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Abstract

We obtain a finite characteristic analogue of the classical Weyl theorem on the distribution
of polynomial sequences in a finite dimensional torus.

0. Introduction

The goal of this paper is to obtain analogs, in finite characteristic, of the classical
H. Weyl’s results ([We]) on uniform distribution of the values of polynomial sequences in
a finite dimensional torus.(1) Let F be a finite field of characteristic p; the following are
the finite characteristic analogs of the classical objects which we will deal with:
• “the set of integers” is the ring ZZ = F [t] of polynomials

∑r
i=0 ait

i, ai ∈ F , over F ;
• “the set of rationals” is the field QQ = F (t) of rational functions over F , the quotient
field of ZZ;
• “the set of reals” is the field RR = F ((t−1)) of formal Laurent series

∑−∞
i=r ait

i = art
r +

ar−1t
r−1 + . . ., ai ∈ F ; RR is the completion of QQ with respect to the valuation ν(α) = −r

for α =
∑−∞

i=r ait
i with ar 6= 0;

• “the one-dimensional torus” is the group (and the ZZ-module) TT = RR/ZZ; the elements
of TT are representable by the series

∑−∞
i=−1 ait

i, ai ∈ F ;

• and finally, for c ∈ N, “the c-dimensional torus” is TT c. (2)

In this environment we are going to investigate the distribution of values of polynomial
ZZ-sequences g(n) = α0 + α1n + . . . + αdn

d, n ∈ ZZ, with α0, α1, . . . , αd ∈ TT c, in the
c-dimensional torus TT c.

To trace the analogy between the classical setup and that of a finite characteristic,
let us start with the case d = 1. Let α = (γ1, . . . , γc) be an element of the conventional
c-dimensional torus Tc = (R/Z)c, and consider the “linear” sequence αn = (γ1n, . . . , γcn),
n ∈ Z, in Tc. The following facts were established in [We]:

Supported by NSF grants DMS-0901106, DMS-1162073, and DMS-1500575.
(1) For a comprehensive discussion of advances of the theory of uniform distribution since the

appearance of the groundbreaking paper [We] see [KuN] and [DrT].
(2) It seems that there is no stable notation for these objects in the literature. The ring

ZZ = F [t] is often denoted by GF [q, t], where q = |F |, and the field RR = F ((t−1)) by GF{q, t}.

We have preferred to use the suggestive notation ZZ, QQ, RR, and TT to stress the analogy with the

classical objects Z, Q, R, and T respectively.
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(i) The closure O = {αn}n∈Z
of the sequence αn is a closed subgroup of Tc, that is, a

union of finitely many translates of a subtorus of Tc. More precisely, O = S(α)+Kα,
where S(α) is a subtorus and K is a finite subset of Z.

(ii) The sequence αn is uniformly distributed in O.
(iii) O = S(α) = Tc iff the elements γ1, . . . , γd are Z-linearly independent.
As we will see, the statements (i), (ii), and (iii) can be transferred to the case of finite
characteristic almost literally. We have, however, to adapt the notions of a subtorus and of
the uniform distribution to our new setup. We will call an S-subtorus of TT c a linear image
{
∑b

i=1mixi, x1, . . . , xb ∈ TT
}

, with m1, . . . ,mb ∈ ZZc, in TT c of a torus TT b. (We use the
prefix “S-” to distinguish this kind of subgroups of TT c from the “Φ-subtori”, to be defined
below.) As for the notion of uniform distribution, we replace it by a stronger notion of
well-distribution: we say that a mapping g:G −→ X from an abelian (or, more generally,
an amenable) group G to a compact topological space X with a probability Borel measure
µ is well distributed in X if limN→∞

1
|ΦN |

∑

n∈ΦN
f(g(n)) =

∫

X
f dµ for any f ∈ C(X) and

any Følner sequence(3) (ΦN ) in G. When X is TT c or a coset of a closed subgroup of TT c,
we will assume that X is equipped with the normalized Haar measure. We will also meet
the situation where X is a finite union X =

⋃k
i=1Xi of distinct cosets of a closed subgroup

of TT c and the mapping g:G −→ X is such that, for some subgroup H of G of finite index,
for any coset m+H, m ∈ G, of H one has g(m+H) ⊂ Xi for some i and the ZZ-sequence
g(m + n), n ∈ H, is well distributed in Xi; in this case we say that g is well distributed
in the components of X. Note that even in the case X is itself a closed subgroup of TT c,
“g is well distributed in the components of X” does not imply that “g is well distributed
in X”, because the cardinality of the set of the cosets of H that map to a component Xi

of X may be different for distinct i (as for the sequence 1
3n

2 mod 1), and in this case g is
well distributed in X with respect to a measure µ that is a linear combination of the Haar
measures on the components Xi and is different from the Haar measure on X.

The following result is the finite characteristic analogue of the linear case of Weyl’s
theory (cf. (i), (ii), (iii) above).

Theorem 0.1. Let α = (γ1, . . . , γc) ∈ TT c. Then the ZZ-sequence αn, n ∈ ZZ, is well
distributed in a subgroup of the form S(α) +Kα, where S(α) is an S-subtorus of TT c and
K is a finite subset of ZZ, and one has O = S(α) = Tc iff the elements γ1, . . . , γc are
ZZ-linearly independent.

A special case of this result was obtained by Carlitz in [C]. In his paper Carlitz
introduced a notion of uniform distribution, which, in the contemporary terminology, is
the uniform distribution with respect to the Følner sequence ΦN = {n ∈ ZZ : deg n ≤ N},
N = 1, 2 . . ., in ZZ. It is shown in [C] that if γ1, . . . , γc ∈ TT are ZZ-linearly independent,
then the ZZ-sequence (γ1n, . . . , γcn), n ∈ ZZ, is uniformly distributed in TT c in Carlitz’s
sense.

Let g be a polynomial sequence in the conventional c-dimensional torus Tc, g(n) =

(3) A Følner sequence in a (discrete abelian) group G is a sequence (ΦN )∞N=1 of finite subsets

of G with |(n + ΦN )△ΦN |/|ΦN | −→
N→∞

0 for every n ∈ G. In ZZ, the “most natural” Følner

sequence is the sequence ΦN = {n ∈ ZZ : degn ≤ N} = {a0+a1t+ . . .+aN tN , ai ∈ F}, N ∈ N.
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α0 + α1n + . . . + αdn
d, n ∈ Z, where α0, . . . , αd ∈ Tc. Weyl’s theorem ([We]) says that

the closure O(g) = g(Z) of the range of this sequence is also a finite union of translates
of a subtorus S(g) of Tc, O(g) = S(g) + g(K) where K is a finite subset of Z, and that
g is uniformly (and, actually, well) distributed in the components S(g) + g(k), k ∈ K,
of O(g). Moreover, the monomials of g “generate their subtori independently”, in the
sense that the torus S(g) is the sum of the subtori generated by the distinct monomials

of g: S(g) =
∑d

i=1 S(αi). When d < p, a complete analogue of this theorem holds in
characteristic p:

Theorem 0.2. Let g(n) = α0 + α1n+ . . .+ αdn
d, n ∈ ZZ, with α0, α1, . . . , αd ∈ TT c, be a

polynomial ZZ-sequence in TT c of degree d < p. Then the closure O(g) = g(ZZ) of g(ZZ) has

the form S(g) + g(K), where S(g) is the S-subtorus
∑d

i=1 S(αi) of TT c and K is a finite
subset of ZZ, and g(n) is well distributed in the components S(g) + g(k), k ∈ K, of O(g).

In particular, g is well distributed in TT c iff TT c =
∑d

i=1 S(αi).

A special case of Theorem 0.2, which says that if at least one of the coefficients
α1, . . . , αd ∈ TT is irrational then the ZZ-sequence α0 + α1n + . . . + αdn

d is uniformly
distributed in TT in Carlitz’s sense, was established in [D2] (see also [D1] and [DM]). Our
goal in this paper is to extend Theorem 0.2 to the case deg g > p. In this situation
additive polynomials(4) of higher degrees come into the game, namely those of the form
g(n) =

∑l
j=1 αjn

pj

. The range g(ZZ) of an additive polynomial ZZ-sequence g is a subgroup

of TT c, and so is the closure O(g) = g(ZZ); however, unlike the conventional tori, the torus
TT c has a lot of closed subgroups which are not representable as a finite union of shifted
S-subtori. We show that O(g) is always a finite union of translates of what we call a
Φ-subtorus: a Φ-subtorus of TT c of level l and of dimension ≤ b is a subgroup of TT c of

the form
{
∑b

i=1

∑l
j=0mi,jx

pj

i , (x1, . . . , xb) ∈ TT b
}

, with mi,j ∈ ZZc. It is also easy to
see (see Section 7) that for any Φ-subtorus F of TT c there exists an additive polynomial
ZZ-sequence g in TT c such that O(g) = F . Though the definition of a Φ-subtorus looks
similar to that of an S-subtorus, Φ-subtori are much more diverse in their structure(5), as
the following examples show:

Examples. Let F = Z2. Let α = a1t
−1 + a2t

−2 + a3t
−3 + . . ., ai ∈ F , be an irrational

element of TT ; then α2 = a1t
−2 + a2t

−4 + a3t
−6 + . . . is also irrational.

1. For the ZZ-sequences g1(n) = αn and g1(n) = α2n in TT we have O(g1) = O(g2) = TT ,
whereas for the ZZ-sequence g3(n) = α2n2 = (αn)2 one has O(g3) =

{

x2, x ∈ TT
}

=
{

u1t
−2 + u2t

−4 + u3t
−6 + . . . , ui ∈ F

}

.

2. For the ZZ-sequence g4(n) = (αn, α2n2) in TT 2 we have O(g4) =
{

(x, x2), x ∈ TT
}

=
{(

u1t
−1 + u2t

−2 + u3t
−3 + . . . , u1t

−2 + u2t
−4 + u3t

−6 + . . .
)

, ui ∈ F
}

.

(4) A mapping g is additive if it satisfies the identity g(n +m) = g(n) + g(m) for all n,m,

that is, is a group homomorphism with respect to addition.
(5) It may be of interest to investigate the geometrical structure of Φ-tori; for some information

on this matter see [U].
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3. For the ZZ-sequence g5(n) = αn+ α2n2 in TT , O(g5) =
{

x+ x2, x ∈ TT
}

= TT , whereas

for g6(n) = αn + tα2n2, O(g6) =
{

u2t
−2 + u3t

−3 + u4t
−4 + . . . , ui ∈ F

}

, which is a
subgroup of index 2 in TT .

Let us say that a monomial nr is separable if r is not divisible by p; clearly, any
polynomial g(n) on ZZ can be written in the form g(n) = α0+

∑d
i=1 ηi(n

ri) where η1, . . . , ηd
are additive polynomials and nr1 , . . . , nrd are separable monomials. The main result of this
paper is the following general theorem:

Theorem 0.3. Any additive polynomial ZZ-sequence η(n) in TT c is well distributed in a
set of the form F(η)+η(K), where F(η) is a Φ-subtorus of level ≤ logp deg η of TT c and K
is a finite subset of ZZ. For any polynomial ZZ-sequence g(n) = α0+η1(n

r1)+ . . .+ηd(n
rd),

n ∈ ZZ, where α0 ∈ TT c, η1, . . . , ηd are additive polynomial ZZ-sequences and nr1 , . . . , nrd are
distinct separable monomials, the closure O(g) = g(ZZ) of g(ZZ) has the form F(g)+g(K),

where F(g) is the Φ-subtorus
∑d

i=1 F(ηi) and K is a finite subset of ZZ, and g(n) is
well distributed in the components F(g) + g(k), k ∈ K, of O(g). In particular, g is well

distributed in TT c iff TT c =
∑d

i=1 F(ηi).

If all the monomials of g are separable, we have a complete analogue of Theorem 0.2:

Corollary 0.4. Let g(n) =
∑d

i=1 αin
ri be a polynomial ZZ-sequence in TT c with all of ri

not divisible by p. Then the closure O(g) = g(ZZ) of g(ZZ) is of the form S(g) + g(K),

where S(g) is the S-subtorus
∑d

i=1 S(αi) of TT
c and K is a finite subset of ZZ, and g(n) is

well distributed in the components S(g) + g(k), k ∈ K, of O(g). In particular, g is well

distributed in TT c iff TT c =
∑d

i=1 S(αi).

In particular, for the case c = 1 we get the following:

Corollary 0.5. Let g(n) =
∑d

i=1 αin
ri be a polynomial ZZ-sequence in TT with all of ri

not divisible by p and at least one of αi be irrational. Then g is well distributed in TT .

In order to have some applications of the above equidistribution results, we use them,
in combination with the spectral theorem, to establish some ergodic theoretical and com-
binatorial facts related to unitary and measure preserving actions of the group ZZc and
analogous to classical theorems, namely the polynomial mean ergodic theorem, the polyno-
mial Khintchine theorem, and the Sárközy theorem. In particular, we prove the following
theorem:

Theorem 0.6. Let T be a measure preserving action of the group ZZc on a probability
measure space (X,B, µ), let A ∈ B, µ(A) > 0, and let q:ZZ −→ ZZc be a polynomial with
q(0) = 0. Then for any ε > 0 there exists a nonzero m ∈ ZZ such that for any Følner
sequence (ΦN )∞N=1 in ZZ, limN→∞

1
|ΦN |

∑

n∈ΦN
µ(A ∩ T (−q(mn))A) > µ(A)2 − ε.

Via Furstenberg’s correspondence principle, we get as a corollary the following ana-
logue of the classical Sárközy theorem ([S]):

Theorem 0.7. Let q:ZZ −→ ZZc be a polynomial with q(0) = 0 and let E ⊆ ZZc be a set
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of positive upper Banach density:

d∗(E) = sup
{

lim sup
N→∞

|E ∩ΨN |/|ΨN | : (ΨN )∞N=1 is a Følner sequence in ZZc
}

> 0.

Then for any ε > 0 there exists m ∈ ZZ such that, for any Følner sequence (ΦN )∞N=1 in
ZZ, lim infN→∞

1
|ΦN |

∑

n∈ΦN
d∗(E ∩ (E − q(mn))) > d∗(E)2 − ε.

The structure of the paper is as follows: Sections 1, 2, and 5 are preparatory. In
Sections 3, 4, 6, and 7 we prove some auxiliary special cases of Theorem 0.3. The very
Theorem 0.3 is proved in Section 8. In Section 9 we obtain some ergodic theoretical and
combinatorial corollaries of Theorem 0.3. Finally, in Section 10 we briefly discuss the
extension of our results to the case of ZZ-polynomials of several variables.

1. S- and Φ-subtori of TT c

Let F be a finite field of finite characteristic p. From now on, our ring of “integers” is
ZZ = F [t]; the field of “rationals” is QQ = F (t), the quotient field of ZZ; the field of “reals”
is RR = F [t][[t−1]], the completion of QQ; and the “unit circle”, or the “one-dimensional
torus”, is TT = RR/ZZ (Note that, unlike the classical situation, TT can be identified with
the subgroup t−1F [[t−1]] of RR, so that RR = ZZ ⊕ TT .)

ZZ is a Euclidean domain, and for any nonzero m ∈ ZZ, the ring ZZ/(mZZ) of residues
modulo m is finite.

For x ∈ RR, x = art
r + ar−1t

r−1 + . . ., with ar 6= 0, we define ‖x‖ = r. (Under this
definition, ‖0‖ = −∞.) For any x, y ∈ R we have ‖x + y‖ ≤ max{‖x‖, ‖y‖}, ‖xy‖ =
‖x‖ + ‖y‖, and ‖x−1‖ = −‖x‖. For a vector x = (x1, . . . , xc) ∈ RRc, we put ‖x‖ =
max{‖x1‖, . . . , ‖xc‖}.

The “one-dimensional torus” TT = RR/ZZ ≃ t−1F [[t−1]] is isomorphic, as an abelian
group, a topological space, and a measure space, to FN. We define a (translation invariant)
metric on TT by dist(x, y) = 2‖x−y‖, x, y ∈ TT . We will write elements of TT as (a1, a2, . . .),
aj ∈ F , rather than as a1t

−1 + a2t
−2 + . . ..

Let c ∈ N. We call a vector subspace ofRRc rational if it is spanned over RR by elements
ofQQc. We will call the projection to TT c of any rational vector subspace ofRRc an S-subtorus
(a standard subtorus) of TT c. For an S-subtorus S of TT c we define the dimension of S as
the dimension (over RR) of the corresponding subspace. Any b-dimensional S-subtorus of

TT c is the image in TT c of a torus TT b under a linear mapping φ(x1, . . . , xb) =
∑b

i=1mixi,

(x1, . . . , xb) ∈ TT b, where m1, . . . ,mb ∈ ZZc.
If q1, . . . , qc ∈ QQ, then the set V =

{

(q1x, . . . , qcx), x ∈ RR
}

is a one-dimensional

rational subspace of RRc. Under S =
{

(q1x, . . . , qcx), x ∈ TT
}

we will understand the
one-dimensional S-subtorus that is the image of V in TT c. (Notice that the elements qix,
x ∈ TT , are not uniquely defined).

The following lemma implies that any b-dimensional S-subtorus of TT c is isomorphic,
as an RR module, to the b-dimensional torus TT b.

Lemma 1.1. Let V be a rational subspace of RRc; there exists an RR-basis in V that spans
ZZc ∩ V.
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Proof. Let B ⊂ QQc∩V be a basis of V such that ZZB ⊇ ZZc∩V. For any basis D ⊂ ZZc∩V
of V, let AD be “the change-of-coordinates matrix” from B to D; the entries of this matrix
are from ZZ. Find a basis D = {u1, . . . , ub} for which ‖detAD‖ is minimal; we claim that
D spans ZZc ∩V. Indeed, assume that there exists a vector v ∈ ZZc ∩V such that v 6∈ ZZD.
Then v = k1

m u1 + . . . + kb

mub, m, k1, . . . , kb ∈ ZZ, where not all of ki are divisible by m.
Assume that k1 is not divisible by m, and let k1 = nm + k, n, k ∈ ZZ, ‖k‖ < ‖m‖. Let
w = v − nu1, then w = k

mu1 + . . .+ kb

mub. Take the basis D′ = {w, u2, . . . , ub} of V; then

‖detAD′‖ = ‖k‖
‖m‖‖detAD‖ < ‖detAD‖, contradiction.

The Frobenius endomorphism Φ(x) = xp is defined on RR, on ZZ, and on TT ; note that
for x = (a1, a2, . . .) ∈ TT we have Φ(x) =

(

0, . . . , 0, ap1, 0, . . . , 0, a
p
2, . . .

)

(where each block
“0, . . . , 0” consists of p−1 zeros). The image Φ(RR) is a subfield of RR, with [RR : Φ(RR)] = p,
so that RR is a p-dimensional vector space over Φ(RR). Under the identification of RR with
(Φ(RR))p, the one-dimensional torus TT converts to a p-dimensional torus.

We say that a mapping τ :RRb −→ RRc is a Φ-homomorphism (or a Φ-linear mapping) of

level l if it has the form τ(x1, . . . , xb) =
∑b

i=1

∑l
j=0 αi,jx

pj

i for some αi,j ∈ RRc; a mapping

τ : TT b −→ TT c is a Φ-homomorphism of level l if τ(x1, . . . , xb) =
∑b

i=1

∑l
j=0mi,jx

pj

i for

some mi,j ∈ ZZc. We define a Φ-subtorus of TT c as the image of a torus TT b under a Φ-

homomorphism τ : TT b −→ TT c: a b-dimensional Φ-subtorus of level l of TT c is a set of the
form

{

b
∑

i=1

l
∑

j=0

mi,jx
pj

i , (x1, . . . , xb) ∈ TT b
}

,

where mi,j ∈ ZZc, i = 1, . . . , b, j = 0, . . . , l. (In particular, S-subtori are just Φ-subtori of
level 0.)

Examples. For F = Z2, the sets F1 =
{

tx2, x ∈ TT
}

=
{

(a1, 0, a2, 0, . . .) ∈ TT , a1, a2, . . . ∈

F
}

, F2 =
{

x2, x ∈ TT
}

=
{

(0, a1, 0, a2, 0, . . .) ∈ TT , a1, a2, . . . ∈ F
}

, F3 =
{

(1 + t)x2, x ∈

TT
}

=
{

(a1, a1, a2, a2, . . .) ∈ TT , a1, a2, . . . ∈ F
}

, F4 =
{

x + tx2, x ∈ TT
}

=
{

(a1 +

a1, a2, a3 + a2, a4, . . .) ∈ TT , a1, a2, . . . ∈ F
}

are 1-dimensional Φ-subtori of level 1 of TT ;

F5 =
{

tx2 + t2x4, x ∈ TT
}

=
{

(a1, a1, a2, 0, a3, a2, a4, 0, a5, . . .) ∈ TT , a1, a2, . . . ∈ F
}

is a

Φ-subtorus of level 2 of TT . Note that F4 =
{

(0, u1, u2, . . .), ui ∈ TT
}

, which is a subgroup
of index 2 in TT .

Unlike S-subtori, Φ-subtori cannot, in general, be defined by a finite system of linear
equations(6); this fact complicates the proof of our results. We will bypass this problem
with the help of the following construction. The “1-dimensional torus” TT with the action
of F [tp] ≃ ZZ on it is isomorphic to “the p-dimensional torus” TT p with the action of
F [t] = ZZ on it: the isomorphism ψ1: TT −→ TT p (the splitting isomorphism) is given by

ψ1(a1, a2, . . .) =
(

(ap
−1

1 , ap
−1

p+1, . . .), (a
p−1

2 , ap
−1

p+2, . . .), . . . , (a
p−1

p , ap
−1

2p , . . .)
)

, (1.1)

(6) Indeed, Φ-subtori cannot, in general, be defined by finitely many RR-linear equations, since

such equations may only define S-subtori; and they cannot, in general, be defined by finitely many

F-linear equations, since they may have infinite index in TT c.
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then for any n ∈ ZZ and α ∈ TT we have ψ1(αn
p) = ψ1(α)n. The inverse of ψ1, the

merging isomorphism ϕ1 = ψ−1
1 : TT p −→ TT has the form ϕ1(x1, . . . , xp) =

∑p
i=1 t

p−ixpi ,
(x1, . . . , xp) ∈ TT p.

For a mapping τ and c ∈ N we will denote by τ×c the product of c copies of τ ,

τ c(x1, . . . , xc) =
(

τ(x1), . . . , τ(xc)
)

. For each l ≥ 2, we define ψl: TT −→ TT pl

by

ψl = ψ×pl−1

1 ◦ψl−1. (1.2)

For n ∈ ZZ and α ∈ TT we have ψl(αn
pl

) = ψl(α)n. Let ϕl = ψ−1
l ; then

ϕl(x1, . . . , xpl) =

pl

∑

i=1

trixp
l

i , (x1, . . . , xpl) ∈ TT pl

, (1.3)

for some constants r1, . . . , rpl ∈ {0, . . . , pl − 1}. We also put ϕ0 and ψ0 to be the identical
self-mapping of TT .

For l ≥ 0, let TTT (l) be the torus TT p0

⊕ TT p1

⊕ . . . ⊕ TT pl

= TT p0+p1+...+pl

, and let
σl: TTT

(l) −→ TT be the homomorphism defined by σl(x0, x1, . . . , xl) =
∑l

j=0 ϕj(xj), xj ∈

TT pj

, j = 0, . . . , l. By (1.3), we see that

σl(y1, . . . , yb) = y1 +

b
∑

i=2

triyp
li

i , (y1, . . . , yb) ∈ TT b, b = 1 + p+ . . .+ pl, (1.4)

for some integers 1 ≤ li ≤ d and 0 ≤ ri ≤ pd, i = 2, . . . , b. Thus, σl is a Φ-homomorphism;
it follows that if S is a b-dimensional S-subtorus of TTT (l)c = (TTT (l))c, c ∈ N, then the set
F = σ×c

l (S) ⊆ TT c is a b-dimensional Φ-subtorus of level l of TT c.
The converse is also true:

Proposition 1.2. For any Φ-subtorus F of TT c of level l there exists an S-subtorus S of
TTT (l)c such that σ×c

l (S) = F .

Proof. Since any Φ-subtorus is a sum of 1-dimensional Φ-subtori, we may assume that
F is 1-dimensional, and has the form F = {

∑l
j=0mjx

pj

, x ∈ TT
}

, mj ∈ ZZc. For each

j = 0, . . . , l let Mj = ψ×c
j (mj) ∈ TT pjc, where ϕj is the splitting isomorphism intro-

duced by (1.1) and (1.2); then for any x ∈ TT , ϕ×c
j (Mjx) = mjx

pj

. Hence, for any

x ∈ TT , σl(M0x,M1x, . . . ,Mlx) =
∑l

j=0mjx
pj

. Thus for the 1-dimensional S-subtorus

S =
{

(M0x,M1x, . . . ,Mlx), x ∈ TT } ⊂ TTT (l)c we have σl(S) = F .

It follows from the definition that the sum of two Φ-subtori of level l is a Φ-subtorus
of level l. We now have:

Lemma 1.3. Φ-subtori of bounded levels satisfy the increasing chain condition: if
F1,F2, . . . are subtori of level l of TT c such that F1 ⊆ F2 ⊆ . . ., then there exists r such
that Fi = Fr for all i ≥ r.
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Proof. For each i, let Si be a subtorus of TTT (l)c such that σ×c
l (Si) = Fi. Then, for each

i, Fi = σ×c
l (S ′

i) where S ′
i = S1 ∪ . . . ∪ Si. Since the sequence (S ′

i) stabilizes, so does the
sequence (Fi).

We cannot say much about the structure of Φ-subtori; the examples above show that
it may be quite complicated. The following proposition describes a situation where an
Φ-subtorus is “almost” the whole torus.

Proposition 1.4. Let S be an S-subtorus of TTT (l)c = TT p0c ⊕ TT p1c ⊕ . . . ⊕ TT plc whose
projection onto the first summand is surjective. Then the Φ-subtorus σ×c

l (S) is a subgroup
of finite index in TT c.

Proof. To simplify notation we will only prove this proposition in the case c = 1; the proof
of the general case is similar. Let b = 1 + p + . . . + pl; choose a 1-dimensional subtorus
S ′ of S of the form S ′ =

{

(z, q2z, . . . , qbz) ∈ TTT (l) = (TT )b, z ∈ TT
}

, with q2, . . . , qb ∈ QQ.

By (1.4), for x = (x1, . . . , xb) we have σl(x) = x1 +
∑b

i=2 t
rixp

li

i for some ri ≥ 0, li ≥ 1,
i = 2, . . . , b. So, for x = (z, q2z, . . . , qbz) ∈ S ′, z ∈ TT , we get

σl(x) = z +

b
∑

i=2

tri(qiz)
pli
.

If z ∈ t−rTT for some r ∈ N, say, z = t−ry for y ∈ TT , we get σl(x) = z +
∑b

i=2 t
ri−rpli

qp
li

i yp
li
. When r is large enough so that rpli > r + ri + ‖qi‖p

li , i = 2, . . . , b,
we obtain that σl(x) = zmod t−(r+1)TT . It follows that elements of σl(S

′) are dense in the
group t−rTT for some r, and so, σl(S

′) ⊇ t−rTT .

Example. Let F = Z2, and let S =
{

(x, (x, 0)), x ∈ TT
}

⊂ TT (1) = TT 3. Then the Φ-
subtorus F = σ1(S) consists of all elements of the form (a1, a2, a3, a4, . . .)+(a1, 0, a2, 0, . . .),
ai ∈ F , i ∈ N, which is the subgroup

{

(0, u2, u3, . . .), ui ∈ F
}

of index 2 in TT .

For any s ≤ l, the subtorus TT psc ⊕ . . . ⊕ TT plc of TTT (l)c = TT p0c ⊕ TT p1c ⊕ . . . ⊕

TT plc with the restriction of the homomorphism σ×c
l thereon can be seen as the torus

TTT ((l−s))ps−lc with the homomorphism σ×ps−lc
l−s to TT ps−lc followed by the isomorphism

ϕ×c
s−l to TT c. Applying Proposition 1.4 to this situation, we get

Corollary 1.5. Let S be an S-subtorus of TTT (l)c which projects trivially to the first s
summands of TTT (l)c and whose projection to the (s + 1)-st summand TT psc is surjective.
Then the Φ-subtorus σ×c

l (S) is a subgroup of finite index in TT c.

We will also need the following technical lemma:

Lemma 1.6. Let τ : TT b −→ TT be a Φ-homomorphism and let τ̃(z, x) = z + τ(x), z ∈ TT ,
x ∈ TT b. If S is a (one-dimensional) subtorus of TT b+1 of the form S =

{

(z, q1z, . . . , qbz) :

z ∈ TT
}

with q1, . . . , qb ∈ QQ such that ‖q1‖, . . . , ‖qb‖ are small enough, then τ(S) = TT .
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Proof. Let τ(x1, . . . , xb) =
∑b

i=1

∑l
j=0mi,jx

pj

i , mi,j ∈ ZZ, i = 1, . . . , b, j = 0, . . . , l. Then

for any r ∈ N and z ∈ t−rTT , z = t−ry, y ∈ TT , for x = (z, q1z, . . . , qbz) ∈ S we have

τ̃(z, x) = z +
∑b

i=1

∑l
j=0mi,jt

−rpj

qp
j

i y
pj

. If, for each i, ‖qi‖ < −maxj ‖mi,j‖, then for

all i and j,
∥

∥mi,jt
−rpj

qp
j

i y
pj∥

∥ = ‖mi,j‖ − rpj + ‖qi‖p
j < r, so τ̃(z, x) = zmod t−r−1TT .

Hence, τ̃(S) is dense in TT , and so, τ̃(S) = TT .

2. F-characters and S-characters on TT c and well distribution of ZZ-sequences

TT c is a vector space over F ; we will call continuous F -linear functionals on TT c F -
characters. Any F -character on TT is a finite F -linear combination of F -coordinates of the
argument, ρ(x) =

∑r
i=1 biai, x = (a1, a2, . . .), for some r ∈ N and b1, . . . , br ∈ F ; taking

m =
∑r−1

i=0 bi+1t
i ∈ ZZ, this can be written as ρ(x) = (mx)1 (where y1 denotes the first

entry of an element y = (y1, y2, . . .) ∈ TT ). Every F -character on TT c, c ∈ N, is therefore
uniquely representable in the form ρ(x) =

∑c
j=1(mjxj)1 = (m ·x)1, x = (x1, . . . , xc) ∈ TT c,

for some m = (m1, . . . ,mc) ∈ ZZc.

TT c is also a vector space over Zp = Z/pZ, which is identified with the prime subfield
of F ; we will call continuous Zp-linear functionals on TT c (which are just continuous ho-
momorphisms of the additive group of TT c to Zp) Zp-characters on TT c. Choose a basis of
F over Zp, and for a ∈ F let a1 stand for the first coordinate of a with respect to this
basis; then any Zp-linear functional on F has the form η(a) = (ba)1, a ∈ F , for some
b ∈ F . Any Zp-character θ on TT is of the form θ(x) =

∑r
i=1 ηi(ai), x = (a1, a2, . . .), for

some Zp-characters ηi on F . So, θ(x) =
∑r

i=1(biai)1 =
(
∑r

i=1 biai
)

1
, x = (a1, a2, . . .), for

some b1, . . . , br ∈ F , that is, θ(x) = (ρ(x))1, x ∈ TT , for some F -character ρ on TT , and so,
θ(x) = ((mx)1)1, x ∈ TT for some m ∈ ZZ. Every Zp-character on TT c, c ∈ N, is therefore
uniquely representable in the form θ(x) = ((m · x)1)1, x = (x1, . . . , xc) ∈ TT c, for some
m = (m1, . . . ,mc) ∈ ZZc.

Let m = (m1, . . . ,mc) ∈ ZZc; we will call the homomorphism χ: TT c −→ TT of the
form χ(x) = m · x =

∑c
j=1mjxj , x = (x1, . . . , xc) ∈ TT c, an S-character. If m1, . . . ,mc

are relatively prime (that is, their greatest common divisor is 1), we call the S-character
χ primitive. Any nonprimitive S-character has the form lχ′, where χ′ is a primitive S-
character and l ∈ ZZ. Notice that S-characters commute with the ZZ-action on TT c: for any
S-character χ and any n ∈ ZZ we have χ(nx) = nχ(x), x ∈ TT c. (An analogous fact does
not, of course, hold for the F - or Zp-characters on TT c.)

Any S-subtorus of TT c can be defined by a system of S-characters. In complete analogy
with the classical situation, if χ is a primitive S-character on TT c, then the kernel of χ is
an S-subtorus of TT c; if χ is non-primitive, say, χ = mχ′ where χ′ is primitive and m ∈ ZZ,
then kerχ = kerχ′ + L, where L is the finite group {x ∈ TT c : mx = 0}.

Let us remind some terminology introduced in the introduction. We call mappings
from ZZ to a set X, ZZ-sequences in X. If X is a compact topological space with a
probability Borel measure µ, we will say that a ZZ-sequence g in X is well distributed in
X if limN→∞

1
|ΦN |

∑

n∈ΦN
f(g(n)) =

∫

X
f dµ for any f ∈ C(X) and any Følner sequence

(ΦN ) in ZZ. When X is a coset of closed subgroup of TT c, we assume that µ is the Haar

measure on X. If X is a finite union X =
⋃k

i=1Xi of cosets of a closed subgroup of TT c and
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a mapping g:G −→ X is such that, for some subgroup H of G of finite index, for any coset
m +H, m ∈ G, of H one has g(m +H) ⊂ Xi for some i and the ZZ-sequence g(m + n),
n ∈ H, is well distributed in Xi, we say that g is well distributed in the components of X.

Since linear combinations of multiplicative characters on TT c (that is, continuous ho-
momorphisms TT c −→ C∗) are dense in the space C(TT c), a ZZ-sequence g is well distributed
in TT c iff limN→∞

1
|ΦN |

∑

n∈ΦN
ω(n) = 0 for every nontrivial multiplicative character ω on

TT c and any Følner sequence (ΦN ) in ZZ. Any multiplicative character ω on TT c has the
form ω(x) = e(2πi/p)θ(x) where θ is a Zp-character; thus, g is well distributed in TT c iff the
ZZ-sequence θ(g(n)) is well distributed in Zp for every nonzero Zp-character θ on TT c. We
also have:

Lemma 2.1. A ZZ-sequence g(n), n ∈ ZZ, is well distributed in TT c iff for every nonzero
F -character ρ on TT c, the ZZ-sequence ρ(g(n)), n ∈ ZZ, is well distributed in F , and iff for
every nonzero S-character χ on TT c, the ZZ-sequence χ(g(n)), n ∈ ZZ, is well distributed in
TT .

Proof. If g(n) is well distributed in TT c and ρ (respectively, χ) is a nonzero F - (respectively,
S-) character on TT c, then, since ρ (respectively, χ) is a continuous measure preserving
mapping, the ZZ-sequence ρ(g(n)) (respectively, χ(g(n))), n ∈ ZZ, is well distributed in F
(respectively, TT ).

On the other hand, if g(n) is not well distributed in TT c, then there is a nonzero
Zp-character θ, θ(x) =

∑c
j=1 e((mjxj)1), such that θ(g(n)) is not well distributed in F .

Then for the F -character ρ(x) =
∑c

j=1(mjxj)1 and the S-character χ(x) =
∑c

j=1mjxj ,
the ZZ-sequences ρ(g(n)) and χ(g(n)) are not well distributed in F and TT respectively.

3. Irrational elements and the ZZ-sequence αn in TT

We will call the elements of QQ/ZZ of the torus TT rational and the other elements of
TT irrational.

Theorem 3.1. An element α = (a1, a2, . . .) ∈ TT is rational iff the sequence a1, a2, . . . is
eventually periodic. If α ∈ TT is rational, then the set {αn, n ∈ ZZ} is finite. If α ∈ TT is
irrational, then the ZZ-sequence {αn, n ∈ ZZ} is well distributed in TT .

Proof. The proof is almost the same as in the “classical” situation. Let α ∈ QQ/ZZ, α = k
m ,

k,m ∈ ZZ, m 6= 0. For any n ∈ ZZ, αn = kn
m modZZ is the remainder after dividing the

polynomial kn by the polynomial m; since there are only finitely many remainders when
one divides by m, the set {αnmodZZ, n ∈ ZZ} is finite.

If α = k
m , the “digits” a1, a2, . . . of α are obtained by successive dividing the remain-

ders appearing when k is divided by m. Namely, let k1 be the remainder after the division
of k by m; then a1 is the integer part of k1t/m. Let k2 be the remainder after this division;
then a2 is the integer part of k2t/m. And so on; since there can be only finitely many such
remainders, the sequence (ai) is eventually periodic.
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Conversely, if there are s and j such that ai+j = ai for all i > s, then

α = a1t
−1 + . . .+ ast

−s + (as+1t
j−1 + as+2t

j−2 + . . .+ as+j)t
−j−s(1 + t−1 + t−2 + . . .)

= a1t
−1 + . . .+ ast

−s + (as+1t
j−1 + as+2t

j−2 + . . .+ as+j)t
−j−s(1− t)−1 ∈ QQ.

Now let α ∈ TT be irrational. Then the elements αn ∈ TT , n ∈ ZZ, are all distinct. Let
r ∈ N. Since TT is compact, there are n′, n′′ ∈ ZZ such that dist(αn′, αn′′) < 1

r , and so, for
m = n′ − n′′, dist(αm, 0) < 1

r . Let αm = ajt
−j + aj+1t

−j−1 + . . . with aj 6= 0; then j > r.
The elements mtiα, i = j − r, j − r + 1, . . . , j − 1, clearly span the group Cr = TT /(t−rTT )
over F , and so, the elements mnα are dense in Cr. Since the mapping n 7→ mnα is a
homomorphism, the ZZ-sequence mnα, n ∈ ZZ, is well distributed in Cr. The subgroup
mZZ has finite index in ZZ, thus the ZZ-sequence nα, n ∈ ZZ, is also well distributed in Cr.
Since this is true for any r, the ZZ-sequence nα, n ∈ ZZ, is well distributed in TT .

4. ZZ-sequence αn in TT c

Let us say that an element α = (α1, . . . , αc) of TT
c is rational if α1, . . . , αc ∈ QQ, and

is irrational if for every S-character χ on TT c, χ(α) is either irrational or zero. (In other
words, if no linear combination of αi with integer (that is, from ZZ) coefficients is a nonzero
rational element of TT .) (Notice that under this definition, there are elements of TT c that
are neither rational nor irrational. Also, 0 ∈ TT c is both rational and irrational; we do not
care about this.)

Lemma 4.1. For any α ∈ TT c there exists m ∈ ZZ such that mα is irrational.

Proof. Let α ∈ TT c. Since ZZ is a Euclidean ring, the group of S-characters χ on TT c for
which χ(α) ∈ QQ/ZZ is finitely generated. Let this group be generated by χ1, . . . , χr, and
let m ∈ ZZ be such that χi(mα) = mχi(α) = 0 for all i = 1, . . . , r; then mα is irrational.

Theorem 4.2. Let α ∈ TT c and let g(n) = αn, n ∈ ZZ. If α is irrational, then S = O(g)
is an S-subtorus of TT c and g is well distributed in S(g). If α is not irrational, then O(g) =
S+Kα where S is an S-subtorus and K is a finite subgroup of ZZ, and g is well distributed
in O(g); more exactly, there exists a nonzero m ∈ ZZ such that K = {kα : ‖k‖ < ‖m‖} and
for every k ∈ ZZ the ZZ-sequence g(mn + k), n ∈ ZZ, is well distributed in the translated
S-subtorus S + kα.

Proof. Let α be irrational, and let S be the minimal S-subtorus of TT that contains α. If
the ZZ-sequence (nα), n ∈ ZZ, is not well distributed in S, then there exists an S-character
χ on S such that the ZZ-sequence χ(g(n)) = χ(αn) = χ(α)n is not well distributed in TT ,
which means that χ(α) is rational, and so, χ(α) = 0. Hence, α is contained in the proper
subtorus S ′ = kerχ of S, which contradicts the choice of S.

If α is not irrational, find m ∈ ZZ such that mα is irrational and put S = O(g(mn))
and K =

{

k ∈ ZZ : ‖k‖ < ‖m‖
}

.

Let us denote the S-subtorus S = O((nα)) appearing in the assertion of Theorem 4.2
by S(α). Clearly, S(mα) = S(α) for all m ∈ ZZ, and if α is irrational, S(α) is the minimal
S-subtorus of TT c that contains α.
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5. Van der Corput Lemma

We will need a version of the van der Corput lemma:

Lemma 5.1. (Cf. [BMZ], Lemma 4.2) Let n 7→ an, n ∈ G, be a bounded mapping from
a discrete countable abelian group G to C. Then for any Følner sequence {ΦN}∞N=1 in G
and any finite set Ψ ⊆ G,

lim sup
N→∞

∣

∣

∣

∣

1

|ΦN |

∑

n∈ΦN

an

∣

∣

∣

∣

2

≤ lim sup
N→∞

1

|Ψ|2

∑

m,k∈Ψ

1

|ΦN |

∑

n∈ΦN

an+man+k ∈ R.

Proof. For any N ∈ N we have

1

|ΦN |

∑

n∈ΦN

an =
1

|Ψ|

∑

m∈Ψ

1

|ΦN |

∑

n∈ΦN

an =
( 1

|Ψ|

∑

m∈Ψ

1

|ΦN |

∑

n∈ΦN

an+m

)

−AN +BN ,

where AN = 1
|Ψ|

∑

m∈Ψ
1

|ΦN |

∑

n∈ΦN

n+m 6∈ΦN

an+m and BN = 1
|Ψ|

∑

m∈Ψ
1

|ΦN |

∑

n 6∈ΦN

n+m∈ΦN

an+m.

Since {ΦN}∞N=1 is a Følner sequence and {an}n∈G is a bounded set, |AN |, |BN | → 0
as N → ∞. Thus,

lim sup
N→∞

∣

∣

∣

∣

1

|ΦN |

∑

n∈ΦN

an

∣

∣

∣

∣

= lim sup
N→∞

∣

∣

∣

∣

1

|Ψ|

∑

m∈Ψ

1

|ΦN |

∑

n∈ΦN

an+m

∣

∣

∣

∣

.

And by the Cauchy-Schwartz inequality,

∣

∣

∣

∣

1

|Ψ|

∑

m∈Ψ

1

|ΦN |

∑

n∈ΦN

an+m

∣

∣

∣

∣

2

=
1

|Ψ|2

∣

∣

∣

∣

1

|ΦN |

∑

n∈ΦN

∑

m∈Ψ

an+m

∣

∣

∣

∣

2

≤
1

|Ψ|2
1

|ΦN |

∑

n∈ΦN

∣

∣

∣

∑

m∈Ψ

an+m

∣

∣

∣

2

=
1

|Ψ|2
1

|ΦN |

∑

n∈ΦN

∑

m,k∈Ψ

an+man+k.

Let G be a discrete countable abelian group. A set S ⊆ G is said to have zero uniform
density in G if limM→∞

1
|ΨM | |S ∩ ΨM | = 0 for any Følner sequence (ΨM ) in G. One can

easily show that if S ⊆ G has zero uniform density, then for any ε > 0 there exists a finite
set Ψ ⊆ G such that 1

|Ψ| |(S+ k)∩Ψ| < ε for all k ∈ G. Let us say that a statement P (m),

m ∈ G, is true for almost all m ∈ G if the set of m for which P (m) fails has zero uniform
density in G. We say that a mapping g:G −→ X from G to a probability Borel measure
space X is well distributed in X if limN→∞

1
|ΦN |

∑

n∈ΦN
f(n) =

∫

f for any f ∈ C(X) and

any Følner sequence (ΦN ) in G. As a corollary of Lemma 5.1, we get:

Proposition 5.2. Let g:G −→ H be a mapping from a discrete countable abelian group
G to a compact abelian Hausdorff group H, and let V be a subgroup of G. If the mapping
Dug:G −→ H, Dug(n) = g(n + u) − g(n), n ∈ G, is well distributed in H for almost all
m ∈ V , then g is also well distributed in H.

12



Proof. g is well distributed in H iff for any nontrivial multiplicative character ω on
H and any Følner sequence (ΦN ) in G, limN→∞

1
|ΦN |

∑

n∈ΦN
ω(g(n)) = 0. Let ω be

a multiplicative character on H and let (ΦN ) be a Følner sequence in G. For each
n ∈ G, let an = ω(g(n)). By assumption, we have limN→∞

1
|ΦN |

∑

n∈ΦN
an+man =

limN→∞
1

|ΦN |

∑

n∈ΦN
ω(Dmg(n)) = 0 for almost all m ∈ V ; let S be the set of m ∈ V for

which this is not true. Given any ε > 0, choose a set Ψ ⊆ V such that 1
|Ψ| |(S+ k)∩Ψ| < ε

for all k ∈ V . Then

1

|Ψ|

∑

m∈Ψ

lim
N→∞

1

|ΦN |

∑

n∈ΦN

an+man+k =
1

|Ψ|

∑

m∈Ψ

lim
N→∞

1

|ΦN |

∑

n∈ΦN

an+m−kan < ε

for all k ∈ V , and so

1

|Ψ|2

∑

m,k∈Ψ

lim
N→∞

1

|ΦN |

∑

n∈ΦN

an+man+k < ε.

By Lemma 5.1, this implies that lim supN→∞
1

|ΦN |

∑

n∈ΦN
ω(g(n)) < ε. Since this is true

for any ε > 0, limN→∞
1

|ΦN |

∑

n∈ΦN
ω(g(n)) = 0.

6. Small degree polynomial ZZ-sequences in TT c

Theorem 6.1. Let g(n) = α0+α1n+ . . .+αdn
d, α0, . . . , αd ∈ TT , αd 6= 0, be a polynomial

ZZ-sequence in TT with deg g = d < p. If at least one of the coefficients α1, . . . , αd is nonzero
irrational, then the ZZ-sequence g(n), n ∈ ZZ, is well distributed in TT .

Proof. We may assume that this is αd that is nonzero and irrational. Indeed, suppose
that αd, . . . , αr+1 are rational and αr is irrational for some r < d. Let m be a common
multiple of the denominators of αd, . . . , αr+1; then the polynomial αr+1n

r+1 + . . .+ αdn
d

is constant on each of the (finitely many) cosets k +mZZ, k ∈ ZZ, ‖k‖ < ‖m‖. Replacing
ZZ by one (and each) of these cosets, we reduce the situation to the case where the senior
coefficient of g is irrational.

We will now use induction on d. If d = 1, Theorem 3.1 says that g(n) is well distributed
in TT . If d ≥ 2, then for any nonzero u ∈ ZZ the ZZ-sequence Dug(n) = g(n + u) − g(n),
n ∈ ZZ, is polynomial of degree d− 1 with an irrational senior coefficient, so, by induction,
it is well distributed in TT . By Proposition 5.2, this implies that g is also well distributed
in TT .

Theorem 6.2. Let g(n) = α0 + α1n + . . . + αdn
d, α0, . . . , αd ∈ TT c, be a polynomial

ZZ-sequence in TT c with deg g = d < p; define the S-subtorus S(g) by S(g) =
∑d

i=1 S(αi).
If α1, . . . , αd are all irrational, then g is well distributed in α0 + S(g). If not all of αi are
irrational, then O(g) = S(g) + g(K), where K is a finite subgroup of ZZ, and g is well
distributed in the components S(g) + g(k), k ∈ K, of O(g); more exactly, there exists a
nonzero m ∈ ZZ such that for every k ∈ K =

{

k ∈ ZZ : ‖k‖ < ‖m‖
}

the ZZ-sequence
g(mn + k), n ∈ ZZ, has irrational coefficients, and is well distributed in the translated
S-subtorus S(g) + g(k).
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Proof. We may assume that α0 = 0. Assume that α1, . . . , αd are all irrational. For
any S-character χ on TT c that is nontrivial on S(g), the ZZ-sequence χ(gk(n)), n ∈ ZZ, is a
nonconstant polynomial ZZ-sequence in TT with all irrational coefficients and of degree < p.
By Theorem 6.1, χ(g(n)) is well distributed in TT , thus by Lemma 2.1, g is well distributed
in S(g).

Now assume that not all of αi are irrational. Find a nonzero m ∈ ZZ such that mαi,
i = 1, . . . , d, are all irrational. For each k ∈ ZZ with ‖k‖ < ‖m‖ consider the polynomial
ZZ-sequence gk(n) = g(mn+ k)− g(k). All the coefficients of gk are irrational, so it is well
distributed in the S-subtorus S(gk).

It remains to show that S(gk), for distinct k, are all equal. But this is so since the
span of the coefficients of gk is the same for all k, and S(gk) is the minimal S-subtorus of
TT c that contains this span.

Remark. The number m in the assertion of Theorem 6.2 is any nonzero element of ZZ
such that, in the proof of this theorem, the numbers mβi are all irrational. Thus, any
multiple of m also satisfies the assertion.

7. Additive ZZ-sequences in TT c

Additive polynomial ZZ-sequences, or just additive ZZ-sequences, in TT c are polynomial
mappings g:ZZ −→ TT c satisfying g(n +m) = g(n) + g(m), n,m ∈ ZZ; they all have the

form g(n) = α0n + α1n
p + . . . + αln

pl

, l ∈ N, α0, . . . , αl ∈ TT c, and we will call l the
Frobenius level of g.

We will now utilize the torus TTT (l) with the mappings ϕi, ψi, σi introduced in Section 1:

Proposition 7.1. Let g be an additive ZZ-sequence in TT c of Frobenius level ≤ l. Then
there exists an element β ∈ TTT (l)c such that g(n) = σ×c

l (βn), n ∈ ZZ.

Proof. Let g(n) = α0n+ α1n
p + . . .+ αln

pl

, α0, α1, . . . , αl ∈ TT c. Then

(

ψ×c
0 (α0n), ψ

×c
1 (α1n

p), . . . , ψ×c
l (αln

pl

)
)

= βn, n ∈ ZZ,

where β =
(

ψ×c
0 (α0), ψ

×c
1 (α1), . . . , ψ

×c
l (αl)

)

, and we have

σ×c
l (βn) =

l
∑

j=0

ϕ×c
j

(

ψ×c
j (αjn

pj

)
)

=

l
∑

j=0

αjn
pj

= g(n), n ∈ ZZ.

Let us say that elements α1 ∈ TT c1 , . . . , αd ∈ TT cd are jointly irrational if any linear
combination of coordinates of αi with integer coefficients is either irrational or zero; in other
words, if (α1, . . . , αd) is an irrational element of TT c1+...+cd . It follows from Lemma 4.1
that for any α1, . . . , αd ∈ TT c there exists a nonzero m ∈ ZZ such that mα1, . . . ,mαd are

jointly irrational. For an additive ZZ-sequence g(n) = α0n+ α1n
p + . . .+ αln

pl

in TT c, we
will say that g is irrational if the elements ψ×c

0 (α0), . . . , ψ
×c
l (αl) are jointly irrational. It

is clear from the proof of Proposition 7.1 that g is irrational iff the corresponding element
β ∈ TTT (l)c is irrational.
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Theorem 7.2. Let g be an additive ZZ-sequence of Frobenius level ≤ l in TT c, g(n) =

α0n + α1n
p + . . . + αln

pl

. If g is irrational, then F(g) = O(g) is a Φ-subtorus of TT c of
level ≤ l and g is well distributed in F(g). If g is not irrational then O(g) = F(g) + g(K)
where F is a Φ-subtorus of level ≤ l and K is a finite subgroup of ZZ, and g is well
distributed in O(g); more exactly, there exists a nonzero m ∈ ZZ such that for every
k ∈ K = {k ∈ ZZ : ‖k‖ < ‖m‖} the ZZ-sequence g(mn + k), n ∈ ZZ, is irrational and well
distributed in the translated Φ-subtorus F(g) + g(k).

Proof. Let β ∈ TTT (l)c be as in Proposition 7.1, and let G(n) = βn, n ∈ ZZ. Since O(G) is
compact, σ×c

l (O(G)) is closed, so O(g) = σ×c
l (O(G)). Since G is well distributed in O(G),

g is well distributed in O(g).

If g is an irrational additive ZZ-sequence, then β is an irrational element of TTT (l), thus
O(G) = S(β) is an S-subtorus of TTT (l), and we have O(g) = σ×c

l (O(G)) = σ×c
l (S(β)) =

F(g), which is a Φ-subtorus of Frobenius level ≤ l.

If g is not irrational, then there exists a nonzero m ∈ ZZ such that g′(n) = g(mn),
n ∈ ZZ, is irrational. Let F(g) = O(g′). Put K =

{

k ∈ ZZ : ‖k‖ < ‖m‖
}

; then O(g) =
F(g) + g(K).

It is clear from the proof of Theorem 7.2 that if g is an additive ZZ-sequence in TT c,
m ∈ ZZ, and g′(n) = g(mn), n ∈ ZZ, then F(g′) = F(g); if g is irrational, then F(g) is the
minimal Φ-subtorus of TT c that contains g.

Since for any S-subtorus S of TTT (l)c one can find an element β ∈ TTT (l)c such that
S = S(β), from Proposition 1.2 we also get the following fact:

Proposition 7.3. For any Φ-subtorus F of TT c there exists an additive ZZ-sequence g in
TT c such that F(g) = F .

Let us say that an element α ∈ TT c is spanning if S(α) = TT c, that is, if χ(α) 6= 0 for
every nonzero F -character χ on TT c. In the case the first coefficient α0 of g is spanning,
Proposition 1.4 and the construction used in the proof of Theorem 7.2 give us the following:

Theorem 7.4. Let α0, α1, . . . , αl ∈ TT c, let α0 be spanning, and let g(n) = α0n+ α1n
p +

. . .+ αln
pl

. Then O(g) is a subgroup of finite index in TT c.

More generally, applying Corollary 1.5 instead of Proposition 1.4, we get:

Theorem 7.5. Let α0, . . . , αl ∈ TT c, α0, . . . , αs−1 be rational, ψs(αs) be spanning the

torus TT psc, and let g(n) = αsn
ps

+ αs+1n
ps+1

+ . . . + αln
pl

. Then O(g) is a subgroup of
finite index in TT c.

8. General polynomial ZZ-sequences in TT c

For a polynomial g over RR, or a polynomial ZZ-sequence g in TT c, we define the d-
degree (the derivational degree), d-deg g, of g as the minimal nonnegative integer d such
that the dth formal derivative of g is constant. It is easy to see that the d-degree of a
polynomial is the maximum of the d-degree of its monomials, and that the d-degree of a
monomial xr is equal to the sum of the digits in the p-ary expansion of r. Note also that
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if deg g < p, then d-deg g = deg g; that additive polynomials are those of d-degree 1 (and
without constant term); and that if η is an additive polynomial, then d-deg(η◦g) = d-deg g
for any polynomial g.

We say that a monomial nr on ZZ is separable if r is not divisible by p. Any polynomial
ZZ-sequence g is uniquely representable in the form g(n) = α0 +

∑d
i=1 ηi(n

ri), where
nr1 , . . . , nrd are distinct separable monomials and η1, . . . , ηd are additive ZZ-sequences; the
d-degree of g is the maximum of the d-degrees of nri , i = 1, . . . , d.

We will now move to proving the main result of this paper:

Theorem 8.1. Let g be a polynomial ZZ-sequence in TT c, g(n) = α0+
∑d

i=1 ηi(n
ri), where

nr1 , . . . , nrd are distinct separable monomials and η1, . . . , ηd are additive ZZ-sequences; de-
fine the Φ-subtorus F(g) of TT c by F(g) =

∑d
i=1 F(ηi). If all η1, . . . , ηd are irrational, then

g is well distributed in α0+F(g). If not all of ηi are irrational, then O(g) = F(g)+ g(K),
where K is a finite subgroup of ZZ, and g is well distributed in the components F(g)+g(k),
k ∈ K, of O(g); more exactly, there exists a nonzero m ∈ ZZ such that for every
k ∈ K =

{

k ∈ ZZ : ‖k‖ < ‖m‖
}

the ZZ-sequence g(mn + k), n ∈ ZZ, is well distributed in
the translated Φ-subtorus F(g) + g(k).

We will say that a polynomial ZZ-sequence g in TT c is separable if g is a linear combi-
nation of separable monomials: g(n) =

∑d
i=1 αin

ri with r1, . . . , rd being distinct positive
integers not divisible by p. For such g we get the following corollary, generalizing Theo-
rem 6.2:

Corollary 8.2. Let g(n) =
∑d

i=1 αin
ri be a separable polynomial ZZ-sequence in TT c,

and let S(g) be the S-subtorus
∑d

i=1 S(αi). If α1, . . . , αd are all irrational, then g is well
distributed in S(g). Otherwise, g is well distributed in the components S(g)+g(k), k ∈ K,
of S(g) + g(K), where K =

{

k ∈ ZZ : ‖k‖ < ‖m‖
}

for some m ∈ ZZ.

In particular, in the case c = 1 we get

Corollary 8.3. Let g(n) =
∑d

i=1 αin
ri be a separable polynomial ZZ-sequence in TT with

at least one nonzero irrational coefficient. Then g is well distributed in TT .

Proof of Theorem 8.1. We will use induction on d-deg g; for d-deg g = 1, Theorem 7.2
and Theorem 4.2 give the result. Assume that d-deg g ≥ 2.

Let l be the maximum of the Frobenius level of ηi, i = 1, . . . , d. Using Proposition 7.1,
find elements β1, . . . , βd ∈ TTT (l)c such that ηi(n) = σ×c

l (βin), n ∈ ZZ, i = 1, . . . , d, and lift g

to a polynomial ZZ-sequence G(n) =
∑d

i=1 βin
ri , n ∈ ZZ, in TTT (l)c, so that σl(G(n)) = g(n),

n ∈ ZZ, and O(g) = σl(O(G)).

Assume that η1, . . . , ηd are all irrational; then all βi are irrational. We need to show
that G is well distributed in the S-subtorus S(G) =

∑d
i=1 S(βi) of TTT (l)c. For this to be

true, we need to show that for any S-character χ on TTT (l)c that is nontrivial on S(G) the
ZZ-sequence h(n) = χ(G(n)), n ∈ ZZ, is well distributed in TT . h is a separable polynomial
ZZ-sequence whose all nonzero coefficients are irrational. (Every coefficient of h is a linear
combination of coordinates of the corresponding βi.)

If deg h = 1, then h is well distributed in TT by Theorem 3.1; assume that d-degh ≥ 2.
For each nonzero u ∈ ZZ, let hu(n) = Duh(n)−Duh(0) = h(u+ n)− h(n)− h(u), n ∈ ZZ;
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this is a polynomial ZZ-sequence of d-degree d-degh−1 ≤ d-deg g−1, so, by our induction
hypothesis, the assertion of Theorem 8.1 applies to it. Let λu be the additive part of hu,
u ∈ ZZ; since, by induction hypothesis, F(hu) ⊇ F(λu), we get that if λu is well distributed
in TT then hu is also well distributed in TT .

The additive ZZ-sequences λu are of the form λu(n) = δusn+
∑b

i=0

(
∑

j δi,ju
si,j

)

np
i

,
n ∈ ZZ, u ∈ ZZ, where b ≥ 0, δ, δi,j ∈ TT , δ0 is irrational, and 1 ≤ si,j < s for all i, j. Define

ξu =
(

ψ0

(

δusn+
∑

j δ0,ju
s0,j

)

, ψ1

(
∑

j δ1,ju
s1,j

)

, . . . , ψb

(
∑

j δb,ju
sb,j

)

)

∈ TTT (b),

u ∈ ZZ, so that λu(n) = σb(ξun), n ∈ ZZ. Taking up
b

instead of u, we get

ξupb =
(

δup
bs +

∑

j δ0,ju
pbs0,j ,

∑

j ψ1(δ1,j)u
pb−1s1,j , . . . ,

∑

j ψb(δb,j)u
sb,j

)

.

Now put ζu =
(

δur, γ1u
r1 , . . . , γb′u

rb′
)

∈ TT b′+1, u ∈ ZZ, where each γj is a coordinate of

one of ψi(δi,j′), r = pbs, rj < r for all j, and define a mapping τ : TT b′+1 −→ TTT (b) that

acts by adding certain coordinates of elements of TT b′+1, so that τ(ζ
upb ) = ξ

upb , u ∈ ZZ.
Let Su = S(ζ

upb ), u ∈ ZZ. Find q1, . . . , qb′ ∈ QQ such that the 1-dimensional subtorus S ′
1 =

{

(x0, q1x0, . . . , qb′x0), x0 ∈ TT
}

is contained in S1. (That is, 1 and qj , j = 1, . . . , b′, satisfy
all linear equations over ZZ that are satisfied by δ and the corresponding γj .) Then for
any u ∈ ZZ, the 1-dimensional subtorus S ′

u =
{

(x0, u
r1−rq1x0, . . . , u

rb′−rqb′x0), x0 ∈ TT
}

is

contained in Su. The mapping τ◦σb has the form τ(σb(x0, x1, . . . , xb′)) = x0+
∑b′

j=2 t
rjxp

lj

j

for certain rj , lj , j = 1, . . . , b′. Thus, by Lemma 1.6, for all u with ‖u‖ large enough,
τ◦σb(S

′
u) = TT . So, τ◦σb(Su) = TT , and so, the ZZ-sequence λ

upb (n) = τ(σb(ζun)) is well
distributed in TT for all but finitely many u ∈ ZZ. Hence, h

upb is well distributed in TT for
all but finitely many u ∈ ZZ. Thus, by Proposition 5.2, h is well distributed in TT .

Now assume that not all of ηi and so, βi are irrational. Find a nonzero m ∈ ZZ
such that mβi i = 1, . . . , d, are all irrational. For each k ∈ ZZ with ‖k‖ < ‖m‖ let
Gk(n) = G(mn + k) − G(k), n ∈ ZZ; then g(mn + k), n ∈ ZZ, is well distributed in
σl(O(Gk)) + g(k), and we only need to show that O(Gk) = F(Gk) = S(G). All the

coefficients of Gk are contained in
∑d

i=1 S(mβi) = S(G), so O(Gk) ⊆ S(G). On the other
hand, let χ be a nonzero S-character on S(G), and, assuming that r1 > r2 > . . . > rd, let
1 ≤ i ≤ d be the minimal index such that χ(mβi) 6= 0. Then the ZZ-sequence χ(Gk) has
the form βim

rinri +H(n) where degH < ri, and thus is well distributed in TT . Hence, Gk

is well distributed in S(G).

Remark. The number m in the assertion of Theorem 8.1 is any nonzero element of ZZ
such that, in the proof of this theorem, the numbers mβi are all irrational. Thus, any
multiple of m also satisfies the assertion.

9. An application: ZZ-polynomial unitary actions and an analogue of

Sárközy’s theorem

Let U be a unitary action of ZZc on a Hilbert space H, and let q:ZZ −→ ZZc be a
polynomial; we call the ZZ-sequence U(q(n)), n ∈ ZZ, a polynomial unitary action of ZZ on
H. Combining the spectral theorem with the results obtained above, we get the following
mean ergodic theorem:
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Theorem 9.1. For any f ∈ H, the limit limN→∞
1

|ΦN |

∑

n∈ΦN
U(q(n))f exists for any

Følner sequence (ΦN )∞N=1 in ZZ. (It follows that the limit is the same for all Følner
sequences in ZZ.)

Proof. We may assume that f is cyclic for U , that is, U(ZZc)f = H. The dual group
of ZZc is TT c, with the pairing of w ∈ ZZc and x ∈ TT c defined by the formula 〈w, x〉 =
e(w · x), where e(α) = e(2πi/p)(α1)1 , α ∈ TT . (See Section 2.) By the spectral theorem,
we may replace H by the space L2(TT c, λ) for some finite measure λ on TT c, with U(w),
w ∈ ZZc, being represented by the operator of multiplication by the function e(w · x),
U(w)(h)(x) = e(w · x)h(x), x ∈ TT c, h ∈ L2(TT c, λ). By Theorem 8.1, for any x ∈ TT c,
limN→∞

1
|ΦN |

∑

n∈ΦN
e(q(n) · x) exists. Hence, by the dominated convergence theorem,

limN→∞
1

|ΦN |

∑

n∈ΦN
e(q(n) · x)f(x) exists in L2(TT c, λ).

The classical Sárközy theorem ([S]) says that for any polynomial q with zero constant
term, any set of positive upper Banach density(7) in Z contains two elements a, b with
b − a = q(n) for some nonzero n ∈ Z. An equivalent, via Furstenberg’s correspondence
principle(8), ergodic theoretical statement is that for any polynomial q with zero constant
term, any invertible finite measure preserving system (X,B, µ, T ) and any A ∈ B with
µ(A) > 0 there exists n ∈ N such that µ(A ∩ T−q(n)A) > 0; moreover, one can show
that the set of such n has positive lower Banach density in Z (see [F]). Combining again
Theorem 8.1 with the spectral theorem, we can obtain analogous results in our setup:

Theorem 9.2. Let T be a measure preserving action of the group ZZc on a prob-
ability measure space (X,B, µ), let A ∈ B, µ(A) > 0, and let q:ZZ −→ ZZc be a
polynomial with q(0) = 0. Then for any Følner sequence (ΦN )∞N=1 in ZZ, the limit
limN→∞

1
|ΦN |

∑

n∈ΦN
µ(A ∩ T (−q(n))A) exists, does not depend on (ΦN ), and is positive.

Remark. The positivity of lim supN→∞
1

|ΦN |

∑

n∈ΦN
µ(A ∩ T (−q(n))A) (but not the ex-

istence of the limit) was proved in [BLM].

Proof. Applying Theorem 9.1 to the Hilbert space H = L2(X), the unitary action induced

(7) For a subset E of a discrete countable commutative group G, the upper density of E with

respect to a Følner sequence (ΦN ) in G is d(ΦN )(E) = limsupN→∞
1

|ΦN |
|E ∩ΦN | and the lower

density of E with respect to (ΦN ) is d(ΦN )(E) = liminfN→∞
1

|ΦN |
|E ∩ ΦN |. The upper Banach

density d∗(E) of E in G is the supremum of d(ΦN )(E) over the set of all Følner sequences (ΦN )
in G, and the lower Banach density d∗(E) of E is the infimum of d(ΦN )(E) over the set of all

Følner sequences (ΦN ) in G.
(8) The Furstenberg correspondence principle says that for any discrete countable commutative

group G and a set E ⊆ G there exists an action T of G on a probability space (X,B, µ) and a set

A ∈ B such that µ(A) = d∗(E) and for any w1, . . . , wk ∈ G, µ(T (−w1)A ∩ . . . ∩ T (−wk)A) ≤

d∗((E − w1) ∩ . . . (E − wk)). (See, for instance, [B].)
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by T on H, and the vector f = 1A ∈ H, we obtain that the limit

lim
N→∞

1

|ΦN |

∑

n∈ΦN

µ(A ∩ T (−q(n))A) = lim
N→∞

1

|ΦN |

∑

n∈ΦN

〈f, T (q(n))f〉

=
〈

f, lim
N→∞

1

|ΦN |

∑

n∈ΦN

T (q(n))f
〉

exists and does not depend on the choice of (ΦN ). The positivity of this limit follows from
the following stronger result:

Theorem 9.3. Under the assumptions of Theorem 9.2, for any ε > 0 there exists a
nonzero m ∈ ZZ such that for any Følner sequence (ΦN )∞N=1 in ZZ, limN→∞

1
|ΦN |

∑

n∈ΦN

µ(A ∩ T (−q(mn))A) > µ(A)2 − ε.

Proof. As in the proof of Theorem 9.1, let λ be the measure on TT c for which (the closure
of T (ZZc)f in) H = L2(X) can be replaced by L2(TT c, λ) with T (w), w ∈ ZZc, being
represented by the operator of multiplication by the functions e(w · x) and, additionally,
f represented by the constant function 1. The function f̃ = limN→∞

1
|ΨN |

∑

w∈ΨN
T (w)f ,

where (ΨN ) is any Følner sequence in ZZc, is represented in L2(TT c, λ) by the function 1{0}.

Since the orthogonal projection of f̃ to the subspace of constants in L2(X) is the constant
µ(A), which has the norm µ(A), we have ‖f̃‖L2(X) ≥ µ(A), and so, λ({0}) ≥ µ(A)2.

We now have µ(T (−w)A∩A) =
∫

TT c e(w ·x) dλ(x), w ∈ ZZc, and so, µ(T (−w)A∩A) =
∫

TT c e(q(n) ·x) dλ(x), n ∈ ZZ. For any x ∈ TT c consider the polynomial ZZ-sequence q(n) ·x,
n ∈ ZZ. By Theorem 8.1 and the remark after the proof of this theorem, there exists a
nonzeromx ∈ ZZ such that for anym ∈ ZZ divisible bymx the ZZ-sequence q(mn)·x, n ∈ ZZ,
is well distributed in a Φ-subtorus Fx of TT . Hence, the ZZ-sequence e(q(mn) ·x), n ∈ ZZ, is
well distributed in the subgroup e(Fx) of the group P of the roots of 1 of degree p in C. This

implies that limN→∞
1

|ΦN |

∑

n∈ΦN
e(q(mn) ·x) = 1

|e(Fx)|

∑

z∈e(Fx)
z =

{

0, if e(Fx) = P
1, if e(Fx) = {1}.

Find m ∈ ZZ “divisible enough” so that for D =
{

x ∈ TT c : mx

∣

∣ m
}

∪ {0} one has
λ(TT c \D) < ε. For any x ∈ D we have limN→∞

1
|ΦN |

∑

n∈ΦN
e(q(mn) ·x) ≥ 0, and for any

x ∈ TT c \D,
∣

∣limN→∞
1

|ΦN |

∑

n∈ΦN
e(q(mn) · x)

∣

∣ ≤ 1, so

lim
N→∞

1

|ΦN |

∑

n∈ΦN

µ(A ∩ T (−q(mn))A) = lim
N→∞

1

|ΦN |

∑

n∈ΦN

∫

TT c

e(q(mn) · x) dλ(x)

=

∫

TT c

lim
N→∞

1

|ΦN |

∑

n∈ΦN

e(q(mn) · x) dλ(x)

=

∫

{0}

lim
N→∞

1

|ΦN |

∑

n∈ΦN

e(q(mn) · x) dλ(x)

+

∫

D\{0}

lim
N→∞

1

|ΦN |

∑

n∈ΦN

e(q(mn) · x) dλ(x)

+

∫

TT c\D

lim
N→∞

1

|ΦN |

∑

n∈ΦN

e(q(mn) · x) dλ(x)

≥ λ({0}) + 0− λ(TT c \D) > µ(A)2 − ε.
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As a corollary, we get the following fact:

Corollary 9.4. Under the assumptions of Theorem 9.2, for any ε > 0 the set E =
{

n ∈

ZZ : µ(A ∩ T (−q(n))A) > µ(A)2 − ε
}

is syndetic in ZZ.(9)

Proof. Let (Φ′
N )∞N=1 be any Følner sequence in ZZ. If S is not syndetic then for every N ∈

N there exists some kN ∈ ZZ such that (kN +Φ′
N )∩S = ∅. For each N let ΦN = kN +Φ′

N ,
then (ΦN )∞N=1 is also a Følner sequence in ZZ. For any m ∈ ZZ \ {0}, any N ∈ N, and any
n ∈ ΦN/m one now has µ(A∩ T (−q(mn))A) ≤ µ(A)2 − ε, which contradicts Theorem 9.3
(applied to the Følner sequence (ΦN/m)∞N=1).

Applying the Furstenberg correspondence principle, we get from Theorem 9.2, Theo-
rem 9.3, and Corollary 9.4 the following Sárközy’s theorem type results, where d∗ stands
for the upper Banach density in ZZc:

Theorem 9.5. Let q:ZZ −→ ZZc be a polynomial with q(0) = 0 and let E ⊆ ZZc, d∗(E) >
0. Then for any Følner sequence (ΦN )∞N=1 in ZZ, lim infN→∞

1
|ΦN |

∑

n∈ΦN
d∗(E ∩ (E −

q(n))) > 0. Moreover, for any ε > 0 there exists m ∈ ZZ such that, for any Følner sequence
(ΦN )∞N=1 in ZZ, lim infN→∞

1
|ΦN |

∑

n∈ΦN
d∗(E∩ (E−q(mn))) > d∗(E)2−ε; it also follows

that the set S =
{

n ∈ ZZ : d∗(E ∩ (E − q(n)) > d∗(E)2 − ε
}

is syndetic in ZZ.

Remark. It is easy to see that, in complete analogy with the classical situation (see [KM]),
the class of polynomials for which the results of this section hold is wider than just the set
of polynomials q with q(0) = 0, and consists of all intersective polynomials, that is, the
polynomials q with the property that for any subgroup Λ of finite index in ZZc there exists
m ∈ ZZ such that q(mn) ∈ Λ for all n ∈ ZZ.

10. Polynomial ZZ-sequences in several variables

The results obtained above can be extended to the case of “polynomial sequences” in
several variables, that is, the mappings g:ZZ l −→ TT c of the form

g(n1, . . . , nl) =
∑

0≤r1,...,rl≤ρ

αr1,...,rln
r1 . . . nrl .

Such a “ZZ l-polynomial sequence” g in TT c is uniquely representable in the form g(n) =

α0+
∑d

i=1 ηi(n
ri), where η1, . . . , ηd are additive ZZ-sequences and “the monomials” nr

(i)

=

n
r
(i)
1

1 . . . n
r
(i)

l

l are distinct and separable, which means that, for each i, not all of r
(i)
1 , . . . , r

(i)
1

are divisible by p. For such g one can obtain the following theorem:

(9) A subset S of a discrete commutative group G is said to be syndetic if there is a finite set

Φ ⊆ G such that S −Φ = G, or, equivalently, for every g ∈ G one has (g +Φ) ∩ S 6= ∅.
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Theorem 10.1. Let F(g) =
∑d

i=1 F(ηi). If all η1, . . . , ηd are irrational, then g is well
distributed in α0+F(g). If not all of ηi are irrational, then O(g) = F(g)+g(K), where K
is a finite subgroup of ZZ l, and g is well distributed in the components F(g)+ g(k), k ∈ K,
of O(g).
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