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Abstract

Given a group G with lower central series G = G1 ⊇ G2 ⊇ G3 ⊇ . . ., we
say that a sequence g:Z −→ G is polynomial if for any k there is d such that
the sequence obtained from g by applying the difference operator Dg(n) =
g(n)−1g(n+ 1) d times takes its values in Gk. We introduce the notion of
the degree of a polynomial sequence and prove that polynomial sequences of
degrees not exceeding a given one form a group. As an application we obtain
the following extension of the Hall-Petresco theorem:

Theorem. Let G = G1 ⊇ G2 ⊇ G3 ⊇ . . . be the lower central series of a
group G. Let x ∈ Gk, y ∈ Gl and let p, q be polynomials Z −→ Z of degrees
k and l respectively. Then there is a sequence z0 ∈ G, zi ∈ Gi for i ∈ N,

such that xp(n)yq(n) = z
(n0)
0 z

(n1)
1 . . . z

(nn)
n for all n ∈ N.

0. Introduction

The intention of this paper is to provide an answer to a question related to the following
Hall-Petresco theorem:

Theorem HP. (See, for example, [P].) Let G = G1 ⊇ G2 ⊇ G3 ⊇ . . . be the lower central
series of a group G and let x, y ∈ G. There exists a sequence zi ∈ Gi for i ∈ N, such that

xnyn = z
(n1)
1 z

(n2)
2 . . . z

(nn)
n

(0.1)

for all n ∈ N.

The question was: does the conclusion of Theorem HP remain true if one replaces (0.1) by

x(
n

k)y(
n

l) = z
(nl)
l z

( n

l+1)
l+1 . . . z

(nn)
n

under the assumption that x ∈ Gk, y ∈ Gl and k ≥ l?
We answer this question positively, using the technique of what we call polynomial

sequences. The element-wise product gh of two homomorphisms g, h:Z −→ G, that is
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of two “linear” sequences g(n) = xn and h(n) = yn in G, is not, generally speaking,
a homomorphism. However, gh is a homomorphism modulo the commutator subgroup
G2 = [G,G] of G: gh(n) = (xy)nr(n) with r(n) ∈ G2 for all n ∈ Z. It is seen from
Theorem HP that for any k ∈ N, the sequence gh(n) can be written as a polynomial

expression modulo Gk+1: gh(n) = z
(n1)
1 z

(n2)
2 . . . z

(nk)
k r(n) with r(n) ∈ Gk+1 for all n ∈ N,

where
(

n
l

)

= n(n−1)...(n−l+1)
l! is a polynomial of degree l with respect to n.

The sequence gh(n) = xnyn is an example of a polynomial sequence of degree ≤
(1, 2, 3, . . .) in G. One could define a general polynomial sequence as a mapping g:Z −→ G
such that for every k ∈ N there are z1, . . . , zt ∈ G and polynomials p1, . . . , pt:Z −→ Z for

which g(n)
(

z
p1(n)
1 . . . z

pt(n)
t

)−1

∈ Gk+1 for n ∈ Z. We have preferred a different approach,

based on the following property of ordinary polynomials: they vanish after finitely many
applications of the difference operator Dp(n) = p(n + 1) − p(n). We call a mapping
g:Z −→ G a polynomial sequence in G if for every k ∈ N the sequence obtained from g
by applying the operator Dg(n) = g(n)−1g(n + 1) finitely many times takes its values in
Gk+1. The degree of a polynomial sequence g is the sequence (d1, d2, d3, . . .) of integers
where dk = min{d : Dd+1g(n) ∈ Gk+1 for all n}.

We show that polynomial sequences form a group with respect to element-wise multi-
plication. This is not surprising and follows from the well known fact that multiplication
in a nilpotent group is polynomial (see subsection 2.9). What is more important, for every
sequence d̄ = (d1, d2, d3, . . .) with the property di+j ≥ di + dj for all i, j ∈ N, the polyno-
mial sequences whose degrees do not exceed d̄ also form a group. An example is given by
the group of polynomial sequences of degrees ≤ (1, 2, 3, . . .); we denote it by ℘

(1,2,3,...)G.
This group contains all homomorphisms Z −→ G, n 7→ xn, as well as all sequences of the
form xp(n) with x ∈ Gk and p being a polynomial of degree ≤ k for some k ∈ N. We

prove that the polynomial sequences z(
n

k) with z ∈ Gk form a sort of basis for ℘(1,2,3,...)G:
for any sequence g ∈ ℘

(1,2,3,...)G there are z0 ∈ G and zk ∈ Gk for k ∈ N, such that for

every k ∈ N one has g(n) = z
(n1)
1 . . . z

(nk)
k rk(n) with rk(n) ∈ Gk+1 for all n ∈ Z. It gives an

alternative proof of Theorem HP and answers the foregoing question.

After this paper was written, it was brought to our attention that similar questions
were treated in [L]. In (a part of) his work, M. Lazard used the Lie algebra associated

to a group G to study the group of sequences in G of the form x
p1(n)
1 . . . x

ps(n)
s , where

xj ∈ Gj and pj is a polynomial of degree ≤ j (the group ℘
(1,2,3,...)G in our notation). In

particular, a version of Proposition 3.1 is proved there. Though it seems clear enough that
the methods of [L] can be utilized to obtain the other results of our paper, we feel that our
approach has advantages of its own and may lead to new interesting developments. For
instance, instead of polynomial sequences Z −→ G, one can consider polynomial mappings
H −→ G, where H is a general abelian group; most of the results of this paper can be
extended to this case. (See also Remark 3.4.)

Acknowledgment. I thank H. Furstenberg for bringing this problem to my attention.
I am thankful to Vitaly Bergelson for his advise and permanent support. In fact, the
subject of this paper is closely related to our joint research on generalized polynomiality
(see [BL1]). I thank Ron Karidi for his comments on the preliminary version of this paper.
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I also thank the referee for many useful remarks and suggestions.

1. Groups of polynomial sequences

1.1. We define Z+ = {0, 1, 2, . . .}, Z∗ = {−∞, 0, 1, 2, . . .}. We will always assume that
−∞+ (−∞) = −∞, and that −∞ < t and −∞± t = −∞ for all t ∈ Z+.

We also define d −· t for d ∈ Z∗ and t ∈ Z+ by

d −· t =

{

d− t, if d ≥ t
−∞, if d < t.

Note that (d −· t1) −· t2 = d −· (t1 + t2).
Let d̄ = (dk)k∈N where dk ∈ Z∗ for k ∈ N, and let t ∈ Z+. We define d̄ −· t = (dk −·

t)k∈N.
Given d̄ = (dk)k∈N and c̄ = (ck)k∈N with dk, ck ∈ Z∗ for k ∈ N, we will write d̄ ≤ c̄ if

dk ≤ ck for all k ∈ N. Clearly, d̄ −· t1 ≤ d̄ −· t2 for t1 ≥ t2.

1.2. Let G be a group. For x, y ∈ G, the commutator of x and y is [x, y] = x−1y−1xy; the
identity xy = yx[x, y] will be frequently used in the sequel. For A,B ⊆ G, [A,B] is the

group generated by
{

[x, y]
∣

∣ x ∈ A, y ∈ B
}

.

Let G = G1 ⊇ G2 ⊇ G3 ⊇ . . . be the lower central series of G, that is G1 = G,
Gk+1 = [G,Gk] for k = 1, 2, . . .. It is known (and not hard to verify) that [Gi, Gj ] ⊆ Gi+j

for any i, j ∈ N.

1.3. Given a (two-sided) sequence g:Z −→ G, its derivative Dg is the sequence defined by
Dg(n) = g(n)−1g(n + 1). Every sequence g in G is uniquely defined by its derivative Dg
and one of its values, say g(0):

Lemma. Let g and h be two sequences in G with Dg = Dh and g(0) = h(0). Then
g(n) = h(n) for all n ∈ Z.

Proof. By induction on n.

1.4. The derivation D is a mapping from the set GZ of sequences in G into itself; let
D1 = D, Dl+1 = D◦Dl for l = 1, 2, . . ., and D−∞ = D0 = idGZ .

Let d̄ = (d1, d2, . . .) where dk ∈ Z∗ for k ∈ N. A sequence g ∈ GZ is said to be
polynomial of degree ≤ d̄ if for every k ∈ N, Ddk+1g takes its values in Gk+1: D

dk+1g(n) ∈
Gk+1 for all n ∈ Z. In particular, dk = −∞ implies g(n) ∈ Gk+1 for all n ∈ Z.

1.5. Let H be a subgroup of G, let H = H1 ⊇ H2 ⊇ H3 ⊇ . . . be its lower central series
and let g be a sequence in H. Since Hk ⊆ Gk for all k ∈ N, if g is polynomial in H then
it is also polynomial in G.

1.6. Examples.

1.6.1. Let x ∈ G, let p ∈ Z[n] be a polynomial of degree ≤ d. Then the sequence
g(n) = xp(n) is polynomial of degree ≤ (d, d, d, . . .): we have Dg(n) = xp(n+1)−p(n) and
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p(n + 1) − p(n) is a polynomial of degree ≤ d − 1, so Dd+1g ≡ 1G. We say that g is of
absolute degree ≤ d.

If, in addition, x ∈ Gk, then g is polynomial of degree ≤ (−∞, . . . ,−∞, d, d, . . .
1 k−1

).

1.6.2. Let G =
{

x, y, z
∣

∣ [x, y] = z, [x, z] = [y, z] = 1g

}

(G is isomorphic to the smallest

Heisenberg group, the group of 3 × 3 upper triangular matrices over Z with unit main
diagonal). Let g(n) = xnyn. Then

Dg(n) = y−nx−nxn+1yn+1 = y−nxyn+1 = y−nyn+1x[x, yn+1] = yxzn+1

D2g(n) = z−n(yx)−1yxzn+1 = z ∈ G2

D3g(n) = z−1z = 1G

Hence, g is a polynomial sequence of degree ≤ (1, 2, 2, . . .).

1.6.3. Let G be a nilpotent group of class ≤ l, that is let Gl+1 = {1G}. Then a sequence
g in G is polynomial if and only if Dd+1g(n) ∈ Gl+1 for some d ∈ Z+, that is D

d+1g ≡ 1G.
If this is the case, g is of degree ≤ (d, d, d, . . .) (that is of absolute degree ≤ d).

Note that when we deal with nilpotent (in particular, abelian) groups the degree of a
polynomial sequence is actually represented by a finite sequence: if G is of class ≤ l then
any polynomial sequence in G is of degree ≤ (d1, d2, . . .) with dl = dl+1 = dl+2 = . . .. In
such case we will say that the polynomial sequence is of degree ≤ (d1, . . . , dl).

1.6.4. Let g be a polynomial sequence of degree ≤ (0, . . . ,0, dk+1, . . .
1 k

). Then Dg(n) =

g(n)−1g(n + 1) ∈ Gk+1, so g(n)Gk+1 = g(n + 1)Gk+1 for n ∈ Z. This means that g is
constant on G/Gk+1: g(n)Gk+1 = g(0)Gk+1 for all n ∈ Z.

The following two elementary propositions will be used many times in the sequel; we omit
proofs.

1.7. Proposition. If g is a polynomial sequence of degree ≤ d̄, then Dg is a polynomial
sequence of degree ≤ d̄ −· 1. If Dg is a polynomial sequence of degree ≤ (ck), then g is a
polynomial sequence of degree ≤ (bk), where bk = ck + 1 if ck ≥ 0 and bk = 0 if ck = −∞.

1.8. Proposition. If g(n) is a polynomial sequence of degree ≤ d̄, then for any fixed
m ∈ Z the sequence g(n+m) is also polynomial of degree ≤ d̄.

1.9. A sequence d̄ = (dk)k∈N with dk ∈ Z∗ is said to be superadditive if it is nondecreasing
and satisfies di + dj ≤ di+j for all i, j ∈ N.

Examples. (1, 2, 3, . . . , ), (−∞,−∞, 0, 1, 2, . . .), (3, 6, 9, . . .) and (1, 2, 4, . . .) are superad-
ditive sequences, (2, 3, 4, . . .) is not.

1.10. The following lemma is obvious.

Lemma. If t ∈ Z+ and d̄ is a superadditive sequence, then d̄ −· t is also a superadditive
sequence.

Note also that for every sequence c̄ = (ck)k∈N with ck ∈ Z∗ there is a superadditive
sequence d̄ dominating c̄: c̄ ≤ d̄.
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1.11. Remark. Given d̄ = (dk)k∈N and c̄ = (ck)k∈N with dk, ck ∈ Z∗, define d̄ ∗ c̄ = (ak)k∈N
by a1 = −∞, ak = max{di + cj

∣

∣ i+ j = k} for k = 2, 3, . . .. The operation “∗” preserves
the set of superadditive sequences: if d̄ and c̄ are both superadditive then d̄ ∗ c̄ is. Moreover,
if d̄ is superadditive, we have (d̄ −· t1) ∗(d̄ −· t2) ≤ d̄ −· (t1 + t2) for any t1, t2 ∈ Z+. This
property of superadditive sequences will be implicitly used in the proof of Proposition 1.14
below.

1.12. The following theorem is the main result of this paper.

Theorem. Let d̄ be a superadditive sequence. Then polynomial sequences of degree ≤ d̄
form a group (with respect to element-wise multiplication).

1.13. Corollary. The set of polynomial sequences in G is a group.

1.14. Theorem 1.12 is a corollary of the following proposition:

Proposition. Let d̄ = (dk)k∈N be a superadditive sequence, let t, t1, t2 ∈ Z+.

(a) If g, h are polynomial sequences of degree ≤ d̄ −· t, then gh is a polynomial sequence of
degree ≤ d̄ −· t as well.

(b) If g is a polynomial sequence of degree ≤ d̄ −· t1 and h is a polynomial sequence of
degree ≤ d̄ −· t2, then [g, h] is a polynomial sequence of degree ≤ d̄ −· (t1 + t2).

(c) If g is a polynomial sequence of degree ≤ d̄ −· t, then so is g−1.

The proof of this proposition in the paper published in ETDS contains a mistake;
below is a corrected proof.

Proof. First of all, we may reduce the problem to the case where G is a nilpotent group.
Indeed, to prove that a sequence f in G (of the form gh, [g, h] or g−1) is polynomial of
degree ≤ d̄ −· t one has to show that for any k,

Ddk−· t+1f ⊂ Gk+1. (1.1)

(We will write f ⊂ H if f(n) ∈ H for all n.) Fix an l ∈ N; if we prove Proposition 1.14
for f modGl+1 in G/Gl+1 we will have (1.1) for all k ≤ l. Thus, we replace G by G/Gl+1

and assume from now on that Gl+1 = {1}.
We will first prove (a) and (b). We will use the following commutator identities that

hold for any sequences g, h in G:

D(gh)(n) = Dg(n)Dh(n)
[

Dg(n), h(n+ 1)
]

(1.2)

and

D[g, h](n) = [g(n), Dh(n)]
[

Dh(n), [h(n), g(n)]
]

·
[

[g(n), Dh(n)]
[

Dh(n), [h(n), g(n)]
]

, [g(n), h(n)]
]

·
[

[g(n), h(n+ 1)], Dg(n)
][

Dg(n), h(n+ 1)
]

.

(1.3)

We will be proving a statement more general than Proposition 1.14. Let us say that a
sequence f inG is a cp-sequence (commutator-polynomial sequence) if f can be constructed
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from polynomial sequences of degree ≤ d̄ −· t, t ∈ Z+, by multiplying them and taking
their commutators. More exactly, f is a cp-sequence if f is a polynomial sequence of degree
≤ d̄ −· t for some t ∈ Z+, or f = gh where g, h are cp-sequences, or f = [g, h] where g, h
are cp-sequences. We note that if f is a cp-sequence then f(n+ 1) is also a cp-sequence.

We define an integer parameter w on the set of cp-sequences in the following way: if
f is a polynomial sequence of degree ≤ d̄ −· t for some t ∈ Z+ then we write w(f) ≥ t; if
f = gh where g, h are cp-sequences with w(g), w(h) ≥ t, then w(f) ≥ t; if f = [g, h] where
g, h are cp-sequences with w(g) ≥ r and w(h) ≥ s, then w(f) ≥ r + s.

Lemma C1. If f is a cp-sequence with w(f) ≥ t then Df is a cp-sequence with w(Df) ≥
t+ 1.

Proof. We use induction on the construction of f . If f is a polynomial sequence of degree
≤ d̄ −· t, t ∈ Z+, the assertion of the lemma is trivial. If f = gh where g, h are cp-sequences
with w(g), w(h) ≥ t and for which the assertion of the lemma already holds, then Df is a
cp-sequence with w(Dq) ≥ t+1 by formula (1.2). If f = [g, h] where g, h are cp-sequences
with w(g) ≥ r and w(h) ≥ t− r and for which the assertion of the lemma holds, then Df
is a cp-sequence with w(Df) ≥ t+ 1 by formula (1.3).

Lemma C2. If f is a cp-sequence and w(f) ≥ dk + 1 for some k ∈ N then f ⊂ Gk+1.
In particular, if w(f) ≥ dl + 1 then f ≡ 1.

Proof. Again, we use induction on the construction of f . If f is a polynomial sequence of
degree ≤ d̄ −· (dk + 1) then f ⊂ Gk+1 by definition. If f = gh with w(g), w(h) ≥ dk + 1,
then by induction g, h ⊂ Gk+1, so f ⊂ Gk+1. If f = [g, h] with w(g) ≥ r and w(h) ≥ s
such that r + s = dk + 1, let m < k be such that dm + 1 ≤ r ≤ dm+1; then

s = dk + 1− r ≥ dm+1 + dk−m−1 + 1− r ≥ dk−m−1 + 1.

By induction g ⊂ Gm+1 and h ⊂ Gk−m, thus f ⊂ Gk+1.

Now, parts (a) and (b) of Proposition 1.14 are very special cases of the following
statement:

Lemma C3. If f is a cp-sequence with w(f) ≥ t then f is a polynomial sequence of
degree ≤ d̄ −· t.

Proof. We will use a descending induction on t; for t ≥ dl +1 the assertion trivially holds
by Lemma C2. By Lemma C1, if f is a cp-sequence with w(f) ≥ t then Df is a cp-
sequence with w(Df) ≥ t+ 1, thus by induction hypothesis Df is a polynomial sequence
of degree ≤ d̄ −· (t + 1). By Proposition 1.7, f is a polynomial sequence of degree ≤ b̄
where bk = dk − t if dk ≥ t. It remains to check that f ⊂ Gk+1 if dk < t, but this is again
given by Lemma C2.

To prove part (c) of Proposition 1.14 we use the following identity:

D(g−1)(n) = Dg(n)−1[g(n), Dg(n)−1]
[

g(n), [g(n), Dg(n)−1]
]

. . .
[

g(n), . . . , [g(n), Dg(n)−1] . . .
]

,
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where the last commutator has l brackets. By a descending induction on t, (Dg)−1 is
a polynomial sequence of degree ≤ d̄ −· t, thus by Lemma C3, D(g−1) is a polynomial
sequence of degree ≤ d̄ −· t, and by Proposition 1.7, g−1 is a polynomial sequence of degree
≤ b̄ where bk = dk − t if dk ≥ t. It remains to check that g−1 ⊂ Gk+1 if dk < t; but this is
obvious because g ⊂ Gk+1 in this case.

Remark. The proof of Proposition 1.14 is based on the fact the product xy is linear on
Gk/Gk+1, and the commutator [x, y] is a bilinear mapping (Gk/Gk+1) × (Gl/Gl+1) −→
Gk+l/Gk+l+1 for any k, l ∈ N.

1.15. For completeness, let us bring one more theorem of the same type; we will not use
it.

Theorem. Let d̄ = (dk)k∈N be a superadditive sequence, let g be a polynomial sequence of
degree ≤ d̄ and let p be a polynomial taking on integer values on the integers with deg p = c.
Then the sequence h(n) = g(n)p(n) for n ∈ Z is polynomial of degree ≤ (dk + kc)k∈N.

Proof. We will use induction on increasing c and on decreasing t ∈ Z+ to prove that if
g(n) is a polynomial sequence of degree ≤ d̄ −· t, then g(n)p(n) is a polynomial sequence
of degree ≤ (dk −· t+ kc)k∈N. If c = 0 the polynomial p is constant, and the statement is
a corollary of Theorem 1.12.

Let c ≥ 1. The base of induction on t is established by passing to factors G/Gk+1 for
k ∈ N, as in the proof of Proposition 1.14. Write

D
(

g(n)p(n)
)

= g(n)−p(n)g(n+ 1)p(n+1) = g(n)−p(n)g(n)p(n+1)g(n)−p(n+1)g(n+ 1)p(n+1)

= g(n)p(n+1)−p(n)(Dg(n))p(n+1).

p(n+1)−p(n) is a polynomial of degree c−1, so by the induction hypothesis the sequence
g(n)p(n+1)−p(n) is polynomial of degree ≤ (dk −· t + k(c − 1))k∈N ≤ (dk −· t + kc − 1)k∈N.
Dg(n) is a polynomial sequence of degree ≤ d̄ −· (t + 1), so by the induction hypothesis
(Dg(n))p(n+1) is a polynomial sequence of degree ≤ (dk −· (t + 1) + kc)k∈N ≤ (dk −·
t + kc − 1)k∈N. By Theorem 1.12 their product D(g(n)p(n)) is also polynomial of degree
≤ (dk −· t + kc − 1)k∈N, and by Proposition 1.7 the sequence g(n)p(n) is polynomial of
degree ≤ (dk −· t+ kc)k∈N.

1.16. Remark. Theorems 1.12 and 1.15 hold true if we substitute Z for an arbitrary
abelian group H and consider polynomial mappings H −→ G instead of polynomial se-
quences Z −→ G.

2. Representation by infinite series

2.1. We keep the notation of Section 1. We will denote the group of polynomial sequences
in G by ℘G. For a Z∗-valued superadditive sequence d̄, we will denote the group of
polynomial sequences of degree ≤ d̄ by ℘

d̄G. The goal of this section is to represent
polynomial sequences in the form of infinite products of elements of G raised to polynomial
exponents.
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2.2. Introduce on G the {Gk}k∈N-adic topology: in this topology the groups Gk for k ∈ N

form a basis of neighbourhoods of 1G. Now, a sequence (xi) in G converges to x ∈ G,
xi −→

i→∞
x or limi→∞ xi = x, if for any k ∈ N there is l such that x−1xi ∈ Gk for all i > l.

Given a sequence (xi)
∞
i=1 in G, we define

∏∞
i=1 xi = liml→∞

∏l
i=1 xi if the limit exists.

Note that
∏∞

i=1 xi may exist only if xi → 1G; the converse is not true generally
speaking. Besides, if the nilpotent residue

⋂∞
k=1 Gk is nontrivial, the product

∏∞
i=1 xi is

not uniquely defined (the introduced topology is not Hausdorff in this case). One could
avoid these troubles by passing to the completion of G, G∗ = lim

←−
G/Gk: for any sequence

(xi) in G∗ converging to 1G∗
, the product

∏∞
i=1 xi exists and is unique. We however prefer

to remain in G.

2.3. We define an integral polynomial as a polynomial with rational coefficients taking on

integer values on the integers. The binomial coefficients bk(n) =
(

n
k

)

= n(n−1)...(n−k+1)
k(k−1)...1 for

k ∈ Z+ form a natural basis for the module (over Z) of integral polynomials: bk(n) is (the
only) integral polynomial of degree k satisfying bk(0) = . . . = bk(k − 1) = 0, bk(k) = 1.
Every integral polynomial p(n) of degree ≤ d is uniquely determined by its values at any
d+ 1 distinct points; we have, consequently,

p(n) = c0b0(n) + c1b1(n) + . . .+ cdbd(n),

where c0 = p(0), ck = p(k)−
(

c0b0(k) + . . .+ ck−1bk−1(k)
)

for k = 1, . . . , d.

(2.1)

The difference operatorDp(n) = p(n+1)−p(n) maps the group of integral polynomials
onto itself: the “primitive” P of an integral polynomial p, defined by DP = p and say
P (0) = 0, is an integral polynomial as well. Indeed, bk = Dbk+1 for all k ∈ Z+ (to check
this note that Dbk+1(0) = 0 for n = 0, . . . , k − 1 and Dbk+1(k) = 1).

2.4. We will now show that polynomial sequences in G are exactly (infinite) products of
elements raised to integral polynomial exponents.

Theorem. Let d̄ = (dk)k∈N be a superadditive sequence, let a sequence g in G be given by
a (converging) product

g(n) =

∞
∏

i=1

x
pi(n)
i for n ∈ Z,

where, for i ∈ N, xi ∈ Gki
and pi is an integral polynomial of degree ≤ dki

. Then g ∈ ℘
d̄G.

Proof. We have to show that, for every k ∈ N, Ddk+1g(n) ∈ Gk+1 for all n ∈ Z. To
do it, we may pass to G/Gk+1, that is assume that Gk+1 = {1G}. Since xi −→

i→∞
1G, g

is then given by a finite product g(n) =
∏l

i=1 x
pi(n)
i for n ∈ Z, and by 1.6.1, x

pi(n)
i is a

polynomial sequence of degree ≤ (−∞, . . . ,−∞, dki
, dki

, . . .
1 ki−1

) ≤ d̄ for every i = 1, . . . , l. By

Theorem 1.12, g is polynomial of degree ≤ d̄.

2.5. The converse theorem holds as well.
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Theorem. Let d̄ = (dk)k∈N be a superadditive sequence, let g ∈ ℘
d̄G. Then there exist

a sequence (xi)
∞
i=1 with xi ∈ Gki

, and a sequence of integral polynomials (pi)
∞
i=1 with

deg pi ≤ dki
such that g(n) =

∏∞
i=1 x

pi(n)
i for all n ∈ Z. Moreover, if X is a subset of G

such that for every k ∈ N the elements of X lying in Gk generate Gk/Gk+1, then xi for
all i ∈ N can be chosen from X.

Proof. We have to find elements x1, x2, . . . ∈ X and integral polynomials p1, p2, . . . such
that for every k ∈ N there is l ∈ N such that xi ∈ Gk+1 for i > l, deg pi ≤ dk for i ≤ l and

(

l
∏

i=1

x
pi(n)
i

)−1

g(n) ∈ Gk+1 for all n ∈ Z. (2.2)

We will do it using induction on k.
Assume that we have found elements xi ∈ X∩Gki

and polynomials pi with deg pi ≤ dki

for i = 1, . . . , j such that

g′(n) =
(

j
∏

i=1

x
pi(n)
i

)−1

g(n) ∈ Gk for all n ∈ Z.

By Theorem 1.12, g′(n) is a polynomial sequence of degree ≤ d̄, thus Ddk+1g′(n) ∈ Gk+1

for all n ∈ Z. Assume now that we can find xj+1, . . . xl ∈ X ∩Gk and integral polynomials

pj+1, . . . , pl with deg pi ≤ dk for i = j+1, . . . , l, such that g′(n)·Gk+1 =
∏l

i=j+1 x
pi(n)
i ·Gk+1

for all n ∈ Z. Then we will have (2.2).

2.6. It follows that we may confine ourselves to the case of an abelian group, that is, it
suffices to prove the following proposition:

Proposition. Let H be an abelian group, let a set X ⊆ H generate H and let h be
a sequence in H satisfying Dd+1h(n) = 1H for some d ∈ Z, d ≥ −1. Then h can be
represented in the form

h(n) =

s
∏

i=1

y
qi(n)
i for n ∈ Z,

where y1, . . . , ys ∈ X and q1, . . . , qs are integral polynomials of degree ≤ d.

Indeed, applying this proposition to the abelian group H = Gk/Gk+1 and the sequence
h(n) = g′(n) ·Gk+1 in H we will find the required xj+1, . . . , xl and pj+1, . . . , pl.

Proof of Proposition. We will use induction on d. For d = −1 the statement is trivial;
assume that it holds for d − 1. Find y1, . . . , yt ∈ X and integral polynomials q′1, . . . , q

′
t

of degree ≤ d − 1 such that Dh(n) =
∏t

i=1 y
q′i(n)
1 for n ∈ Z. Let q1, . . . , qt be integral

polynomials with qi(n + 1) − qi(n) = q′i(n) for n ∈ Z (they exist, see 2.3). We may also
assume that qi(0) = 0 for i = 1, . . . , t. Represent h(0) = yt+1 . . . ys with yt+1, . . . , ys ∈ X.
Define

h′(n) =
t
∏

i=1

y
qi(n)
i

s
∏

i=t+1

yi for n ∈ Z. (2.3)

9
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Then h′(0) = h(0) and

Dh′(n) = h′(n)−1h′(n+ 1) =
(

t
∏

i=1

y
qi(n)
i

s
∏

i=t+1

yi

)−1 t
∏

i=1

y
qi(n+1)
i

s
∏

i=t+1

yi

=
t
∏

i=1

y
qi(n+1)−qi(n)
i =

t
∏

i=1

y
q′i(n)
i = Dh(n) for n ∈ Z.

By Lemma 1.3, h = h′ and so (2.3) is the desired representation of h.

2.7. In the proof of Theorem 2.5 the elements x1, x2, x3, . . ., participating in the product

g(n) =
∏∞

i=1 x
pi(n)
i , are picked from successive members of the lower central series of G:

say, x1, . . . , xt1 ∈ G1, xt1+1, . . . , xt2 ∈ G2, and so on. This is not however necessary, since
the proof works as well if one requires that xi for i ∈ N occur in this product in accordance
with any apriori chosen ordering.

Let us define such a product in the following way. Let S be a linearly ordered set,
let {xs}s∈S be a subset of G indexed by S. If S is finite, S = (s1, s2, . . . , st), we put
∏

s∈S xs = xs1xs2 . . . xst . If S is such that Sk = {s ∈ S
∣

∣ xs 6∈ Gk+1} is finite for all k ∈ N,
we define

∏

s∈S xs = limk→∞

∏

s∈Sk
xs if this limit exists.

Examples. If S = (1, 2, . . .), then
∏

s∈S xs =
∏∞

i=1 xi; both parts have sense only if

xi −→
i→∞

1G. If S = (. . . ,−2,−1), then
∏

s∈S xs =
∏i=−1
−∞ xi. If S = (1, 2, . . . ,−1,−2, . . .),

then
∏

s∈S xs =
∏∞

i=1 xi

∏∞
i=1 x−i (if these products are defined).

2.8. Now we can generalize Theorems 2.4 and 2.5.

Theorem. Let d̄ = (dk)k∈N be a superadditive sequence.

a) Let S be a linearly ordered subset of G, for every x ∈ S let kx ∈ N be such that x ∈ Gkx
,

let {px}x∈S be a family of integral polynomials with deg px ≤ dkx
for x ∈ S, and let a

sequence g(n) in G be given by g(n) =
∏

x∈S xpx(n) for n ∈ Z. Then g ∈ ℘
d̄G.

b) Let g ∈ ℘
d̄G, let X be a linearly ordered subset of G such that for every k ∈ N, X ∩Gk

generates Gk/Gk+1. Then there is S ⊆ X and a family {px}x∈S of integral polynomials
with deg px ≤ dkx

for x ∈ S (where again, kx ∈ N is such that x ∈ Gkx
) such that

g(n) =
∏

x∈S xpx(n) for all n ∈ Z.

Proof. a) Fix k ∈ N, let Sk = S \Gk. Sk must be finite (otherwise g(n) =
∏

x∈S xpx(n) has
no sense), thus in Gk/Gk+1 the sequence g(n) ·Gk+1 is represented by the finite product
∏

x∈Sk
xpx(n), which belongs to ℘

d̄(G/Gk+1) by Theorem 1.12. So, Ddk+1g(n) · Gk+1 =

1G/Gk+1
, that is Ddk+1g(n) ∈ Gk+1 for all n ∈ Z.

b) We use induction on k ∈ N to find a sequence of sets Rk ⊆ X ∩ Gk and families of
integral polynomials {px}x∈Rk

with deg px ≤ dk for x ∈ Rk, such that for Sk = R1∪. . .∪Rk

one has
(

∏

x∈Sk

xpx(n)
)−1

g(n) ∈ Gk+1 for n ∈ Z. (2.4)

10
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Then, for S =
⋃∞

k=1 Rk, we will have g(n) =
∏

x∈S xpx(n) for all n ∈ Z.
Assume that R1, . . . , Rk−1 and {px}x∈R1

, . . . , {px}x∈Rk−1
have been found: for Sk−1 =

R1∪. . .∪Rk−1 we have g
′(n) =

(

∏

x∈Sk−1
xpx(n)

)−1

g(n) ∈ Gk for n ∈ Z. By Theorem 1.12,

g′ ∈ ℘
d̄G, so Ddk+1g′(n) ∈ Gk+1, that is D

dk+1g′(n) ·Gk+1 = 1G/Gk+1
for all n ∈ Z. By

Proposition 2.6, applied to the sequence g′(n) ·Gk+1 in the abelian group Gk/Gk+1, there
are x1, . . . , xt ∈ X ∩Gk and integral polynomials px1

, . . . , pxt
of degree ≤ dk such that

g′(n) ·Gk+1 =
t
∏

i=1

x
pxi

(n)

i ·Gk+1 for n ∈ Z.

Put Rk = {x1, . . . , xt}, Sk = Sk−1 ∪ Rk. Since Gk/Gk+1 is in the center of G/Gk+1, we
have

∏

x∈Sk

xpx(n) ·Gk+1 =
∏

x∈Sk−1

xpx(n)
∏

x∈Rk

xpx(n) ·Gk+1 for n ∈ Z,

thus
(

∏

x∈Sk

xpx(n)
)−1

g(n) ·Gk+1 =
(

∏

x∈Rk

xpx(n)
)−1( ∏

x∈Sk−1

xpx(n)
)−1

g(n) ·Gk+1

=
(

∏

x∈Rk

xpx(n)
)−1

g′(n) ·Gk+1 = 1G/Gk+1
for n ∈ Z.

It gives (2.4).

2.9. As an application, let us derive from Theorem 2.8 the fact that ”the multiplication in a
nilpotent group is polynomial”. Namely, let G be a finitely generated torsion-free nilpotent
group of class ≤ l (that is, let Gl+1 = {1G}). All factors Gk/Gk+1 for k = 1, . . . , l are
then finitely generated free abelian groups (see, for example, [KM]). Let X = (x1, . . . , xt)
be a linearly ordered subset of G such that X ∩ (Gk \ Gk+1) is a basis for Gk/Gk+1

for all k = 1, . . . , l. Then every element y ∈ G can be uniquely written in the form
y =

∏t
i=1 x

ai

i , where ai ∈ Z for i = 1, . . . , t. Indeed, let it be so in G/Gl by induction:

y ·Gl =
∏

xi 6∈Gl
xai

i ·Gl. Represent y
′ =

(

∏

xi 6∈Gl
xai

i

)−1

y ∈ Gl as y
′ =

∏

xj∈Gl
x
aj

j . Then

y =
(

∏

xi 6∈Gl
xai

i

)(

∏

xj∈Gl
x
aj

j

)

, and since Gl is in the center of G, y =
∏t

i=1 x
ai

i .

Proposition. Under the assumption above

(a) There are polynomials P1, . . . , Pt of 2t variables such that for any y, z ∈ G, if y =
∏t

i=1 x
ai

i , z =
∏t

i=1 x
bi
i and yz =

∏t
i=1 x

ci
i , then ci = Pi(a1, . . . , at, b1, . . . , bt) for i =

1, . . . , t.

(b) There are polynomials Q1, . . . , Qt of t + 1 variables such that for any y ∈ G and any
b ∈ Z, if y =

∏t
i=1 x

ai

i and yb =
∏t

i=1 x
ci
i , then ci = Qi(a1, . . . , at, b) for i = 1, . . . , t.

Proof. (a) The product yz =
∏t

i=1 x
ai

i

∏t
i=1 x

bi
i is a polynomial sequence of degree ≤

(1, 2, . . . , l) with respect to any of variables a1, . . . , bt if the rest are fixed. By Theorem 2.8,
in the unique representation yz =

∏t
i=1 x

ci
i the exponents c1, . . . , ct are polynomials of

degree ≤ l with respect to any of these variables. It remains to use the following fact:

11
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Lemma. Let F (u1, . . . , us) be a function on Z
s such that F is a polynomial of degree ≤ l

of every of its variables if the rest are fixed. Then F is a polynomial.

(Note that the lemma does not hold if the degrees of the polynomials are not assumed to
be uniformly bounded.)

(b) Similarly, yb =
(

∏t
i=1 x

ai

i

)b

is a polynomial sequence of degree ≤ (1, 2, . . . , l) with

respect to any of the variables a1, . . . , at, b if the rest are fixed. So by Theorem 2.8, in the
(unique) representation yb =

∏t
i=1 x

ci
i the exponents c1, . . . , ct are polynomials of degree

≤ l with respect to any of these variables. By the above lemma c1, . . . , ct are polynomials.

3. The group of polynomial sequences of degree ≤ (1, 2, 3 . . .)

Let us turn now to a concrete group of polynomial sequences, the group ℘
(1,2,3,...)G. By

definition, ℘(1,2,3,...)G consists of sequences g in G satisfying Dk+1g(n) ∈ Gk+1 for all
n ∈ Z and k ∈ N.

3.1. Proposition. (See also [L]. Let S denote {0, 1, 2, . . .} with any linear ordering on it.

Every g ∈ ℘
(1,2,3,...)G can be uniquely written in the form g(n) =

∏

k∈S z
(nk)
k with z0 ∈ G

and zk ∈ Gk for k ∈ N.
If, in addition, g(0) = g(1) = . . . = g(l) = 1G, then z0 = z1 = . . . = zl = 1G.

3.2. We need the following simple fact:

Lemma. Let H be a group, let g be “a polynomial sequence in H of absolute degree ≤ d”,
that is let Dd+1h(n) ≡ 1H . Then h is completely defined by its values in 0, 1, . . . , d: if h′

is another sequence in H with Dd+1h(n) ≡ 1H and h′(n) = h(n) for n = 0, 1, . . . , d, then
h′(n) = h(n) for all n ∈ Z.

Proof. We use induction on d. For d = −1 the statement is trivial; let it be true for
d − 1, d ≥ 0. Then we can apply it to Dh′(n) and Dh(n): Dh′(n) = h′(n)−1h′(n + 1) =
h(n)−1h(n + 1) = Dh(n) for n = 0, 1, . . . , d − 1, hence Dh′ coincides with Dh. Since, in
addition, h′(0) = h(0), h′ and h coincide by Lemma 1.3.

Proof of Proposition 3.1. We define elements zk for k ∈ Z+ recurrently: z0 = g(0) and

zk is such that g(k) =
∏k

i=0 z
(ki)
i for k = 1, 2, . . . (since

(

k
k

)

= 1, zk is uniquely defined;
cf. (2.1)). We have only to check that

gk(n) =
(

∏

i∈S
0≤i≤k

z
(ni)
i

)−1

g(n) ∈ Gk+1 for n ∈ Z
(3.1)

for all k (“≤” is used in the usual sense). Then, in particular,

∏

i∈S
0≤i≤k

z
(k+1

i )
i ·Gk+1 = g(k + 1) ·Gk+1 =

∏

i∈S
0≤i≤k+1

z
(k+1

i )
i ·Gk+1,

12
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so zk+1 ∈ Gk+1, and g(n) = limk→∞

∏

i∈S
0≤i≤k

z
(ni)
i =

∏

i∈S z
(ni)
i for n ∈ Z. The second

statement of the proposition follows immediately.
We use induction on k. The statement is trivial for k = 0; fix k ∈ N and assume that

zi ∈ Gi for i ≤ k. Then gk ∈ ℘
(1,2,3,...)G by Theorem 1.12, thus Dk+1gk(n) ∈ Gk+1 for

n ∈ Z. But gk(0) = gk(1) = . . . = gk(k) = 1G by construction, so by Lemma 3.2, applied
to the sequence gk(n) · Gk+1, it is trivial in the group G/Gk+1: gk(n) · Gk+1 = 1G/Gk+1

for all n ∈ Z. This gives (3.1).

3.3. We are now in position to obtain the promised generalization of Hall-Petresco’s the-
orem.

Corollary. Let x1, . . . , xs be elements of G where xj ∈ Gkj
, and let p1, . . . , ps be integral

polynomials with deg pj ≤ kj for j = 1, . . . , s. Let S be the set of nonnegative integers with
a fixed linear ordering. Then there are z0 ∈ G and zk ∈ Gk for k = 1, 2, . . . such that

s
∏

j=1

x
pj(n)
j =

∏

k∈S
0≤k≤n

z
(nk)
k

for all n ∈ Z+. (If the ordering of S is standard, the last product is
∏n

k=0 z
(nk)
k .)

If, in addition, pj(0) = . . . = pj(l) = 0 for all j = 1, . . . , s, then

s
∏

j=1

x
pj(n)
j =

∏

k∈S
l+1≤k≤n

z
(nk)
k

for all n ∈ Z+.

Proof. Indeed, g(n) =
∏s

j=1 x
pj(n)
j ∈ ℘

(1,2,3,...)G, so g(n) =
∏

k∈S z
(nk)
k for all n ∈ Z for

suitable z0, z1, . . .. But for n ≥ 0 one has
(

n
k

)

6= 0 only for k = 0, . . . , n.
If pj(0) = . . . = pj(l) = 0 for j = 1, . . . , s, then g(0) = . . . = g(l) = 1G and thus

z0 = . . . = zl = 1G.

3.4. Remark. Considering polynomial mappings Z
r −→ G instead of polynomial se-

quences Z −→ G, we easily obtain a generalization of the Dark theorem (see, for example,
[P]):

Theorem. Let x1, . . . , xs be elements of G where xj ∈ Gkj
, and let p1, . . . , ps be polyno-

mials Z
r −→ Z with deg pj ≤ kj for j = 1, . . . , s. Fix a linear ordering on the set (Z+)

r.
Then for every (l1, . . . , lr) ∈ (Z+)

r there exists zl1,...,lr ∈ Gl1+...+lr such that

s
∏

j=1

x
pj(n1,...,nr)
j =

∏

I

z
(n1
l1
)...(nr

lr
)

l1,...,lr (3.2)

for all (n1, . . . , nr) ∈ Z
r
+, where I = {0 ≤ l1 ≤ n1} × . . .× {0 ≤ lr ≤ nr}, and the factors

in the product on the right hand side of (3.2) are multiplied in accordance with the ordering
induced on I from (Z+)

r.
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(In Dark’s theorem, [xn1 , yn2 ] =
∏

1≤l1≤n1

1≤l2≤n2

z
(n1
l1
)(n2

l2
)

l1,l2
, where the factors in the product are

ordered first according to n1 + n2 and then according to n1.)

Scetch of the proof for r = 2. Fix l1, l2 ∈ Z+, let l = l1 + l2. Since
(

l1
l1

)(

l2
l2

)

= 1, the
element zl1,l2 is uniquely defined by (3.2). It is only to check that zl1,l2 ∈ Gl. Assume
by induction that zk1,k2

∈ Gk1+k2
for all (k1, k2) ∈ (Z+)

2 with k1 + k2 < l. Then the
polynomial mapping g:Z2 −→ G defined by

g(n1, n2) =
(

s
∏

j=1

x
pj(n1,n2)
j

)−1 ∏

(k1,k2)∈(Z+)2

k1+k2<l

z
(n1
k1
)(n2

k2
)

k1,k2

is of degree ≤ (1, 2, 3, . . .). So, g(n1, n2) · Gl is a polynomial mapping Z
2 −→ G/Gl of

absolute degree ≤ l− 1, and thus it is determined by its values at the points (n1, n2) ∈ Z
2

with n1, n2 ≥ 0, n1 + n2 < l. Since
(

n1

k1

)(

n2

k2

)

= 0 if either k1 > n1 or k2 > n2, by
definition of zk1,k2

we have g(n1, n2) = 1G for all such (n1, n2). Hence, g(n1, n2) ∈ Gl for
all n1, n2 ∈ Z

2; it implies zl1,l2 ∈ Gl.
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