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Abstract

We introduce the notions of a rational point, a rational sub-nilmanifold and a rational
homomorphism of compact nilmanifolds and describe elementary properties thereof. We
also show that the closure of the orbit of a point of a nilmanifold X under a polynomial

action of the group Zd by translations is, up to a shift, a union of rational sub-nilmanifolds
of X.

0. Introduction

A nilmanifold is a compact homogeneous space of a nilpotent Lie group. Thanks
to recent developments of Host and Kra ([HK1], [HK2]) and Ziegler ([Z]), nilmanifolds
started to play a crucial role in the ergodic combinatorial number theory. Studying orbits
of points of a nilmanifold under the action of a polynomial sequence of translations becomes
an extremely important task. It is known that the closure of such an orbit is the union
of several subnilmanifolds (see [L1] and [L2]). This paper is devoted to the property of
rationality of these subnilmanifolds.

A point x of a standard torus X = Rk/Zk is rational if nx = 0 for some n ∈ N, or,
equivalently, if all coordinates of x are rational numbers. An (affine) subtorus Y of X is
rational if it contains at least one rational point of X; in this case rational points of X are
dense in Y , and in coordinates on X, Y is described by a system of linear equations with
rational coefficients. More general, an (affine) homomorphism ψ:Y −→ X of two tori is
rational if ψ(Y ) contains a rational point of X; in this case, in coordinates on X and Y ,
ψ is given by linear equations with rational coefficients. We transfer this simple theory
to the case where X is a nilmanifold. We do this in the first two sections of the paper;
the facts gathered there are quite elementary and we often skip their proofs. Finally, in
the third section we show that all components of the closure of the orbit of any rational
point of a nilmanifold X under a polynomial action of Zd by translations on X are rational
subnilmanifolds of X.
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1. Rational elements and subgroups of a nilpotent Lie group

1.1. Let G be a nilpotent Lie group with a discrete uniform (that is, cocompact) subgroup
Γ. We will denote by Go the identity component of G and assume that the group G/Go is
finitely generated.

1.2. We will say that an element a ∈ G is rational (with respect to Γ) if an ∈ Γ for some
n ∈ N. We will denote the set of rational elements of G by Q(G).

1.3. Lemma. Q(G) is a subgroup of G.

Proof. Let a, b ∈ Q(G) let H be the group generated by a and b, H = 〈a, b〉, and let
L = Γ ∩ H; we have to show that Hn =

{
cn, c ∈ H} ⊆ L for a certain n ∈ N. Let

H = H1 ⊃ H2 ⊃ . . . ⊃ Hr ⊃ Hr+1 = 1G be the lower central series of H. H/H2L is finite,
so there is m ∈ N such that Hm = {cm, c ∈ H} ⊆ H2L. Assume by induction on i that

Hmi

i ⊆ Hi+1L, then H
mi

i ⊆ Hi+1(L ∩Hi), and we have

Hmi+1

i+1 ⊆ [Hm, Hmi

i ]Hi+2 ⊆
[
H2L,Hi+1(L ∩Hi)

]
Hi+2 ⊆ Hi+2L.

Now assume by induction that Hmi(i+1)/2

⊆ Hi+1L for some i; then

Hm(i+1)(i+2)/2

= (Hmi(i+1)/2

)m
i+1

⊆ (Hi+1L)
mi+1

⊆ Hmi+1

i+1 Lm
i+1

Hi+2 ⊆ Hi+2L.

So, Hmr(r+1)/2

⊆ L.

1.4. Go is an exponential group (that is, the exponential mapping G −→ G from the Lie
algebra G of G is surjective), thus for any a ∈ Go there exists a one-parameter subgroup
{α(t)}t∈R with α(1) = a. We will write at for α(t), t ∈ R (ignoring the fact that, in the
case Go is not simply connected, the subgroup {α(t)}t∈R corresponding to a may not be
unique). Clearly,

Lemma. If a ∈ Q(Go) then at ∈ Q(Go) for all t ∈ Q.

1.5. Let Ḡ be the universal covering of Go, ρ: Ḡ −→ Go be the projection mapping and Γ̄ =
ρ−1(Γ). The connected simply-connected nilpotent Lie group Ḡ posesses a Malcev basis
compatible with Γ̄: a minimal finite set {ā1, . . . , āk1} ⊆ Γ̄ such that {ā1, . . . , āk1} generates

Γ̄, {āt11 , . . . , ā
tk1

l }t1,...,tk1
∈R generates G and for each i ∈ {1, . . . , k1} the group Āi generated

by {ātii , . . . , ā
tk1

k1
}ti,...,tk1

∈R is closed and normal in Ḡ. Any ā ∈ Ḡ is uniquely representable

in the form ā = āt11 . . . ā
tk1

k1
with t1, . . . , tk1 ∈ R. (See [M].) Let ai = ρ(āi), i = 1, . . . , k1.

Any a ∈ G is then representable in the form a = at11 . . . a
tk1

k1
with (t1, . . . , tk1) ∈ Rk. Such a

representation may not be unique, but distinct representations of any element of Go form
a discrete set in Rk1 . One has a ∈ Γ if and only if t1, . . . , tk1 ∈ Z.

If G is not connected, then the finitely generated group G/Go also has a basis, that is,
a subset {e1, . . . , ek2} ⊆ G such that, for every j, the group generated by ej , . . . , ek2 and
Go is normal in G. Every element of G/Go is then representable in the form en1

1 . . . e
nk2

k2
Go

with n1, . . . , nk2 ∈ Z. If G = GoΓ then e1, . . . , ek2 can be chosen from Γ; otherwise GoΓ
has finite index in G and so, there exists δ ∈ N such that bδ ∈ GoΓ for any b ∈ G.
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Lemma. For any b ∈ G there exists c ∈ Go such that (bc)δ ∈ Γ.

Proof. Let G = G1 ⊃ G2 ⊃ . . . ⊃ Gr ⊃ Gr+1 = {1G} be the lower central series of G, and
let Goi be the identity component of Gi, i = 1, . . . , r. Assume that bδ = cγ with c ∈ Goi
and γ ∈ Γ. Then (bc−1/δ)δ = c′γ with c′ ∈ Goi+1. By the descending induction on i we are
done.

Now let {e1, . . . , ek2} ⊆ G be a basis of G/Go; after replacing each ej by ejcj with
an appropriate cj ∈ Go we will have eδj ∈ Γ, j = 1, . . . , k2. Put k = k1 + k2, ek2+1 =
a1, . . . , ek = ak1 . We will call {e1, . . . , ek2 , ek2+1, . . . , ek} a basis in G. Every element a of
G is now representable in the form a = et11 . . . e

tk
k with t1, . . . , tk2 ∈ Z and tk2+1, . . . , tk ∈ R;

we will call t1, . . . , tk the coordinates of a. We get a continuous surjective coordinate
mapping τG:Z

k2 × Rk1 −→ G, τG(t1, . . . , tk) = et11 . . . e
tk
k , so that τG(Z

k2 × Zk1) ⊆ E. For
any a ∈ G the set τ−1

G (a) is discrete in Zk2 × Rk1 .

1.6. In coordinates, the multiplication in G is given by polynomial formulas: there are
polynomials ξi: (R

i−1)2 −→ R and ζi:R
i−1×R −→ R, i = 1, . . . , k, with rational coefficients

and vanishing on ({0} × Ri−1) ∪ (Ri−1 × {0}) and ({0} × R) ∪ (Ri−1 × {0}) respectively,
such that for a = τG(u1, . . . , uk) and b = τG(v1, . . . , vk) the i-th coordinate of ab is

ui + vi + ξi(u1, . . . , ui−1, v1, . . . , vi−1), (1.1)

and for a = τG(u1, . . . , uk) and t ∈ R if a ∈ Go and t ∈ Z otherwise, the i-th coordinate of
at is

tui + ζi(u1, . . . , ui−1, t). (1.2)

1.7. Let us say that a uniform subgroup Γ′ of G is rationally equivalent to Γ if Γ′ ∩ Γ
has finite index in Γ′. In this case Γ′ is discrete, G/(Γ′ ∩ Γ) is compact, and since Γ is
discrete, Γ′ ∩Γ has finite index in Γ as well. Clearly, if Γ′ is rationally equivalent to Γ, the
rationality of an element a ∈ G with respect to Γ is equivalent to the rationality of a with
respect to Γ′.

1.8. Lemma. a ∈ G is a rational element of G if and only if all coordinates of a are
rational numbers.

(The coordinates of a may not be uniquely defined; we claim that τ−1
G (Q(G)) = Zk2×Qk1 .)

Proof. The group E generated by {e1, . . . , ek} is uniform in G and rationally equivalent
to Γ. Let a = τG(u1, . . . , uk). If u1, . . . , uk ∈ Q, then since ζi in formula (1.2) have rational
coefficients and vanish on Ri−1 × {0}, for certain n one has nui + ζi(u1, . . . , ui−1, n) ∈ Z

for all i = 1, . . . , k. Hence, an ∈ τG(Z
k) ⊆ E, thus a is rational with respect to E, and so,

with respect to Γ.
Now assume that a is rational with respect to E whereas not all of ui are rational.

Let an ∈ E. Let i be the minimal index for which ui 6∈ Q, then the i-th coordinates
mnui+ζi(u1, . . . , ui−1,mn) of a

mn ∈ E are all different modulo 1 for distinct m ∈ Z. This
implies that there are infinitely many elements of τ−1

G (E) in the compact set {0}k2×[0, 1]k1 ,
which contradicts the discreteness of τ−1

G (E).
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1.9. Corollary. Q(G) is dense in G.

1.10. A closed subgroup H of G will be said to be rational if it has a basis consisting of
rational elements of G.

1.11. Lemma. A closed subgroup H of G is rational if and only if Γ ∩H is uniform in
H.

Proof. Let H be rational and let {b1, . . . , bl} ⊂ Q(G) be a basis in H. The group D
generated by b1, . . . , bl is uniform in H. For each i = 1, . . . , l let ni ∈ N be such that
bni
i ∈ Γ. Then the subgroup of Γ generated by bn1

1 , . . . , bnl

l has finite index in D and so, is
uniform in H.

Conversely, let Γ ∩H be uniform in H. Then H has a basis compatible with Γ ∩H,
and elements of this basis are rational elements of G.

1.12. Let H be a closed subgroup of G and let {b1, . . . , bl} be a basis in H with b1, . . . , bl2 6∈
Ho and bl2+1, . . . , bl ∈ Ho, so that any element b ∈ H is representable in the form

b = bt11 . . . btll2 (1.3)

with t1, . . . , tl2 ∈ Z and tl2+1, . . . , tl ∈ R. Let τH :Zl2 × Rl1 −→ H be the corresponding
coordinate mapping: τH(t1, . . . , tl) = b. For each of b1, . . . , bl choose a coordinate repre-
sentation in terms of coordinates of G; applying formulas (1.2) and (1.1) to the product
(1.3) we obtain a polynomial mapping PH :Zl2 ×Rl1 −→ Zk2 ×Rk1 for which the diagram

Zl2 × Rl1
PH−→ Zk2 × Rk1

τH ↓ ↓ τG
H →֒ G

is commutative.

1.13. Since the polynomials ξi, ζi occuring in (1.1) and (1.2) are rational, we have

Lemma. H is a rational subgroup if and only if the polynomial mapping PH is rational
(that is, has rational coefficients).

1.14. Corollary. A closed subgroup H of G is rational if and only if rational elements
of G are dense in H.

1.15. Corollary. If H is a rational closed subgroup of G then for any b ∈ Q(G) the
subgroup b−1Hb is also rational.

1.16. LetK be a (left or right) coset of a closed subgroupH of G. The natural isomorphism
H −→ K induces a coordinate mapping τK :Zl2 × Rl1 −→ K. Since the (left or right)
translation in G in coordinates is given by polynomial formulas, the mapping PH induces
a polynomial mapping PK :Zl2 × Rl1 −→ Zk2 × Rk1 such that the diagram

Zl2 × Rl1
PK−→ Zk2 × Rk1

τK ↓ ↓ τG
K →֒ G

is commutative.
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1.17. We will say that a coset K of a closed subgroup H of G is rational if H is a rational
subgroup and K contains a rational element of G. From Lemma 1.13 we obtain

Lemma. K is rational if and only if the polynomial mapping PK is rational.

1.18. Corollary. A coset K of a closed subgroup H of G is rational if and only if rational
elements of G are dense in K.

1.19. Corollary. A coset K of a closed subgroup H of G is rational if and only if all
connected components of K are rational cosets of Ho.

1.20. Let F be a nilpotent Lie group with a discrete uniform subgroup Λ. A homomorphism
ϕ:F −→ G will be said to be rational if ϕ(Λ) ⊆ Q(G). In this case, ϕ(Q(F )) ⊆ Q(G). A
rational homomorphism maps rational subgroups and cosets in F onto rational subgroups
and cosets in G. It follows from the formulas (1.1) and (1.2) that in coordinates a rational
homomorphism is given by a rational polynomial mapping.

2. Rational points, sub-nilmanifolds and homomorphisms of nilmanifolds

2.1. Let X be the compact nilmanifold G/Γ and let π:G −→ X be the factorization
mapping. The group G acts on X by left translations: x 7→ ax, a ∈ G, x ∈ X.

2.2. We will say that x ∈ X is rational if x ∈ π(Q(G)). In this case, π−1(x) ⊆ Q(G). We
will denote the set of rational points of X by Q(X).

2.3. It follows from Corollary 1.9 that

Lemma. Q(X) is dense in X.

2.4. We will now introduce coordinates on X. Let {e1, . . . , ek} be a basis in G compatible
with Γ and let τG:Z

k2 × Rk1 −→ G be the corresponding coordinate mapping. Let S be
a finite set in Zk2 such that τG|S is a bijection between S and a set of representatives of

G/(GoΓ); then τG
(
S×{0}

)
·GoΓ = G. Define τX :S×[0, 1)k1 −→ X by τX = π◦τG|S×[0,1)k1

.

We will call τX the coordinate mapping for X. If x ∈ X and x = τX(t1, . . . , tk), we
will call t1, . . . , tk the coordinates of x.

2.5. Lemma. τX is bijective.

Proof. Let x ∈ X, x = π(a) = aΓ. By the definition of S, there exists a unique γ0 ∈ Γ

such that aγ0 ∈ τG
(
S × {0}

)
· Go. Then aγ0 = et11 . . . e

tk2

k2
e
tk2+1

k2+1 e
tk
k with (t1, . . . , tk2) ∈

S and tk2+1, . . . , tk ∈ R. If, for k2 < i ≤ k, γi−1 ∈ Γ has already been found so

that aγi−1 = et11 . . . e
tk2

k2
e
vk2+1

k2+1 . . . e
vi−1

i−1 e
ui
i e

ui+1

i+1 . . . euk

k with v1, . . . , vi−1 ∈ [0, 1), put γi =

γi−1e
−[ui]
i (where [u] denotes the integer part of u ∈ R). Then by (1.1), aγi−1 = et11 . . . e

tk2

k2

e
vk2+1

k2+1 . . . e
vi−1

i−1 e
vi
i e

u′

i+1

i+1 . . . e
u′

k

k where vi = ui − [ui] ∈ [0, 1). By induction, for γ = γk ∈ Γ

we will have aγ = et11 . . . e
tk2

k2
e
vk2+1

k2+1 . . . e
vk
k with vk2+1, . . . , vk ∈ [0, 1). Thus, aγ ∈ τG

(
S ×

[0, 1)k1
)
and x = π(aγ) ∈ Range τX , so τX is surjective. Since γ0, γ1, . . . , γk ∈ Γ were
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defined uniquely, τX is one-to-one.

Though the mapping τX is continuous, its inverse is discontinuous at the points of
τX

(
(S × [0, 1)k1) \ (S × (0, 1)k1)

)
.

2.6. It follows from Lemma 1.8 that

Lemma. A point x of X is rational if and only if all coordinates of x are rational
numbers.

2.7. Proposition. A closed subgroup H of G is rational if and only if π(H) is closed in
X.

Proof. By Lemma 1.11, H is rational if and only if Γ ∩ H is uniform in H. We have a
continuous mapping χ:H/(Γ ∩ H) −→ π(H) = (HΓ)/Γ. If Γ ∩ H is uniform in H then
H/(Γ ∩H) is compact, χ is a homeomorphism and π(H) is closed. On the other hand, H
is locally compact and separable, so when π(H) is locally compact χ is a homeomorphism
([MZ] Theorem 2.13). Thus, if π(H) is closed then χ is a homeomorphism, so H/(Γ ∩H)
is compact and Γ ∩H is uniform in H.

2.8. A sub-nilmanifold Y of X is a closed subset of X of the form Y = π(bH) where H
is a closed subgroup of G and b ∈ G. We see from Proposition 2.7 that for Y be closed
H must be a rational subgroup of G. We will say that Y is a rational sub-nilmanifold if
b ∈ Q(G); in other words, Y is a rational sub-nilmanifold of X if Y = π(K) where K = bH
is a rational left coset in G.

2.9. LetH be a closed subgroup ofG and b ∈ G; define Y = π(Hb). Then Y = π(b(b−1Hb))
and so, Y is a sub-nilmanifold of X if and only if the group b−1Hb is rational. If b ∈ Q(G),
by Corollary 1.15 the subgroups H and b−1Hb are rational simultaneously, so Y is a
rational sub-nilmanifold if and only if H is a rational subgroup. Hence, Y is a rational
sub-nilmanifold of X if and only if Y = π(L) where L = Hb is a rational right coset in G.

2.10. Proposition. A sub-nilmanifold Y of X is rational if and only if Y contains a
rational point of X, and if and only if rational points of X are dense in Y .

Proof. If Y contains a point π(b) with b ∈ Q(G) then Y = π(bH) where H is a rational
closed subgroup of G. By Corollary 1.18, rational elements of G are dense in bH and so,
rational points are dense in Y .

2.11. We also get

Proposition. A sub-nilmanifold Y of X is rational if and only if all connected compo-
nents of Y are rational sub-nilmanifolds of X.

2.12. Let X be the nilmanifold G/Γ and Y be a nilmanifold F/Λ. A mapping ψ:Y −→ X
will be called a homomorphism if there exists a Lie group homomorphism ϕ:F −→ G such
that ψ(cy) = ϕ(c)ψ(y) for all y ∈ Y and c ∈ F .

Let ψ:Y −→ X be a homomorphism and ϕ:F −→ G be the corresponding Lie group
homomorphism. Let πX :G −→ X and πY :F −→ Y be the factorization mappings; put
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0X = πX(1G) and 0Y = πY (1F ). Assume that ψ(0Y ) = 0Y . Then for any d ∈ Λ we have
ϕ(d)0X = ψ(d0Y ) = ψ(0Y ) = 0X and thus ϕ(d) ∈ Γ. Hence, the homomorphism ϕ is
rational.

Now let ψ(0Y ) = x0 ∈ X. Take b ∈ π−1
X (x0), so that x0 = b0X , and define ψ0 = b−1ψ.

Then for any c ∈ F and y ∈ Y we have ψ0(cy) = b−1ϕ(c)ψ(y) = b−1ϕ(c)bψ0(y). Hence, ψ0

is a homomorphism from Y to X corresponding to the Lie group homomorphism ϕ0:F −→
G defined by ϕ0(c) = b−1ϕ(c)b, c ∈ F . ψ0 satisfies ψ0(0F ) = 0G, thus ϕ0 is a rational
homomorphism. Hence, ϕ is rational if and only if b is a rational element of G, which
is true if and only if x0 is a rational element of X. We will say that a homomorphism
ψ:Y −→ X is rational if ψ(0Y ) ∈ Q(X). We have proven the following:

Proposition. A homomorphism ψ:Y −→ X is rational if and only if the corresponding
homomorphism ϕ:F −→ G is rational.

2.13. We also have

Proposition. A homomorphism ψ:Y −→ X is rational if and only if there exists y ∈
Q(Y ) such that ψ(y) ∈ Q(X). If this is the case, ψ(Q(Y )) ⊆ Q(X), and for any rational
sub-nilmanifold Z of Y its image ψ(Z) is a rational sub-nilmanifold of X.

2.14. Corollary. If Y is a sub-nilmanifold of a nilmanifold X, the inclusion homomor-
phism Y −→ X is rational if and only if Y is a rational sub-nilmanifold of X.

2.15. Corollary. X has only countably many rational subnilmanifolds. For any x ∈ X,
there are only countably many subnilmanifolds of X containing x.

Proof. If Y is a rational subnilmanifold of X, the inclusion homomorphism Y −→ X
is defined by a rational homomorphism F −→ G, which is a polynomial mapping with
rational coefficients, and there are only countably many of those. In particular, there are
only countably many subnilmanifolds of X containing 0X . For any other point x ∈ X,
subnilmanifolds containing x are shifts of subnilmanifolds containing 0X .

2.16. We will now describe how homomorphisms of nilmanifolds “look in coordinates”. Let
ψ:Y −→ X be a homomorphism from a nilmanifold Y = F/Λ to a nilmanifold X = G/Γ,
let ϕ:F −→ G be the corresponding Lie group homomorphism and let πY :F −→ Y and
πX :G −→ X be the factorization mappings. We will first assume that both Y and X are
connected; we may then also assume that both F and G are connected. Let τG:R

k −→
G and τF :R

l −→ F be coordinate mappings for G and F , and let τX : [0, 1)k −→ X
and τY : [0, 1)

l −→ Y be the corresponding coordinate mappings for X and Y . In the
commutative diagram

F
ϕ̃

−→ G
πY ↓ ↓ πX

Y
ψ

−→ X

the mapping ϕ̃ is the composition of ϕ and the left translation by an element
b ∈ π−1

X

(
ψ(πY (1F ))

)
. Since, in coordinates, both ϕ and the translation by b are
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polynomial mappings, in the commutative diagram

Rl
PF−→ Rk

τF ↓ ↓ τG

F
ψ

−→ G

PF is a polynomial maping. PF is rational if b and so, ψ is rational.

In the commutative diagram

[0, 1)l
PY−→ [0, 1)k

τY ↓ ↓ τX

Y
ψ

−→ X

the mapping PY is the composition of PF |[0,1)l and the “factorization” mapping φ:Rk −→

[0, 1)k defined in the following way. For v = (v1, . . . , vk) ∈ Rk let Mv:R
k −→ Rk be

the polynomial mapping corresponding, by formula (1.1), to the right translation of G by
τG(v). Let Q = [0, 1)k ∈ Rk and for v ∈ Rk let Qv = M−1

v (Q). It is seen from the proof
of Lemma 2.5 that

⋃
v∈Zk Qv is a partition of Rk; the mapping φ:Rk −→ Q is defined by

φ|Qv
=Mv, v ∈ Zk.

Let v1, . . . , vm ∈ Zk be such that PF ([0, 1)
l) ⊆

⋃m
j=1Qvj and let Lj = P−1

F (Qvj ) ∩

[0, 1)l, j = 1, . . . ,m. Then [0, 1)l is partitioned into
⋃m
j=1 Lj . For each j ∈ {1, . . . , N}

the restriction of PY on Lj is the polynomial mapping Pj =Mvj ◦PF |Lj
, and Lj is defined

by Lj = P−1
j ([0, 1)k) ∩ [0, 1)l. If the homomorphism ψ is rational, then PF is a rational

polynomial mapping, and since Mv are rational for v ∈ Zd, the polynomial mappings Pj ,
j = 1, . . . ,m, are also rational.

If X and/or Y are disconnected they consist of finitely many connected components,
and our argument is applicable to each component of Y and the corresponding component
of X.

2.17. We arrive at the following result:

Proposition. Let ψ:Y −→ X be a homomorphism of nilmanifolds, let τX :S× [0, 1)k −→
X and τY :R × [0, 1)l −→ Y , with S and R being finite sets, be coordinate mappings for
X and Y and let PY = τ−1

X ◦ψ◦τY :R × [0, 1)l −→ S × [0, 1)k. Then for each r ∈ R
there exist s ∈ S and polynomial mappings Pr,1, . . . , Pr,mr :R

l −→ Rk such that the sets
Lr,j = P−1

r,j ([0, 1)
k)∩ [0, 1)l, j = 1, . . . ,mr, partition [0, 1)l and for each j = 1, . . . ,mr one

has PY |{r}×Lr,j
= {s}×Pr,j |{r}×Lr,j

. If ψ is rational, then Pr,j are rational for all r ∈ R

and all j ∈ {1, . . . ,mr}.
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2.18. Let us say that a mapping P :U −→ Rk from a set U ⊆ Rl is piecewise polynomial if U
can be partitioned, U =

⋃m
j=1 Lj , into subsets L1, . . . ,Lm such that, for each j = 1, . . . ,m,

Lj is defined by a system of polynomial inequalities:

Lj =
{
t ∈ U : q1(t) > 0, . . . , qi(t) > 0, qi+1(t) ≥ 0, . . . , qn(t) ≥ 0

}

where q1, . . . , qn are polynomials on Rl, and the restriction of P on Lj is a polynomial
mapping. We will say that a piecewise polynomial mapping P is rational if, for all j, the
polynomials q1, . . . , qn and P |Lj

are rational. If P is a mapping from a union
⋃
r∈R Ur

of subsets of distinct copies of Rk, we will say that P is piecewise polynomial if P |Ur
is

piecewise polynomial for all r ∈ R.

2.19. From Proposition 2.17 we have:

Corollary. The mapping PY = τ−1
X ◦ψ◦τY :R× [0, 1)l −→ S × [0, 1)k is piecewise polyno-

mial. If ψ is rational, then PY is rational.

2.20. Corollary. Given two coordinate mappings τX and τ ′X for a nilmanifold X, the
mapping τ−1

X ◦τ ′X is piecewise polynomial and rational.

2.21. Let us say that a function f :X −→ Rm on a nilmanifold X is piecewise polynomial
if the function f◦τ−1

X :S × [0, 1)k −→ Rm is piecewise polynomial. If this is the case, let us
say that f is rational if f◦τ−1

X is rational. Since the composition of piecewise polynomial
mappings is piecewise polynomial, and the composition of rational piecewise polynomial
mappings is rational, it follows from Corollary 2.20 that the definitions above do not depend
on the choice of the coordinate mapping τX .

2.22. Since the composition of piecewise polynomial mappings is piecewise polynomial, we
have

Corollary. If f is a piecewise polynomial function on a nilmanifold X and ψ:Y −→ X
is a homomorphism of nilmanifolds, then f◦ψ is a piecewise polynomial function on Y . If
both f and ψ are rational, then f◦ψ is also rational.

3. Rationality of the closure of a polynomial orbit

3.1. A sequence {g(n)}n∈Z in G of the form g(n) = a
p1(n)
1 . . . a

pm(n)
m , where a1, . . . , am ∈ G

and p1, . . . , pm are polynomials taking on integer values on the integers, will be called
a polynomial sequence. Let {e1, . . . , ek} be a basis in G with e1, . . . , ek2 6∈ Go and
ek2+1, . . . , ek ∈ Go; it follows from formulas (1.1) and (1.2) that any polynomial sequence

g in G can be written in terms of this basis: g(n) = e
q1(n)
1 . . . e

qk(n)
k where q1, . . . , qk ∈ R[n]

and q1, . . . , qk2 take on integer values on the integers.

3.2. Again, let X = G/Γ and π:G −→ X be the factorization mapping. Let {g(n)}n∈Z be
a polynomial sequence in G and let x ∈ X. It is proven in [L1] that the closure {g(n)x}n∈Z

of the “polynomial orbit” {g(n)x}n∈Z of x is a disjoint union Y1 ∪ . . . ∪ Yl of connected
sub-nilmanifolds of X. We now prove:
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Theorem. If g(0)x is rational, then all of Y1, . . . , Yl are rational.

3.3. We will be based on the following fact:

Proposition. Let g be a polynomial sequence in G with g(0) = 1G. There exists a

nilmanifold X̃ = G̃/Γ̃, with the factorization mapping π̃: G̃ −→ X̃, an open subgroup Ĝ of

G̃ such that π̃(Ĝ) = X̃ and so, X̂ = Ĝ/(Γ̃∩Ĝ) ≃ X̃, a rational homomorphism ψ: X̂ −→ X

and an element c ∈ G̃ such that π(g(n)) = ψ(π̃(cn)), n ∈ Z.

Proof. Let {e1, . . . , ek} be a basis in G and let δ ∈ N be such that aδ ∈ Γ for any

a from the (discrete) group generated by {e1, . . . , ek}. Let g(n) = e
q1(n)
1 . . . e

qk(n)
k , where

q1, . . . , qk2 are polynomials Z −→ Z, qk2+1, . . . , qk are polynomials Z −→ R, and deg qj =

mj , j = 1, . . . , k. Let Ĝ be the free nilpotent Lie group of same nilpotency class as G, with
discrete generators {bj,i} i=0,...,mj

j=1,...,k2

and continuous generators {bj,i} i=0,...,mj

j=k2+1,...,k

(see [L1]).

Let ϕ: Ĝ −→ G be the rational homomorphism defined by ϕ(bj,0) = ej and ϕ(bj,i) = 1G,
i = 1, . . . ,mj , j = 1, . . . , k. The group B generated by {bj,i} i=1,...,mj

j=1,...,k2

and {btj,i} t∈R

i=1,...,mj

j=k2+1,...,k

is then contained in kerϕ.
Let Ê be the subgroup of Ĝ generated by {bj,i} i=0,...,mj

j=1,...,k

and Γ̂ be the subgroup

generated by the δ-th powers of the elements of Ê, Γ̂ =
〈
{γδ, γ ∈ Ê}

〉
. Then Γ̂ is uniform

in Ĝ, ϕ(Γ̂) ⊆ Γ and one has σ(Γ̂) = Γ̂ for any automorphism σ of Ê. Let X̂ = Ĝ/Γ̂ and

let ψ: X̂ −→ X be the rational homomorphism induced by ϕ.
We define an automorphism σ of Ĝ by σ(bj,0) = bj,0 and σ(bj,i) = bj,ibj,i−1 for

j = 1, . . . , k and i = 1, . . . ,mj . σ induces a unipotent automorphism of Ĝ/[Ĝ, Ĝ]; it is

shown in [L1] that σ is a unipotent automorphism of Ĝ. Let G̃ be the extension of Ĝ by

σ and let s ∈ G̃ be the element corresponding to σ, so that s−1as = σ(a) for any a ∈ Ĝ;

by [L1], G̃ is a nilpotent group. Since σ preserves Ê, it also preserves Γ̂, and the group

Γ̃ = 〈Γ̂, s〉 is uniform in G̃. The nilmanifold X̃ = G̃/Γ̃ is isomorphic to X̂ as a topological

space, and we will identify them. Let π̃: G̃ −→ X̃ be the factorization mapping; we obtain
the commutative diagram

G̃ ⊇ Ĝ
ϕ

−→ G
π̃ ↓ π̂ ↓ ↓ π

X̃ ≃ X̂
ψ

−→ X

For j ∈ {1, . . . , k} let qj(n) = α1

(
n
1

)
+α2

(
n
2

)
+ . . .+αmj

(
n
mj

)
. Define aj = bα1

j,1 . . . b
αmj

j,mj
,

then σn(aj) = b
α1(n1)+α2(n2)+...+αmj (

n
mj
)

j,0 h(n) = b
pj(n)
j,0 h(n) with h(n) ∈ B ⊆ kerϕ, n ∈ Z,

and thus ϕ(σn(aj)) = e
pj(n)
j . Put a = a1 . . . ak, then ϕ(σn(a)) = g(n), n ∈ Z. Define

c = a−1s−1a, then

π̃(σn(a)) = π̃(s−nasn) = π̃(s−na) = π̃(a(a−1s−na)) = aπ̃((a−1s−1a)n) = aπ̃(cn).

Hence,

π(g(n)) = π(ϕ(σn(a))) = ψ(π̃(σn(a))) = ψ(aπ̃(cn)) = ϕ(a)ψ(π̃(cn)) = ψ(π̃(cn))
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since a ∈ B ⊆ kerϕ.

3.4. Proof of Theorem 3.2. Let x = π(a). Then g(n)x = g(0)aπ(g′(n)) where g′(n) =
a−1(g(0)−1g(n))a is a polynomial sequence with g′(0) = 1G; since π(g(0)a) = g(0)x ∈
Q(X), g(0)a ∈ Q(G). Replace g by g′ and assume that g(0) = 1G and x = π(1G). Let

G̃, X̃, π̃, Ĝ, X̂, ψ and c ∈ G̃ be as in Proposition 3.3, so that g(n)x = ψ(cnx̃), n ∈ Z,
for x̃ = π̃(1

G̃
). The closure Z = {cnx̃}n∈Z

of the orbit of x̃ under the action of c is a

sub-nilmanifold Ỹ of X̃ (see, for example, [L1]). Since Ỹ contains the rational point x̃, Ỹ

is rational by Proposition 2.10. Let Ỹ1, . . . , Ỹl be the connected components of Ỹ ; they all
are rational sub-nilmanifolds of X̃ by Proposition 2.11. Since Ĝ is open in G̃, Ỹ1, . . . , Ỹl
are rational sub-nilmanifolds of X̂. We have {g(n)x}n∈Z

= ψ(Ỹ1) ∪ . . . ∪ ψ(Ỹl); since ψ is

a rational homomorphism, ψ(Ỹ1), . . . , ψ(Ỹl) are rational sub-nilmanifolds of X.

3.5. A polynomial mapping Zd −→ G is a mapping ω of the form ω(n) = a
p1(n)
1 . . . a

pm(n)
m ,

where a1, . . . , am ∈ G and p1, . . . , pm are polynomials Zd −→ Z. One derives from Theo-
rem 3.2 its multiparameter version:

Theorem. Let ω:Zd −→ G be a polynomial mapping, let x ∈ Q(X), and assume that
ω(0)x ∈ Q(X). Then {ω(n)x}n∈Zd = Y1 ∪ . . . ∪ Yl where Y1, . . . , Yl are connected rational
sub-nilmanifolds of X.

Proof. It is proven in [L2] that {ω(n)x}n∈Zd is a disjoint union of connected sub-nilmanifolds
Y1, . . . , Yl of X; we are only going to show that Y1, . . . , Yl are rational. Let i ∈ {1, . . . , l};
find n ∈ Zd such that ω(n) ∈ Yi and consider the polynomial sequence g(m) = ω(nm),
m ∈ Z in G. By Theorem 3.2, {g(m)x}m∈Z

= Z1∪ . . .∪Zk where Z1, . . . , Zk are connected
rational subnilmanifolds of X. We have Zj ⊆ Yi for some j; it follows that Yi contains a
rational point and so, is rational by Proposition 2.10.
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