Ergodic components of an extension by a nilmanifold

A. Leibman

Department of Mathematics The Ohio State University Columbus, OH 43210, USA *e-mail*: leibman@math.ohio-state.edu

April 9, 2008

Abstract

We describe the structure of the ergodic decomposition of an extension of an ergodic system by a nilmanifold.

If G is a compact group and V a subgroup of G, then, under the (left) action of V, G splits into a disjoint union of isomorphic "orbits": if H is the closure of V in G, then the right cosets Ha, $a \in G$, are minimal closed V-invariant subsets of G, and the action of V on each of these sets is ergodic (with respect to the Haar measure). If X is a compact homogeneous space of a locally compact group G and V is a subgroup of G, then the structure of orbits of the action of V on X may be much more complicated. However, if G is a nilpotent Lie group and X is, respectively, a compact *nilmanifold*, then the orbit structure on X is almost as simple as in the case of a compact G:

Theorem 1. Let X be a compact nilmanifold and let V be a group of translations of X. Then X is a disjoint union of closed V-invariant (not necessarily isomorphic) subnilmanifolds, on each of which the action of V is minimal and ergodic with respect to the Haar measure.

(See [Le], [L1], and [L2]; this is also a corollary of a general theory of Ratner and Shah on unipotent flows, see [Sh].)

Let us now turn to the "relative" situation. We say that a measure space Y is an extension of Y', and that Y' is a factor of Y, if a measure preserving mapping $p: Y \longrightarrow Y'$ is fixed. If P and P' are measure preserving actions of a group V on Y and Y' respectively such that $P'_v \circ p = p \circ P_v$, $v \in V$, we say that P is an extension of P' on Y, and that Y' is a factor of Y under the action P.

Throughout the paper, (Ω, ν) will be a probability measure space, and S will be an ergodic measure preserving action of a group V on Ω . We will assume that V is countable. (This assumption is not crucial for our argument, saves us from measure theoretical troubles: under this assumption, if something is true a.e. for every $v \in V$, then it is true a.e. for

Supported by NSF grant DMS-0600042.

²⁰⁰⁰ Mathematical Subject Classification: 22F10, 22D40

all $v \in V$ simultaneously.) Let G be a compact group; we say that an extension T of S on the space $\Omega \times G$ is a group extension if T is defined by the formula $T_v(\omega, x) = (S_v \omega, a_{v,\omega} x)$, $x \in G$, where $a_{v,\omega} \in G$, $\omega \in \Omega$, $v \in V$, and for every $v \in V$, the mapping $\omega \mapsto a_{v,\omega}$ is assumed to be measurable. The family $(a_{v,\omega})_{\substack{v \in V \\ \omega \in \Omega}}$ of elements of G defining T is called acocycle; we will say that T is given by the cocycle $(a_{v,\omega})$. If H is a subgroup of G and $a_{v,\omega} \in H$ for all $v \in V$ and $\omega \in \Omega$, we will say that $(a_{v,\omega})_{\substack{v \in V \\ \omega \in \Omega}}$ is an H-cocycle. Clearly, if T is given by an H-cocycle, the sets $\Omega \times (Hx)$, $x \in G$, are T-invariant.

We will call a self-mapping of $\Omega \times G$ defined by the formula $(\omega, x) \mapsto (\omega, b_{\omega}x), x \in G$, where $b_{\omega} \in G, \omega \in \Omega$, and measurably depend on ω , a reparametrization of $\Omega \times G$ over Ω . When reparametrizing $\Omega \times G$ we allow ourself to ignore a null set of Ω , so that the reparametrization function b_{ω} can be only be defined on a subset Ω' of full measure in Ω , and we substitute Ω by Ω' . After a reparametrization given by b_{ω} , the cocycle $(a_{v,\omega})$, defining a group extension T of S on $\Omega \times G$, changes to the cocycle $(b_{S_v\omega}a_{v,\omega}b_{\omega}^{-1})$ (which is said to be *cohomologous* to $(a_{v,\omega})$).

Let G be a compact metric group and let T be a group extension of S on $\Omega \times G$. Then, in complete analogy with the absolute case, a simple decomposition of $\Omega \times G$ takes place.

Theorem 2. (See, for example, [Z1].) There exists a closed subgroup H of G (called the Mackey group of T) such that, after a certain reparametrization of $\Omega \times G$ over Ω , T is given by an H-cocycle and T is ergodic on the right cosets Ha, $a \in G$, with respect to $\nu \times (\mu_H a)$, where μ_H is the left Haar measure on H. Moreover, any T-ergodic measure on $\Omega \times G$ whose projection to Ω is ν has the form $\nu \times (\mu_H a)$ for some $a \in G$.

Now let G be locally compact group and let X be a compact homogeneous space of G. The notion of a group extension of S on $\Omega \times X$ given by a G-cocycle is transferred without changes to this case; we will only call it a homogeneous space extension, not a group extension. A reparametrization of $\Omega \times X$ over Ω with the help of a function $b_{\omega} \in G^{\Omega}$ is also defined similarly. Our goal is to show that, in the framework of relative actions, compact nilmanifolds, again, behave as well as compact groups:

Theorem 3. Let X be a compact nilmanifold and let T be a homogeneous space extension of S on $\Omega \times X$. There exists a closed subgroup H of G such that, after a certain reparametrization of $\Omega \times X$ over Ω , T is given by an H-cocycle, and if $\bigcup_{\theta \in \Theta} X_{\theta}$ is the partition of X into the minimal subnilmanifolds with respect to the action of H, then the measures $\nu \times \mu_{X_{\theta}}$, $\theta \in \Theta$, where $\mu_{X_{\theta}}$ is the Haar measure on X_{θ} , are T-ergodic, and are the only T-ergodic measures on $\Omega \times X$ whose projection to Ω is ν .

We will use the following notation and terminology. If a is a transformation of a (measure) space Y and f is a function on Y, then a acts on f from the right by the rule (fa)(y) = f(ay). If a space Y' is a factor of Y, then any function h' on Y' lifts to a function h on Y; we identify h' with h, and say that h comes from Y' in this case.

If Y' is a factor of a measure space Y, P' is an action of a group V on Y', and P is an extension of P' on Y, we will say that a function $f \in L^{\infty}(Y)$ is an eigenfunction of P over Y if $fP_v = \alpha_v f$, where $\alpha_v \in L^{\infty}(Y')$, for every $v \in V$. (Our definition of an eigenfunction over Y is more restricted than the standard definition of a generalized eigenfunction of P

over Y, which assumes that the module spanned by the functions $fT_v, v \in V$, has finite rank over $L^{\infty}(\Omega)$.)

G will stand for a nilpotent Lie group of nilpotency class r, Γ for a cocompact subgroup of G, and X for the compact nilmanifold G/Γ . By μ_X we will denote the Haar measure on X, and will always mean this measure on X if the opposite is not stated.

T will stand for a homogeneous space extension of S on $\Omega \times X$ by a cocycle $(a_{v,\omega})_{v \in V}$.

If Z is a factor of X under the action of G, then T induces an action of V on $\Omega \times Z$, which is defined by the same cocycle $(a_{v,\omega})_{\substack{v \in V \\ \omega \in \Omega}}$. We will identify this action with T and denote it by the same symbol.

A subnilmanifold X' of X is a closed subset of X of the form Kx, where K is a closed subgroup of G and $x \in X$. (Note that the notion of a subnilmanifold depends on the group acting of X; what is a subnilmanifold of X with respect to the action of G may not be a subnilmanifold with respect to the action of, say, the identity component of G.) For a subnilmanifold X' = Kx of X we will denote by $\mu_{X'}$ the Haar measure on X' with respect to the action of K, and will always mean this measure on X' if the opposite is not stated.

Let G° be identity component of G. If X is connected, then X is a homogeneous space of G° , $X = G^{\circ}/(\Gamma \cap G^{\circ})$. If X is disconnected, then X is a finite union of connected subnilmanifolds; this subnilmanifolds are all isomorphic, are homogeneous spaces of G° , and are permuted by elements of G.

We define $G_{(1)} = G^{\circ}$, $G_{(k)} = [G_{(k-1)}, G]$, k = 2, 3, ..., r, and $X_{(k)} = G_{(k+1)} \setminus X$, k = 0, 1, ..., r - 1. When X is connected, we also define $X_2 = [G^{\circ}, G^{\circ}] \setminus X$; then X_2 is a torus, the maximal factor-torus of X. We will denote by p the canonical projection $\Omega \times X \longrightarrow \Omega$.

A base tool in studying orbits in nilmanifolds is a lemma by W. Parry ([P1] and [P2]), that says that a shift-transformation of a compact connected nilmanifold X is ergodic iff it is ergodic on the maximal factor-torus of X. Here is a "relative" analogue of Parry's lemma; another proof of it can be found in [Z2].

Proposition 4. (Cf. [Z2], Corollary 3.4) Assume that X is connected. If T is ergodic on $\Omega \times X_2$, then T is ergodic on $\Omega \times X$, and any eigenfunction f of T over Ω comes from $\Omega \times X_2$ and is such that $f(\omega, \cdot)$ is a character on X_2 , times a constant, for a.e. $\omega \in \Omega$.

Proof. We will assume by induction on r that T is ergodic on $\Omega \times X_{(r-1)}$, and that if g is an eigenfunction of T on $\Omega \times X_{(r-1)}$ over Ω , then g comes from $\Omega \times X_2$ and $g(\omega, \cdot)$ is a character-times-a-constant on X_2 for a.e. $\omega \in \Omega$.

Let $f \in L^{\infty}(\Omega \times X)$ be an eigenfunction of T over Ω , $fT_v = \alpha_v(\omega)f$, $\alpha_v: \Omega \longrightarrow \mathbb{C}$, $v \in V$. The action of the group $G_{(r)}$ on $\Omega \times X$ factors through an action of the compact commutative group (the torus) $G_{(r)}/(G_{(r)} \cap \Gamma)$, thus $L^2(\Omega \times X)$ is a direct sum of eigenspaces of $G_{(r)}$. Let f' be a nonzero projection of f to one of these eigenspaces, then $f'c = \lambda_c f', \lambda_c \in \mathbb{C}$, for every $c \in G_{(r)}$. Since the eigenspaces of $G_{(r)}$ are T-invariant and invariant under multiplication by functions from $L^{\infty}(\Omega)$, we have $f'T_v = \alpha_v(\omega)f'$, $v \in V$.

For every $b \in G$ and $c \in G_{(r)}$, $(f'b)c = f'cb = \lambda_c f'b$, so the function $f'_b = (f'b)/f'$ is $G_{(r)}$ invariant, and thus comes from $\Omega \times X_{(r-1)}$.

Assume, by induction on decreasing k, that for some $k \in \{2, ..., r\}$ we have $f'c = \lambda_c f'$, $\lambda_c \in \mathbb{C}^{\Omega}$, for any $c \in G_{(k)}$. Then $(f'\mathbf{c})(\omega, x) = \lambda_{c(\omega)}(\omega)f'(\omega, x), \ \omega \in \Omega, \ x \in X$, for any

 $\mathbf{c} = c(\omega) \in G_{(k)}^{\Omega}$. Now, for any $b \in G_{(k-1)}$ and $v \in V$,

$$(f'bT_v)(\omega, x) = f'(S_v\omega, ba_{v,\omega}x) = f'(S_v\omega, a_{v,\omega}[a_{v,\omega}, b^{-1}]bx) = (f'T_v)(\omega, [a_{v,\omega}, b^{-1}]bx)$$
$$= \alpha_v(\omega)f'(\omega, [a_{v,\omega}, b^{-1}]bx) = \alpha_v(\omega)\lambda_{c_{v,b}(\omega)}(\omega)f'(\omega, bx) = \alpha_v(\omega)\lambda_{c_{v,b}(\omega)}(\omega)(f'b)(\omega, x)$$

where $c_{v,b}(\omega) = [a_{v,\omega}, b^{-1}] \in G_{(k)}, \ \omega \in \Omega$. So, for any $b \in G_{(k-1)}$ and $v \in V$, $f'_b T_v = \lambda_{c_{v,b}(\omega)}(\omega)f'_b$, and since f'_b comes from $X_{(r-1)}$, by our first induction assumption, $f'_b(\omega, \cdot)$ is a character-times-a-constant on X_2 for a.e. $\omega \in \Omega$. Thus, for a.e. $\omega \in \Omega$, we have a continuous mapping from $G_{(k-1)}$ to the set of characters on X_2 , and since this set is discrete and $G_{(k-1)}$ is connected, this mapping is constant. (For a.e. ω , the considered mapping may not be a priori defined on a null subset of $G_{(k-1)}$, but since it is locally uniformly continuous, it extends to a continuous mapping on $G_{(k-1)}$.) Hence, $f'_b(\omega, \cdot) = \lambda_b(\omega)$, $\lambda_b \in \mathbb{C}$, for all $b \in G_{(k-1)}$ and a.e. $\omega \in \Omega$, that is, $f'b = \lambda_b f'$ with $\lambda_b \in \mathbb{C}^{\Omega}$, for all $b \in G_{(k-1)}$, which gives us the induction step.

As the result of our induction on k we obtain that for every $b \in G_{(1)} = G^{\circ}$ there exists a function $\lambda_b \in \mathbb{C}^{\Omega}$ such that $f'b = \lambda_b f'$. Thus for any $b_1, b_2 \in G^{\circ}$ we have $f'[b_1, b_2] = f'$. Hence, f' is $[G^{\circ}, G^{\circ}]$ -invariant, and so, comes from $\Omega \times X_2$. The equality $f'b = \lambda_b f'$, $b \in G^{\circ}$, now implies that $f'(\omega, \cdot)$ is a character-times-a-constant on X_2 for a.e. $\omega \in \Omega$.

It follows that f also comes from $\Omega \times X_2$. In particular, there are no T-invariant functions on $\Omega \times X$ since there are no T-invariant functions on $\Omega \times X_2$, so T is ergodic.

Now assume that for at least two distinct eigenspaces of $G_{(r)}$ the projections f', f'' of f to these eigenspaces are nonzero. Then both $f'T_v = \alpha_v(\omega)f'$ and $f''T_v = \alpha_v(\omega)f''$, $v \in V$, and so, f'/f'' is T-invariant, which contradicts the ergodicity of T. Hence, f belongs to one of the eigenspaces of $G_{(r)}$, and so, as this has been proven for f', $f(\omega, \cdot)$ is a character-times-a-constant on X_2 for a.e. $\omega \in \Omega$.

Remark. In contrast with the absolute case (the case $\Omega = \{.\}$), the stronger statement "*T* is ergodic if it is ergodic on $\Omega \times ([G,G] \setminus X)$ " (where it is assumed that *G* is generated by G° and $\{T_v, v \in V\}$) is no longer true in the relative case. Here is an example: let $\Omega = \mathbb{Z}_2$, let $X = \mathbb{T}^2_{x_1,x_2}$ where $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, let *G* be the group of transformations of *X* of the form $(x_1, x_2) \mapsto (x_1 + \alpha, x_2 + lx_1 + \beta), \alpha, \beta \in \mathbb{T}, l \in \mathbb{Z}$, and let *V* be the group generated by the transformation $T(\omega, x_1, x_2) = (\omega + 1, x_1 + \omega\alpha, x_2 + (-1)^{\omega}x_1)$ of $\Omega \times X$, where α is an irrational element of \mathbb{T} . Then $[G, G] = \{(0, x_2), x_2 \in \mathbb{T}\}$, and $[G, G] \setminus X \simeq \mathbb{T}_{x_1}$. One checks that *T* is ergodic on $\Omega \times ([G, G] \setminus X)$, whereas the function $f(\omega, x_1, x_2) = \begin{cases} x_2, \omega = 0 \\ x_2 - x_1, \omega = 1 \end{cases}$ on $\Omega \times X$ is *T*-invariant. The reason of this effect is clear, it is a "bad parametrization" of

 $\Omega \times X$; after a proper reparametrization, T acts as a rotation on X, G can be reduced to the group of rotations of X, and then $[G, G] \setminus X = X$.

Remark. We do not know whether Proposition 4 can be extended to the (more general) class of generalized eigenfunctions of T over Ω .

Let X be connected. Having Proposition 4, we may deal with the maximal factortorus X_2 of X instead of X; indeed, if T is not ergodic on $\Omega \times X$, then T is not ergodic on $T \times X_2$ as well. The problem is that G, if disconnected, may act on X_2 not only by conventional rotations, but also by affine unipotent transformation. Thus, we will still have to treat X_2 as a nilmanifold, not as a conventional torus. Since this does not change our argument, we will not assume that X is a torus; we will, however, call "characters" on X those on X_2 .

Note that for any character χ on X and any $a \in G$, $\chi a = \lambda \chi'$, where χ' is a character on X and $\lambda \in \mathbb{C}$, $|\lambda| = 1$. On the other hand, if $\lambda \in \mathbb{C}$, $|\lambda| = 1$, and χ is a character on X, then, clearly, there exists a translation a of X such that $\chi a = \lambda \chi$.

Rather than Proposition 4, we will actually need the following, more technical fact:

Lemma 5. Let X be connected. Assume that T is ergodic on $X_{(r-1)}$ and that $f \in L^{\infty}(\Omega \times X)$ is T-invariant and is an eigenfunction of $G_{(r)}$. Then $f(\omega, \cdot)$ is a charactertimes-a-constant on X for a.e. $\omega \in \Omega$.

Of course, if X_2 is a factor of $X_{(r-1)}$, this lemma follows from Proposition 4; otherwise it has to be proven separately, though its proof is very similar to that of Proposition 4.

Proof. Let $fc = \lambda_c f$, $\lambda_c \in \mathbb{C}$, $c \in G_{(r)}$. For every $b \in G$ and $c \in G_{(r)}$, $(fb)c = fcb = \lambda_c fb$, so the function $f_b = (fb)/f$ is $G_{(r)}$ invariant, and thus comes from $\Omega \times X_{(r-1)}$. Assume, by induction on decreasing k, that for some $k \in \{2, \ldots, r\}$ we have $fc = \lambda_c f$, $\lambda_c \in \mathbb{C}^{\Omega}$, for any $c \in G_{(k)}$. Then $(f\mathbf{c})(\omega, x) = \lambda_{c(\omega)}(\omega)f(\omega, x)$, $\omega \in \Omega$, $x \in X$, for any $\mathbf{c} = c(\omega) \in G_{(k)}^{\Omega}$. Now, for any $b \in G_{(k-1)}$ and $v \in V$,

$$(fbT_v)(\omega, x) = f(S_v\omega, ba_{v,\omega}x) = f\left(S_v\omega, a_{v,\omega}[a_{v,\omega}, b^{-1}]bx\right) = (fT_v)\left(\omega, [a_{v,\omega}, b^{-1}]bx\right)$$
$$= f\left(\omega, [a_{v,\omega}, b^{-1}]bx\right) = \lambda_{c_{v,b}(\omega)}(\omega)f(\omega, bx) = \lambda_{c_{v,b}(\omega)}(\omega)(fb)(\omega, x),$$

where $c_{v,b}(\omega) = [a_{v,\omega}, b^{-1}] \in G_{(k)}, \ \omega \in \Omega$. So, for any $b \in G_{(k-1)}$ and $v \in V$, $f_b T_v = \lambda_{c_{v,b}(\omega)}(\omega)f_b$, and since f_b comes from $X_{(r-1)}$ where T is ergodic, by Proposition 4, $f_b(\omega, \cdot)$ is a character-times-a-constant on X for a.e. $\omega \in \Omega$. Thus, for a.e. $\omega \in \Omega$, we have a continuous mapping from $G_{(k-1)}$ to the set of characters on X, and since this set is discrete and $G_{(k-1)}$ is connected, this mapping is constant. Hence, $f_b(\omega, \cdot) = \lambda_b(\omega), \lambda_b \in \mathbb{C}$, for all $b \in G_{(k-1)}$ and a.e. $\omega \in \Omega$, that is, $fb = \lambda_b f$ with $\lambda_b \in \mathbb{C}^{\Omega}$, for all $b \in G_{(k-1)}$, which gives us the induction step.

As the result of induction on k we obtain that for every $b \in G_{(1)} = G^{\circ}$ there exists a function $\lambda_b \in \mathbb{C}^{\Omega}$ such that $fb = \lambda_b f$. Hence, $f(\omega, \cdot)$ is a character-times-a-constant on X for a.e. $\omega \in \Omega$.

We will also need the following corollary of Theorem 2.

Lemma 6. Let K be a compact metric group, let Z be a homogeneous space of K, and let R be a homogeneous space extension of S on $\Omega \times Z$. If R is not ergodic, then K has a proper closed subgroup H such that, after a reparametrization of $\Omega \times Z$ over Ω , R is given by an H-cocycle.

Proof. The cocycle defining the action R defines a group action \widetilde{R} of V on $\Omega \times K$, for which R is a factor. If R is not ergodic, then \widetilde{R} is not ergodic as well, and the assertion of the lemma follows from Theorem 2.

Proposition 7. Assume that T is not ergodic on $\Omega \times X$. Then there exists a proper closed subgroup H of G such that, after a certain reparametrization of $\Omega \times X$ over Ω , T is given by an H-cocycle.

Proof. We will use induction on r, the nilpotency class of X. First, for simplicity, consider the case where X is connected. If T is not ergodic on $\Omega \times X_{(r-1)}$, then we are done by induction on r. Thus, we assume that T is ergodic on $\Omega \times X_{(r-1)}$. Let f be a nonzero measurable T-invariant function on $\Omega \times X$. We replace f by its nonzero projection to one of the eigenspaces of $G_{(r)}$, which is also a T-invariant function. By Lemma 5, $f(\omega, \cdot) =$ $\lambda(\omega)\chi_{\omega}$, where χ_{ω} is a character on X and $\lambda(\omega) \in \mathbb{C}$, for a.e. $\omega \in \Omega$. Since S is ergodic, $|\lambda(\omega)| = \text{const}$ on a subset Ω' of Ω of full measure, and we may assume that $|\lambda| \equiv 1$. There are only countably many characters on X, therefore a subset Ω'' of full measure in Ω' is partitioned into the union of sets of positive measure where χ_{ω} is constant. Since S is ergodic, we can choose a character χ on X and elements $b(\omega)$, $\omega \in \Omega''$, measurably depending on ω , such that for every $\omega \in \Omega'$ one has $\lambda_{\omega}\chi_{\omega} = \chi b_{\omega}$, so that $f(\omega, x) =$ $\lambda(\omega)\chi_{\omega}(x) = \chi(b_{\omega}x), x \in X$. After the reparametrization of $\Omega \times X$ defined by the function b_{ω} (and replacing Ω by Ω''), f takes the form $f(\omega, x) = \chi(x), \omega \in \Omega, x \in X$. Let H be the stabilizer of χ in G, $H = \{c \in G : \chi c = \chi\}$; then H is a proper closed subgroup of G and the cocycle defining T takes values in H.

Now let X be disconnected. G acts on the finite set \mathcal{X} of connected components of X; let \tilde{G} be the subgroup (of finite index) of G that acts trivially on \mathcal{X} . Then the action of G on \mathcal{X} factorizes through the action of the finite group G/\tilde{G} , and if T is not ergodic on $\Omega \times \mathcal{X}$, we are done by Lemma 6. Thus, we may assume that T is ergodic $\Omega \times \mathcal{X}$.

Let X° be a connected component of X; then X, under the action of G, is isomorphic to $\{1,\ldots,n\} \times X^{\circ}$, where n is the number of components in X. Consider $\Omega \times X =$ $\Omega \times \{1, \ldots, n\} \times X^{\circ}$ as $\widetilde{\Omega} \times X^{\circ}$ where $\widetilde{\Omega} = \Omega \times \{1, \ldots, n\}$; by our assumption, T acts ergodically on Ω . Since X^o is connected and has nilpotency class $\leq r$, we may, as in the first part of the proof, find a subset Ω' of full measure in Ω and a measurable Tinvariant function f on $\widetilde{\Omega}' \times X^{\circ} = \Omega' \times X$ such that $f(\omega, i, \cdot) = \lambda(\omega, i)\chi_{\omega,i}$, where $\chi_{\omega,i}$ is a character on X° and $\lambda(\omega, i) \in \mathbb{C}$, for all $\omega \in \Omega'$ and all $i \in \{1, \ldots, n\}$. For all $\omega \in \Omega'$ we, therefore, have the (non-ordered) set $C_{\omega} = \{\chi_{\omega,1}, \ldots, \chi_{\omega,n}\}$ of characters on X^o such that $T_v C_{\omega} = C_{S_v \omega}, v \in V$, for all $\omega \in \Omega'$, and since only countably many possibilities for C_{ω} exist, a certain reparametrization of $\Omega \times X$ over Ω (with replacing Ω by Ω') makes C_{ω} to be constant, $C_{\omega} = C = \{\chi_1, \ldots, \chi_n\}$ for all $\omega \in \Omega$. Moreover, since T acts ergodically on $\Omega \times \mathcal{X}$, G acts transitively on C; thus, after some change of coordinates in distinct connected components of X, we may make χ_1, \ldots, χ_n to be all equal to the same character χ . After this, we obtain that $\chi T_v = \frac{\lambda(\omega,i)}{\lambda(S_v\omega,j)}\chi$, $j = j(v, \omega, i)$, for all $v \in V$, $\omega \in \Omega$, and $i \in \{1, \ldots, n\}$, that is, T maps the fibers of χ to fibers. Let us assume, as we may, that G is generated by G° and the entries of the cocycle defining T; then G maps the fibers of χ to fibers, and we may factorize X by these fibers. Let Z be the factor; then Z is a finite union of circles, $Z = \{1, \ldots, n\} \times \mathbb{T}$, and G acts by rotations on \mathbb{T} , that is, for any $a \in G$, $a(i, x) = (ai, x + \alpha_{a,i}), x \in \mathbb{T}, i \in \{1, \ldots, n\}$, with $\alpha_{a,i} \in \mathbb{T}$ (and ai is defined by $X_{ai} = aX_i$). We obtain that the action of G on Z factorizes through the action of a compact group (the group of rotations of components of Z and of permutations of these components). Since T is not ergodic on $\Omega \times Z$, we are done by Lemma 6.

Lemma 8. If T is ergodic on $\Omega \times X$ (with respect to $\nu \times \mu_X$), then $\nu \times \mu_X$ is the only T-ergodic probability measure whose projection on Ω is ν .

Proof. Let $G_1 = G$ and $G_k = [G_{k-1}, G]$ for k = 2, 3, ..., r, let $X_{r-1} = G_r \setminus X$, and let $\pi_r: X \longrightarrow X_{r-1}$ be the canonical projection. If T is ergodic on $\Omega \times X$ with respect to $\nu \times \mu_X$, by induction on $r, \nu \times \mu_{X_{r-1}}$ is the only T-ergodic probability measure on $\Omega \times X_{r-1}$ whose projection on Ω is ν . Thus, if τ is a T-ergodic probability measure on $\Omega \times X$ with $p(\tau) = \nu$, then $(\mathrm{Id}_\Omega \times \pi_r)(\tau) = \nu \times \mu_{X_{r-1}}$. $\Omega \times X$ is a group extension of $\Omega \times X_{r-1}$ with the fiber $F_r = G_r/(\Gamma \cap G_r)$, which is a compact commutative Lie group. Hence, by Theorem 2, $\tau = \nu \times \mu_{X_{r-1}} \times \mu_{F_r} = \nu \times \mu_X$.

Proof of Theorem 3. Let H be a minimal closed subgroup of G such that there exists a reparametrization of $X \times \Omega$ over Ω after which T is given by an H-cocycle. (Such a subgroup exists since any chain of decreasing subgroups of G is finite.) Let $X = \bigcup_{\theta \in \Theta} X_{\theta}$ be the partition of X into the union of subnilmanifolds minimal under the action of H, as in Theorem 1. After the reparametrization corresponding to H, $\Omega \times X$ splits into the disjoint union $\bigcup_{\theta \in \Theta} \Omega \times X_{\theta}$ of T-invariant subsets on each of which T is given by an Hcocycle. If T is not ergodic on one of these subsets, then by Proposition 7, H contains a proper closed subgroup H' such that, after a reparametrization of $\Omega \times X$ over Ω , T is given by an H'-cocycle; this contradicts the choice of H. Thus, T is ergodic on each of $\Omega \times X_{\theta}, \theta \in \Theta$. Moreover, if τ is an ergodic measure on $\Omega \times X$ with $p(\tau) = \nu$, then τ must be supported by $\Omega \times X_{\theta}$ for some $\theta \in \Theta$, and thus $\tau = \nu \times \mu_{\Omega_{\theta}}$ by Lemma 8.

Bibliography

- [L1] A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold, *Erg. Th. and Dyn. Sys.* **25** (2005), 201-213.
- [L2] A. Leibman, Orbits on a nilmanifold under the action of a polynomial sequences of translations, *Erg. Th. and Dyn. Sys.* **27** (2007), 1239-1252.
- [Le] E. Lesigne, Sur une nil-variété, les parties minimales assocées à une translation sont uniquement ergodiques, *Erg. Th. and Dyn. Sys.* **11** (1991), 379-391.
- [P1] W. Parry, Ergodic properties of affine transformations and flows on nilmanifolds, Amer. J. Math. 91 (1969), 757-771.
- [P2] W. Parry, Dynamical systems on nilmanifolds, Bull. London Math. Soc. 2 (1970), 37-40.
- [Sh] N. Shah, Invariant measures and orbit closures on homogeneous spaces for actions of subgroups generated by unipotent elements, *Lie groups and ergodic theory (Mumbai, 1996)*, 229-271, Tata Inst. Fund. Res., Bombay, 1998.
- [Z1] R. Zimmer, Extensions of ergodic group actions, *Illinois J. Math.* **20** (1976), no. 3, 373-409.
- [Z2] R. Zimmer, Compact nilmanifold extensions of ergodic actions, *Trans. of AMS* **223** (1976), 397-406.