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Abstract

A basic nilsequence is a sequence of the form ψ(n) = f(Tnx), where x is a point of a
compact nilmanifold X, T is a translation on X, and f ∈ C(X); a nilsequence is a uniform
limit of basic nilsequences. Let X = G/Γ be a compact nilmanifold, Y be a subnilmanifold
of X, g(n) be a polynomial sequence in G, and f ∈ C(X); we show that the sequenceR
g(n)Y f , n ∈ Z, is the sum of a basic nilsequence and a sequence that converges to 0 in

uniform density. This implies that, given an ergodic invertible measure preserving system
(W,B, µ, T ), with µ(W ) < ∞, polynomials p1, . . . , pk ∈ Z[n], and sets A1, . . . , Ak ∈ B,
the sequence µ(T p1(n)A1 ∩ . . . ∩ T pk(n)Ak) is the sum of a nilsequence and a sequence that
converges to 0 in uniform density. We also get a version of this result for the case where pi
are polynomials in several variables.

0. Introduction

A (d-step) nilmanifold is a compact homogeneous space of a (d-step) nilpotent Lie
group; one can show that any d-step nilmanifold has the form G/Γ, where G is a d-step
nilpotent (not necessarily connected) Lie group and Γ is a discrete co-compact subgroup of
G. Elements of G act on X by translations; a (d-step) nilsystem is a (d-step) nilmanifold
X = G/Γ with a translation a ∈ G on it. Nilsystems play an important role in studying
“non-conventional”, or “multiple”, ergodic averages 1

N

∑N
n=1 T p1(n)h1 · . . . T pk(n)hk, where

T is a transformation of a finite measure space (W,µ), p1, . . . , pk ∈ Z[n], and h1, . . . , hk ∈
L∞(W ). (See [HK1], [Z], [HK2].)

Let X = G/Γ be a nilmanifold and Y be a subnilmanifold of X. Let g be a poly-
nomial sequence in G, that is, a sequences of the form g(n) = ap1(n)

1 . . . apr(n)
r , where

a1, . . . , ar ∈ G and p1, . . . , pr are polynomials taking on integer values on the inte-
gers. It is shown in [L1] that the closure of the sequence g(n)Y , X ′ =

⋃

n∈Z g(n)Y ,
is a disjoint finite union of subnilmanifolds of X, and, if X ′ is a single subnilmani-
fold, the sequence g(n)Y is well distributed in X ′. (That is, for every f ∈ C(X ′),
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1
N2−N1

∑N2
n=N1+1

∫

g(n)Y f d(g(n)µY ) −→
N2−N1→∞

∫

X′ f dµX′ , where µY and µX′ are the nor-

malized Haar measures on Y and on X ′ respectively.)
We were inspired by the following example. Let X be the 2-dimensional torus

T2 = (R/Z)2 and G be the group generated by the ordinary rotations of X and by the
transformation a(x, y) = (x, y+x); then G is a nilpotent Lie group acting on X transitively,
which turns X to a nilmanifold. Choose an irrational α ∈ T and put b(x, y) = (x+α, y+x),
then b ∈ G. Let Y1 = {(0, t), t ∈ T} and Y2 = {(t, 0), t ∈ T}. Then bnY1 = {(nα, t), t ∈ T}
and bnY2 =

{(

t+nα, nt+ n(n−1)
2 α

)

, t ∈ T
}

, n ∈ Z. Both sequences bnY1 and bnY2, n ∈ Z,
are dense in X, but their behaviors are different: the sequence bnY1 consists of congruent
subtori that simply “rotate” along X, whereas the members of the sequence bnY2, n ∈ Z,
become more and more dense in X. We can say that the sequence bnY2 converges to X:
∫

g(n)Y2
f dµY2 −→

∫

X f dµX for any f ∈ C(X), whereas the sequence bnY1 converges to

X only in average: 1
N2−N1

∑N2
n=N1+1

∫

g(n)Y1
f dµY1 −→

∫

X f dµX for any f ∈ C(X). It is
clear what difference between Y1 and Y2 causes this effect: Y1 is a normal subgroup of G
whereas Y2 is not.

Our goal was to show that in the general situation the sequence g(n)Y has a “mixed”
behavior: g(n)Y converges to a subnilmanifold Z (the normal closure of Y ), which, in its
turn, rotates along X. We, however, have been unable to prove this, and only prove the
weaker fact that g(n)Y converges to Z “in uniform density” (see Proposition 2.1). Our
proof essentially uses a result from a recent paper by Green and Tao ([GT]) about the
“uniform distribution” of subnilmanifolds (see Appendix).

In the terminology introduced in [BHK], a basic d-step nilsequence is a sequence of
the form ψ(n) = h(Rnw), where w is a point of a d-step nilmanifold M , R is a translation
on M , and h ∈ C(M); a d-step nilsequence is a uniform limit of basic d-step nilsequences.
The algebra of nilsequences is a natural generalization of Weyl’s algebra of almost periodic
sequences, which are just 1-step nilsequences. We obtain, as a corollary, that for any
f ∈ C(X) the sequence

∫

g(n)Y f dµg(n)Y is a sum of a basic nilsequence and a sequence that
tends to 0 in uniform density (Theorem 2.5 below). We apply this fact to show that for any
ergodic invertible measure preserving system (W,B, µ, T ) with µ(W ) < ∞, polynomials
p1, . . . , pk ∈ Z[n], and sets A1, . . . , Ak ∈ B, the “multiple polynomial correlation sequence”
ϕ(n) = µ

(

T p1(n)
1 A1 ∩ . . . ∩ T pk(n)

k Ak), n ∈ Z, is a sum of a nilsequence and a sequence
that tends to 0 in uniform density (Theorem 3.1 below). (A special case of this theorem,
when pi(n) = in, i = 1, . . . , k, was established in [BHK].) The question whether this
is true for non-ergodic systems remains open to us. We also formulate and sketch the
proof of a “multiparameter” version of this result: when p1, . . . , pk are polynomials of m
integer variables, then the sequence ϕ(n) = µ

(

T p1(n)
1 A1 ∩ . . . ∩ T pk(n)

k Ak), n ∈ Zm, is a
sum of an (m-parameter) nilsequence and a sequence that tends to 0 in (ordinary) density
(Theorem 4.3).

1. Nilmanifolds and subnilmanifolds

We will now give necessary definitions and list some facts that we will need below;
details and proofs can be found in [M], [L1], [L2], [L4], and [L5]. Throughout the paper, let
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X = G/Γ be a compact nilmanifold, where G is a nilpotent Lie group and Γ is a discrete
subgroup of G, and let π:G −→ X be the natural projection. By 1X we will denote the
point π(1G) of X.

By Go we will denote the identity component of G. We will assume that the group
G/Go is finitely generated (which is enough for our goals).

Note that if G is disconnected, X can be interpreted as a nilmanifold, X = G′/Γ′, in
different ways; for example, if X is connected, X = Go/(Γ∩Go). If X is connected and we
study the action on X of a sequence g(n) in G, we may always assume that G is generated
by Go and the elements of g.

Every nilpotent Lie group G is a factor of a simply-connected (not necessarily con-
nected) torsion free nilpotent Lie group. (As such, a suitable “free nilpotent Lie group” F
can be taken. If Go has l1 generators, G/Go has l2 generators, and G is d-step nilpotent,
then F = F/Fd+1, where F is the free product of l1 copies of R and l2 copies of Z, and
Fd+1 is the (d+1)st term of the lower central series of F .) Thus, we may and will assume
that G is simply connected and torsion-free. The identity component Go of G is then an
exponential Lie group, which means that for every element a ∈ Go there exists a (unique)
one-parametric subgroup at such that a1 = a.

A Malcev basis of G is a finite set {e1, . . . , ek} of elements of Γ, with e1, . . . , ek1 ∈ Go

and ek1+1, . . . , ek 6∈ Go, that generates Γ and is such that every element a ∈ G can be
uniquely written in the form a = eu1

1 . . . euk
k with u1, . . . , uk1 ∈ R and uk1+1, . . . , uk ∈ Z;

we call u1, . . . , uk the coordinates of a. Thus, Malcev coordinates define a homeomorphism
G ' Rk1 × Zk−k1 , a ↔ (u1, . . . , uk), and we may identify G with Rk1 × Zk−k1 .

If L is a connected closed normal subgroup of G of dimension l such that the lattice
L ∩ Γ is co-compact in L, the Malcev coordinates on G can be chosen so that e1, . . . , el ∈
L ∩ Γ; then eu1

1 . . . euk
k ∈ L iff ul+1, . . . , uk = 0, and L is identified with the subspace

Rl × {0}k−l ⊆ Rk1 × Zk−k1 . We will call such coordinates on G compatible with L.
Let X be connected. Then, under the identification Go ↔ Rk1 , the cube [0, 1)k1 is

the fundamental domain of X. We will call the closed cube Q = [0, 1]k1 the fundamental
cube of X in Go and identify X with Q. When X is identified with its fundamental cube
Q, the normalized Haar measure µX on X coincides with the standard Lebesgue measure
µQ on Q.

In Malcev coordinates, multiplication in G is a polynomial operation: there are poly-
nomials q1, . . . , qk in 2k variables with rational coefficients such that for a = eu1

1 . . . euk
k

and b = ev1
1 . . . evk

k we have ab = eq1(u1,v1,...,uk,vk)
1 . . . eqk(u1,v1,...,uk,vk)

k . This implies that
“life is polynomial” in nilpotent Lie groups: homomorphisms are polynomial mappings,
connected closed subgroups are images of polynomial mappings and are defined by systems
of polynomial equations.

A subnilmanifold Y of X is a closed subset of the form Y = Hx, where H is a closed
subgroup of G and x ∈ X. For a closed subgroup H of G, the set π(H) = H1X is closed,
and so is a subnilmanifold, iff the subgroup Γ ∩ H is co-compact in H; we will call the
subgroup H with this property rational.

If Y is a subnilmanifold of X such that 1X ∈ Y , then H = π−1(Y ) is a closed subgroup
of G, and Y = π(H) = H1X . H, however, does not have to be the minimal subgroup
with this property: if Y is connected, then the identity component Ho of H also satisfies

3



Y = π(Ho).
Given a subnilmanifold Y of X, by µY we will denote the normalized Haar measure

on Y ; we have aµY = µaY for all a ∈ G.
Let Z be a subnilmanifold of X, Z = Lx, where L is a closed subgroup of G. We

say that Z is normal if L is normal. In this case the nilmanifold ̂X = X/Z = G/(LΓ) is
defined, and X splits into a disjoint union of fibers of the projection mapping X −→ ̂X.
(Note that if L is normal in Go only, then the factor X/Z = Go/(LΓ) is also defined, but
the elements of G \Go do not act on it.)

One can show that a subgroup L is normal iff γLγ−1 = L for all γ ∈ Γ; hence,
Z = π(L) is normal iff γZ = Z for all γ ∈ Γ.

If H is a closed rational subgroup of G then its normal closure L (the minimal normal
subgroup of G containing H) is also closed and rational, thus Z = π(L) is a subnilmanifold
of X. We will call Z the normal closure of the subnilmanifold Y = π(H). If L is normal
then the identity component of L is also normal; this implies that the normal closure of a
connected subnilmanifold is connected.

Let X be connected and k-dimensional, and let Z be an l-dimensional connected
normal subnilmanifold of X. Let L be the connected normal closed subgroup of G such
that Z = Lx; choose Malcev coordinates on G compatible with L, and let Q be the
fundamental cube of X in Go associated with these coordinates. Then the fundamental
cube of Z is the subcube [0, 1]l × {0}k−l of Q, and the fundamental cube of X/Z is the
orthogonal projection of Q to the (k − l)-dimensional subspace associated with the last
k − l coordinates on Q.

Let X be connected. We will need the fact that “almost all” subnilmanifolds of X
are “quite uniformly” distributed in X. (This is in complete analogy with the situation
on tori: if X is a torus, for any ε > 0 there are only finitely many subtori V1, . . . , Vr, of
codimension 1 in X, such that any subtorus Y of X that contains 0 and is not contained
in

⋃r
i=1 Vi is ε-dense and “ε-uniformly distributed” in X.) The following proposition is a

corollary (of a special case) of the result obtained in [GT] (see Appendix for details):

Proposition 1.1. For any f ∈ C(X) and any ε > 0 there are finitely many subnilmani-
folds V1, . . . , Vr of X, connected, of codimension 1, and containing 1X , such that for any
connected subnilmanifold Y of X with 1X ∈ Y , either Y ∈ Vi for some i ∈ {1, . . . , r}, or
∣

∣

∫

Y f dµY −
∫

X f dµX
∣

∣ < ε, (or both).

Identifying a subnilmanifold Y of X with the measure µY on X, we introduce the
weak∗ topology on the set of subnilmanifolds of X; in this topology, given subnilmanifolds
Z, Y1, Y2, . . . of X, we write Yn −→ Z if

∫

Yn
f dµYn −→

∫

Z f dµZ for every f ∈ C(X). It
now follows from Proposition 1.1 that if connected subnilmanifolds Y1, Y2, . . . of X, with
1X ∈ Yn for all n, are such that for any proper subnilmanifold V of X (connected, of
codimension 1, and with 1X ∈ V ) the set

{

n ∈ Z : Yn ⊆ V
}

is finite, then Yn −→ X.

For a set S ∈ Z, the uniform (or Banach) density of S isD(S) = limN2−N1→∞
|S∩[N1,N2]|

N2−N1

(if it exists). We will say that a sequence of points (ωn)n∈Z of a topological space
Ω converges to ω ∈ Ω in uniform density if for every neighborhood U of ω one has
D

(

{n ∈ Z : ωn 6∈ U}
)

= 0. It follows from Proposition 1.1 that, given connected subnil-
manifolds Y1, Y2, . . . of X with 1X ∈ Yn for all n, if for any proper subnilmanifold V of X
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(connected, of codimension 1, and with 1X ∈ V ) one has D
(

{n ∈ Z : Yn ⊆ V }
)

= 0, then
Yn −→ X in uniform density.

2. Polynomial orbits of subnilmanifolds and nilsequences

Our main technical result is the following proposition.

Proposition 2.1. Let X be connected and let Y = π(H) be a connected subnilmanifold
of X, where H is a connected closed subgroup of G. Let g be a polynomial sequence in G
with g(0) = 1G such that g(Z)Y is dense in X, and assume that G is generated by Go and
the elements of g. Let Z be the normal closure of Y in X; then g(n)Y − g(n)Z −→ 0 in
uniform density.

Remark. We believe that, actually, g(n)Y − g(n)Z −→ 0 (that is, for any f ∈ C(X),
∣

∣

∫

g(n)Y f dµg(n)Y −
∫

g(n)Z f dµg(n)Z
∣

∣ −→ 0 as n →∞).

Proof. Let L be the identity component of π−1(Z). Choose Malcev’s coordinates in
Go compatible with L, and let Q be the corresponding fundamental cube in Go. Q is
compact, and is as well compact with respect to the uniform norm when elements of G are
interpreted as transformations of X. Represent g(n) = tnγn so that γn ∈ Γ and tn ∈ Q,
n ∈ Z. Since Z is normal, γnZ = Z for all n, so that g(n)Z = tnγnZ = tnZ, n ∈ Z.
We have g(n)Y = tnγnY , n ∈ Z, and since Q is compact, we only have to show that
γnY −→ Z in uniform density.

Let Q′ be the fundamental cube of X/Z and let τ :Q −→ Q′ be the natural projection.
Since the sequence (g(n)Z) is well distributed in X, the sequence (τ(tn)) is well distributed
in Q′, which means that for any measurable subset U of Q′ whose boundary is a null-set,
D

(

{n ∈ Z : τ(tn) ∈ U}
)

= µQ′(U).
Let V be a subnilmanifold of Z, connected, of codimension 1 in Z, and with 1X ∈ V ;

based on Proposition 1.1, we only need to show that the set
{

n ∈ Z : γnY ⊆ V
}

has zero
uniform density. Let K be the identity component of π−1(V ); we have γnHγ−1

n ⊆ L for
all n ∈ Z, and have to prove that the set S =

{

n ∈ Z : γnHγ−1
n ⊆ K

}

has zero uniform
density.

Since K is a proper subgroup of L, there exists b ∈ G such that bHb−1 6⊆ K. By
assumption, G is generated by Go and g. The group Go is generated by Q, thus tHt−1 6⊆ K
for some t ∈ Q or g(n)Hg(n)−1 6⊆ K for some n ∈ Z. So, there exists a ∈ H such that
tat−1 6∈ K for some t ∈ Q or g(n)ag(n)−1 6∈ K for some n ∈ Z. Let S′ =

{

n ∈ Z :
γnaγ−1

n ∈ K
}

; since S ⊆ S′, it suffices to show that D(S′) = 0. (This would not be a
problem if γn were a polynomial sequence, but it is not.)

Consider the mapping η(n, t) = t−1g(n)ag(n)t from Zm×Go to L; this is a polynomial
mapping. Let χ be a homomorphism L −→ R such that K = {χ = 0}. Let θ = χ◦η; then
θ is a polynomial, and it is shown above that θ 6≡ 0. Since K has codimension 1 in
L, it contains [L,L], and so, is normal in L; hence, for any s ∈ L we have θ(n, ts) =
χ(s−1t−1g(n)ag(n)−1ts) = χ(t−1g(n)ag(n)−1t) = θ(n, t) for all t ∈ Go, n ∈ Z. Thus, θ is
defined on Z × (Go/L): there exists a polynomial θ′ on Z × (Go/L) such that θ(n, t) =
θ′(n, τ(t)), t ∈ Go, n ∈ Z. Let P be the restriction of θ′ to Z × Q′. Now, n ∈ S′ iff
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γnaγ−1
n = t−1

n g(n)ag(n)−1tn ∈ K, iff θ(n, tn) = 0, iff P (n, τ(tn)) = 0.
Write P in coordinates on Q′, P (n, u) =

∑

α∈A qα(n)uα, n ∈ Z, u ∈ Q′, where A is
a set of multiindices and for each α ∈ A, qα(n) is a polynomial in n. We want to show
that the set of zeroes of the polynomials Pn(u) = P (n, u) in Q′ “converges”, as n → ∞,
to a set of zero measure. Let d = max

{

deg qα, α ∈ A
}

. Then for any α ∈ A, a finite limit
bα = limn→∞ n−dqα(n) exists, and is nonzero for some α. Thus, as n →∞, the polynomials
n−dPn(u) converge uniformly on Q′ to the nonzero polynomial p(u) =

∑

α∈A bαuα. The
set N = {u ∈ Q′ : p(u) = 0} has zero measure. Given ε > 0, find δ > 0 such that the set
Nδ = {u ∈ Q′ : |p(u)| < δ} has measure < ε. Let n0 be such that |P (n, u) − p(u)| < δ
on Q′ for |n| > n0; then for |n| > n0 the set Dn = {u ∈ Q′ : P (n, u) = 0} is contained in
Nδ. The sequence un = τ(tn), n ∈ Z, is well distributed in Q′ and the boundary of Nδ is
a null-set, so D

{

n ∈ Z : un ∈ Nδ
}

= µQ′(Nδ) < ε. Now,

S′ =
{

n ∈ Z : P (n, un) = 0
}

⊆
{

n ∈ Z : un ∈ Dn
}

⊆ {−n0, . . . , n0} ∪
{

n ∈ Z : un ∈ Nδ
}

,

thus D(S′) < ε. Hence, D(S′) = 0.

Corollary 2.2. Let X be connected, let Y be a connected subnilmanifold of X, let g
be a polynomials sequence in G, let g(Z)Y be dense in X, and let f ∈ C(X). There
exists a factor-nilmanifold ̂X of X, a point x̂ ∈ ̂X, and a function f̂ ∈ C( ̂X) such that
∫

g(n)Y f dµg(n)Y − f̂(g(n)x̂) −→ 0 in uniform density.

Proof. We may assume that g(0) = 1G, that G is generated by Go and the elements of
g, and that Y 3 1X . Let Z be the normal closure of Y in X, then

∫

g(n)Y f dµg(n)Y −
∫

g(n)Z f dµg(n)Z −→ 0 in uniform density. Let ̂X = X/Z, x̂ = {Z} ∈ ̂X, and f̂ =

E(f | ̂X) ∈ C( ̂X); then
∫

g(n)Y f dµg(n)Y −
∫

g(n)Z f dµg(n)Z −→ 0 in uniform density, and
∫

g(n)Z f dµg(n)Z = f̂(g(n)x̂) for all n.

We now involve nilsequences into our consideration. Recall that a basic d-step nilse-
quence is a sequence of the form ψ(n) = h(Rnw), where w is a point of a d-step nilmanifold
M , R is a translation on M , and h ∈ C(M). We find it worthy to expand this notion.
Given a polynomial sequence g(n) = ap1(n)

1 . . . apr(n)
r in a nilpotent group with deg pi ≤ s for

all i, we will say that g has naive degree ≤ s. (The term “degree” had already been re-
served for another parameter of a polynomial sequence.) Let us call a sequence of the form
ψ(n) = h(g(n)w), where w is a point of a d-step nilmanifold M = J/Λ, g is a polynomial
sequence of naive degree ≤ s in J , and h ∈ C(M), a basic polynomial d-step nilsequence
of degree ≤ s. Actually, any basic polynomial nilsequence is a basic nilsequence, as the
following proposition says; the reason why we introduce this notion is that we do not want
to loose the valuable information about the way a nilsequence was produced.

Proposition 2.3. (See [L1], Proposition 3.14) Any basic polynomial d-step nilsequence of
degree ≤ s is a ds-step basic nilsequence.

Clearly, basic polynomial d-step nilsequences of degree ≤ s form an algebra; we will
also need the following fact:
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Lemma 2.4. Let ψ0, . . . , ψm−1 be basic polynomial d-step nilsequences of degree ≤ s. Then
the sequence

(

. . . , ψ0(0), . . . , ψm−1(0), ψ0(1), . . . , ψm−1(1), ψ0(2), . . . , ψm−1(2), . . .
)

is also
a basic polynomial d-step nilsequence of degree ≤ s.

Proof. For each i = 0, . . . ,m − 1, let Mi = Ji/Λi be the d-step nilmanifold, gi be the
polynomial sequence in Ji, wi ∈ Mi be the point, and hi ∈ C(Mi) be the function such
that ψi(n) = h(gi(n)wi), n ∈ Z. If, for some i, Ji is not connected, it is a factor-group of
a free d-step nilpotent group with continuous and discrete generators, which , in its turn,
is a subgroup of a free d-step nilpotent group with only continuous generators (see [L1]);
thus after replacing, if needed, Mi by a larger nilmanifold and extending hi to a continuous
function on this nilmanifold we may assume that every Ji is connected. In this case for any
element b ∈ Ji and any r ∈ N a r-th root b1/r exists in Ji, and thus the polynomial sequence
bp(n) in Ji makes sense even if a polynomial p has non-integer rational coefficients. Thus,
for each i, we may construct a polynomial sequence g′i in Ji, of the same naive degree as gi,
such that g′i(mn+ i) = gi(n) for all n ∈ Z. Put M = Zm×

∏m
i=0 Mi, g = (1, g′0, . . . , g

′
m−1),

w = (0, w0, w1, . . . , wm−1) ∈ M , and h(i, v0, . . . , vm−1) = hi(vi), (i, v0, . . . , vm−1) ∈ M .
Then M is a d-step nilmanifold, h ∈ C(M), and the basic polynomial nilsequence ψ(n) =
h(g(n)w) = hi(g′i(n)wi) = hi(gi(k)wi) = ψi(k) whenever n = km+i, i = 0, 1, . . . , m−1.

We now get:

Theorem 2.5. Let X = G/Γ be a d-step nilmanifold, let Y be a subnilmanifold of
X, let g be a polynomial sequence in G of naive degree ≤ s, let f ∈ C(X), and let
ϕ(n) =

∫

g(n)Y f dµg(n)Y , n ∈ Z. There exists a basic polynomial d-step nilsequence ψ of
degree ≤ s such that ϕ(n)− ψ(n) −→ 0 in uniform density.

Proof. If both Y and g(Z)Y are connected (in which case g(Z)Y is a nilmanifold), the
assertion follows from Corollary 2.2.

Now assume that Y is connected but g(Z)Y is not. Then, by Theorem B in [L1],
there exists m ∈ N such that g(mZ+ j)Y is connected for every i = 0, . . . , m − 1. Thus,
for every i = 0, . . . ,m− 1, there exists a basic polynomial d-step nilsequence ψi of degree
≤ s such that ϕ(mn + i)− ψi(n) −→ 0 in uniform density, and the assertion follows from
Lemma 2.4.

Finally, if Y is disconnected and Y1, . . . , Yl are the connected components of Y , then
∫

g(n)Y f dµg(n)Y =
∑l

i=1

∫

g(n)Yi
f dµg(n)Yi , n ∈ Z, and the result holds since it holds for

Y1, . . . , Yl.

3. Multiple polynomial correlation sequences and nilsequences

Now let (W,B, µ) be a probability measure space and let T be an ergodic invertible
measure preserving transformation of W . Let p1, . . . , pk be polynomials taking on integer
values on the integers. Let A1, . . . , Ak ∈ B and let ϕ(n) = µ

(

T p1(n)A1 ∩ . . . ∩ T pk(n)Ak
)

,
n ∈ Z; or, more generally, let h1, . . . , hk ∈ L∞(W ) and ϕ(n) =

∫

W T p1(n)h1·. . .·T pk(n)hkdµ,
n ∈ Z. Using results from [HK2] it can be shown (see the argument in [BHK], Corollary 4.5)
that, given ε > 0, there exist a d-step nilsystem (X, a), X = G/Γ, a ∈ G, and functions
f1, . . . , fk ∈ L∞(X) such that, for φ(n) =

∫

X ap1(n)f1 · . . . · apk(n)fkdµX , D
({

n ∈ Z :

7



|φ(n) − ϕ(n)| < ε
})

= 0; after replacing fi by L1-close continuous functions, we may
assume that f1, . . . , fk ∈ C(X). Moreover, there is a universal integer d that works for
all systems (W,B, µ, T ), functions hi, and ε, and depends only on the polynomials pi; the
minimal integer c for which d = c + 1 has this property is called the complexity of the
system {p1, . . . , pk} (see [L6]). Applying Theorem 2.5 to the nilmanifold Xk = Gk/Γk,
the diagonal subnilmanifold Y =

{

(x, . . . , x), x ∈ X
}

⊆ Xk, the polynomial sequence
g(n) = (1G, ap1(n), . . . , apk(n)), n ∈ Z, in Gk and the function f(x0, x1, . . . , xk) = f1(x1) ·
. . . · fk(xk) ∈ C(Xk), we establish the existence of a basic polynomial d-step nilsequence ψ
of degree ≤ s = maxi(deg pi) such that φ(n)−ψ(n) −→ 0 in uniform density. Summarizing,
we get that ϕ(n) = φ(n) + δ(n) = ψ(n) + λ(n) + δ(n), where ψ(n) is a basic polynomial
d-step nilsequence of degree ≤ s, λ(n) −→ 0 in uniform density, and |δ| < ε.

We will say that a numerical sequence ψ is a polynomial d-step nilsequence of degree
≤ s if it is a uniform limit of basic polynomial d-step nilsequences of degree ≤ s. (It
follows from Proposition 2.3 that any polynomial d-step nilsequence of degree ≤ s is a
ds-step nilsequence.)

We obtain:

Theorem 3.1. Let (W,B, µ, T ) be an ergodic invertible measure preserving system with
µ(W ) < ∞, let h1, . . . , hk ∈ L∞(W ), let p1, . . . , pk be polynomials taking on integer values
on the integers, and let ϕ(n) =

∫

W T p1(n)h1 · . . . · T pk(n)hkdµ, n ∈ Z. Let the complexity
of {p1, . . . , pk} be c and s = maxi(deg pi); then there exists a polynomial (c + 1)-step
nilsequence ψ of degree ≤ s such that ϕ(n)− ψ(n) −→ 0 in uniform density.

Proof. We copy the proof of Theorem 1.9 in [BHK]. For each l ∈ N, let ψl be a basic
polynomial d-step nilsequence of degree ≤ s, λl be a sequence that tends to 0 in uniform
density, and δl be a sequence with |δl| < 1/l, such that ϕ = ψl + λl + δl. Then for any
l, r, |ψl − ψr| ≤ 1

l + 1
r + |λl − λr|, thus |ψl(n) − ψr(n)| ≤ 2

( 1
l + 1

r

)

for all n ∈ Z but a
set of zero uniform density. Nilsystems are distal systems, each point of a nilsystem is
uniformly recurrent (which means that it returns to any its neighborhood regularly, see
[F] and [L1]), thus any nilsequence visits any interval in R for n ∈ Z from a set of positive
uniform density, – or never. Hence, the (polynomial, and just ordinary) nilsequence ψl−ψr
satisfies |ψl(n) − ψr(n)| ≤ 2

( 1
l + 1

r

)

for all n ∈ Z. Hence, the sequence (ψl)∞l=1 of basic
polynomial (c + 1)-step nilsequences of degree ≤ s is Cauchy in l∞(Z), and has a limit ψ
that is a polynomial (c + 1)-step nilsequence of degree ≤ s. The sequence ϕ − ψ is the
uniform limit of the sequences λl, and thus tends to zero in uniform density.

Remark. We believe that Theorem 3.1 remains true without the assumption that T is
ergodic, but do not see how to prove this. The problem is to show that “an integral of
nilsequences is a nilsequence plus a negligible sequence”, that is, given a finite measure
space Ω and a measurable function Ψ: Ω×Z −→ C such that for each ω ∈ Ω, ψ(n) = Ψ(ω, n)
is a nilsequence, the sequence ψ(n) =

∫

Ω Ψ(ω, n) dω is a sum of a nilsequence and a sequence
that tends to 0 in uniform density.

4. The multiparameter case

We now switch to the multiparameter case, that is, to the situation where pi are
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polynomials of m ≥ 1 integer variables. We say that a mapping g:Zm −→ G is an
(m-parameter) polynomial sequence in G if g(n) = ap1(n)

1 . . . apr(n)
r , where a1, . . . , ar ∈ G

and p1, . . . , pr are polynomials Zm −→ Z. It is shown in [L2] that, if g is an m-
parameter polynomial sequence in G and Y is a connected subnilmanifold of X, then
the closure of the sequence g(n)Y , X ′ =

⋃

n∈Zm g(n)Y , is a disjoint finite union of sub-
nilmanifolds of X, and, if X ′ is a single subnilmanifold, the sequence g(n)Y is well dis-
tributed in X ′. (That is, for every f ∈ C(X ′) and any Følner sequence (ΦN ) in Zm,
limN→∞

1
|ΦN |

∑

n∈ΦN

∫

g(n)Y f dµg(n)Y =
∫

X′ f dµX′ .)

For a subset S ⊆ Zm, we define the density d(S) of S by d(S) = limN→∞
|S∩[−N,N ]m|

(2N)m ,
if it exists, and say that a sequence of points (ωn)n∈Zm of a topological space Ω converges
to ω ∈ Ω in density if for every neighborhood U of ω, d

(

{n ∈ Zm : ωn 6∈ U}
)

= 0.
For the case of multiparameter sequences we get a result similar to Proposition 2.1,

but weaker since the “ordinary” density instead of the uniform density D appears in it:

Proposition 4.1. Let X = G/Γ be a connected nilmanifold and let Y = π(H) be a con-
nected subnilmanifold of X, where H is a connected closed subgroup of G. Let g:Zm −→ G
be a polynomial sequence with g(0) = 1G such that g(Zm)Y is dense in X, and assume
that G is generated by Go and the elements of g. Let Z be the normal closure of Y in X;
then g(n)Y − g(n)Z −→ 0 in density.

Proof. The beginning of the proof is the same as for Proposition 2.1, but we will repeat it.
Let L be the identity component of π−1(Z). Choose Malcev coordinates in Go compatible
with L, and let Q be the corresponding fundamental cube in Go. Q is compact, and is
as well compact with respect to the uniform norm when elements of G are interpreted
as transformations of X. Represent g(n) = tnγn so that γn ∈ Γ and tn ∈ Q, n ∈ Zm.
Since Z is normal, γnZ = Z for all n, so that g(n)Z = tnγnZ = tnZ, n ∈ Zm. We have
g(n)Y = tnγnY , n ∈ Z, and since Q is compact, we only have to show that γnY −→ Z
in density. Let Q′ be the fundamental cube of X/Z and let τ : Q −→ Q′ be the natural
projection. Since the sequence (g(n)Z) is well distributed in X, the sequence (τ(tn)) is
well distributed in Q′.

Let V be a subnilmanifold of Z, connected, of codimension 1 in Z, and with 1X ∈ V ;
based on Proposition 1.1, we only need to show that the set

{

n ∈ Zm : γnY ⊆ V
}

has
zero density. Let K be the identity component of π−1(V ); we have γnHγ−1

n ⊆ L for all
n ∈ Zm, and have to prove that the set S =

{

n ∈ Zm : γnHγ−1
n ⊆ K

}

has zero density.
Since K is a proper subgroup of L and L is the normal closure of H in G there exists

b ∈ G such that bHb−1 6⊆ K. By assumption, G is generated by Go and g. The group
Go is generated by Q, thus tHt−1 6⊆ K for some t ∈ Q or g(n)Hg(n)−1 6⊆ K for some
n ∈ Zm. So, there exists a ∈ H such that tat−1 6∈ K for some t ∈ Q or g(n)ag(n)−1 6∈ K
for some n ∈ Zm. Let S′ =

{

n ∈ Zm : γnaγ−1
n ∈ K

}

; since S ⊆ S′, it suffices to show that
d(S′) = 0.

Consider the mapping η(n, t) = t−1g(n)ag(n)−1t from Zm×Go to L; this is a polyno-
mial mapping. Let χ be a homomorphism L −→ R such that K = {χ = 0}. Let θ = χ◦η;
then θ is a polynomial, and it is shown above that θ 6≡ 0. Since K is normal in L, for
any s ∈ L we have θ(n, ts) = χ(s−1t−1g(n)ag(n)−1ts) = χ(t−1g(n)ag(n)−1t) = θ(n, t) for
all t ∈ Go, n ∈ Zm. Thus, θ is defined on Zm × (Go/L): there exists a polynomial θ′ on
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Zm × (Go/L) such that θ(n, t) = θ′(n, τ(t)), t ∈ Go, n ∈ Zm. Let P be the restriction
of θ′ to Zm × Q′. Now, n ∈ S′ iff γnaγ−1

n = t−1
n g(n)ag(n)−1tn ∈ K, iff θ(n, tn) = 0, iff

P (n, τ(tn)) = 0.
Extend P to a polynomial on Rm × Q′. Write P in coordinates: P (w, u) =

∑

α∈A qα(w)uα, where A is a set of multiindices and for each α ∈ A, qα is a polyno-
mial on Rm. Let d = max

{

deg qα, α ∈ A
}

. For each α ∈ A, let q∗α be the homogeneous
part of qα of degree d. Let Σ be the sphere {ξ ∈ Rm : |ξ| = 1} and let Ξ =

{

ξ ∈ Σ :
q∗α(ξ) 6= 0 for some α ∈ A

}

. For every ξ ∈ Σ and α ∈ A, lims→∞ s−dqα(sξ) = q∗α(ξ),
thus the polynomials Ps(ξ, u) = s−dP (sξ, u) converge as s → ∞ to the polynomial
pξ(u) =

∑

α∈A q∗α(ξ)uα uniformly on Σ × Q′. (Example: for P
(

(w1, w2), (u1, u2)
)

=
(w2

1 +w2)u2
1 +w2u1u2 +2w1w2u2 we have pξ(u1, u2) = w2

1u
2
1 +2w1w2u2, ξ = (w1, w2) ∈ Σ,

and Ξ = {ξ ∈ Σ : pξ 6= 0} = {(w1, w2) ∈ Σ : w1 6= 0}.)
Fix ε > 0. For ξ ∈ Ξ, let Nξ =

{

u ∈ Q′ : pξ(u) = 0
}

and let δξ > 0 be such that the
set Nξ,δξ =

{

u ∈ Q′ : |pξ(u)| < δξ
}

has measure < ε. Let Uξ ⊂ Ξ be an open neighborhood
of ξ such that |pζ(u) − pξ(u)| < δξ/2 for all ζ ∈ Uξ and u ∈ Q′. Let sξ > 0 be such that
∣

∣s−dP (sζ, u)(u) − pζ(u)
∣

∣ < δξ/2 for all s > sξ, ζ ∈ Uξ, and u ∈ Q′. Then for any s > sξ

and ζ ∈ Uξ, {u ∈ Q′ : P (sζ, u) = 0} ⊆ Nξ,δξ .
Since the sequence un = τ(tn), n ∈ Zm, is well distributed in Q′, for every ξ ∈ Ξ there

exists Mξ ∈ N such that for any M > Mξ and any v ∈ Rm, 1
Mm

∣

∣

{

n ∈ v + [1,M ]m : un ∈
Nξ,δξ

}∣

∣ < 2ε. If v ∈ Rm and M ∈ N are such that |v| > sξ+
√

mM and v+[1,M ]m ⊂ R+Uξ,
then for any w ∈ v+[1,M ]m we have {u ∈ Q′ : P (w, u) = 0} ⊆ Nξ,δξ . Thus, for such v and
M , 1

Mm

∣

∣

{

n ∈ v + [1, M ]m : P (n, un) = 0
}∣

∣ < 2ε, and hence, 1
Mm

∣

∣S′ ∩
(

v + [1,M ]m
)∣

∣ < 2ε.
E = Σ \ Ξ is a proper algebraic subvariety of Σ, therefore there exists a compact set

D ⊂ Ξ such that d(R+D ∩ Zm) > 1 − ε. (Indeed, E can be represented as a finite union
of smooth submanifolds of Σ of dimension ≤ m − 2, thus it can be covered by a finite
union E of open balls with σ(E) < εσ(Σ), where σ is the standard (m − 1)-dimensional
volume on Σ. For such a set E we have d(R+E ∩Zm) = σ(E)/σ(Σ) < ε, and for D = Σ \ E
we have d(R+D ∩ Zm) > 1 − ε.) Let ξ1, . . . , ξl be such that

⋃l
j=1 Uξj ⊇ D and let

s = max1≤j≤l sξj , M = max1≤j≤l Mξj . Let r > s +
√

mM be such that for any cube
C = v + [1, M ]m ⊂ R+D with |v| > r we have C ⊂ R+Uξj for some j. Then for any such
cube C we have 1

|C| |S
′ ∩ C| < 2ε. Thus, d(S′) < 3ε. Hence, d(S′) = 0.

Remark. The proof of Proposition 4.1 gives more information about the set S =
{

n ∈
Zm :

∣

∣

∫

g(n)Y f −
∫

g(n)Z f
∣

∣ > ε
}

than just the fact that S has zero density. Actually, the
uniform density of S is zero, – if we ignore a small set E of “bad” directions in Rm; indeed,
S has uniform density 0 in R+(Σ \ E) ∩ Zm, whereas σ(E) < εσ(Σ).

We say that a mapping ψ:Zm −→ C is a basic polynomial d-step m-parameter nilse-
quence of degree ≤ s if there exist a d-step nilmanifold M = J/Λ, a polynomial mapping
g:Zm −→ J of naive degree ≤ s, a function h ∈ C(M), and a point w ∈ M such that
ψ(n) = h(g(n)w), n ∈ Zm, and we will say that an m-parameter numerical sequence is
a polynomial d-step nilsequence of degree ≤ s if it is a uniform limit of basic polynomial
d-step m-parameter nilsequences of degree ≤ s. The definitions and facts related to one-
parameter polynomial sequences and nilsequences are translated almost literally to the
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multiparameter case; one only has to use results from [L2] and [L3] instead of the corre-
sponding results from [L1] and [HK2]. (In particular, any (basic) polynomial m-parameter
nilsequence is a (basic) m-parameter nilsequence; see the proof of Theorem B∗ in [L2].) In
the same way as we got Theorems 2.5 and 3.1, we now obtain:

Theorem 4.2. Let X = G/Γ be a d-step nilmanifold, let Y be a subnilmanifold of
X, let g:Zm −→ G be a polynomials sequence of naive degree ≤ s, let f ∈ C(X), let
ϕ(n) =

∫

g(n)Y f dµg(n)Y , n ∈ Zm. There exists a basic polynomial d-step m-parameter
nilsequence ψ of degree ≤ s such that ϕ(n)− ψ(n) −→ 0 in density.

Theorem 4.3. Let (W,B, µ, T ) be an ergodic invertible measure preserving system with
µ(W ) < ∞, let h1, . . . , hk ∈ L∞(W ), let p1, . . . , pk be polynomials Zm −→ Z, and let
ϕ(n) =

∫

W T p1(n)h1 · . . . · T pk(n)hkdµ, n ∈ Zm. Let the complexity of {p1, . . . , pk} be c and
let s = maxi(deg pi); then there exists a (c + 1)-step m-parameter polynomial nilsequence
ψ of degree ≤ s such that ϕ(n)− ψ(n) −→ 0 in density.

5. Appendix

We will show here how Proposition 1.1 can be derived from Green-Tao’s result in
[GT].

We first need to introduce some terminology from [GT]. Let G be a connected nilpo-
tent Lie group with a discrete cocompact subgroup Γ, and let X = G/Γ.

A filtration G• on G is a finite decreasing sequence of subgroups G = G1 ⊇ G2 ⊇
. . . ⊇ Gd ⊇ Gd+1 = {1G} with the property that [Gi, Gj ] ⊆ Gi+j for all i, j.

For a sequence g:Z −→ G, “the derivative” ∂g is defined by (∂g)(n) = g(n)−1g(n+1),
n ∈ Z. Given a filtration G• = (G1 ⊇ G2 ⊇ . . . ⊇ Gd) on G, poly(Z, G•) denotes the
group of polynomial sequences g in G with the property that, for each i = 1, . . . , d, ∂ig
takes values in Gi,

Given a filtration G• = (G1 ⊇ G2 ⊇ . . . ⊇ Gd) on G, a Malcev basis M adapted to
this filtration can be constructed (which means that for any i, M∩ Gi is a basis in Gi),
and this basis naturally defines a locally Euclidean metric ρ on X.

A (horizontal) character on X is a mapping χ:X −→ R/Z induced by a character
on the torus T = [G, G]\X (or equivalently, by a continuous homomorphism G −→ R/Z
trivial on Γ). A Malcev basis in G defines coordinates (t1, . . . , tl) on T , and in these
coordinates any character χ on X has the form m1t1 + . . . + mltl, (t1, . . . , tl) ∈ T , with
m1, . . . , ml ∈ Z; the modulus |χ| of χ is defined by |χ| = |m1|+ . . . + |ml|.

Given δ > 0, a finite sequence (x1, . . . , xN ) is said to be δ-equidistributed in X if
∣

∣
1
N

∑N
n=1 f(xn)−

∫

X f dµX
∣

∣ < δ‖f‖Lip for any Lipschitz function f on X, where ‖f‖Lip =
sup |f |+ supx 6=y

ρ(f(x),f(y))
ρ(x,y) .

The following theorem was obtained in [GT]:

Theorem 5.1. ([GT] Theorem 1.16) Let G• be a filtration on G and let g ∈ poly(Z, G•).
There exist constants C and c, which only depend on X, such that for any δ > 0 small
enough and any N ∈ N, either the sequence (g(n))N

n=1 is δ-equidistributed in X, or there is
a nontrivial character χ on X with |χ| < Cδ−c such that

∣

∣χ(g(n))−χ(g(n−1)
∣

∣ < Cδ−c/N
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for all n ∈ {1, . . . , N}.

(In this theorem and below, the “either ... or ...” expression should be understood in the
“inclusive” sense, that is, that both possibilities may also occur simultaneously.)
(We skipped some details; in particular, there is also a condition on the Malcev basis
chosen in G and so, on the metric on X; this condition is satisfied if δ is small enough.)

We do not need much from this very strong “quantitative” theorem. Let X be
connected but G not necessarily connected; represent X as X = Go/(Γ ∩ Go). De-
fine the filtrations G• = {G1 ⊇ G2 ⊇ . . .} on G and Go

• = {Go
1 ⊇ Go

2 ⊇ . . .}
on Go by G1 = G, Gi = [Gi−1, G] for i ≥ 2, and Go

i = Gi ∩ Go, i ∈ N. Let
f ∈ C(X), and let ε > 0. Choose a Lipschitz function h on X with |h − f | < ε/3.
Choose δ > 0 small enough to satisfy Theorem 5.1 and such that δ‖f‖Lip < ε/3. Let
χ1, . . . , χr be the nontrivial characters on X satisfying |χi| < Cδ−c. Then for any
g ∈ poly(Z, Go

•) and N ∈ N, either there exists i such that
∣

∣χi(g(n)1X)−χi(g(n−1)1X)
∣

∣ <
Cδ−c/N for all n = 1, . . . , N , or

∣

∣
1
N

∑N
n=1 h(g(n)1X) −

∫

X h dµX
∣

∣ < δ‖f‖Lip, and
then

∣

∣
1
N

∑N
n=1 f(g(n)1X) −

∫

X f dµX
∣

∣ < ε. Sending N to infinity, we get that either
χi(g(n)1X) ≡ 1 for some i, or lim supN→∞

∣

∣
1
N

∑N
n=1 f(g(n)1X)−

∫

X f dµX
∣

∣ ≤ ε.
Now let Y be a connected subnilmanifold of X with 1X ∈ Y . Choose an element a ∈ G

such that the sequence (an1X)n∈N is dense in Y . Choose γ ∈ Γ such that aγ−1 ∈ Go. (Such
γ exists since X = G/Γ is connected.) Put g(n) = anγ−n, n ∈ N; then g(n)1X = an1X

for all n, and since g ∈ poly(Z, G•) and g(n) ∈ Go for all n, we have g ∈ poly(Z, Go
•).

Let χ1, . . . , χr be as above, let V ′
i = {x ∈ X : χi(x) = 0}, i = 1, . . . , r, and for each i,

let Vi be the connected component of the nilmanifold V ′
i that contains 1X . We have that

either χi(an1X) ≡ 1 for some i, or lim supN→∞
∣

∣
1
N

∑N
n=1 f(an1X)−

∫

X f dµX
∣

∣ ≤ ε. In the
first case, Y ⊆ V ′

i , and so, Y ⊆ Vi; in the second case, since limN→∞
1
N

∑N
n=1 f(an1X) =

∫

Y f dµY by [L1] (or by one more application of Theorem 5.1), we get that
∣

∣

∫

Y f dµY −
∫

X f dµX
∣

∣ ≤ ε. We obtain

Corollary (Proposition 1.1). Let X be a connected nilmanifold. For any f ∈ C(X)
and any ε > 0 there are subnilmanifolds V1, . . . , Vr of X, connected, of codimension 1, and
containing 1X , such that for any connected subnilmanifold Y of X with 1X ∈ Y , either
Y ∈ Vi for some i ∈ {1, . . . , r}, or

∣

∣

∫

Y f dµY −
∫

X f dµX
∣

∣ < ε.
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