l ~~b1,m,1 ...... bl,l,k --~b1,7n,k
Spang : : =spang [ : : .

pr’l(n) pr,l(n) br,l,l br,'m,l ...... br,l,k br,m,k
(Since Z is disconnected, an analogous fact does not hold for Spany.)

b
3.3. More generally, let Z be an abelian group. For a vector v = ( 21) € Z", we will denote

by
{vz:zEZ}:{(ZZ) :zeZ}

b111 bl,m
of Z". For an integer matrix B = ( : : ) we define

by oo brom

b171 bl,m
spanZB:spanZ{(bE ),..., (bf >}
r,1 r,m

pP1,1 --- P11
If B is a polynomial matrix, B = ( : : > where p; ; are are integer-valued polynomials
Pr,1 .- Prjl

on Z™ with zero constant term, we put

p171(n) pl,l(n)
Span, B = Z spanz( : : )

Pra(n) .. pri(n)

by span, v the subgroup

nezm
A
3.4. Now let Aq,..., A, be endomorphisms of Z and let v = ( : >; then for z € Z the
Ay
A1Z
vector vz = ( : > € Z" makes sense, and we again may define span, v = {vz : z € Z}.
Arz
Al,l Al,m
For B = ( : ) where A; ; € End(Z) we define
Ar,l A'r,m
A Alm
SpanZB:spanZ{( : ),...,( : )},
A'r',l Ar,'m
Q1,1 .- Q1,1
and if B = ( : : ) where @); ; are mappings Z™ — End(Z), we put
Qr,l Qr,l

Qi,1(n) ... Qi,i1(n)
Span, B = Z span, ( : : )
TLGZm Qr,l(’l’b) Qr’l(n)
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4. A group of polynomial mappings to a nilpotent group

In this section we describe the group Pol(K,G) of polynomial mappings from K = Z' or
R! to the nilpotent Lie group G; it will be used in the next section to construct the group
G whose projection to X" is Orbp(Ax-).

4.1. Let K be one of the groups Z' or R!, I € N. We will denote by Pol(K) the set of
polynomials on K, and for d € N we will denote by Pol;(K) the set of polynomials on K
of degree < d.

Given b € G and ¢ € Pol(K), we may consider the mapping v%: K — G, u +— b3
for u € K. To avoid complicated notation, let us make the following agreement: when we
write b? with b € @, we assume that K = Z! and ¢(K) C Z; then g(u) € Z and v9™) makes
sense for all u € K.

A polynomial mapping p: K — G is a mapping of the form ¢(u) = Hle bgi(u),
u € K, where b; € G and ¢; € Pol(K), i = 1,...,k. With respect to the element-wise
multiplication, polynomial mappings from K to G form a group Pol(K, G).

4.2. Given subsets Si,...,.S; of a group R, we will denote by (S, ...,5;) the subgroup of
R generated by Si,...,5;. We have Pol(K,G) = <bq :beq, q€ Pol(K)>.

4.3. We define a subgroup Pol*(K, G) of the group Pol(K,G) in the following way:

Pol"(K,G) = (b? : b € Gq, q € Poly(K) for some d).

Let {edd el:d=1,...,s, j=1,.. .,kd} be a Malcev basis in G compatible with
I' and with the lower central series of GG, such that for each d = 1,...,s, the elements
eq;modGgy1, j =1,...,kq, form a basis in G4/Gg+1. The following proposition clearly
follows from subsection 1.8:

Proposition. Fvery polynomial mapping ¢ € Pol*(K,G) is uniquely representable in
the form ¢ = [15_, Hfil eg‘fj’.j with qq; € Polg(K) for all d and j. In particular,
if ¢ € Pol*(K,G) satisfies Im(p) C Gq, for some dy € N, then ¢ has the form
o= Hfl:do Hfil eg‘fj’.j with qq; € Polg(K) for all d and j.

4.4. Let uy,...,u, € K; consider the subgroup

Pol*(K, G) (u) _ {(“0(1:”)) . p € Pol*(K, G)}

Ur ‘P(;M‘)

of G".
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Corollary. Any b € Pol* (K, G)( 51) is uniquely representable in the form

r

- Hd 1Hg 1 Zdaj(ul)
b= (4.1)

Hd 11—[] ) Zdj](ur)

with qq.; € Polg(K) for all d and j. In particular, if b € Pol*(K, G)<
dy € N, then

) N Gy, for some

Uy

H [T, ea ™

d=dg j=1 d ¥

H [T, ety
d=dg 11j=1 Ca,j

o
I

(4.2)

with qq; € Polg(K) for all d and j.

4.5. A polynomial sequence in G is a polynomial mapping Z — G. For a mapping
g:7Z — G we define the derivative Dg:Z — G of ¢ by Dg(n) = g(n) tg(n +1). It is
easy to see that ¢ is polynomial iff D¥g = const for some k € N (see [L1] or [L2]); we call
the minimal k with this property the degree of g. If g is an element of Pol*(Z, G) and the
nilpotency class of GG is < s, then the degree of g is < s.

4.6. The following fact can be easily proved by induction on the degree of a polynomial
sequence:

Lemma. Any polynomial sequence g of degree < k is uniquely determined by its initial
values g(0),9(1),...,g9(k).

4.7. Any polynomial sequence g € Pol*(Z, G) is uniquely representable in the form g(n) =

- b,(f), n € Z, with by, € Gy, for all k (where (}) = &n(n—1)...(n—k+1)). The
elements by, can be found inductively in the following way. We put by = ¢g(0). Assume that

elements by, by,...,bg—1 € G have already been found so that g(n) = z éb(’“) mod G,

n € Z. We then deﬁne
d—1
n -1
= (H b}(:)) 9(d),
k=0

and get by € G4. The sequence HZ:O b,g’“)
g(n)mod G441 for n =0,...,d; by Lemma 4.6, g(n) = Hk ob ( ) mod G441 for all n € Z.

After determining all of by, b1, ..., bs, we obtain g(n) = [];_, b,g’“), n € 7.

mod G441 has degree < d and coincides with

Remark. An analogous fact holds for polynomial mappings ¢ € Pol*(K,G) with [ > 1
and can be derived similarly, but we do not need it in this paper.
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5. A subgroup of G" associated with a subgroup of Z"

In this section we construct and study the subgroup GIV! C G", for V being a subgroup of

Z" or a subspace of R"; this group can be seen as an analogue of span, V' for non-abelian

G.

C1,1
5.1. We introduce the coordinate-wise multiplication on R": for vectors v = ( : ) and
Ci,r

Cc2.1 Cc1,1C2,1 C1,1 cr1
Vg = : in R" let vivo = : . For vectors v; = ), .,y = : in R"
C2 r C1,rC2,r Ci,r Cl,r

q(c1,1,--5¢1,1)
and a polynomial ¢ € Pol(R!) we then have q(vy,...,v;) = ( : ) e R".

q(ci,ry-Cl,r)
5.2. Let V be a subgroup of Z". For d € N we define
PV = {q(vi,...,u):l€N, g€ Poly(Z'), ¢(Z') C Z, and vy, ... v € V}
P,V is a subgroup of Z". If V is generated by vectors vq,...,v;, then P,V is generated
by the vectors Hi’:1 (1) with 2221 d; < d (where (}) = Fo(v—1)...(v—k+1)).
Note that if V' D Ayr, then PV = V; we will only need to deal with subgroups 1%

having this property.
We also define

V*dzspanz{vlvz...vl:Oglgd, Vi,.. ., GV}

1 .
(where we assume that the empty product is equal to ()) If V is generated by vectors
1

v1,...,0;, then Vv ig generated by the vectors Hézl vfi with Zézl d; < d. Therefore,
V*? is a subgroup of finite index in P,V .

5.3. Now let V be a subspace of R". For d € N let
PV = {q(vl,...,vl) :leN, qe€ Pold(Rl) and v1,...,v; € V}

and
yrd = spanR{vlvg...vl 0<1<d, v,...,v € V}.

Then P,V = V*?¢. If V is spanned by vectors vy, ..., v;, then V*? is spanned by the vectors
T, v with ', d; < d.

i=1"Yi
If V' is a subgroup of Z" and V is the subspace of R" spanned by V/, then, for any
d € N, spang P;V = PV = V*4,

pet
) € 7Z". We define b¥ = ( : ) e M".
per

5.4. Let b be an element of a group M and let v = ( 31

Cp

bel
If M is a Lie group and b € M is such that b’ is defined for all ¢t € R, then b = < : ) eM"”
ber
c1

is defined for v = ( : ) c R".

Cr
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5.5. Let M be a commutative group and let V be a subgroup of Z". We define a subgroup
MW of M" in the following way:

MV = (" :be M, ve V).

(M1 is the same as span,, (V) in additive notation.)
If M is a connected simply-connected commutative Lie group (that is, a vector space),
then the subgroup
MY =" be M, veV)

of M" is also defined for any subspace V of R". In this case, if V is a subgroup of Z"
and V = spanp V, we have M[V] = M1, The dimension of MV! is dim M - dimV, and
MVl = M7 iff V =R".

We would prefer to always deal with the R-space V instead of the Z-module ‘7, but
we have to use V when our group M is disconnected.

5.6. Now let G be a simply-connected nilpotent Lie group with a discrete uniform subgroup
I', and let V be a subgroup of Z". We define

GV = <bw cw € P,V and b € Gy for some d>
- <b‘1(“1""’”l) 1 €N, q € Poly(Z'), b € Gy for some d, and v; € V,ji=1,... ,l>.

5.7. Proposition. GV is a closed rational subgroup of G”,

" =] H b4+ bag € Ga and wa; € PaV for all d and j . (5.1)

d=1j=1
and for any do € N,

S

¢ ne;, ={] H b5 5 bay € Ga and wyg € PaV for alld and j}h.  (5.2)
d= doj 1

. C1,1 Ci,1
Proof. Let V be generated by vectors v; = < : ), Ce U = ( : ) Put uy = (c11,-.-,¢1.1),
Ci,r Cl,r
oy Up = (Clpy- - 1) € ZL. Then
alvl — <bq(”1 """ v) . q € Pold(Zl) and b € G4 for some d>

bQ(“l) U1
= <( : ) . ¢ € Poly(Z') and b € Gy for some d> = Pol*(Zl,G)< : )
b‘I(uT) Uy

in the notation of subsection 4.4. Hence, GIV] is a subgroup of G", and (5.1), (5.2) follow
from (4.1), (4.2) respectively; it also follows from (4.1) that GV is closed. Clearly, TV7 is
uniform in GIV1, and thus GV is rational with respect toI'". g
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5.8. Corollary Let, for each d, the group PdV 18 generated modulo Py_ WV by elements
Wa1s-- W4, € PV, (We assume here that PoV = {0}.) Then

{ﬁ wad] baj € Gq for all d andj}.
d=1j=1

Proof. Let b € GIV]. Since the vectors wi1,..., w1, generate 731‘7, the element bmod G5,
can be written in the form

I
H by mod G%,

with b171, e 7b1,l1 e G.

Consider the element by = Hi;l bw1 7. We have bb e GlVIn G5, thus, by Proposi-

tion 5.7 and since the vectors wy 1,...,w1,,W21,...,Ws,, generate PoV, we can write

bby ' = H dy’? H by %’ mod G
7j=1

with d1,17 ce 7d1,11;b2,17 RN b2712 € Gy. Put

then b = 52 mod Gf.
And so on, by induction, until we get bs € G \4 representable in the desired form and
such that b = b, mod Gs11. Since Gg41 = {1g}, b=b,. -

5.9. If GG is connected, the closed rational subgroup
GV = <bw cw e V*% and b e Gy for some d>
= <bq<v1""’“l) 11 €N, q € Poly(Z), b € G4 for some d, and v; €V, j =1,.. .,l>

of G" is defined for any subspace V of R". If V' = spany V for a subgroup V of Z", then
alVl — gVl

5.10. Let V be a subgroup of Z". For d € Nlet My = G4/Ga+1; My is then a commutative
Lie group. It follows from (5.2) that for any d,

(G[V] NGy)mod Gy, = M[PdV]
If, for some d, My is connected (and thus is a vector space), we have
(G NG mod G,y = MPY = VT
where V' = spang (V).
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5.11. Let V be a subgroup of Z" and let V = spang (V). If, for some d, P4(V) = Z" or
M, is connected and V*¢ = R", then M,gpd(v)] = Mj for all k > d, and so

elg = <bw cw € PgV and b € Gy, for some k < d> -G

5.12. The following technical lemma says that if H is a subgroup of G”, then knowing “the
linear part” H/G% of H one may “estimate from below” the other “graduated components”
(HNGy)mod Gy, ,,d=2,3,..., of H.

Lemma. LetV be a subgroup of Z" with V D Az and let H be a subgroup of G" such
¥ *d
that Hmod G O M), Then (H N G%)mod &7y, , D MY for all d.

. 1
Proof. Let d > 2, k < d and vy,...,vp € Vi put g1 = ... =vg = () Then for any

1
b= [bl,bg,...,bd] € G4 we have

pUIve vk = pUiveevd = [pU bYe L b mod G,

Since b mod G§ € Mlm C HmodGj for i =1,...,d, we obtain 12 € H mod G7 ;.
|

5.13. The elements %, b € G, v € V, of G" belong to the group GIV). Actually, GV is
generated by these elements; this fact is algebraic and is true for a general nilpotent group
G without any topology assumed on it. We do not need this fact here; what we will need
is the following weaker proposition:

Proposition. Assume that the subgroups Gg are connected for d > 2. Let V be a subgroup
of Z" with V. 2 Ay and let H be a subgroup of G” such that H C GIV! and H mod G5 2

Ml[v]. Then H = GIV1.

Proof. For any d > 2, by Lemma 5.12 and since M, is connected,
(HNGy)mod GGy 2 MY™ = plV™) = plPaVl = plPaV] = (GIV) 1 G mod Gy,

where V = spang V. Since also H mod G D Ml[v] = GV mod G5, we obtain H D GVl -
5.14. Below we will also need the following lemma:
Lemma. LetV be a subgroup of Z". Then [Gg/], Agr] = ng_]l mod G, for any d € N.

1

Proof. Put e = ( > € Ayr. For any by € G4, by € G, and v € V,

1
by, bo]” = [bY, b5 mod G5 € [GY, Agr] mod G,

and ngr]l mod G7 , is generated by these elements. g
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6. The orbit of the diagonal under a system of linear actions

In this section we find Orbp(Ax+y in the case where P = {p1,...,p,} is a system of linear
functions.

6.1. We assume that G is a simply-connected (but not necessarily connected) nilpotent
Lie group, I' is a discrete uniform subgroup of G, X is the nilmanifold G/T" and a is an
element of G whose action on X is ergodic. We also assume that X is connected and that
G is generated by @ and a; this implies that the groups G4 with d > 2 are connected.

We denote by 7 is the natural projection G — X, by X4, d =0,1,2,..., the factor
Gg41\X of X, by m4: X — X4 the corresponding projection, and by Dg the fiber 7(Gg)
of mg—1. We also denote by My, d = 1,2,..., the factor group G4/G44+1 and by Fy the
fiber of the projection Xgq — Xg4_1, so that Fy = My/((I' N Gg) mod G441). Let also
My = (M) =G/(GNGy).

6.2. Let P = {p1,...,p,} be a system of linear functions Z™ — Z, p;j(ni,...,ny) =
cjani + ...+ Cimnm, ¢ji €2, j=1,...,r. We need to find a rational subgroup H of G"

such that m(H) = Orbp(Axr). We will thus look for the minimal rational subgroup H of

aP1(Mp R 1p

),nGZm, be G. Let V = Span, < E);thenHis
1p-

the minimal rational subgroup of G that contains all the elements a”, v € V.

G" that contains all elements <

apr(n) b

6.3. GIV] is a rational subgroup of G" and contains a”, v € V. Thus, H C GVl
Theorem. H = Gm, and so, Orbp(Axr) = WXT(G[V]).

Proof. X; is a torus on which G acts by translations. Since the action of a is ergodic
on X, the induced action is ergodic on X;, and thus the closure of Orbp(A X{) of the
orbit of Axr under the action (0.1) is X{m. M([)V] is the identity component of the group
(WXT)_l(XFA/]), thus H mod G5 must contain M(EV]. Since G is generated by @ and a, M is
generated by My and by the element a mod GG5. Since both M(gv] C Hmod G5 and a¥ € H
for all v € V, we obtain that Ml[v] C H mod Gj5. By Proposition 5.13, H = GVl m

6.4. For every d € N we have (G[V] NGy)mod Gy, | = Ma[lpdm, thus Orbp(Ax-) is a (finite)

tower of extensions whose fibers are the groups 7" (M g)dv}) =F CEPdV]' Let V = spang V;

since Fy are connected, m*" (M gpdv]) = Fg/*d] for all d.
6.5. Corollary. Orbp(Axr) is connected.
6.6. X, is a characteristic factor for P iff mp(AXr) 2 Dy, iff F,LV*k] = [} for all

k>d+1,iff V** = R" for all k > d +1 (such that F}, is nontrivial), iff V*(¢+1) = R". We
therefore obtain:

Corollary. The complexity of a system P = {p1,...,p.} is the minimal integer d for
which V*(@+1) =R,
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6.7. Examples. (1) Let P be a system of r different linear functions in 1 variable, P =
lc
{e1m, ..., cn}. For this system we have V = spang ( 51>, and thus

1c,

d 101 Clli
* o PN .
V* =spanp | i ¢

1c, cf

for any d € N. Since ¢4, ..., ¢, are all distinct, dim V*¢ = d+1,d =1,2,..., and V*(@ =R"
iff d > r — 1. Thus, the complexity of P is r — 2 (which agrees with the results from [Z2]
and [BHK]), and the subgroup H C G" for which we have Orbp(Ax+) = 7%"(H) is, by
Corollary 5.8 and subsection 5.11

bobS bt . b,

c2 c
?Ob?sz s br2—2 1 b € G, b, € Gl, ceey by_o € Gp_9g p - G:—l'

: 2 r—2
CT CT C’r‘
bobi by ... b, o
(2) Consider a system P = {clnl + dins,...,cong + d7n2} of 7 linear functions in 2
1 C1 dl 1 C1 dl C% Cldl d%
variables. Here V' = spang ( : E), V*2 = gpang [:: i ¢ ¢ |, and V* =
1 Cc7 d7 1 (614 d7 C% C7d7 d?

1 C1 dl C% Cldl d? C? C%dl C]_d% d? 1 C1 dl
spang [+ or b : |, which equals R7 if the vectors (3), () and ()

1crdr Cg crdy d% C? C$d7 C7d§ d? 1 c7 dr7
are in the “general position” (in the sense, clear from the context). Thus, the complexity
of a generic system of 7 linear equations in 2 variables is equal to 2 and

bobS b1 b1 porh pT
H = : 2 bo,b1,b0 € G, b3, by,b5 € Gy p - Gg

: 2 2
d
bo b? 637 b§7 bZ7d7 b57

1 C1 d1
The complexity of P may vary if the vectors e = (5), v = () and w = ( )

1 cr d7
are not in the general position. If these vectors are linearly dependent, say, w is a linear
1 C1
combination of e and v, then V = spanp ( §>, and the complexity of P equals 5 as in
1 Cr

Example (1) above. If, say, w = v?, one checks that the complexity of P is 3, etc.

(3) It can be observed from the preceding example that the complexity of the generic

system of r linear functions in m variables is equal to the minimal integer d such that
(m+d+1) > r.
m >

(4) Let m € N and let P = {pg : S C {1,...,m}} be the system of 2™ linear func-
tions pg = ZiES n; in the variables ni,...,n,,. (Systems of this form, introduced in
[B] under the name of Khintchine’s systems, play a crucial role in [HK1].) Let S be
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the power set of {1,...,m} and let {ug : S € S} be the natural basis in RS. Then
V' = spang{vg,v{1}, ..., Vmy ), Where vy = > oo u; and vy = Y g g us. For any d € N,
V*® = spang{vg : R C {1,...,m}, |R| < d}, where vg = Y g-pus. For d < m,
V*(@ is spanned by less than 2 vectors, and thus is a proper subspace of RS. On the
other hand, the set of all vectors vp, R € S, spans R®; indeed, for any S € S one has
us = Y pog(—1)IEI=18lys. Hence, the complexity of P is m — 1 (which agrees with the
result from [BHK]) and

H={(T] bn)ses b0 € G, br € Giry RS
RCS
::“II@Q%Sﬁ@eazmeGmhRes,mhgm—1}(%
RCS

(where, in the products [[c g br, the order of elements bp is arbitrary, but is, of course,

the same for all entries of the vector (HRgS bR)SeS>'

For instance, for m = 2 we have P = {0,n1,n2,n1 +no} and S = {0, {1}, {2}, {

1,2}}.
100
Ordering the basis in RS accordingly we have V' = spang{vy, v{1}, 02} } = spang (}(1)(1))
1000 tl
and V*? = spang{vg, v{1}, v{2},V{1,2} } = Spang G oY 8). Thus,
1111

ag

alvVl = Gp®{1} ag € G, ary,ar € G, aj o € G
apagay 0 {1}, A{2} 1, @{1,2} 2

apa{1}a{2}a{1,2}

(5) The following two concrete examples are called upon to demonstrate that the com-
plexity of a system of linear functions may depend not only on “the linear” but also on
“the polynomial” properties of the corresponding space V. Let

P = {n1 + no, 2711 + 4’/12,3711 + 9712,4711 + 16712,5’/11 + 25’”2,6711 + 36?12}

111 111 1 1
124 124 8 16
: _ 139 6 1/*2 _ 139 27 81 6
For this system V = spang | 1315 | ZR®, V™ =spang | 1114 64 256 | 7 R°, and finally
1525 1525125 625
1636 1636 216 1296

V*3 =R, so that the complexity of P equals 2.
Now let

P = {n1 + no, 2n1 + 4712, 3711 + 9”2,4%1 + 16712, 5TL1 + 25’/12,6711 —+ 37712}

111 1111 1 1
124 124 4 8 16
: _ 139 *2 _ 139 9 27 81 6
For this system V = spang | ;3,5 | and already V** = spang | 171616 64 256 R®, so
1525 152525125 625
1637 1636 37 222 1369

that the complexity of P is 1.
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7. Polynomial orbits on tori

In this section we remind the reader how polynomial orbits on tori look; we will use this
information in subsequent sections.

7.1. In this section let X be a torus, X = G/I" where G is a finite dimensional R-vector
space and I is a uniform lattice in G. We will use additive notation for G and X. Any
element o € X acts on X by a translation, and the system (X, «) is a special case of a
nilsystem. An advantage of a torus in comparison with a general nilmanifold is that it is a
group, which allows one to easily compute linear and polynomial orbits of its points. We
are going to discuss here some details related to this.

7.2. If ¢ is a linear (conventional) action of Z™ by translations on X, then Y = Orb,(z)
where z is a point of X (or Y = Orb,(D) where D is a subtorus of X) is a coset of a
closed subgroup of X, and so, is either a subtorus or a disjoint finite union of subtori of
X. If ¢ is a polynomial action, then Y is a “fu-subtorus” of X, and so, again, is either
a subtorus or a disjoint finite union of subtori of X. This is so since X is a nilmanifold,
but also can be easily seen independently. Indeed, let ¢ be a polynomial mapping of Z™
to X; assume that ¢(0) = 1x and take x = 1x. For each character y on X, xoyp is a
polynomial Z™ — T = R/Z, and thus, by a theorem of Weyl, either x(¢(Z™)) is dense
and uniformly distributed in T, or x(¢(Z™)) is a finite set of rational points in T. If the
first option holds for all characters on X, then Orb,(z) = p(Z™) = X. If the second
option holds for a nonzero character on X, then it also holds for a primitive character y
(that is, a nonzero character that is not a multiple of any other character). In this case
there exists a subgroup F' of finite index in Z™ such that yoy is constant on the cosets of
F, and for each ¢ € Im(yop) one can consider the restriction of ¢ on each of the cosets of
F on which yop takes the value c, replace X by the torus x~*(c), and use induction on
the dimension of X.

7.3. An element o € X will be said to be irrational if o is not contained in any proper
closed subgroup of X; or equivalently, if x(«) is irrational for any character y on X; or
equivalently, if the coordinates of o are linearly independent over Q. Clearly, almost all
(in any sense) elements of X are irrational. If « is irrational, then the set Z« is dense in
X.

If Y is a closed subgroup of X, we will say that an element o € X is irrational modulo
Y if amodY is an irrational element of X/Y. If this is the case, a + (3 is an irrational
element of X for almost all 5 € Y.

7.4. Lemma. Let o be an irrational element of X and let p; ; be polynomials Z™ — Z

with zero constant term, 1 =1,...,k, j=1,...,r. Then
k k
Zj:l p1,j(n)a Zj:1 P1,j
: = Spany |
k k
ijlpr,j(n)a nezm Zj=1p’"’j

Proof. Denote the left-hand side of this equality by Y and the right-hand side by Z.
Clearly, Y C Z. Hence, Y is either a closed subgroup of Z or a union of several components
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of a closed subgroup of Z. On the other hand, since Z« is dense in X, ZY is dense in Z;
this is only possible if Y = Z. g

7.5. In the notation from subsection 3.4, same argument proves the following more general
statement:

Lemma. Let « be an irrational element of X, let p; ; be polynomials Z™ — Z with zero
constant term, and let A; j be linear transformations of X,i=1,...,k, 5=1,...,r. Then

k k
Do, Pri(m)ALja D1 PLiAL
: = Spany |

k k
> pri(n)A,ja neZm Zj:1 Pr,jAr,;

j=1

8. A system of polynomial actions — the case of a connected group

In this section we find Orbp(Axr) in the case where P is a polynomial system and G is
connected.

8.1. Let P = {piy,...,p,} where p; are distinct polynomials Z™ — Z with p;(0) = 0,
i=1,...,r. Wewill, again, look for a subgroup (or a union of several — shifted — subgroups)
H of G" such that 7(H) = Orbp(Axr). A problem is that now H does not have to contain

aP1(n)

the elements ¢p(n) = ( ), n € Z™, of G" (see subsection 1.14), and the argument used

apr(n)
in Section 6 no longer works.

8.2. We do not, however, meet this problem if the group G is connected. Indeed, let this be

N 1p: .
the case, and let V = Spanj, ( : ) Then ¢(n) € GV for every n, so we may assume that
1pr

H C GIV]. On the other hand, if M; = G /G2 and X is the torus M;/(I'G2) = Go\ X, we
have @p(AX{) = X{V] by Lemma 7.4. Thus H mod G% contains the subgroup Ml[v]; by
Proposition 5.13, H = GV

8.3. We obtain:
Theorem. If G is connected, then Orbp(Ax:) = W(Gm).

8.4. Let V = spany V. We define the C-complezity of the system P = {p1,...,p,} as the
minimal d for which X, is characteristic for the action (0.1) with respect to any ergodic
nilsystem (X = G/T",a € GG) with a connected G. Copying Corollary 6.6, we get

Corollary. The C-complexity of P is the minimal integer d for which V*¢+1) = R".

8.5. Recall that if p; = ¢;u1 + ... +cjyw, j = 1,...,7, where uq,...,u; are distinct

1 C1,1 - Ci,m
monomials (with trivial coefficient) and ¢;; € Q, then V' = spang ( : : >

lcri oo crm
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Examples. (1) For the system

P ={n+n*2n+4n” 3n+ 9n> 4n + 16n°, 5n + 25n°, 6n + 36n>}

111
. 124
we have V = spany | 13 % | # R®. Thus, Orbp(Axs) with respect to this action is the
1525
same as for the linear system
{m 4+ ng, 2n1 4+ 4ng, 3n1 + Ing, 4ng + 16ms, bny + 25n9,6n7 + 36n2}

considered in the Example 6.7(3), and the C-complexity of P equals 2.

(2) The same is true for, say, the system

{n1 +n3ns, 205 4+ 4nind, 3n + 9ning, 4nd + 16n3n3, 5n5 4 25n3n3, 603 + 36n1n§’}

9. A system of polynomial actions — the case of a Weyl system

In this section we will describe Orbp(A xr) in the case X is a torus and a is a skew-product
transformation of X.

9.1. We will now investigate a situation that is, in some sense, opposite to one considered
in Section 8: assume now that & is commutative and a ¢ @. In this case X is a torus, on
which a acts as an affine unipotent transformation. Indeed, let v € I' be such that y~!
belongs to the same connected component as a, so that a = ¢y with ¢ € @. For any = € X,
x = 7(b), we have ax = w(ab) = 7(aby) = cmw(y~1by). The mapping b — v~ 1by, b € @, is
a linear transformation of @. For b € G let Ab = b~1p(b) = [b,7]; since @ is commutative,
A is also a linear transformation of (@. Let s be the nilpotency class of G; then A = 0, so
that A is nilpotent.

9.2. We start using additive notation for the group @ and for the torus X. The action
of A on @ factorizes to an action on X, Arx = yr — z, and we have ax = x + Az + «,
x € X, where a = 7(c) € X and A is a nilpotent linear transformation of X. We call such
a system a Weyl system. The orbit of the diagonal of a power of a Weyl system under a
system of polynomial Z-actions was studied in [BLLel]; in this section we partly repeat
the argument from [BLLel].

9.3. For z € X we have az = (A + 1)z + «, and thus for n € Z,

a'r=(A+1)"z+ (A+1)" " +...+(A+1)+1)a
= (A+ 1)”x+A*1((A+ )" —1)a

s—1
:Z( Adx+z JAT™ 1a—m+z JAT Az + ),
d=0

where (Z) _ n(n—1). dI(n d—|—1)

(9.1)
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9.4. Let P = {p1,...,p-} be a system of polynomials Z™ — Z with zero constant
term. For a polynomial p and an integer d let us write pl¥ for the polynomial (Z) =

4p(p—1)...(p— d+1). The orbit Orbp(Z) of a point Z = <x> € Axr is

T, P (AT (Avta) S () AT (Azta)
Orbp(:f‘) = =7+ :

z+y o P (n) AT (Azta) S0 Pl (n)At  (Azta)

neZ'ln neZ'rn

The action of a is ergodic on X, thus it is ergodic on X/AX. Since ax = r+amod AX,
« is irrational modulo AX. Thus, for almost all x € X the element a + Ax is irrational in
X. When z is such that Az + « € X is irrational in X, by Lemma 7.5, Orbp Z is the torus

S [d] pd—1
zd=1 Py A

Orbp(z) =7 + Spany | ;

ZZ 1 [d]Ad 1

(and is contained in this torus if Az + « is not irrational). We obtain:

Theorem. In the case of a Weyl system,

Xkt
Orbp(Axr) = Axr +Spany | . (9.2)

s [d] gd—1
Diam A

In particular, Orbp(Ax-) is connected.

9.5. Remark. Notice that Orbp(Axr) depends not only on the system P but on the
transformation A, that is, on the element a € G that defines the nil-rotation of X. This is

in contrast to the “linear” and the “connected polynomial” cases, considered in Sections 6
and 8, where Orbp(Ax-) only depended on P.

9.6. The W-complezity of a system P = {p1,...,p,} is the minimal d for which the d*P
natural factor X, is characteristic with respect to the action (0.1) for any ergodic Weyl
system (X, a). In the case of a Weyl system Xg = X/A9T1 X and X, is characteristic iff
the torus H = Orbp(Ax-) contains (A1 X)".

To compute the W-complexity of P we replace (X, A) by a more convenient system,
for which (X, A) is a factor. Put X = X*® and define A: X — X by A(zy,...,x5) =
(0,21,...,Zs—1), T1,...,2s € X. Define o X — X by o(z1,x2,...,25) = 1 + Axg +

.+ AT 1x5, z1,...,%s € X. Then ooA = Aoc, so that the system (X, A) is a factor of
the system (X, A).

Consider the torus X”. For the point C

xT

) E)N(’",j:(xl,...,ms)e)z, and n € Z™

we have

(Zz_lp[ld](n)Ad_li> (m(n)wl,p1(n)m2+p[12](n)ﬂc1,~--,ZZ 1101 ln)a,— d+1>
E i : )
DI I (DOV S

p1(n)r1, p1 (”)9024—;0[12] (n)z1, ..., ZZ=1 p[ld] (n)Ts—da+1
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and so,

10...00p; O ... 00

01 ...00p% p ... 00

00 ... 10pl " Hpls=2l 0y 0

22_1 [1d]Ad_1 00 ... Olp[ls] p[ls_ll p[12] P1
— A~ = — s R : Do X"
H—Axr—f—SpanX o ) = Spany o Do : Do c X",

S pldlad B : Do

d=1"" 10...00p, O ... 00

01 ...00p2 p, ... 00

00 ... 10pls=Upls=2l 0 p 0

00 ... Olp[rs] p[rs_l] ...p?]pr

For convenience, let us now rearrange the coordinates of X" so that it is identified
with (X7)® instead of (X*®)". Then H = spany W where

10..00 p1 0 0 ... 00
10..00 pr 0 0 ... 00
01..00 p p; 0
01..00 p#  p, 0 ... 00

_ R : : Do rys

W =Spang | :: :: : : cor | € (R7)S. (9.3)
00...10pls=ple=2l ple=s3l 0
00..10plepls=2l pls=3l = 0
00...01 p[ls] p[ls_l] p[18_2] p[lz] P1
00...01 pq[f] p[rs_l] p[TS_Q] p[Tz] Pr

The d*® natural factor Xy, d =0, ..., s, of the system (X', AV) is the torus X¢, with the
projection mg: X — Xy given by mq(x1,...,z5) = (1,...,24), ©; € X; the fiber of 74 is
the subtorus Dy = AX = {0}4x X5~ of X. For 0 < d < s, let Ry = {0}4~1 x Rs~d+1
then Dgyq = spany Rqi1 and ﬁgﬂ NH = spany (Rj, ; N W), so that EQH C H iff

qe1 © W, Let Wy = (W N Rj)mod Ry, viewed as a subspace of Rj/Rj;, ; ~ R". It is
seen from formula (9.3) that the spaces Wy C R" are nested, Wy C Wy C ... C W, thus
W 2 Ry, iff Wi = R". We obtain:
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9.7. Theorem. The W-complexity of P equals the minimal d for which the subspace

10...00 p; 0 0 0 0
10...00 p, 0 0 0 0
01..00 pP'  p; 0 0 0
01..00 pl& p, 0 0 0
Wmod Ry, =Spang | 11 11 : :
00...10 p[ld] p[ld_l] p[ld_Q] ... p1 O
00..10 pld pld=tpld=21 "= 0
00...01 p[1d+1] p[ld] p[ldil] . p[12] P1
00...01 p[rd'H] pLd] p[Td_l] ce p[f] Dr

of (R™)4*Y contains the r-dimensional subspace {0} x R".

When the W-complexity of P is d, formula (9.2) can be rewritten as

%P(AXT‘) = AX?" + SpanX

where Dy, 1 = AY(X).

d [k] gk—1
k::lpl A

>
D

d [k] gk—1
k=1Pr A

+D§+17

9.8. Examples. Consider the systems P; = {0,n,2n,n3} and P, = {0,n,2n,n?}. If G is

connected, then, for both systems, Orbp(Ax4) = GIV) where V = spang, (11
10

1

*2 __ 1

have V** = spanp (1
1

100
0
0
1

) ; we thus

0
i) = R* and the C-complexity of both P; and P; is equal to 1.
0

(1) Now let (X,a) be a Weyl system. For the space W from (9.3) corresponding to the

system P; we have

and

W mod R; = Spang

10
thus Wy = (W N R3) mod R3 = spang (1 %
10

W1, = W mod R; = Spang (

10 0 0
10 n 0
10 2n 0
10 nd 0
01 0 0
01 n(n—1) n

01 2n(2;7,71) I

01 —”3(”23*1) n3

%0 100
n . 110
12n | = SPpang { 159
1n? 101

10 0 00
101 0 0
10 2 0 0
10 0 0 1
= spang 01_0100
o110
01-12 0
010 0=t

o 100
Orbp(Ax4) = spany (%%8) + Dj.
101
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O N = OOOO0O
= O O o000 0o

0
8) = R*, the W-complexity of P; is 1 and
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(2) For the system P, we have

10 10
W, = W mod R = Spang (% {;) = spang (%%
1 n2 10

and 10 0 0

10 n 0 10 0 0 000

10 o 0 101 0 000

10 2 102 0 000

n 0 100 1 000

W mod R: = Spang | °1 .0 0 spang | 01 0 0 000

mo - n(n—1 —
3 R[o1 2D Bloi13t 2 010’
012'”(2;_1) 2n 01 -1 2 020
—1
01 n2(n22—1) n? 010 T%Ol

100
thus W3 = spang Hg) # R* yet. W mod R} is spanned by a 12 x 6 polynomial or by a
101

12 x 13 numerical matrix (which we do not want to write out) from which one sees that
W3 = (W N R3)mod R} = R*. (See [BLLel] for more detail.) Hence the W-complexity of
P, is 2 and

0
n(n—1) 1 0 0
raw N 4 12-A4 A 4
Orbp(Axs) = Axa 4 Spany | o, 2nen-n 4 | 4 Di = spany (1 4 oA 4 ) + Ds.
1

2.2
n2+n (n2 71)A

9.9. We see from formula (9.3) that for any d,

[d]

1pl¥ L pllpy 1p1pi ... pf
Ta(W) = Spang [ i : p ot ] =Spang [t 1| C VY

2
1 pLd] ..,p1[n2] Pr 1prpy ... 0y

1p

where V' = Spanp ( 31). Thus, if Wy = R", then all the more V*¢ = R". Recalling
1pr

Corollary 8.4, we obtain:

Proposition. For any system of polynomials, the C-complexity does not exceed the
W-complexity.

10. Construction of a polynomial orbit of a point

We now return to the general situation, that is, we no longer assume that G is connected or
that @ is commutative. In this section we describe a process which allows one to construct
Orby,(z) = {¢(n)r}, cym for a polynomial action ¢ of Z™ on X and a point x € X.

10.1. We need the following fact:

Proposition. ([L4]) Let T be the “maximal factor-torus of X7, T = G,\X, and let
n: X — T be the natural projection. If a polynomial mapping p:Z™ — G is such

that 7o)} pezn = T, then {o(n)}ezm = X
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10.2. Let ¢ be a polynomial mapping Z™ — G and let x = w(b) € X. Define
&(n) = b"1p(0)"'p(n)b; then ¢ is a polynomial mapping Z™ — G with ¢(0) = 1¢, and
Orby(2) = bp(0) Orbg(1x). We will therefore look for the fu-subnilmanifold Orbgs(1x) =

{m(&(n)}nezm-
Next, we rewrite ¢ in terms of @. Namely, if ¢(n) = [[,_; bﬁ?i(n), choose 3; € T

such that b;8;' € G, i =1,...,1, and put ¢;1(n) = H(n) (Hé:1 ﬁfi(n))_l; then 7(¢(n)) =
m(p1(n)) for all n € Z™ and ¢, takes values in G.

We now start with K1 = @, Z; = Z™, and ¢1: Z; — K. Let M; be the commutative
group K /[K1, K1), and let n,: K1 — M; be the natural projection. Let T} be the torus
My /n:(T") and let 71: M7 — T3 be the natural projection. Let 11 = nj0¢1 and & = 10%1,
then v, and & are polynomial mappings from Z; to M; and to T} respectively. The orbit
S1 = {&1(n)},,¢z, in the torus T1 can be easily determined, as described in subsection 7.2.
If S; = T4, then by Proposition 10.1 the set {m(¢1(n))}nez, is dense in X, and we are
done with m%(lx) = X. Assume that S; # T7. If S is connected, we put Zy = Z;. If
S is disconnected, we can find a subgroup of finite index Z3 in Z; such that {{1(n)},,c
is connected for any coset of Z5 in Z; (see subsection 7.2). We may now deal with distinct
components of S7 individually, replacing Z; by the corresponding cosets of Zs. Let us
consider the component S7 = {£1(n)}, o, only.

l

S! is a proper subtorus of Tj. Let L; C M; be the identity component of 7, (S}).
There exists a polynomial mapping ¢}: Zo — L; such that 71(¢]) = &. Then the
polynomial mapping 61(n) = 1 (n) " (n), n € Z,, takes values in 7;(T"). Let v; be any
polynomial mapping Z; — I" such that ny0y; = d;.

Now let Ky =y '(L1); then Ks is a proper connected subgroup of K7, and the map-
ping @a(n) = p1(n)y1(n), n € Zs, takes values in Ko and satisfies w(pa(n)) = m(p1(n)),
n € Zo. We replace the group K; and the polynomial mapping (1 by the group K, and
the polynomial mapping ¢s.

If needed, we repeat this procedure, until after, say, k repetitions we get Si = Tj;
then by Proposition 10.1, @wzk (1x) = Orby, (1x) = n(Kj). The other components of

Orby/(1x) can be found similarly.

10.3. In the process of the construction above we obtained the following result:

Proposition. Let ¢:Z™ — G be a polynomial mapping with ©(0) = 1¢g, let x € X,
and assume that Y = Orb,(x) is connected. Let K be the closed connected subgroup of
G such that Kx =Y. Then there exists a polynomial mapping ©': 2™ — K such that
o' (n)x = ¢(n)x for alln € Z™.

11. The general case — an algorithm

We will now consider a general nilsystem (X, a) (assuming, as before, for simplicity that
X is connected and that G is generated by @ and a). In this case we are unable to obtain
simple formulas for Orbp(Ax-); we will only describe a procedure which, in principle,
allows one to find @p(A xr). This procedure, however, involves too much computation,
and can only be really applied in the simplest situations.
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11.1. The case of the Weyl system hints that we have to represent the action of a on X
as a unipotent affine transformation of X. Let a = ay~! where o € @G and v € T, then
G is generated by & and . Let us determine the orbit of 1x under the action of a. We
have alx = m(ay™1) = m(a), a®’1x = m(aa) = T(ay ta) = 7(ay~tay) = m(aBa), where
B(b) =y~ 'by, b € G. By induction, a"1x = n(aBaB?«...B" 1a), n € N.

11.2. For b € G, define g,(n) = (by~1)"4", n € Z; g is a polynomial sequence in @, with
gp € Pol*(Z,@), and for n > 1 one has g,(n) = bBbB?b... B"1b. Let Ab=0b"1Bb = [b,7],

b € @; we would like to write g, as a polynomial sequence in terms of the elements A*b,
0 14;(n)
=107

expressions of the elements A*b, k > 0, and qj are polynomials Z" — Z. We cannot
find simple formulas for the polynomials ¢;, but can only suggest a recurrent process that
allows one to compute them one by one. We have Dg,(n) = gy(n) " 1gy(n + 1) = B"b for

n € N and hence, for all n € Z. On the other hand,

gap(n) = (b'Bb)B(b~'Bb)B*(b~'Bb)... B (b~ Bb)
= (b='Bb)((Bb)'B?b) ((B?*)'B%) ... ((B" ') 'B"b) = b~ 'B",

k > 0, and their commutators, that is, in the form [] , where b; are commutator

n € N, thus
Dgy = bgap. (11.1)
This equation, with the “initial condition” ¢,(0) = 1, defines g uniquely.
Let us write g; in the form

go(n) = [ (A Tpysm T (A 'p, AT Tppaer) (11.2)
1<k<s 1<i<k<s
where qi, qi1, ... are polynomials Z — Z with degq, < k, degqr; < k+1, .... Then
Dgy(n) = g(n) tg(n+1) = ( . H [AF=1p, Al 1p)arr(n) H (Ak_lb)q’“(”))_1
1<i<k<s 1<k<s
( [T Akttt T [AF 1, A et )
1<k<s 1<i<k<s
_ (Akflb)quc(n) H [Akfflb’ Alflb]Dqk,z(n)*qk(n)qu(n) .
1<k<s 1<I<k<s

n € Z, where we put Dg(n) = g(n+ 1) — q(n). By (11.1), this is equal to
bgas(n) =b [] (AFp)n) T [AFp, Alpj7rtm)
1<k<s 1<I<k<s
Comparing similar terms, we get
Dqy =b; Dgx = qg—1 for k > 2;
Dqi, = qi for k=2, Dgpg = qr—1,4-1 + qeDq for k> 12> 2;  ete.
From this equations, we obtain gx(n) = (}) for k£ > 1 (which agrees with formula (9.1) in

Section 9); qr1(n) = (kil) for k > 2; qx2(n) = (kK + 1)(:1;) for k > 3; etc. Thus, the
beginning of (11.2) is
go(n) = om(Ab)(2) (A20)(5) . [4b, 5](3) A2, 5)(5) .. (420, A2 ("5 ) (43D, Ap)P("6 ) .
(11.3)
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11.3. We have 7(a"1x) = 7(ga(n)), n € Z. Let x € X, x = 7(b) with b € @G. Then
a"b=b(btab)" = b(b~tabb 'y )" = b(ala, b][b, 4]y )" = blagy )"

where oy, = afa, b] Ab. Hence, a™z = b (gq, (n))-
Now, given a system P = {pi,...,p,} of polynomials Z™ — Z with zero constant
term, the orbit Orbp(Z) of the point z = <m> € Axr is {br*"(pz(n)) : n € Z™} where

_ b
b= () € @" and
b

Gay (P1(R))
wz(n)=1": , neZm.

Gery (Pr(n))

Assuming that Orbp(Ax+) may be disconnected, we will, for simplicity, confine our-
selves to its identity component. For x € X, z = w(b) with b € @, let Y, be the identity
component of {7*"(,(n))}, czm in X". Then the identity component of Orbp(z) is bY,.
By subsection 1.15, Y, is the same, up to translation, for almost all x, that is, there exists
a subnilmanifold Y of X" such that Y, C Y forallz € X and Y, = Y for almost all x € X.

Let H C G" be the identity component of (7*")~1(Orbp(Ax+)). By 1.15, %7 (H) =
AgrY.

11.4. Consider the orbits Orbp(A xr) corresponding to different elements o € @. It follows
from subsection 1.15 that these orbits are equal for almost all «, but, in principle, they
may be smaller for some a. This cannot happen if the group

o~ ga(pl(n))
H:<A@T,(: ),neZm,ae@’>

g (pr(n)
is a minimal subgroup of @ with the property that

Hs (Akfla/)(pllg,n))

k=1

ﬁ:A@T-< : nEZm>mod@'§7
(n)

[T, (s ("")

where o is any irrational element of ¢/@5. Indeed, in this case H both contains H and
is contained in H, and thus H = H independently of the choice of a. This minimality will

follow if the following conjecture is true:

Conjecture. For any d € N, HN Gy = ]/:Id.

All our efforts to either prove or disprove this proposition failed. If it is true, then
Orbp(Ax-) is connected, does not depend on «, and is equal to 7" (H). If it is not true,
Orbp(Ax-) depends on a, and, though this is not automatic, there is a good chance that
it may be disconnected.
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11.5. We will now get some evident properties of H. Let a = (a> € G"; then for any

a
b € @ and any n € Z™ we have
1 aP1(m)y aP1™ (a7 1ba)
a : a= : )
aPr(myp apT(")(a_lba)

b atba
and so, a~* Orbp(Z)a = Orbp(z') where T = WXT(E) and 7' = FXT( : ) So, H =
b a"tba
a~'Ha. Since H O Agr, we obtain:
Proposition. [H,Agr| C H; in particular, AH C H.
11.6. Corollary. If for some d € N and a subgroup V CZ" one has H D GEIV] mod Gy 4,
then H O GLV] mod G71;+1 for all k > d.

Proof. We have
V] r_ V] -
H D [H,Aqr] 2 [Gd ,AGr]mOde+2 = Gd+1mode+2

by Lemma 5.14. g
11.7. Corollary. If, for some d > 2, H O G;mod G:l+17 then H 2 G7.
Proof. By Corollary 11.6, H O G}, mod G’,;H forall k >d,so H O G). gn

11.8. Lemma. Let the C-complezity of P with respect to (X,a) be equal to . Then
G111\ X is a characteristic factor of X for P.

1p1
Proof. Let V = Spany ( E), then V*(+1) = R”. Applying Theorem 9.4 to the Weyl
1pr
*(1+1)
system @5\ X, we see that H D &V mod @[2‘/}. By Lemma 5.12, H D @Xl T I+1- m

Hence, when computing H, we may replace G by G/@ ;1.

11.9. Example. If the C-complexity of P is 1, then H O (&5, so we may factorize G
by (G, and assume that @ is commutative. The system (@;’\X ,a) is a Weyl system, so
Orbp(Axr) = m(H) is connected and H = GWI@Y, where W is given by (9.3). In
particular, it follows that the complexity of P equals its Weyl complexity. We thus obtain
from 9.8 that the complexity of {0,7n,2n,n3} is 1 and the complexity of {0, n,2n,n?} is 2.

11.10. To find H, we may simplify the general procedure described in subsection 10.2
as follows. First, we replace G by G/G 1, where [ is the C-complexity of P. Then we
replace a by o, = aa, b] Ab where b is a “generic” element of @. (Practically, this simply
means that the coordinates of b are algebraically independent over Q(«)).) Then we define

9o (p1(n))
o(n) = : ,nEZL™.

ga(p1(n))

33



We start with H; = G", Zy, = Z™, My = H, /G5, n1: HH — My and ¢ = ¢, and, as
in subsection 10.2, determine a subgroup Zy C Z;, a connected subgroup L; C M;, and a
polynomial mapping s: Zo — 7 '(L1) such that 7%7(¢2(n)) = 7%7(¢1(n)), n € Zs, and
the image of {¢2(n)}nez, is dense in the torus Li/(n1 ()" N Ly). Then we replace Hy by
the group Hy = 17 *(L1)Ag- and the mapping @1 by @. In the next step, we define M,
to be the factor Hy/([H2, H2|G5), and repeat the procedure.

Now assume that after d steps we obtain a connected group H; C @ and a poly-
nomial mapping ¢4: Zg — Hg such that Hy O @, n%"opg = 7*"op; and the image of
{¢a(n)}nez, is dense in the torus Hy/([Hg, Ha)G,1(I"NHg)). Then, by Proposition 10.1,
the image of {¢4(n)}nez, is dense in the nilmanifold Ha/ (G, (I"NHy)). Since Hy 2 Gy,
we have H 2 @;mod @y, . By Corollary 11.7, H 2 Gy, so H = H,.

12. A filtration of @

For the needs of the next section, in which we will give an estimate of the complexity of a
general polynomial system, we will now introduce a filtration of (.

12.1. Assume that the group G is generated by (@ and an element v € I'. We define a
mapping A: @ — @G by Ab=1[b,7], b € G. For ky,ko,...,k € N we define

Clhy ko k) = [APTG@, AP G, . AR @]
For k,l € N with k£ > [ we put
Gri =Gy, k1 =1, ki+...+k >k).
Clearly, ), = @, for all . We will also assume Gy ; = @ for k < [.
12.2. Using, when needed, the standard commutator identities
[b1, babs] = [b1, ba][b1, ba, b3][b1,b3], [b1b2,bs] = [b1, b3][b1, b3, ba][b2, bs],
(b7, ba] = [br,ba] *[b2,b1,b7 "] and  [b1,by '] = [b1, ba] b2, b1, b5 ],

one gets:

(12.1)

Lemma. For any k,l € N with k > 1,
(i) Gk, is normal in G;
(ii) [Gr1,Gji]l € Gryjiyi for any j,i €N, j >i;
(iii) A7Ggy C Giijy for any j € N;
(iv) the factor groups Gii/Gr 41 and Gi,1/Gri1, are commutative.

12.3. Lemma. For allk > 2, G, = Gy 1.
Proof. Clearly, G, 1 C Gy, for all k. For k = 2, using Lemma 12.2, we have
G, =[G,G] = [(@',7),(@’,7 } = ([@,],[G,G],G3,1) C Gay,
so Gy = Gg ;1. If, by induction, Gy, = Gy 1 for some k > 2, then
Git1 =[Gy, G) = [Gr1, (G, 7)] = ([Gr1,7], [Gr1, G, Grio1) C Gryrn,

0 Gr+1 =Gry11- m
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12.4. Thus, we have the following filtration of @:

Gy
Il
G =G G
U I
Gy =GE212G22 @3
U U Il

Gz = G312GE3226E33
[J [J [J I
Gs - @3,1 ) @8,2 ) @3,3 2...2 @s,s

U
{1G} =Gsp1= @'s+1,1
12.5. Lemma. For any k,l € N with k > 1> 2 one has Gy, = <A@k_1,l, [@k_17l_1,@]>.
Proof. Denote <A(§’k_17l, (Gr_1.1-1, @]> by . By Lemma 12.2, G} ; 2 Q.
Let k1,..., ki e Nwith ky +...+ k; = k. If k; = 1, then
Glhrrbr o)) = Ghor, b 1), G) C [Gro1,-1,G] C Q.
Let k; > 2. For any by, ba,...,b_1,b; € @G one gets from formulas (12.1) that
A[AR by A2 by o ARy AR 2]
= [AFby, APy, AR Ty AR
[AF 1oy, AR2by, o ARy AR 2] L
(ARl ARy ARy, AR 2]

[AFr=tby, ARy, APy AR mod G g,

and thus
[AF =y ARy o AR Ty g AR
= [Akl_lbl, Ak2_1b2, cey Akl*lbl_l, Akz—le] -1 e
(AR 1py, AR2py, L ARty AR 2] T
[Akihy, AR~ Vpy ARty AR 2]
A[Akl_lbl, Ake=lp, AR Ty Akl_zbl} mod Gry1 141-

We have A[Akl_lbl,A’”—lbg, e ,Ak“l_lblil,Akl_zbl} € AGk-1,, and by induction on
k; (with fixed k),
(AR by, A by, ARy g, AR 2] [AR by, ARy, AR Ty AR

[AF by, A My, o ARy, AP T2 € Qmod G 1,
thus [Aklilbl, Ak271b2, e ,Akl_lilbl_l, Aklilbl} € Qmod @k—‘rl,l—i—l-

We have obtained that for any ki,...,k with k1 + ... + ki =k, G gy, ki1 k) C
Qmod Gy41,4+1. Hence, Gi; € Qmod(Gr41,Gk+1). By induction on decreasing
k, Gri1; C <A@k,l, (Gri-1, @’]> C @, and by induction on decreasing [, Gy ;11 C
(AGK-1,141,[Gr-1,,G]) CQ, thus G, C Q. m
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12.6. Corollary. For any r,k,l € N with k > | > 2 one has G} ; = <AX’"@;€*171,
[Gho1-1: Aar])-

Proof. It follows from Lemma 12.2 that G} ; 2 (A*"Gr_1., (G} 1, 1, Aer]). For any
i€{l,...,r} we have

1ag 1c i ¥el i ¥el
15 1e 1o 1o
row i Gri | = | (AGk—1,1,[CGr-1,-1,G]) | = AGr-1,1 |, | [Gr-1,1-1,G]

1ag 1a 1c i ¥el

1c 1 1 1o
i e 1ag

X 16 1o X r
' '
=(A Gr-1, |, Gr-1,1-1 |, Aer - <A Gr_1,, [@k—l,l—bA@TD'

1o 1o
1 1

13. The general case — estimation of complexity

The algorithm described in subsection 11.10 is too complicated for practical usage. We
are therefore going to obtain (in Theorem 13.13 and Corollary 13.14) some estimates of
the complexity of P.

13.1. We will introduce more linear algebra notation. Let » € N. We put R = R?, and
Vi1
sometimes interpret R™ as (R")%. For wy,...,w; € R" = (R")%, where w; = ( : ) with

Vi, s

Ci,j,1
Ui,j:< J )ERT,izl,...,l,jzl,...,r, let w1 ®...® w; be the element

Ci,j,r
C1,1,1 Cl,1,1
C1,s,1 Cl,s,1
C1,1,r Cli,1,r
Ci,s,r Cl,s,r

For subspaces W1, ..., W; of R" we define

e (R®H",

W1®...®Wl:spanR{w1®...®wl:w1EWl,...,wIEWl}Q(R‘X’l)T,

and for a subspace W of R” and [ € N we define W =W ® ... W.

13.2. Consider the filtration R = Ry C Ry C ... C Ry C Rsy1 = Rsi0 = ... = {0}
of R, where Rj, = {0}*~! x (R)*=**+! for k € {1,...,s}. For L,ky,...,k € N we define
k) = Biy ®. . .@Ry,, and for k,l € N, k > I, wedefine Ry = >, oy B,

.....
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13.3. Let W be a subspace of R"; it will be important for us to know for what k,l € N
one has W& D R} ;. The following lemma helps determine such k, I:

Lemma. (i) For any l,ky,..., kg € N, W® D Ry g,y tmplies wel o Ry,
for any permutation o of {1,...,l}.

(i) Assume that W D Agr. Then for any l,ky,...,k; € N, W& D Rfkl
WD D RY, ke for all kipa € N

(iii) Assume that W is such that for all k € N one has (W N R}, ;)mod R}, 2 (W N
R};) mod R}, (both interpreted as subspaces of R"). Then for any k,l € N with k > 1,
welt > R mod Ry, ; implies wel > Ry,

o(1) 7'“7kcr(l))

k) implies

.....

Proof. (i) follows from the fact that the product W® is invariant with respect to permu-
tations of its factors. (ii) follows from the fact that Rl ) © ARZzH =R kk)

(iii) Let S: R — R be the coordinate shift, S(c1,c2,...,¢5) = (0,¢1,...,¢5—1); by the
assumption, S*7"(W) C W. Assume that W®! D Ry ymod R, , for some k, . Then for
any ki,...,k € Nwith by +...+k =k,

W& D (8" @Idpr @ ... @ Idpr)W® 2 (S @ 1dpr ® ... ©1dpr) (R, ymod Rp .,y ;)

_ T
= R(k:1+1,...,k:l) mod Ry 9.

Similarly, we! =2 Rfkl:~--7ki71:ki+17ki+17-..kl)mOdR2+2,l for any i € {17"'7l}' Hence,
We 2 Rp,, ;modRj_,, By induction on j, W® 2 R’ modRj,,, for all j > Fk,

and thus W®! D R, m

13.4. Now let a € G, and let v € T is such that ay~! € @; then G = (@, ~). We start using
the filtration of & introduced in Section 12. We define M = /@5 and M; = @;/G41, 1 €
N. For I, k1,...,k € N we define M, . x) = Gu,,...k) modGy1, and for k,1 € N with
k > 1| we put Mk,l = @k,l mod @;41. We then have MkJ = <M(k1 ’’’’’ ki) ki+...+k = ]{3>

Since Ay C (@, the mapping A: M — M is defined. For b € M and w = < 51> €

R™ = (R®)", we define b* = bv1 (Ab)v2...(A5"1h)% € M". If W is a subspace of R;, we
define MW] = <bw be M, we W> C M.

Now let | € N and by,...,b; € M; we then have a mapping (R")! — M/,
(wi,...,w;) — [bql‘”, . ,b;‘”}. Since this mapping is multilinear, it extends to a homo-
morphism (R®Y)™ — M, u + [by,...,b]%, with [by,..., b]"1@-®w = [bql‘“, ce b;”’].
For U C R®! we define MV = ([by,....0]" 1 by,....bp € M, u e U).

Clearly, for any [,k1,...,k € N, MEBG ] = g7

(k1 eikt)? and for any k,l € N,
k> 1, MBEed = My

13.5. We now return to our nilsystem (X,a) and a system P = {pq,...,p.} of poly-
nomials Z™ — 7 with zero constant term. Let H C @ be the identity component of
7~ 1(Orbp(Ax+)); our goal is to find an estimate of the complexity of P, that is, an integer
d such that H 2 G ;.
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13.6. By Theorem 9.4, Hmod G5 = MWW where W C R" is given by formula (9.3).
(Notice that W satisfies the assumptions of items (ii) and (iii) of Lemma 13.3.) Our
further argument will be based on the following proposition:

Proposition. For anyl €N, (HNG;)mod G, 2 MW
Proof. For any by,...,b; € G and any wy,...,w; € W, b € HmodG@;. Hence,
(b7, .0 € (HNG))modGl,,. m

13.7. For each [ =1,..., s let d; be the minimal integer such that Rj , C W®!. Then for
each [,
@Zl,l mod &7, | = Mg, , = JYL ] C Jlie C Hmod GY, 1,

and so
a1 © Hmod Gpy . (13.1)

Note that d; = cw + 1, where ¢y is the W-complexity of P. We will assume that
dy > 2. (If d; = 1 then ¢y = 0, the polynomials from P are linearly independent, and the
complexity of P is equal to 0 (or is < 1 if we take into account disconnected nilsystems).)

13.8. Lemma. For anyl, d; <ld;.

Proof. If k1 > d; then R} C W, thus by Lemma 13.3(ii), Rfkl Kaoeokit) C W for any
ko,.... k. If kv +...+k; =k > ldy, then k; > d; for some 7, and thus R?kl Ko k) & wel
by Lemma 13.3 (i). So, Rig,; CW®. @&

1)

13.9. Lemma. Assume that G}, C Hmod G5, for some k,j,l € N. Then
(i) (G Agr] € Hmod Gy 105
(i) A*"Gy, € Hmod G}y ;-

Proof. (i) By the second formula in (12.1),
[ Z,lv A@T] - [HG§,1+17 A@"] - [Ha A@T][Hv Agr, @§,1+1][ ;,H—l? A@T]‘

By Proposition 11.5, [H, Agr] € H, and by Lemma 12.2(ii), [H, Agr, G 11, (G 111, Aer] C
@;-‘rl,l-f—Q' Hence7 [@2,“ A@T] g HmOd @§+1,l+2‘
(ii) By the second formula in (12.1),

ATGL, CAYT(HGY ) CAYTH[AH, G ]AGY .

J J

B%f Proposition 11.5;, A:’"H C H, angl by Lemma 12.2(iii), [A*"H, G} 4], A*"G} ., C

13.10. As a corollary of Lemma 13.9 and Corollary 12.6, we get:

Proposition. Assume that for certain k,l,j € N, I > 2, one has G} ;_; € Hmod G,
and G}, € Hmod 67, 1. Then Gy 1, € Hmod G} 4 .

13.11. For each [ = 1,...,s put k; = max{d;,d;—1 + 1,...,d; +1—1}.
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Proposition. For anyl and any j €N, Gy, ,; C Hmod G}, ..

Proof. We will use induction on [. For [ = 1 we have k1 = di, G, ; € Hmod G55 by
(13.1), and thus for any j € N,

T _ XT\J (T T T

by Lemma 13.9(ii).
Assume by induction that for certain [ > 2 one has

for all j € N. We have k; = max{d;, k;—1 + 1}. Thus, by (13.1), G}, , € Hmod G}, 1,
and since G, ;1 € G}, 11,1 € Hmod G}, by (13.2), we get

k1 © Hmod Grg 4y (13.3)

by Proposition 13.10. Next, since (13.3) holds and since G}, 1, 1 € G}, 419, 1 C
Hmod G, by (13.2), we get

' T
ki+o1 © Hmod G 5,

l?y Fl’goposition 13.10. Using induction on j, we obtain G}, ., € Hmod G}, ;. for all

13.12. Now let ¢ be the C-complexity of P, then G, C H by Lemma 11.8. By (13.1),
. CHGL,, = II. (13.4)
By Proposition 13.11 and by (13.4),

@Zc_lerc—c,cfl g H@Z—chfc,c = H@g = H. (135)

C?C

By Proposition 13.11 and by (13.5),

T r _ r _
@kzc_g+kc_1+dc—c—(c—1),c—2 g HGC—I—HCC,l—|—dc—c—(c—1),c—1 - H@kc,1+dc—c,c—1 = H.

After repeating this ¢ — 1 times, we get Gy = G, C Hford=ki+ ...+ ke1 +dc —c—
(c—1)—...—2. Hence, the complexity of P does not exceed d — 1, and we obtain:

13.13. Theorem. Let c be the C-complexity of P, let W be the subspace of R® defined
by formula (9.3), and for each 1 =1,... s let d; be the minimal integer such that Ry, C

We and k; = max{d;,d;_1 + 1,...,dy +1 — 1}. The complexity of P does not exceed
ki + ...+ ke +de—c(c+1)/2.

13.14. Using Lemma 13.8 and the fact that d; = ¢ + 1, we get
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Corollary. The complexity of P does not exceed cywc(c + 1)/2, where ¢y is the W-
complexity and c is the C-complexity of P.

13.15. Remark. Our estimation of the complexity of P was based on our knowledge
of the orbit WP(A(@\X)T) = MWI of the diagonal of the torus (@,\X)", obtained in
Section 9. Better estimates of the complexity of P can be made if one first finds the orbits
%P(A(@i\){)r) of the diagonals of the nilmanifolds (@,;\X)" for ¢ > 2.

13.16. Examples. Consider two simple examples: P; = {0,n,2n,3n,n?} and P, =

100
. . . . 110
{0,n,2n,3n, n3}. For both systems, the space V introduced in Section 8 is spang (% % 8)’
101
1000 10000
1101 1101 1 L
so V*2 =spangp | 1204 |, V*3 = spang [ 1204 8 | = R®, and the C-complexity is equal to
13009 130927
1010 10100

2. Thus, we may confine ourselves to the groups Gj; with [ < 2.
For the system P; one checks that the W-complexity is also equal to 2 (thus d; = 3)
and that

W mod R} = spang

QOB HO NOOOO

0000 R EHE
T ORHH+H 00000
COO00O CWNRO

v

Since W 2 R}, we have W®2 D R?kl o) whenever k;

to investigate whether W®? contains the spaces R?Ll)’ R?lﬂ)’ R?Z,l)’ and R?Z?)' We have

or ko > 3, and it only remains

and

Yoo

1 1.2
W®2 mOd(R(Lg)R(gvl)R&g)S =SPANR | vnnnnnn1inannnn n o 00 (136)

T @D

OO OO OO OO OO OO HHE HEE
OO OO0 OO OO0 O KFHKFH OO OO0
OO OO0 OO OO0 OO OO0 WO
OO OO0 QO OO0O QO RKFO NOOOO
OO OO OO OO WO DO OO0 O
OO OO DO OO HO OO O o000
OO OO0 OO OO0 OO OO0 HKHEREREFE
OO OO0 O KFFFE OO OO0 OO OO0
o, OO OO0 OO0 OO OO0 WO
SO OO0 OO RO OO O0OOO NOOOO
OO OO WO DO OO OO0 0o
OO OO0 HOOOO DO OO0 O o000
OO OO0 OO OO0 DO OO OOV RO
0 = = =
OL QPO O PXNO Oy XNO RO OOO
OO OO DO OO O OSOOHO [eloNolale]
OO OOO oﬁoo»—-o OO OO0 OO OO0
OO OO0 OO0 QO RFO OO OO0

)— (2.2)
from which it is already seen that W2 D R?l 2) (The complete matrix in

the right hand part of (13.6) contains 62 columns.) By Lemma 13.3(i) this implies that

=
S

v
A
[\V]
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we2 > R(2 1) mod R 5, s0 W®? D R(2 1) mod R} 5, and by Lemma 13.3(iii), that W®? D
R372. Hence, do = 3. By Theorem 13.13, the complexity of P; is < dy +dy — 3 = 3.
(A more careful analysis, based on the method from subsection 11.10, shows that P; has
complexity 2.)

The system P> has W-complexity 3 with

W mod R} = spang

OO0 OO0 HiEEHE
OO0 HErRFERFEFE OO0O00O0
HEREREE OO0 OOO0O0
OO0 OO0 WO
OO0 CORFO ODOO00OO
OE‘;O(H—‘O [eleleleleolic lelolel]
OO0 RHFOOOO OO0 O
HOOOO OOO0O00O OOOO0O
OO0 QWO ODOO000O
OO OOO0O0OO OOO0OO0O
OWNHRO OO0 OO0

Again, one checks that W®? 2 R, and that W®? D R3,, from which d; = 3 and the
complexity of P is < 4. (Using the method from subsection 11.10 one can see that P> has
complexity 3.)
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