Ergodic components of an extension by a nilmanifold

A. Leibman
Department of Mathematics
The Ohio State University Columbus, OH 43210, USA
e-mail: leibman@math.ohio-state.edu

April 9, 2008

Abstract

We describe the structure of the ergodic decomposition of an extension of an ergodic system by a nilmanifold.

If G is a compact group and V a subgroup of G, then, under the (left) action of V, G splits into a disjoint union of isomorphic "orbits": if H is the closure of V in G, then the right cosets $H a, a \in G$, are minimal closed V-invariant subsets of G, and the action of V on each of these sets is ergodic (with respect to the Haar measure). If X is a compact homogeneous space of a locally compact group G and V is a subgroup of G, then the structure of orbits of the action of V on X may be much more complicated. However, if G is a nilpotent Lie group and X is, respectively, a compact nilmanifold, then the orbit structure on X is almost as simple as in the case of a compact G :

Theorem 1. Let X be a compact nilmanifold and let V be a group of translations of X. Then X is a disjoint union of closed V-invariant (not necessarily isomorphic) subnilmanifolds, on each of which the action of V is minimal and ergodic with respect to the Haar measure.
(See [Le], [L1], and [L2]; this is also a corollary of a general theory of Ratner and Shah on unipotent flows, see [Sh].)

Let us now turn to the "relative" situation. We say that a measure space Y is an extension of Y^{\prime}, and that Y^{\prime} is a factor of Y, if a measure preserving mapping $p: Y \longrightarrow Y^{\prime}$ is fixed. If P and P^{\prime} are measure preserving actions of a group V on Y and Y^{\prime} respectively such that $P_{v^{\circ}}^{\prime} p=p \circ P_{v}, v \in V$, we say that P is an extension of P^{\prime} on Y, and that Y^{\prime} is a factor of Y under the action P.

Throughout the paper, (Ω, ν) will be a probability measure space, and S will be an ergodic measure preserving action of a group V on Ω. We will assume that V is countable. (This assumption is not crucial for our argument, saves us from measure theoretical troubles: under this assumption, if something is true a.e. for every $v \in V$, then it is true a.e. for

Supported by NSF grant DMS-0600042.
2000 Mathematical Subject Classification: 22F10, 22D40
all $v \in V$ simultaneously.) Let G be a compact group; we say that an extension T of S on the space $\Omega \times G$ is a group extension if T is defined by the formula $T_{v}(\omega, x)=\left(S_{v} \omega, a_{v, \omega} x\right)$, $x \in G$, where $a_{v, \omega} \in G, \omega \in \Omega, v \in V$, and for every $v \in V$, the mapping $\omega \mapsto a_{v, \omega}$ is assumed to be measurable. The family $\left(a_{v, \omega}\right)_{\substack{v \in V \\ \omega \in \Omega}}$ of elements of G defining T is called a cocycle; we will say that T is given by the cocycle $\left(a_{v, \omega}\right)$. If H is a subgroup of G and $a_{v, \omega} \in H$ for all $v \in V$ and $\omega \in \Omega$, we will say that $\left(a_{v, \omega}\right)_{\substack{v \in V \\ \omega \in \Omega}}$ is an H-cocycle. Clearly, if T is given by an H-cocycle, the sets $\Omega \times(H x), x \in G$, are T-invariant.

We will call a self-mapping of $\Omega \times G$ defined by the formula $(\omega, x) \mapsto\left(\omega, b_{\omega} x\right), x \in G$, where $b_{\omega} \in G, \omega \in \Omega$, and measurably depend on ω, a reparametrization of $\Omega \times G$ over Ω. When reparametrizing $\Omega \times G$ we allow ourself to ignore a null set of Ω, so that the reparametrization function b_{ω} can be only be defined on a subset Ω^{\prime} of full measure in Ω, and we substitute Ω by Ω^{\prime}. After a reparametrization given by b_{ω}, the cocycle ($a_{v, \omega}$), defining a group extension T of S on $\Omega \times G$, changes to the cocycle $\left(b_{S_{v} \omega} a_{v, \omega} b_{\omega}^{-1}\right)$ (which is said to be cohomologous to $\left.\left(a_{v, \omega}\right)\right)$.

Let G be a compact metric group and let T be a group extension of S on $\Omega \times G$. Then, in complete analogy with the absolute case, a simple decomposition of $\Omega \times G$ takes place.

Theorem 2. (See, for example, [Z1].) There exists a closed subgroup H of G (called the Mackey group of T) such that, after a certain reparametrization of $\Omega \times G$ over Ω, T is given by an H-cocycle and T is ergodic on the right cosets $H a, a \in G$, with respect to $\nu \times\left(\mu_{H} a\right)$, where μ_{H} is the left Haar measure on H. Moreover, any T-ergodic measure on $\Omega \times G$ whose projection to Ω is ν has the form $\nu \times\left(\mu_{H} a\right)$ for some $a \in G$.

Now let G be locally compact group and let X be a compact homogeneous space of G. The notion of a group extension of S on $\Omega \times X$ given by a G-cocycle is transferred without changes to this case; we will only call it a homogeneous space extension, not a group extension. A reparametrization of $\Omega \times X$ over Ω with the help of a function $b_{\omega} \in G^{\Omega}$ is also defined similarly. Our goal is to show that, in the framework of relative actions, compact nilmanifolds, again, behave as well as compact groups:

Theorem 3. Let X be a compact nilmanifold and let T be a homogeneous space extension of S on $\Omega \times X$. There exists a closed subgroup H of G such that, after a certain reparametrization of $\Omega \times X$ over Ω, T is given by an H-cocycle, and if $\bigcup_{\theta \in \Theta} X_{\theta}$ is the partition of X into the minimal subnilmanifolds with respect to the action of H, then the measures $\nu \times \mu_{X_{\theta}}, \theta \in \Theta$, where $\mu_{X_{\theta}}$ is the Haar measure on X_{θ}, are T-ergodic, and are the only T-ergodic measures on $\Omega \times X$ whose projection to Ω is ν.

We will use the following notation and terminology. If a is a transformation of a (measure) space Y and f is a function on Y, then a acts on f from the right by the rule $(f a)(y)=f(a y)$. If a space Y^{\prime} is a factor of Y, then any function h^{\prime} on Y^{\prime} lifts to a function h on Y; we identify h^{\prime} with h, and say that h comes from Y^{\prime} in this case.

If Y^{\prime} is a factor of a measure space Y, P^{\prime} is an action of a group V on Y^{\prime}, and P is an extension of P^{\prime} on Y, we will say that a function $f \in L^{\infty}(Y)$ is an eigenfunction of P over Y if $f P_{v}=\alpha_{v} f$, where $\alpha_{v} \in L^{\infty}\left(Y^{\prime}\right)$, for every $v \in V$. (Our definition of an eigenfunction over Y is more restricted than the standard definition of a generalized eigenfunction of P
over Y, which assumes that the module spanned by the functions $f T_{v}, v \in V$, has finite rank over $L^{\infty}(\Omega)$.)
G will stand for a nilpotent Lie group of nilpotency class r, Γ for a cocompact subgroup of G, and X for the compact nilmanifold G / Γ. By μ_{X} we will denote the Haar measure on X, and will always mean this measure on X if the opposite is not stated.
T will stand for a homogeneous space extension of S on $\Omega \times X$ by a cocycle $\left(a_{v, \omega}\right)_{\substack{v \in V \\ \omega \in \Omega}}$.
If Z is a factor of X under the action of G, then T induces an action of V on $\Omega \times Z$, which is defined by the same cocycle $\left(a_{v, \omega}\right)_{v \in V}$. We will identify this action with T and denote it by the same symbol.

A subnilmanifold X^{\prime} of X is a closed subset of X of the form $K x$, where K is a closed subgroup of G and $x \in X$. (Note that the notion of a subnilmanifold depends on the group acting of X; what is a subnilmanifold of X with respect to the action of G may not be a subnilmanifold with respect to the action of, say, the identity component of G.) For a subnilmanifold $X^{\prime}=K x$ of X we will denote by $\mu_{X^{\prime}}$ the Haar measure on X^{\prime} with respect to the action of K, and will always mean this measure on X^{\prime} if the opposite is not stated.

Let G° be identity component of G. If X is connected, then X is a homogeneous space of $G^{\mathrm{o}}, X=G^{\mathrm{o}} /\left(\Gamma \cap G^{\mathrm{o}}\right)$. If X is disconnected, then X is a finite union of connected subnilmanifolds; this subnilmanifolds are all isomorphic, are homogeneous spaces of G°, and are permuted by elements of G.

We define $G_{(1)}=G^{\mathrm{o}}, G_{(k)}=\left[G_{(k-1)}, G\right], k=2,3, \ldots, r$, and $X_{(k)}=G_{(k+1)} \backslash X$, $k=0,1, \ldots, r-1$. When X is connected, we also define $X_{2}=\left[G^{\circ}, G^{\circ}\right] \backslash X$; then X_{2} is a torus, the maximal factor-torus of X. We will denote by p the canonical projection $\Omega \times X \longrightarrow \Omega$.

A base tool in studying orbits in nilmanifolds is a lemma by W. Parry ([P1] and [P2]), that says that a shift-transformation of a compact connected nilmanifold X is ergodic iff it is ergodic on the maximal factor-torus of X. Here is a "relative" analogue of Parry's lemma; another proof of it can be found in [Z2].

Proposition 4. (Cf. [Z2], Corollary 3.4) Assume that X is connected. If T is ergodic on $\Omega \times X_{2}$, then T is ergodic on $\Omega \times X$, and any eigenfunction f of T over Ω comes from $\Omega \times X_{2}$ and is such that $f(\omega, \cdot)$ is a character on X_{2}, times a constant, for a.e. $\omega \in \Omega$.

Proof. We will assume by induction on r that T is ergodic on $\Omega \times X_{(r-1)}$, and that if g is an eigenfunction of T on $\Omega \times X_{(r-1)}$ over Ω, then g comes from $\Omega \times X_{2}$ and $g(\omega, \cdot)$ is a character-times-a-constant on X_{2} for a.e. $\omega \in \Omega$.

Let $f \in L^{\infty}(\Omega \times X)$ be an eigenfunction of T over $\Omega, f T_{v}=\alpha_{v}(\omega) f, \alpha_{v}: \Omega \longrightarrow$ $\mathbb{C}, v \in V$. The action of the group $G_{(r)}$ on $\Omega \times X$ factors through an action of the compact commutative group (the torus) $G_{(r)} /\left(G_{(r)} \cap \Gamma\right)$, thus $L^{2}(\Omega \times X)$ is a direct sum of eigenspaces of $G_{(r)}$. Let f^{\prime} be a nonzero projection of f to one of these eigenspaces, then $f^{\prime} c=\lambda_{c} f^{\prime}, \lambda_{c} \in \mathbb{C}$, for every $c \in G_{(r)}$. Since the eigenspaces of $G_{(r)}$ are T-invariant and invariant under multiplication by functions from $L^{\infty}(\Omega)$, we have $f^{\prime} T_{v}=\alpha_{v}(\omega) f^{\prime}, v \in V$.

For every $b \in G$ and $c \in G_{(r)},\left(f^{\prime} b\right) c=f^{\prime} c b=\lambda_{c} f^{\prime} b$, so the function $f_{b}^{\prime}=\left(f^{\prime} b\right) / f^{\prime}$ is $G_{(r)}$ invariant, and thus comes from $\Omega \times X_{(r-1)}$.

Assume, by induction on decreasing k, that for some $k \in\{2, \ldots, r\}$ we have $f^{\prime} c=\lambda_{c} f^{\prime}$, $\lambda_{c} \in \mathbb{C}^{\Omega}$, for any $c \in G_{(k)}$. Then $\left(f^{\prime} \mathbf{c}\right)(\omega, x)=\lambda_{c(\omega)}(\omega) f^{\prime}(\omega, x), \omega \in \Omega, x \in X$, for any
$\mathbf{c}=c(\omega) \in G_{(k)}^{\Omega}$. Now, for any $b \in G_{(k-1)}$ and $v \in V$,

$$
\begin{aligned}
\left(f^{\prime} b T_{v}\right)(\omega, x)=f^{\prime}\left(S_{v} \omega, b a_{v, \omega} x\right) & =f^{\prime}\left(S_{v} \omega, a_{v, \omega}\left[a_{v, \omega}, b^{-1}\right] b x\right)
\end{aligned}=\left(f^{\prime} T_{v}\right)\left(\omega,\left[a_{v, \omega}, b^{-1}\right] b x\right), ~=\alpha_{v}(\omega) f^{\prime}\left(\omega,\left[a_{v, \omega}, b^{-1}\right] b x\right)=\alpha_{v}(\omega) \lambda_{c_{v, b}(\omega)}(\omega) f^{\prime}(\omega, b x)=\alpha_{v}(\omega) \lambda_{c_{v, b}(\omega)}(\omega)\left(f^{\prime} b\right)(\omega, x), ~ \$
$$

where $c_{v, b}(\omega)=\left[a_{v, \omega}, b^{-1}\right] \in G_{(k)}, \omega \in \Omega$. So, for any $b \in G_{(k-1)}$ and $v \in V, f_{b}^{\prime} T_{v}=$ $\lambda_{c_{v, b}(\omega)}(\omega) f_{b}^{\prime}$, and since f_{b}^{\prime} comes from $X_{(r-1)}$, by our first induction assumption, $f_{b}^{\prime}(\omega, \cdot)$ is a character-times-a-constant on X_{2} for a.e. $\omega \in \Omega$. Thus, for a.e. $\omega \in \Omega$, we have a continuous mapping from $G_{(k-1)}$ to the set of characters on X_{2}, and since this set is discrete and $G_{(k-1)}$ is connected, this mapping is constant. (For a.e. ω, the considered mapping may not be a priori defined on a null subset of $G_{(k-1)}$, but since it is locally uniformly continuous, it extends to a continuous mapping on $\left.G_{(k-1)}.\right)$ Hence, $f_{b}^{\prime}(\omega, \cdot)=\lambda_{b}(\omega)$, $\lambda_{b} \in \mathbb{C}$, for all $b \in G_{(k-1)}$ and a.e. $\omega \in \Omega$, that is, $f^{\prime} b=\lambda_{b} f^{\prime}$ with $\lambda_{b} \in \mathbb{C}^{\Omega}$, for all $b \in G_{(k-1)}$, which gives us the induction step.

As the result of our induction on k we obtain that for every $b \in G_{(1)}=G^{\circ}$ there exists a function $\lambda_{b} \in \mathbb{C}^{\Omega}$ such that $f^{\prime} b=\lambda_{b} f^{\prime}$. Thus for any $b_{1}, b_{2} \in G^{\circ}$ we have $f^{\prime}\left[b_{1}, b_{2}\right]=f^{\prime}$. Hence, f^{\prime} is $\left[G^{\circ}, G^{\circ}\right]$-invariant, and so, comes from $\Omega \times X_{2}$. The equality $f^{\prime} b=\lambda_{b} f^{\prime}$, $b \in G^{\text {o }}$, now implies that $f^{\prime}(\omega, \cdot)$ is a character-times-a-constant on X_{2} for a.e. $\omega \in \Omega$.

It follows that f also comes from $\Omega \times X_{2}$. In particular, there are no T-invariant functions on $\Omega \times X$ since there are no T-invariant functions on $\Omega \times X_{2}$, so T is ergodic.

Now assume that for at least two distinct eigenspaces of $G_{(r)}$ the projections $f^{\prime}, f^{\prime \prime}$ of f to these eigenspaces are nonzero. Then both $f^{\prime} T_{v}=\alpha_{v}(\omega) f^{\prime}$ and $f^{\prime \prime} T_{v}=\alpha_{v}(\omega) f^{\prime \prime}$, $v \in V$, and so, $f^{\prime} / f^{\prime \prime}$ is T-invariant, which contradicts the ergodicity of T. Hence, f belongs to one of the eigenspaces of $G_{(r)}$, and so, as this has been proven for $f^{\prime}, f(\omega, \cdot)$ is a character-times-a-constant on X_{2} for a.e. $\omega \in \Omega$.
Remark. In contrast with the absolute case (the case $\Omega=\{$.$\}), the stronger statement$ " T is ergodic if it is ergodic on $\Omega \times([G, G] \backslash X)$ " (where it is assumed that G is generated by G° and $\left\{T_{v}, v \in V\right\}$) is no longer true in the relative case. Here is an example: let $\Omega=\mathbb{Z}_{2}$, let $X=\mathbb{T}_{x_{1}, x_{2}}^{2}$ where $\mathbb{T}=\mathbb{R} / \mathbb{Z}$, let G be the group of transformations of X of the form $\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}+\alpha, x_{2}+l x_{1}+\beta\right), \alpha, \beta \in \mathbb{T}, l \in \mathbb{Z}$, and let V be the group generated by the transformation $T\left(\omega, x_{1}, x_{2}\right)=\left(\omega+1, x_{1}+\omega \alpha, x_{2}+(-1)^{\omega} x_{1}\right)$ of $\Omega \times X$, where α is an irrational element of \mathbb{T}. Then $[G, G]=\left\{\left(0, x_{2}\right), x_{2} \in \mathbb{T}\right\}$, and $[G, G] \backslash X \simeq \mathbb{T}_{x_{1}}$. One checks that T is ergodic on $\Omega \times([G, G] \backslash X)$, whereas the function $f\left(\omega, x_{1}, x_{2}\right)=\left\{\begin{array}{l}x_{2}, \omega=0 \\ x_{2}-x_{1}, \omega=1\end{array}\right.$ on $\Omega \times X$ is T-invariant. The reason of this effect is clear, it is a "bad parametrization" of $\Omega \times X$; after a proper reparametrization, T acts as a rotation on X, G can be reduced to the group of rotations of X, and then $[G, G] \backslash X=X$.
Remark. We do not know whether Proposition 4 can be extended to the (more general) class of generalized eigenfunctions of T over Ω.

Let X be connected. Having Proposition 4, we may deal with the maximal factortorus X_{2} of X instead of X; indeed, if T is not ergodic on $\Omega \times X$, then T is not ergodic on $T \times X_{2}$ as well. The problem is that G, if disconnected, may act on X_{2} not only by conventional rotations, but also by affine unipotent transformation. Thus, we will still
have to treat X_{2} as a nilmanifold, not as a conventional torus. Since this does not change our argument, we will not assume that X is a torus; we will, however, call "characters" on X those on X_{2}.

Note that for any character χ on X and any $a \in G, \chi a=\lambda \chi^{\prime}$, where χ^{\prime} is a character on X and $\lambda \in \mathbb{C},|\lambda|=1$. On the other hand, if $\lambda \in \mathbb{C},|\lambda|=1$, and χ is a character on X, then, clearly, there exists a translation a of X such that $\chi a=\lambda \chi$.

Rather than Proposition 4, we will actually need the following, more technical fact:
Lemma 5. Let X be connected. Assume that T is ergodic on $X_{(r-1)}$ and that $f \in$ $L^{\infty}(\Omega \times X)$ is T-invariant and is an eigenfunction of $G_{(r)}$. Then $f(\omega, \cdot)$ is a character-times-a-constant on X for a.e. $\omega \in \Omega$.
Of course, if X_{2} is a factor of $X_{(r-1)}$, this lemma follows from Proposition 4; otherwise it has to be proven separately, though its proof is very similar to that of Proposition 4.
Proof. Let $f c=\lambda_{c} f, \lambda_{c} \in \mathbb{C}, c \in G_{(r)}$. For every $b \in G$ and $c \in G_{(r)},(f b) c=f c b=\lambda_{c} f b$, so the function $f_{b}=(f b) / f$ is $G_{(r)}$ invariant, and thus comes from $\Omega \times X_{(r-1)}$. Assume, by induction on decreasing k, that for some $k \in\{2, \ldots, r\}$ we have $f c=\lambda_{c} f, \lambda_{c} \in \mathbb{C}^{\Omega}$, for any $c \in G_{(k)}$. Then $(f \mathbf{c})(\omega, x)=\lambda_{c(\omega)}(\omega) f(\omega, x), \omega \in \Omega, x \in X$, for any $\mathbf{c}=c(\omega) \in G_{(k)}^{\Omega}$. Now, for any $b \in G_{(k-1)}$ and $v \in V$,

$$
\begin{array}{r}
\left(f b T_{v}\right)(\omega, x)=f\left(S_{v} \omega, b a_{v, \omega} x\right)=f\left(S_{v} \omega, a_{v, \omega}\left[a_{v, \omega}, b^{-1}\right] b x\right)=\left(f T_{v}\right)\left(\omega,\left[a_{v, \omega}, b^{-1}\right] b x\right) \\
=f\left(\omega,\left[a_{v, \omega}, b^{-1}\right] b x\right)=\lambda_{c_{v, b}(\omega)}(\omega) f(\omega, b x)=\lambda_{c_{v, b}(\omega)}(\omega)(f b)(\omega, x)
\end{array}
$$

where $c_{v, b}(\omega)=\left[a_{v, \omega}, b^{-1}\right] \in G_{(k)}, \omega \in \Omega$. So, for any $b \in G_{(k-1)}$ and $v \in V, f_{b} T_{v}=$ $\lambda_{c_{v, b}(\omega)}(\omega) f_{b}$, and since f_{b} comes from $X_{(r-1)}$ where T is ergodic, by Proposition $4, f_{b}(\omega, \cdot)$ is a character-times-a-constant on X for a.e. $\omega \in \Omega$. Thus, for a.e. $\omega \in \Omega$, we have a continuous mapping from $G_{(k-1)}$ to the set of characters on X, and since this set is discrete and $G_{(k-1)}$ is connected, this mapping is constant. Hence, $f_{b}(\omega, \cdot)=\lambda_{b}(\omega), \lambda_{b} \in \mathbb{C}$, for all $b \in G_{(k-1)}$ and a.e. $\omega \in \Omega$, that is, $f b=\lambda_{b} f$ with $\lambda_{b} \in \mathbb{C}^{\Omega}$, for all $b \in G_{(k-1)}$, which gives us the induction step.

As the result of induction on k we obtain that for every $b \in G_{(1)}=G^{\circ}$ there exists a function $\lambda_{b} \in \mathbb{C}^{\Omega}$ such that $f b=\lambda_{b} f$. Hence, $f(\omega, \cdot)$ is a character-times-a-constant on X for a.e. $\omega \in \Omega$.

We will also need the following corollary of Theorem 2.
Lemma 6. Let K be a compact metric group, let Z be a homogeneous space of K, and let R be a homogeneous space extension of S on $\Omega \times Z$. If R is not ergodic, then K has a proper closed subgroup H such that, after a reparametrization of $\Omega \times Z$ over Ω, R is given by an H-cocycle.
Proof. The cocycle defining the action R defines a group action \widetilde{R} of V on $\Omega \times K$, for which R is a factor. If R is not ergodic, then \widetilde{R} is not ergodic as well, and the assertion of the lemma follows from Theorem 2.

Proposition 7. Assume that T is not ergodic on $\Omega \times X$. Then there exists a proper closed subgroup H of G such that, after a certain reparametrization of $\Omega \times X$ over Ω, T is given by an H-cocycle.

Proof. We will use induction on r, the nilpotency class of X. First, for simplicity, consider the case where X is connected. If T is not ergodic on $\Omega \times X_{(r-1)}$, then we are done by induction on r. Thus, we assume that T is ergodic on $\Omega \times X_{(r-1)}$. Let f be a nonzero measurable T-invariant function on $\Omega \times X$. We replace f by its nonzero projection to one of the eigenspaces of $G_{(r)}$, which is also a T-invariant function. By Lemma $5, f(\omega, \cdot)=$ $\lambda(\omega) \chi_{\omega}$, where χ_{ω} is a character on X and $\lambda(\omega) \in \mathbb{C}$, for a.e. $\omega \in \Omega$. Since S is ergodic, $|\lambda(\omega)|=$ const on a subset Ω^{\prime} of Ω of full measure, and we may assume that $|\lambda| \equiv 1$. There are only countably many characters on X, therefore a subset $\Omega^{\prime \prime}$ of full measure in Ω^{\prime} is partitioned into the union of sets of positive measure where χ_{ω} is constant. Since S is ergodic, we can choose a character χ on X and elements $b(\omega), \omega \in \Omega^{\prime \prime}$, measurably depending on ω, such that for every $\omega \in \Omega^{\prime}$ one has $\lambda_{\omega} \chi_{\omega}=\chi b_{\omega}$, so that $f(\omega, x)=$ $\lambda(\omega) \chi_{\omega}(x)=\chi\left(b_{\omega} x\right), x \in X$. After the reparametrization of $\Omega \times X$ defined by the function b_{ω} (and replacing Ω by $\Omega^{\prime \prime}$), f takes the form $f(\omega, x)=\chi(x), \omega \in \Omega, x \in X$. Let H be the stabilizer of χ in $G, H=\{c \in G: \chi c=\chi\}$; then H is a proper closed subgroup of G and the cocycle defining T takes values in H.

Now let X be disconnected. G acts on the finite set \mathcal{X} of connected components of X; let \widetilde{G} be the subgroup (of finite index) of G that acts trivially on \mathcal{X}. Then the action of G on \mathcal{X} factorizes through the action of the finite group G / \widetilde{G}, and if T is not ergodic on $\Omega \times \mathcal{X}$, we are done by Lemma 6 . Thus, we may assume that T is ergodic $\Omega \times \mathcal{X}$.

Let X^{o} be a connected component of X; then X, under the action of \widetilde{G}, is isomorphic to $\{1, \ldots, n\} \times X^{\text {o }}$, where n is the number of components in X. Consider $\Omega \times X=$ $\Omega \times\{1, \ldots, n\} \times X^{\mathrm{o}}$ as $\widetilde{\Omega} \times X^{\mathrm{o}}$ where $\widetilde{\Omega}=\Omega \times\{1, \ldots, n\}$; by our assumption, T acts ergodically on $\widetilde{\Omega}$. Since X° is connected and has nilpotency class $\leq r$, we may, as in the first part of the proof, find a subset Ω^{\prime} of full measure in Ω and a measurable T invariant function f on $\widetilde{\Omega}^{\prime} \times X^{\circ}=\Omega^{\prime} \times X$ such that $f(\omega, i, \cdot)=\lambda(\omega, i) \chi_{\omega, i}$, where $\chi_{\omega, i}$ is a character on X^{o} and $\lambda(\omega, i) \in \mathbb{C}$, for all $\omega \in \Omega^{\prime}$ and all $i \in\{1, \ldots, n\}$. For all $\omega \in \Omega^{\prime}$ we, therefore, have the (non-ordered) set $C_{\omega}=\left\{\chi_{\omega, 1}, \ldots, \chi_{\omega, n}\right\}$ of characters on X° such that $T_{v} C_{\omega}=C_{S_{v} \omega}, v \in V$, for all $\omega \in \Omega^{\prime}$, and since only countably many possibilities for C_{ω} exist, a certain reparametrization of $\Omega \times X$ over Ω (with replacing Ω by Ω^{\prime}) makes C_{ω} to be constant, $C_{\omega}=C=\left\{\chi_{1}, \ldots, \chi_{n}\right\}$ for all $\omega \in \Omega$. Moreover, since T acts ergodically on $\Omega \times \mathcal{X}, G$ acts transitively on C; thus, after some change of coordinates in distinct connected components of X, we may make $\chi_{1}, \ldots, \chi_{n}$ to be all equal to the same character χ. After this, we obtain that $\chi T_{v}=\frac{\lambda(\omega, i)}{\lambda\left(S_{v} \omega, j\right)} \chi, j=j(v, \omega, i)$, for all $v \in V$, $\omega \in \Omega$, and $i \in\{1, \ldots, n\}$, that is, T maps the fibers of χ to fibers. Let us assume, as we may, that G is generated by G° and the entries of the cocycle defining T; then G maps the fibers of χ to fibers, and we may factorize X by these fibers. Let Z be the factor; then Z is a finite union of circles, $Z=\{1, \ldots, n\} \times \mathbb{T}$, and G acts by rotations on \mathbb{T}, that is, for any $a \in G, a(i, x)=\left(a i, x+\alpha_{a, i}\right), x \in \mathbb{T}, i \in\{1, \ldots, n\}$, with $\alpha_{a, i} \in \mathbb{T}$ (and ai is defined by $\left.X_{a i}=a X_{i}\right)$. We obtain that the action of G on Z factorizes through the action of a compact group (the group of rotations of components of Z and of permutations of these components). Since T is not ergodic on $\Omega \times Z$, we are done by Lemma 6 .

Lemma 8. If T is ergodic on $\Omega \times X$ (with respect to $\nu \times \mu_{X}$), then $\nu \times \mu_{X}$ is the only T-ergodic probability measure whose projection on Ω is ν.

Proof. Let $G_{1}=G$ and $G_{k}=\left[G_{k-1}, G\right]$ for $k=2,3, \ldots, r$, let $X_{r-1}=G_{r} \backslash X$, and let $\pi_{r}: X \longrightarrow X_{r-1}$ be the canonical projection. If T is ergodic on $\Omega \times X$ with respect to $\nu \times \mu_{X}$, by induction on $r, \nu \times \mu_{X_{r-1}}$ is the only T-ergodic probability measure on $\Omega \times X_{r-1}$ whose projection on Ω is ν. Thus, if τ is a T-ergodic probability measure on $\Omega \times X$ with $p(\tau)=\nu$, then $\left(\operatorname{Id}_{\Omega} \times \pi_{r}\right)(\tau)=\nu \times \mu_{X_{r-1}} . \Omega \times X$ is a group extension of $\Omega \times X_{r-1}$ with the fiber $F_{r}=G_{r} /\left(\Gamma \cap G_{r}\right)$, which is a compact commutative Lie group. Hence, by Theorem 2, $\tau=\nu \times \mu_{X_{r-1}} \times \mu_{F_{r}}=\nu \times \mu_{X}$.

Proof of Theorem 3. Let H be a minimal closed subgroup of G such that there exists a reparametrization of $X \times \Omega$ over Ω after which T is given by an H-cocycle. (Such a subgroup exists since any chain of decreasing subgroups of G is finite.) Let $X=\bigcup_{\theta \in \Theta} X_{\theta}$ be the partition of X into the union of subnilmanifolds minimal under the action of H, as in Theorem 1. After the reparametrization corresponding to $H, \Omega \times X$ splits into the disjoint union $\bigcup_{\theta \in \Theta} \Omega \times X_{\theta}$ of T-invariant subsets on each of which T is given by an H cocycle. If T is not ergodic on one of these subsets, then by Proposition 7, H contains a proper closed subgroup H^{\prime} such that, after a reparametrization of $\Omega \times X$ over Ω, T is given by an H^{\prime}-cocycle; this contradicts the choice of H. Thus, T is ergodic on each of $\Omega \times X_{\theta}, \theta \in \Theta$. Moreover, if τ is an ergodic measure on $\Omega \times X$ with $p(\tau)=\nu$, then τ must be supported by $\Omega \times X_{\theta}$ for some $\theta \in \Theta$, and thus $\tau=\nu \times \mu_{\Omega_{\theta}}$ by Lemma 8 .

Bibliography

[L1] A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold, Erg. Th. and Dyn. Sys. 25 (2005), 201-213.
[L2] A. Leibman, Orbits on a nilmanifold under the action of a polynomial sequences of translations, Erg. Th. and Dyn. Sys. 27 (2007), 1239-1252.
[Le] E. Lesigne, Sur une nil-variété, les parties minimales assocées à une translation sont uniquement ergodiques, Erg. Th. and Dyn. Sys. 11 (1991), 379-391.
[P1] W. Parry, Ergodic properties of affine transformations and flows on nilmanifolds, Amer. J. Math. 91 (1969), 757-771.
[P2] W. Parry, Dynamical systems on nilmanifolds, Bull. London Math. Soc. 2 (1970), 37-40.
[Sh] N. Shah, Invariant measures and orbit closures on homogeneous spaces for actions of subgroups generated by unipotent elements, Lie groups and ergodic theory (Mumbai, 1996), 229-271, Tata Inst. Fund. Res., Bombay, 1998.
[Z1] R. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), no. 3, 373-409.
[Z2] R. Zimmer, Compact nilmanifold extensions of ergodic actions, Trans. of AMS $\mathbf{2 2 3}$ (1976), 397-406.

