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Abstract

We describe the structure of the ergodic decomposition of an extension of an ergodic
system by a nilmanifold.

If G is a compact group and V a subgroup of G, then, under the (left) action of V ,
G splits into a disjoint union of isomorphic “orbits”: if H is the closure of V in G, then
the right cosets Ha, a ∈ G, are minimal closed V -invariant subsets of G, and the action of
V on each of these sets is ergodic (with respect to the Haar measure). If X is a compact
homogeneous space of a locally compact group G and V is a subgroup of G, then the
structure of orbits of the action of V on X may be much more complicated. However, if
G is a nilpotent Lie group and X is, respectively, a compact nilmanifold , then the orbit
structure on X is almost as simple as in the case of a compact G:

Theorem 1. Let X be a compact nilmanifold and let V be a group of translations of X.
Then X is a disjoint union of closed V -invariant (not necessarily isomorphic) subnilman-
ifolds, on each of which the action of V is minimal and ergodic with respect to the Haar
measure.

(See [Le], [L1], and [L2]; this is also a corollary of a general theory of Ratner and Shah on
unipotent flows, see [Sh].)

Let us now turn to the “relative” situation. We say that a measure space Y is an
extension of Y ′, and that Y ′ is a factor of Y , if a measure preserving mapping p:Y −→ Y ′

is fixed. If P and P ′ are measure preserving actions of a group V on Y and Y ′ respectively
such that P ′v◦p = p◦Pv, v ∈ V , we say that P is an extension of P ′ on Y , and that Y ′ is
a factor of Y under the action P .

Throughout the paper, (Ω, ν) will be a probability measure space, and S will be an
ergodic measure preserving action of a group V on Ω. We will assume that V is countable.
(This assumption is not crucial for our argument, saves us from measure theoretical trou-
bles: under this assumption, if something is true a.e. for every v ∈ V , then it is true a.e. for
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all v ∈ V simultaneously.) Let G be a compact group; we say that an extension T of S on
the space Ω×G is a group extension if T is defined by the formula Tv(ω, x) = (Svω, av,ωx),
x ∈ G, where av,ω ∈ G, ω ∈ Ω, v ∈ V , and for every v ∈ V , the mapping ω 7→ av,ω is
assumed to be measurable. The family (av,ω) v∈V

ω∈Ω
of elements of G defining T is called a

cocycle; we will say that T is given by the cocycle (av,ω). If H is a subgroup of G and
av,ω ∈ H for all v ∈ V and ω ∈ Ω, we will say that (av,ω) v∈V

ω∈Ω
is an H-cocycle. Clearly, if

T is given by an H-cocycle, the sets Ω× (Hx), x ∈ G, are T -invariant.
We will call a self-mapping of Ω×G defined by the formula (ω, x) 7→ (ω, bωx), x ∈ G,

where bω ∈ G, ω ∈ Ω, and measurably depend on ω, a reparametrization of Ω × G over
Ω. When reparametrizing Ω × G we allow ourself to ignore a null set of Ω, so that the
reparametrization function bω can be only be defined on a subset Ω′ of full measure in
Ω, and we substitute Ω by Ω′. After a reparametrization given by bω, the cocycle (av,ω),
defining a group extension T of S on Ω×G, changes to the cocycle

(

bSvωav,ωb−1
ω

)

(which
is said to be cohomologous to (av,ω)).

Let G be a compact metric group and let T be a group extension of S on Ω × G.
Then, in complete analogy with the absolute case, a simple decomposition of Ω×G takes
place.

Theorem 2. (See, for example, [Z1].) There exists a closed subgroup H of G (called the
Mackey group of T ) such that, after a certain reparametrization of Ω × G over Ω, T is
given by an H-cocycle and T is ergodic on the right cosets Ha, a ∈ G, with respect to
ν× (µHa), where µH is the left Haar measure on H. Moreover, any T -ergodic measure on
Ω×G whose projection to Ω is ν has the form ν × (µHa) for some a ∈ G.

Now let G be locally compact group and let X be a compact homogeneous space of
G. The notion of a group extension of S on Ω × X given by a G-cocycle is transferred
without changes to this case; we will only call it a homogeneous space extension, not a
group extension. A reparametrization of Ω×X over Ω with the help of a function bω ∈ GΩ

is also defined similarly. Our goal is to show that, in the framework of relative actions,
compact nilmanifolds, again, behave as well as compact groups:

Theorem 3. Let X be a compact nilmanifold and let T be a homogeneous space exten-
sion of S on Ω × X. There exists a closed subgroup H of G such that, after a certain
reparametrization of Ω × X over Ω, T is given by an H-cocycle, and if

⋃

θ∈Θ Xθ is the
partition of X into the minimal subnilmanifolds with respect to the action of H, then the
measures ν × µXθ , θ ∈ Θ, where µXθ is the Haar measure on Xθ, are T -ergodic, and are
the only T -ergodic measures on Ω×X whose projection to Ω is ν.

We will use the following notation and terminology. If a is a transformation of a
(measure) space Y and f is a function on Y , then a acts on f from the right by the rule
(fa)(y) = f(ay). If a space Y ′ is a factor of Y , then any function h′ on Y ′ lifts to a
function h on Y ; we identify h′ with h, and say that h comes from Y ′ in this case.

If Y ′ is a factor of a measure space Y , P ′ is an action of a group V on Y ′, and P is an
extension of P ′ on Y , we will say that a function f ∈ L∞(Y ) is an eigenfunction of P over
Y if fPv = αvf , where αv ∈ L∞(Y ′), for every v ∈ V . (Our definition of an eigenfunction
over Y is more restricted than the standard definition of a generalized eigenfunction of P
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over Y , which assumes that the module spanned by the functions fTv, v ∈ V , has finite
rank over L∞(Ω).)

G will stand for a nilpotent Lie group of nilpotency class r, Γ for a cocompact subgroup
of G, and X for the compact nilmanifold G/Γ. By µX we will denote the Haar measure
on X, and will always mean this measure on X if the opposite is not stated.

T will stand for a homogeneous space extension of S on Ω×X by a cocycle (av,ω) v∈V
ω∈Ω

.

If Z is a factor of X under the action of G, then T induces an action of V on Ω× Z,
which is defined by the same cocycle (av,ω) v∈V

ω∈Ω
. We will identify this action with T and

denote it by the same symbol.
A subnilmanifold X ′ of X is a closed subset of X of the form Kx, where K is a closed

subgroup of G and x ∈ X. (Note that the notion of a subnilmanifold depends on the group
acting of X; what is a subnilmanifold of X with respect to the action of G may not be
a subnilmanifold with respect to the action of, say, the identity component of G.) For a
subnilmanifold X ′ = Kx of X we will denote by µX′ the Haar measure on X ′ with respect
to the action of K, and will always mean this measure on X ′ if the opposite is not stated.

Let Go be identity component of G. If X is connected, then X is a homogeneous
space of Go, X = Go/(Γ∩Go). If X is disconnected, then X is a finite union of connected
subnilmanifolds; this subnilmanifolds are all isomorphic, are homogeneous spaces of Go,
and are permuted by elements of G.

We define G(1) = Go, G(k) = [G(k−1), G], k = 2, 3, . . . , r, and X(k) = G(k+1)\X,
k = 0, 1, . . . , r − 1. When X is connected, we also define X2 = [Go, Go]\X; then X2 is
a torus, the maximal factor-torus of X. We will denote by p the canonical projection
Ω×X −→ Ω.

A base tool in studying orbits in nilmanifolds is a lemma by W. Parry ([P1] and [P2]),
that says that a shift-transformation of a compact connected nilmanifold X is ergodic iff
it is ergodic on the maximal factor-torus of X. Here is a “relative” analogue of Parry’s
lemma; another proof of it can be found in [Z2].

Proposition 4. (Cf. [Z2], Corollary 3.4) Assume that X is connected. If T is ergodic on
Ω × X2, then T is ergodic on Ω × X, and any eigenfunction f of T over Ω comes from
Ω×X2 and is such that f(ω, ·) is a character on X2, times a constant, for a.e. ω ∈ Ω.

Proof. We will assume by induction on r that T is ergodic on Ω ×X(r−1), and that if g
is an eigenfunction of T on Ω×X(r−1) over Ω, then g comes from Ω×X2 and g(ω, ·) is a
character-times-a-constant on X2 for a.e. ω ∈ Ω.

Let f ∈ L∞(Ω × X) be an eigenfunction of T over Ω, fTv = αv(ω)f , αv: Ω −→
C, v ∈ V . The action of the group G(r) on Ω × X factors through an action of the
compact commutative group (the torus) G(r)/(G(r)∩Γ), thus L2(Ω×X) is a direct sum of
eigenspaces of G(r). Let f ′ be a nonzero projection of f to one of these eigenspaces, then
f ′c = λcf ′, λc ∈ C, for every c ∈ G(r). Since the eigenspaces of G(r) are T -invariant and
invariant under multiplication by functions from L∞(Ω), we have f ′Tv = αv(ω)f ′, v ∈ V .

For every b ∈ G and c ∈ G(r), (f ′b)c = f ′cb = λcf ′b, so the function f ′b = (f ′b)/f ′ is
G(r) invariant, and thus comes from Ω×X(r−1).

Assume, by induction on decreasing k, that for some k ∈ {2, . . . , r} we have f ′c = λcf ′,
λc ∈ CΩ, for any c ∈ G(k). Then (f ′c)(ω, x) = λc(ω)(ω)f ′(ω, x), ω ∈ Ω, x ∈ X, for any
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c = c(ω) ∈ GΩ
(k). Now, for any b ∈ G(k−1) and v ∈ V ,

(f ′bTv)(ω, x) = f ′(Svω, bav,ωx) = f ′
(

Svω, av,ω[av,ω, b−1]bx
)

= (f ′Tv)
(

ω, [av,ω, b−1]bx
)

= αv(ω)f ′
(

ω, [av,ω, b−1]bx
)

= αv(ω)λcv,b(ω)(ω)f ′(ω, bx) = αv(ω)λcv,b(ω)(ω)(f ′b)(ω, x),

where cv,b(ω) = [av,ω, b−1] ∈ G(k), ω ∈ Ω. So, for any b ∈ G(k−1) and v ∈ V , f ′bTv =
λcv,b(ω)(ω)f ′b, and since f ′b comes from X(r−1), by our first induction assumption, f ′b(ω, ·)
is a character-times-a-constant on X2 for a.e. ω ∈ Ω. Thus, for a.e. ω ∈ Ω, we have a
continuous mapping from G(k−1) to the set of characters on X2, and since this set is discrete
and G(k−1) is connected, this mapping is constant. (For a.e. ω, the considered mapping
may not be a priori defined on a null subset of G(k−1), but since it is locally uniformly
continuous, it extends to a continuous mapping on G(k−1).) Hence, f ′b(ω, ·) = λb(ω),
λb ∈ C, for all b ∈ G(k−1) and a.e. ω ∈ Ω, that is, f ′b = λbf ′ with λb ∈ CΩ, for all
b ∈ G(k−1), which gives us the induction step.

As the result of our induction on k we obtain that for every b ∈ G(1) = Go there exists
a function λb ∈ CΩ such that f ′b = λbf ′. Thus for any b1, b2 ∈ Go we have f ′[b1, b2] = f ′.
Hence, f ′ is [Go, Go]-invariant, and so, comes from Ω × X2. The equality f ′b = λbf ′,
b ∈ Go, now implies that f ′(ω, ·) is a character-times-a-constant on X2 for a.e. ω ∈ Ω.

It follows that f also comes from Ω × X2. In particular, there are no T -invariant
functions on Ω×X since there are no T -invariant functions on Ω×X2, so T is ergodic.

Now assume that for at least two distinct eigenspaces of G(r) the projections f ′, f ′′

of f to these eigenspaces are nonzero. Then both f ′Tv = αv(ω)f ′ and f ′′Tv = αv(ω)f ′′,
v ∈ V , and so, f ′/f ′′ is T -invariant, which contradicts the ergodicity of T . Hence, f
belongs to one of the eigenspaces of G(r), and so, as this has been proven for f ′, f(ω, ·) is
a character-times-a-constant on X2 for a.e. ω ∈ Ω.

Remark. In contrast with the absolute case (the case Ω = { .}), the stronger statement
“T is ergodic if it is ergodic on Ω×

(

[G,G]\X
)

” (where it is assumed that G is generated
by Go and {Tv, v ∈ V }) is no longer true in the relative case. Here is an example: let
Ω = Z2, let X = T2

x1,x2
where T = R/Z, let G be the group of transformations of X of the

form (x1, x2) 7→ (x1 +α, x2 + lx1 +β), α, β ∈ T, l ∈ Z, and let V be the group generated by
the transformation T (ω, x1, x2) =

(

ω + 1, x1 + ωα, x2 + (−1)ωx1
)

of Ω×X, where α is an
irrational element of T. Then [G, G] =

{

(0, x2), x2 ∈ T
}

, and [G, G]\X ' Tx1 . One checks

that T is ergodic on Ω×
(

[G,G]\X
)

, whereas the function f(ω, x1, x2) =
{

x2, ω = 0
x2 − x1, ω = 1

on Ω×X is T -invariant. The reason of this effect is clear, it is a “bad parametrization” of
Ω×X; after a proper reparametrization, T acts as a rotation on X, G can be reduced to
the group of rotations of X, and then [G,G]\X = X.

Remark. We do not know whether Proposition 4 can be extended to the (more general)
class of generalized eigenfunctions of T over Ω.

Let X be connected. Having Proposition 4, we may deal with the maximal factor-
torus X2 of X instead of X; indeed, if T is not ergodic on Ω ×X, then T is not ergodic
on T × X2 as well. The problem is that G, if disconnected, may act on X2 not only by
conventional rotations, but also by affine unipotent transformation. Thus, we will still
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have to treat X2 as a nilmanifold, not as a conventional torus. Since this does not change
our argument, we will not assume that X is a torus; we will, however, call “characters” on
X those on X2.

Note that for any character χ on X and any a ∈ G, χa = λχ′, where χ′ is a character
on X and λ ∈ C, |λ| = 1. On the other hand, if λ ∈ C, |λ| = 1, and χ is a character on X,
then, clearly, there exists a translation a of X such that χa = λχ.

Rather than Proposition 4, we will actually need the following, more technical fact:

Lemma 5. Let X be connected. Assume that T is ergodic on X(r−1) and that f ∈
L∞(Ω ×X) is T -invariant and is an eigenfunction of G(r). Then f(ω, ·) is a character-
times-a-constant on X for a.e. ω ∈ Ω.

Of course, if X2 is a factor of X(r−1), this lemma follows from Proposition 4; otherwise it
has to be proven separately, though its proof is very similar to that of Proposition 4.

Proof. Let fc = λcf , λc ∈ C, c ∈ G(r). For every b ∈ G and c ∈ G(r), (fb)c = fcb = λcfb,
so the function fb = (fb)/f is G(r) invariant, and thus comes from Ω ×X(r−1). Assume,
by induction on decreasing k, that for some k ∈ {2, . . . , r} we have fc = λcf , λc ∈ CΩ, for
any c ∈ G(k). Then (fc)(ω, x) = λc(ω)(ω)f(ω, x), ω ∈ Ω, x ∈ X, for any c = c(ω) ∈ GΩ

(k).
Now, for any b ∈ G(k−1) and v ∈ V ,

(fbTv)(ω, x) = f(Svω, bav,ωx) = f
(

Svω, av,ω[av,ω, b−1]bx
)

= (fTv)
(

ω, [av,ω, b−1]bx
)

= f
(

ω, [av,ω, b−1]bx
)

= λcv,b(ω)(ω)f(ω, bx) = λcv,b(ω)(ω)(fb)(ω, x),

where cv,b(ω) = [av,ω, b−1] ∈ G(k), ω ∈ Ω. So, for any b ∈ G(k−1) and v ∈ V , fbTv =
λcv,b(ω)(ω)fb, and since fb comes from X(r−1) where T is ergodic, by Proposition 4, fb(ω, ·)
is a character-times-a-constant on X for a.e. ω ∈ Ω. Thus, for a.e. ω ∈ Ω, we have a
continuous mapping from G(k−1) to the set of characters on X, and since this set is discrete
and G(k−1) is connected, this mapping is constant. Hence, fb(ω, ·) = λb(ω), λb ∈ C, for all
b ∈ G(k−1) and a.e. ω ∈ Ω, that is, fb = λbf with λb ∈ CΩ, for all b ∈ G(k−1), which gives
us the induction step.

As the result of induction on k we obtain that for every b ∈ G(1) = Go there exists a
function λb ∈ CΩ such that fb = λbf . Hence, f(ω, ·) is a character-times-a-constant on X
for a.e. ω ∈ Ω.

We will also need the following corollary of Theorem 2.

Lemma 6. Let K be a compact metric group, let Z be a homogeneous space of K, and
let R be a homogeneous space extension of S on Ω×Z. If R is not ergodic, then K has a
proper closed subgroup H such that, after a reparametrization of Ω×Z over Ω, R is given
by an H-cocycle.

Proof. The cocycle defining the action R defines a group action ˜R of V on Ω × K, for
which R is a factor. If R is not ergodic, then ˜R is not ergodic as well, and the assertion of
the lemma follows from Theorem 2.

Proposition 7. Assume that T is not ergodic on Ω×X. Then there exists a proper closed
subgroup H of G such that, after a certain reparametrization of Ω×X over Ω, T is given
by an H-cocycle.
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Proof. We will use induction on r, the nilpotency class of X. First, for simplicity, consider
the case where X is connected. If T is not ergodic on Ω × X(r−1), then we are done by
induction on r. Thus, we assume that T is ergodic on Ω × X(r−1). Let f be a nonzero
measurable T -invariant function on Ω×X. We replace f by its nonzero projection to one
of the eigenspaces of G(r), which is also a T -invariant function. By Lemma 5, f(ω, ·) =
λ(ω)χω, where χω is a character on X and λ(ω) ∈ C, for a.e. ω ∈ Ω. Since S is ergodic,
|λ(ω)| = const on a subset Ω′ of Ω of full measure, and we may assume that |λ| ≡ 1.
There are only countably many characters on X, therefore a subset Ω′′ of full measure in
Ω′ is partitioned into the union of sets of positive measure where χω is constant. Since
S is ergodic, we can choose a character χ on X and elements b(ω), ω ∈ Ω′′, measurably
depending on ω, such that for every ω ∈ Ω′ one has λωχω = χbω, so that f(ω, x) =
λ(ω)χω(x) = χ(bωx), x ∈ X. After the reparametrization of Ω×X defined by the function
bω (and replacing Ω by Ω′′), f takes the form f(ω, x) = χ(x), ω ∈ Ω, x ∈ X. Let H be the
stabilizer of χ in G, H =

{

c ∈ G : χc = χ
}

; then H is a proper closed subgroup of G and
the cocycle defining T takes values in H.

Now let X be disconnected. G acts on the finite set X of connected components of
X; let ˜G be the subgroup (of finite index) of G that acts trivially on X . Then the action
of G on X factorizes through the action of the finite group G/ ˜G, and if T is not ergodic
on Ω×X , we are done by Lemma 6. Thus, we may assume that T is ergodic Ω×X .

Let Xo be a connected component of X; then X, under the action of ˜G, is isomorphic
to {1, . . . , n} × Xo, where n is the number of components in X. Consider Ω × X =
Ω × {1, . . . , n} × Xo as ˜Ω × Xo where ˜Ω = Ω × {1, . . . , n}; by our assumption, T acts
ergodically on ˜Ω. Since Xo is connected and has nilpotency class ≤ r, we may, as in
the first part of the proof, find a subset Ω′ of full measure in Ω and a measurable T -
invariant function f on ˜Ω′ × Xo = Ω′ × X such that f(ω, i, ·) = λ(ω, i)χω,i, where χω,i

is a character on Xo and λ(ω, i) ∈ C, for all ω ∈ Ω′ and all i ∈ {1, . . . , n}. For all
ω ∈ Ω′ we, therefore, have the (non-ordered) set Cω = {χω,1, . . . , χω,n} of characters
on Xo such that TvCω = CSvω, v ∈ V , for all ω ∈ Ω′, and since only countably many
possibilities for Cω exist, a certain reparametrization of Ω ×X over Ω (with replacing Ω
by Ω′) makes Cω to be constant, Cω = C = {χ1, . . . , χn} for all ω ∈ Ω. Moreover, since T
acts ergodically on Ω×X , G acts transitively on C; thus, after some change of coordinates
in distinct connected components of X, we may make χ1, . . . , χn to be all equal to the
same character χ. After this, we obtain that χTv = λ(ω,i)

λ(Svω,j)χ, j = j(v, ω, i), for all v ∈ V ,
ω ∈ Ω, and i ∈ {1, . . . , n}, that is, T maps the fibers of χ to fibers. Let us assume, as we
may, that G is generated by Go and the entries of the cocycle defining T ; then G maps the
fibers of χ to fibers, and we may factorize X by these fibers. Let Z be the factor; then Z
is a finite union of circles, Z = {1, . . . , n} × T, and G acts by rotations on T, that is, for
any a ∈ G, a(i, x) = (ai, x + αa,i), x ∈ T, i ∈ {1, . . . , n}, with αa,i ∈ T (and ai is defined
by Xai = aXi). We obtain that the action of G on Z factorizes through the action of a
compact group (the group of rotations of components of Z and of permutations of these
components). Since T is not ergodic on Ω× Z, we are done by Lemma 6.

Lemma 8. If T is ergodic on Ω ×X (with respect to ν × µX), then ν × µX is the only
T -ergodic probability measure whose projection on Ω is ν.
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Proof. Let G1 = G and Gk = [Gk−1, G] for k = 2, 3, . . . , r, let Xr−1 = Gr\X, and let
πr: X −→ Xr−1 be the canonical projection. If T is ergodic on Ω × X with respect to
ν×µX , by induction on r, ν×µXr−1 is the only T -ergodic probability measure on Ω×Xr−1

whose projection on Ω is ν. Thus, if τ is a T -ergodic probability measure on Ω ×X with
p(τ) = ν, then (IdΩ×πr)(τ) = ν×µXr−1 . Ω×X is a group extension of Ω×Xr−1 with the
fiber Fr = Gr/(Γ∩Gr), which is a compact commutative Lie group. Hence, by Theorem 2,
τ = ν × µXr−1 × µFr = ν × µX .

Proof of Theorem 3. Let H be a minimal closed subgroup of G such that there exists
a reparametrization of X × Ω over Ω after which T is given by an H-cocycle. (Such a
subgroup exists since any chain of decreasing subgroups of G is finite.) Let X =

⋃

θ∈Θ Xθ

be the partition of X into the union of subnilmanifolds minimal under the action of H,
as in Theorem 1. After the reparametrization corresponding to H, Ω ×X splits into the
disjoint union

⋃

θ∈Θ Ω ×Xθ of T -invariant subsets on each of which T is given by an H-
cocycle. If T is not ergodic on one of these subsets, then by Proposition 7, H contains
a proper closed subgroup H ′ such that, after a reparametrization of Ω × X over Ω, T is
given by an H ′-cocycle; this contradicts the choice of H. Thus, T is ergodic on each of
Ω×Xθ, θ ∈ Θ. Moreover, if τ is an ergodic measure on Ω×X with p(τ) = ν, then τ must
be supported by Ω×Xθ for some θ ∈ Θ, and thus τ = ν × µΩθ by Lemma 8.
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