Multiple polynomial correlation sequences and nilsequences

A. Leibman

Department of Mathematics The Ohio State University Columbus, OH 43210, USA *e-mail*: leibman@math.ohio-state.edu

February 1, 2010

Abstract

A basic nilsequence is a sequence of the form $\psi(n) = f(T^n x)$, where x is a point of a compact nilmanifold X, T is a translation on X, and $f \in C(X)$; a nilsequence is a uniform limit of basic nilsequences. Let $X = G/\Gamma$ be a compact nilmanifold, Y be a subnilmanifold of X, g(n) be a polynomial sequence in G, and $f \in C(X)$; we show that the sequence $\int_{g(n)Y} f, n \in \mathbb{Z}$, is the sum of a basic nilsequence and a sequence that converges to 0 in uniform density. This implies that, given an ergodic invertible measure preserving system (W, \mathcal{B}, μ, T) , with $\mu(W) < \infty$, polynomials $p_1, \ldots, p_k \in \mathbb{Z}[n]$, and sets $A_1, \ldots, A_k \in \mathcal{B}$, the sequence $\mu(T^{p_1(n)}A_1 \cap \ldots \cap T^{p_k(n)}A_k)$ is the sum of a nilsequence and a sequence that converges to 0 in uniform density. We also get a version of this result for the case where p_i are polynomials in several variables.

0. Introduction

A (d-step) nilmanifold is a compact homogeneous space of a (d-step) nilpotent Lie group; one can show that any d-step nilmanifold has the form G/Γ , where G is a d-step nilpotent (not necessarily connected) Lie group and Γ is a discrete co-compact subgroup of G. Elements of G act on X by translations; a (d-step) nilsystem is a (d-step) nilmanifold $X = G/\Gamma$ with a translation $a \in G$ on it. Nilsystems play an important role in studying "non-conventional", or "multiple", ergodic averages $\frac{1}{N} \sum_{n=1}^{N} T^{p_1(n)} h_1 \cdots T^{p_k(n)} h_k$, where T is a transformation of a finite measure space $(W, \mu), p_1, \ldots, p_k \in \mathbb{Z}[n]$, and $h_1, \ldots, h_k \in L^{\infty}(W)$. (See [HK1], [Z], [HK2].)

Let $X = G/\Gamma$ be a nilmanifold and Y be a subnilmanifold of X. Let g be a polynomial sequence in G, that is, a sequences of the form $g(n) = a_1^{p_1(n)} \dots a_r^{p_r(n)}$, where $a_1, \dots, a_r \in G$ and p_1, \dots, p_r are polynomials taking on integer values on the integers. It is shown in [L1] that the closure of the sequence g(n)Y, $X' = \bigcup_{n \in \mathbb{Z}} g(n)Y$, is a disjoint finite union of subnilmanifolds of X, and, if X' is a single subnilmanifold, the sequence g(n)Y is well distributed in X'. (That is, for every $f \in C(X')$,

Supported by NSF grants DMS-0600042.

 $\frac{1}{N_2 - N_1} \sum_{n=N_1+1}^{N_2} \int_{g(n)Y} f \, d(g(n)\mu_Y) \xrightarrow[N_2 - N_1 \to \infty]{} \int_{X'} f \, d\mu_{X'}, \text{ where } \mu_Y \text{ and } \mu_{X'} \text{ are the normalized Haar measures on } Y \text{ and on } X' \text{ respectively.})$

We were inspired by the following example. Let X be the 2-dimensional torus $\mathbb{T}^2 = (\mathbb{R}/\mathbb{Z})^2$ and G be the group generated by the ordinary rotations of X and by the transformation a(x, y) = (x, y+x); then G is a nilpotent Lie group acting on X transitively, which turns X to a nilmanifold. Choose an irrational $\alpha \in \mathbb{T}$ and put $b(x, y) = (x+\alpha, y+x)$, then $b \in G$. Let $Y_1 = \{(0,t), t \in \mathbb{T}\}$ and $Y_2 = \{(t,0), t \in \mathbb{T}\}$. Then $b^n Y_1 = \{(n\alpha,t), t \in \mathbb{T}\}$ and $b^n Y_2 = \{(t+n\alpha, nt+\frac{n(n-1)}{2}\alpha), t \in \mathbb{T}\}, n \in \mathbb{Z}$. Both sequences $b^n Y_1$ and $b^n Y_2, n \in \mathbb{Z}$, are dense in X, but their behaviors are different: the sequence $b^n Y_1$ consists of congruent subtori that simply "rotate" along X, whereas the members of the sequence $b^n Y_2$, $n \in \mathbb{Z}$, become more and more dense in X. We can say that the sequence $b^n Y_1$ converges to X: $\int_{g(n)Y_2} f d\mu_{Y_2} \longrightarrow \int_X f d\mu_X$ for any $f \in C(X)$, whereas the sequence $b^n Y_1$ converges to X only in average: $\frac{1}{N_2 - N_1} \sum_{n=N_1+1}^{N_2} f d\mu_{Y_1} \longrightarrow \int_X f d\mu_X$ for any $f \in C(X)$. It is clear what difference between Y_1 and Y_2 causes this effect: Y_1 is a normal subgroup of G whereas Y_2 is not.

Our goal was to show that in the general situation the sequence g(n)Y has a "mixed" behavior: g(n)Y converges to a subnilmanifold Z (the normal closure of Y), which, in its turn, rotates along X. We, however, have been unable to prove this, and only prove the weaker fact that g(n)Y converges to Z "in uniform density" (see Proposition 2.1). Our proof essentially uses a result from a recent paper by Green and Tao ([GT]) about the "uniform distribution" of subnilmanifolds (see Appendix).

In the terminology introduced in [BHK], a basic d-step nilsequence is a sequence of the form $\psi(n) = h(R^n w)$, where w is a point of a d-step nilmanifold M, R is a translation on M, and $h \in C(M)$; a d-step nilsequence is a uniform limit of basic d-step nilsequences. The algebra of nilsequences is a natural generalization of Weyl's algebra of almost periodic sequences, which are just 1-step nilsequences. We obtain, as a corollary, that for any $f \in C(X)$ the sequence $\int_{g(n)Y} f \, d\mu_{g(n)Y}$ is a sum of a basic nilsequence and a sequence that tends to 0 in uniform density (Theorem 2.5 below). We apply this fact to show that for any ergodic invertible measure preserving system (W, \mathcal{B}, μ, T) with $\mu(W) < \infty$, polynomials $p_1, \ldots, p_k \in \mathbb{Z}[n]$, and sets $A_1, \ldots, A_k \in \mathcal{B}$, the "multiple polynomial correlation sequence" $\varphi(n) = \mu(T_1^{p_1(n)}A_1 \cap \ldots \cap T_k^{p_k(n)}A_k), n \in \mathbb{Z}$, is a sum of a nilsequence and a sequence that tends to 0 in uniform density (Theorem 3.1 below). (A special case of this theorem, when $p_i(n) = in, i = 1, \dots, k$, was established in [BHK].) The question whether this is true for non-ergodic systems remains open to us. We also formulate and sketch the proof of a "multiparameter" version of this result: when p_1, \ldots, p_k are polynomials of m integer variables, then the sequence $\varphi(n) = \mu(T_1^{p_1(n)}A_1 \cap \ldots \cap T_k^{p_k(n)}A_k), n \in \mathbb{Z}^m$, is a sum of an (m-parameter) nilsequence and a sequence that tends to 0 in (ordinary) density (Theorem 4.3).

1. Nilmanifolds and subnilmanifolds

We will now give necessary definitions and list some facts that we will need below; details and proofs can be found in [M], [L1], [L2], [L4], and [L5]. Throughout the paper, let

 $X = G/\Gamma$ be a compact nilmanifold, where G is a nilpotent Lie group and Γ is a discrete subgroup of G, and let $\pi: G \longrightarrow X$ be the natural projection. By $\mathbf{1}_X$ we will denote the point $\pi(\mathbf{1}_G)$ of X.

By G^o we will denote the identity component of G. We will assume that the group G/G^o is finitely generated (which is enough for our goals).

Note that if G is disconnected, X can be interpreted as a nilmanifold, $X = G'/\Gamma'$, in different ways; for example, if X is connected, $X = G^o/(\Gamma \cap G^o)$. If X is connected and we study the action on X of a sequence g(n) in G, we may always assume that G is generated by G^o and the elements of g.

Every nilpotent Lie group G is a factor of a simply-connected (not necessarily connected) torsion free nilpotent Lie group. (As such, a suitable "free nilpotent Lie group" Fcan be taken. If G^o has l_1 generators, G/G^o has l_2 generators, and G is d-step nilpotent, then $F = \mathcal{F}/\mathcal{F}_{d+1}$, where \mathcal{F} is the free product of l_1 copies of \mathbb{R} and l_2 copies of \mathbb{Z} , and \mathcal{F}_{d+1} is the (d+1)st term of the lower central series of \mathcal{F} .) Thus, we may and will assume that G is simply connected and torsion-free. The identity component G^o of G is then an exponential Lie group, which means that for every element $a \in G^o$ there exists a (unique) one-parametric subgroup a^t such that $a^1 = a$.

A Malcev basis of G is a finite set $\{e_1, \ldots, e_k\}$ of elements of Γ , with $e_1, \ldots, e_{k_1} \in G^o$ and $e_{k_1+1}, \ldots, e_k \notin G^o$, that generates Γ and is such that every element $a \in G$ can be uniquely written in the form $a = e_1^{u_1} \ldots e_k^{u_k}$ with $u_1, \ldots, u_{k_1} \in \mathbb{R}$ and $u_{k_1+1}, \ldots, u_k \in \mathbb{Z}$; we call u_1, \ldots, u_k the coordinates of a. Thus, Malcev coordinates define a homeomorphism $G \simeq \mathbb{R}^{k_1} \times \mathbb{Z}^{k-k_1}, a \leftrightarrow (u_1, \ldots, u_k)$, and we may identify G with $\mathbb{R}^{k_1} \times \mathbb{Z}^{k-k_1}$.

If L is a connected closed normal subgroup of G of dimension l such that the lattice $L \cap \Gamma$ is co-compact in L, the Malcev coordinates on G can be chosen so that $e_1, \ldots, e_l \in L \cap \Gamma$; then $e_1^{u_1} \ldots e_k^{u_k} \in L$ iff $u_{l+1}, \ldots, u_k = 0$, and L is identified with the subspace $\mathbb{R}^l \times \{0\}^{k-l} \subseteq \mathbb{R}^{k_1} \times \mathbb{Z}^{k-k_1}$. We will call such coordinates on G compatible with L.

Let X be connected. Then, under the identification $G^o \leftrightarrow \mathbb{R}^{k_1}$, the cube $[0,1)^{k_1}$ is the fundamental domain of X. We will call the closed cube $Q = [0,1]^{k_1}$ the fundamental cube of X in G^o and identify X with Q. When X is identified with its fundamental cube Q, the normalized Haar measure μ_X on X coincides with the standard Lebesgue measure μ_Q on Q.

In Malcev coordinates, multiplication in G is a polynomial operation: there are polynomials q_1, \ldots, q_k in 2k variables with rational coefficients such that for $a = e_1^{u_1} \ldots e_k^{u_k}$ and $b = e_1^{v_1} \ldots e_k^{v_k}$ we have $ab = e_1^{q_1(u_1,v_1,\ldots,u_k,v_k)} \ldots e_k^{q_k(u_1,v_1,\ldots,u_k,v_k)}$. This implies that "life is polynomial" in nilpotent Lie groups: homomorphisms are polynomial mappings, connected closed subgroups are images of polynomial mappings and are defined by systems of polynomial equations.

A subnilmanifold Y of X is a closed subset of the form Y = Hx, where H is a closed subgroup of G and $x \in X$. For a closed subgroup H of G, the set $\pi(H) = H\mathbf{1}_X$ is closed, and so is a subnilmanifold, iff the subgroup $\Gamma \cap H$ is co-compact in H; we will call the subgroup H with this property rational.

If Y is a subnilmanifold of X such that $\mathbf{1}_X \in Y$, then $H = \pi^{-1}(Y)$ is a closed subgroup of G, and $Y = \pi(H) = H\mathbf{1}_X$. H, however, does not have to be the minimal subgroup with this property: if Y is connected, then the identity component H^o of H also satisfies $Y = \pi(H^o).$

Given a subnilmanifold Y of X, by μ_Y we will denote the normalized Haar measure on Y; we have $a\mu_Y = \mu_{aY}$ for all $a \in G$.

Let Z be a subnilmanifold of X, Z = Lx, where L is a closed subgroup of G. We say that Z is normal if L is normal. In this case the nilmanifold $\hat{X} = X/Z = G/(L\Gamma)$ is defined, and X splits into a disjoint union of fibers of the projection mapping $X \longrightarrow \hat{X}$. (Note that if L is normal in G^o only, then the factor $X/Z = G^o/(L\Gamma)$ is also defined, but the elements of $G \setminus G^o$ do not act on it.)

One can show that a subgroup L is normal iff $\gamma L \gamma^{-1} = L$ for all $\gamma \in \Gamma$; hence, $Z = \pi(L)$ is normal iff $\gamma Z = Z$ for all $\gamma \in \Gamma$.

If H is a closed rational subgroup of G then its normal closure L (the minimal normal subgroup of G containing H) is also closed and rational, thus $Z = \pi(L)$ is a subnilmanifold of X. We will call Z the normal closure of the subnilmanifold $Y = \pi(H)$. If L is normal then the identity component of L is also normal; this implies that the normal closure of a connected subnilmanifold is connected.

Let X be connected and k-dimensional, and let Z be an l-dimensional connected normal subnilmanifold of X. Let L be the connected normal closed subgroup of G such that Z = Lx; choose Malcev coordinates on G compatible with L, and let Q be the fundamental cube of X in G^o associated with these coordinates. Then the fundamental cube of Z is the subcube $[0,1]^l \times \{0\}^{k-l}$ of Q, and the fundamental cube of X/Z is the orthogonal projection of Q to the (k-l)-dimensional subspace associated with the last k-l coordinates on Q.

Let X be connected. We will need the fact that "almost all" subnilmanifolds of X are "quite uniformly" distributed in X. (This is in complete analogy with the situation on tori: if X is a torus, for any $\varepsilon > 0$ there are only finitely many subtori V_1, \ldots, V_r , of codimension 1 in X, such that any subtorus Y of X that contains 0 and is not contained in $\bigcup_{i=1}^r V_i$ is ε -dense and " ε -uniformly distributed" in X.) The following proposition is a corollary (of a special case) of the result obtained in [GT] (see Appendix for details):

Proposition 1.1. For any $f \in C(X)$ and any $\varepsilon > 0$ there are finitely many subnilmanifolds V_1, \ldots, V_r of X, connected, of codimension 1, and containing $\mathbf{1}_X$, such that for any connected subnilmanifold Y of X with $\mathbf{1}_X \in Y$, either $Y \in V_i$ for some $i \in \{1, \ldots, r\}$, or $|\int_Y f d\mu_Y - \int_X f d\mu_X| < \varepsilon$, (or both).

Identifying a subnilmanifold Y of X with the measure μ_Y on X, we introduce the weak^{*} topology on the set of subnilmanifolds of X; in this topology, given subnilmanifolds Z, Y_1, Y_2, \ldots of X, we write $Y_n \longrightarrow Z$ if $\int_{Y_n} f d\mu_{Y_n} \longrightarrow \int_Z f d\mu_Z$ for every $f \in C(X)$. It now follows from Proposition 1.1 that if connected subnilmanifolds Y_1, Y_2, \ldots of X, with $\mathbf{1}_X \in Y_n$ for all n, are such that for any proper subnilmanifold V of X (connected, of codimension 1, and with $\mathbf{1}_X \in V$) the set $\{n \in \mathbb{Z} : Y_n \subseteq V\}$ is finite, then $Y_n \longrightarrow X$.

For a set $S \in \mathbb{Z}$, the uniform (or Banach) density of S is $\mathcal{D}(S) = \lim_{N_2 - N_1 \to \infty} \frac{|S \cap [N_1, N_2]|}{N_2 - N_1}$ (if it exists). We will say that a sequence of points $(\omega_n)_{n \in \mathbb{Z}}$ of a topological space Ω converges to $\omega \in \Omega$ in uniform density if for every neighborhood U of ω one has $\mathcal{D}(\{n \in \mathbb{Z} : \omega_n \notin U\}) = 0$. It follows from Proposition 1.1 that, given connected subnilmanifolds Y_1, Y_2, \ldots of X with $\mathbf{1}_X \in Y_n$ for all n, if for any proper subnilmanifold V of X (connected, of codimension 1, and with $\mathbf{1}_X \in V$) one has $\mathcal{D}(\{n \in \mathbb{Z} : Y_n \subseteq V\}) = 0$, then $Y_n \longrightarrow X$ in uniform density.

2. Polynomial orbits of subnilmanifolds and nilsequences

Our main technical result is the following proposition.

Proposition 2.1. Let X be connected and let $Y = \pi(H)$ be a connected subnilmanifold of X, where H is a connected closed subgroup of G. Let g be a polynomial sequence in G with $g(0) = \mathbf{1}_G$ such that $g(\mathbb{Z})Y$ is dense in X, and assume that G is generated by G^o and the elements of g. Let Z be the normal closure of Y in X; then $g(n)Y - g(n)Z \longrightarrow 0$ in uniform density.

Remark. We believe that, actually, $g(n)Y - g(n)Z \longrightarrow 0$ (that is, for any $f \in C(X)$, $\left|\int_{g(n)Y} f d\mu_{g(n)Y} - \int_{g(n)Z} f d\mu_{g(n)Z}\right| \longrightarrow 0$ as $n \to \infty$).

Proof. Let L be the identity component of $\pi^{-1}(Z)$. Choose Malcev's coordinates in G^o compatible with L, and let Q be the corresponding fundamental cube in G^o . Q is compact, and is as well compact with respect to the uniform norm when elements of G are interpreted as transformations of X. Represent $g(n) = t_n \gamma_n$ so that $\gamma_n \in \Gamma$ and $t_n \in Q$, $n \in \mathbb{Z}$. Since Z is normal, $\gamma_n Z = Z$ for all n, so that $g(n)Z = t_n \gamma_n Z = t_n Z$, $n \in \mathbb{Z}$. We have $g(n)Y = t_n \gamma_n Y$, $n \in \mathbb{Z}$, and since Q is compact, we only have to show that $\gamma_n Y \longrightarrow Z$ in uniform density.

Let Q' be the fundamental cube of X/Z and let $\tau: Q \longrightarrow Q'$ be the natural projection. Since the sequence (g(n)Z) is well distributed in X, the sequence $(\tau(t_n))$ is well distributed in Q', which means that for any measurable subset U of Q' whose boundary is a null-set, $\mathcal{D}(\{n \in \mathbb{Z} : \tau(t_n) \in U\}) = \mu_{Q'}(U).$

Let V be a subnilmanifold of Z, connected, of codimension 1 in Z, and with $\mathbf{1}_X \in V$; based on Proposition 1.1, we only need to show that the set $\{n \in \mathbb{Z} : \gamma_n Y \subseteq V\}$ has zero uniform density. Let K be the identity component of $\pi^{-1}(V)$; we have $\gamma_n H \gamma_n^{-1} \subseteq L$ for all $n \in \mathbb{Z}$, and have to prove that the set $S = \{n \in \mathbb{Z} : \gamma_n H \gamma_n^{-1} \subseteq K\}$ has zero uniform density.

Since K is a proper subgroup of L, there exists $b \in G$ such that $bHb^{-1} \not\subseteq K$. By assumption, G is generated by G° and g. The group G° is generated by Q, thus $tHt^{-1} \not\subseteq K$ for some $t \in Q$ or $g(n)Hg(n)^{-1} \not\subseteq K$ for some $n \in \mathbb{Z}$. So, there exists $a \in H$ such that $tat^{-1} \notin K$ for some $t \in Q$ or $g(n)ag(n)^{-1} \notin K$ for some $n \in \mathbb{Z}$. Let $S' = \{n \in \mathbb{Z} :$ $\gamma_n a \gamma_n^{-1} \in K\}$; since $S \subseteq S'$, it suffices to show that $\mathcal{D}(S') = 0$. (This would not be a problem if γ_n were a polynomial sequence, but it is not.)

Consider the mapping $\eta(n,t) = t^{-1}g(n)ag(n)t$ from $\mathbb{Z}^m \times G^o$ to L; this is a polynomial mapping. Let χ be a homomorphism $L \longrightarrow \mathbb{R}$ such that $K = \{\chi = 0\}$. Let $\theta = \chi \circ \eta$; then θ is a polynomial, and it is shown above that $\theta \not\equiv 0$. Since K has codimension 1 in L, it contains [L, L], and so, is normal in L; hence, for any $s \in L$ we have $\theta(n, ts) =$ $\chi(s^{-1}t^{-1}g(n)ag(n)^{-1}ts) = \chi(t^{-1}g(n)ag(n)^{-1}t) = \theta(n,t)$ for all $t \in G^o$, $n \in \mathbb{Z}$. Thus, θ is defined on $\mathbb{Z} \times (G^o/L)$: there exists a polynomial θ' on $\mathbb{Z} \times (G^o/L)$ such that $\theta(n,t) =$ $\theta'(n,\tau(t)), t \in G^o, n \in \mathbb{Z}$. Let P be the restriction of θ' to $\mathbb{Z} \times Q'$. Now, $n \in S'$ iff $\gamma_n a \gamma_n^{-1} = t_n^{-1} g(n) a g(n)^{-1} t_n \in K, \text{ iff } \theta(n, t_n) = 0, \text{ iff } P(n, \tau(t_n)) = 0.$

Write P in coordinates on Q', $P(n, u) = \sum_{\alpha \in A} q_{\alpha}(n)u^{\alpha}$, $n \in \mathbb{Z}$, $u \in Q'$, where A is a set of multiindices and for each $\alpha \in A$, $q_{\alpha}(n)$ is a polynomial in n. We want to show that the set of zeroes of the polynomials $P_n(u) = P(n, u)$ in Q' "converges", as $n \to \infty$, to a set of zero measure. Let $d = \max\{\deg q_{\alpha}, \alpha \in A\}$. Then for any $\alpha \in A$, a finite limit $b_{\alpha} = \lim_{n \to \infty} n^{-d} q_{\alpha}(n)$ exists, and is nonzero for some α . Thus, as $n \to \infty$, the polynomials $n^{-d}P_n(u)$ converge uniformly on Q' to the nonzero polynomial $p(u) = \sum_{\alpha \in A} b_{\alpha}u^{\alpha}$. The set $N = \{u \in Q' : p(u) = 0\}$ has zero measure. Given $\varepsilon > 0$, find $\delta > 0$ such that the set $N_{\delta} = \{u \in Q' : |p(u)| < \delta\}$ has measure $< \varepsilon$. Let n_0 be such that $|P(n, u) - p(u)| < \delta$ on Q' for $|n| > n_0$; then for $|n| > n_0$ the set $D_n = \{u \in Q' : P(n, u) = 0\}$ is contained in N_{δ} . The sequence $u_n = \tau(t_n), n \in \mathbb{Z}$, is well distributed in Q' and the boundary of N_{δ} is a null-set, so $\mathcal{D}\{n \in \mathbb{Z} : u_n \in N_{\delta}\} = \mu_{Q'}(N_{\delta}) < \varepsilon$. Now,

$$S' = \left\{ n \in \mathbb{Z} : P(n, u_n) = 0 \right\} \subseteq \left\{ n \in \mathbb{Z} : u_n \in D_n \right\} \subseteq \left\{ -n_0, \dots, n_0 \right\} \cup \left\{ n \in \mathbb{Z} : u_n \in N_\delta \right\},$$

thus $\mathcal{D}(S') < \varepsilon$. Hence, $\mathcal{D}(S') = 0$.

Corollary 2.2. Let X be connected, let Y be a connected subnilmanifold of X, let g be a polynomials sequence in G, let $g(\mathbb{Z})Y$ be dense in X, and let $f \in C(X)$. There exists a factor-nilmanifold \hat{X} of X, a point $\hat{x} \in \hat{X}$, and a function $\hat{f} \in C(\hat{X})$ such that $\int_{g(n)Y} f d\mu_{g(n)Y} - \hat{f}(g(n)\hat{x}) \longrightarrow 0$ in uniform density.

Proof. We may assume that $g(0) = \mathbf{1}_G$, that G is generated by G^o and the elements of g, and that $Y \ni \mathbf{1}_X$. Let Z be the normal closure of Y in X, then $\int_{g(n)Y} f d\mu_{g(n)Y} - \int_{g(n)Z} f d\mu_{g(n)Z} \longrightarrow 0$ in uniform density. Let $\hat{X} = X/Z$, $\hat{x} = \{Z\} \in \hat{X}$, and $\hat{f} = E(f|\hat{X}) \in C(\hat{X})$; then $\int_{g(n)Y} f d\mu_{g(n)Y} - \int_{g(n)Z} f d\mu_{g(n)Z} \longrightarrow 0$ in uniform density, and $\int_{g(n)Z} f d\mu_{g(n)Z} = \hat{f}(g(n)\hat{x})$ for all n.

We now involve nilsequences into our consideration. Recall that a basic *d*-step nilsequence is a sequence of the form $\psi(n) = h(R^n w)$, where *w* is a point of a *d*-step nilmanifold M, *R* is a translation on *M*, and $h \in C(M)$. We find it worthy to expand this notion. Given a polynomial sequence $g(n) = a_1^{p_1(n)} \dots a_r^{p_r(n)}$ in a nilpotent group with deg $p_i \leq s$ for all *i*, we will say that *g* has naive degree $\leq s$. (The term "degree" had already been reserved for another parameter of a polynomial sequence.) Let us call a sequence of the form $\psi(n) = h(g(n)w)$, where *w* is a point of a *d*-step nilmanifold $M = J/\Lambda$, *g* is a polynomial sequence of naive degree $\leq s$ in *J*, and $h \in C(M)$, *a basic polynomial d-step nilsequence* of degree $\leq s$. Actually, any basic polynomial nilsequence is a basic nilsequence, as the following proposition says; the reason why we introduce this notion is that we do not want to loose the valuable information about the way a nilsequence was produced.

Proposition 2.3. (See [L1], Proposition 3.14) Any basic polynomial d-step nilsequence of degree $\leq s$ is a ds-step basic nilsequence.

Clearly, basic polynomial d-step nilsequences of degree $\leq s$ form an algebra; we will also need the following fact:

Lemma 2.4. Let $\psi_0, \ldots, \psi_{m-1}$ be basic polynomial d-step nilsequences of degree $\leq s$. Then the sequence $(\ldots, \psi_0(0), \ldots, \psi_{m-1}(0), \psi_0(1), \ldots, \psi_{m-1}(1), \psi_0(2), \ldots, \psi_{m-1}(2), \ldots)$ is also a basic polynomial d-step nilsequence of degree $\leq s$.

Proof. For each i = 0, ..., m - 1, let $M_i = J_i/\Lambda_i$ be the *d*-step nilmanifold, g_i be the polynomial sequence in $J_i, w_i \in M_i$ be the point, and $h_i \in C(M_i)$ be the function such that $\psi_i(n) = h(g_i(n)w_i), n \in \mathbb{Z}$. If, for some *i*, J_i is not connected, it is a factor-group of a free *d*-step nilpotent group with continuous and discrete generators, which , in its turn, is a subgroup of a free *d*-step nilpotent group with only continuous generators (see [L1]); thus after replacing, if needed, M_i by a larger nilmanifold and extending h_i to a continuous function on this nilmanifold we may assume that every J_i is connected. In this case for any element $b \in J_i$ and any $r \in \mathbb{N}$ a *r*-th root $b^{1/r}$ exists in J_i , and thus the polynomial sequence $b^{p(n)}$ in J_i makes sense even if a polynomial *p* has non-integer rational coefficients. Thus, for each *i*, we may construct a polynomial sequence g'_i in J_i , of the same naive degree as g_i , such that $g'_i(mn+i) = g_i(n)$ for all $n \in \mathbb{Z}$. Put $M = \mathbb{Z}_m \times \prod_{i=0}^m M_i, g = (1, g'_0, \ldots, g'_{m-1}), w = (0, w_0, w_1, \ldots, w_{m-1}) \in M$, and $h(i, v_0, \ldots, v_{m-1}) = h_i(v_i), (i, v_0, \ldots, v_{m-1}) \in M$. Then M is a d-step nilmanifold, $h \in C(M)$, and the basic polynomial nilsequence $\psi(n) = h(g(n)w) = h_i(g'_i(n)w_i) = h_i(g_i(k)w_i) = \psi_i(k)$ whenever $n = km + i, i = 0, 1, \ldots, m-1$.

We now get:

Theorem 2.5. Let $X = G/\Gamma$ be a d-step nilmanifold, let Y be a subnilmanifold of X, let g be a polynomial sequence in G of naive degree $\leq s$, let $f \in C(X)$, and let $\varphi(n) = \int_{g(n)Y} f \, d\mu_{g(n)Y}, n \in \mathbb{Z}$. There exists a basic polynomial d-step nilsequence ψ of degree $\leq s$ such that $\varphi(n) - \psi(n) \longrightarrow 0$ in uniform density.

Proof. If both Y and $\overline{g(\mathbb{Z})Y}$ are connected (in which case $\overline{g(\mathbb{Z})Y}$ is a nilmanifold), the assertion follows from Corollary 2.2.

Now assume that Y is connected but $\overline{g(\mathbb{Z})Y}$ is not. Then, by Theorem B in [L1], there exists $m \in \mathbb{N}$ such that $\overline{g(m\mathbb{Z}+j)Y}$ is connected for every $i = 0, \ldots, m-1$. Thus, for every $i = 0, \ldots, m-1$, there exists a basic polynomial d-step nilsequence ψ_i of degree $\leq s$ such that $\varphi(mn+i) - \psi_i(n) \longrightarrow 0$ in uniform density, and the assertion follows from Lemma 2.4.

Finally, if Y is disconnected and Y_1, \ldots, Y_l are the connected components of Y, then $\int_{g(n)Y} f \, d\mu_{g(n)Y} = \sum_{i=1}^l \int_{g(n)Y_i} f \, d\mu_{g(n)Y_i}, n \in \mathbb{Z}$, and the result holds since it holds for Y_1, \ldots, Y_l .

3. Multiple polynomial correlation sequences and nilsequences

Now let (W, \mathcal{B}, μ) be a probability measure space and let T be an ergodic invertible measure preserving transformation of W. Let p_1, \ldots, p_k be polynomials taking on integer values on the integers. Let $A_1, \ldots, A_k \in \mathcal{B}$ and let $\varphi(n) = \mu(T^{p_1(n)}A_1 \cap \ldots \cap T^{p_k(n)}A_k)$, $n \in \mathbb{Z}$; or, more generally, let $h_1, \ldots, h_k \in L^{\infty}(W)$ and $\varphi(n) = \int_W T^{p_1(n)}h_1 \cdots T^{p_k(n)}h_k d\mu$, $n \in \mathbb{Z}$. Using results from [HK2] it can be shown (see the argument in [BHK], Corollary 4.5) that, given $\varepsilon > 0$, there exist a *d*-step nilsystem $(X, a), X = G/\Gamma$, $a \in G$, and functions $f_1, \ldots, f_k \in L^{\infty}(X)$ such that, for $\phi(n) = \int_X a^{p_1(n)}f_1 \cdots a^{p_k(n)}f_k d\mu_X$, $\mathcal{D}(\{n \in \mathbb{Z} :$ $|\phi(n) - \varphi(n)| < \varepsilon\} = 0$; after replacing f_i by L^1 -close continuous functions, we may assume that $f_1, \ldots, f_k \in C(X)$. Moreover, there is a universal integer d that works for all systems (W, \mathcal{B}, μ, T) , functions h_i , and ε , and depends only on the polynomials p_i ; the minimal integer c for which d = c + 1 has this property is called the complexity of the system $\{p_1, \ldots, p_k\}$ (see [L6]). Applying Theorem 2.5 to the nilmanifold $X^k = G^k/\Gamma^k$, the diagonal subnilmanifold $Y = \{(x, \ldots, x), x \in X\} \subseteq X^k$, the polynomial sequence $g(n) = (1_G, a^{p_1(n)}, \ldots, a^{p_k(n)}), n \in \mathbb{Z}$, in G^k and the function $f(x_0, x_1, \ldots, x_k) = f_1(x_1) \cdot \dots \cdot f_k(x_k) \in C(X^k)$, we establish the existence of a basic polynomial d-step nilsequence ψ of degree $\leq s = \max_i(\deg p_i)$ such that $\phi(n) - \psi(n) \longrightarrow 0$ in uniform density. Summarizing, we get that $\varphi(n) = \phi(n) + \delta(n) = \psi(n) + \lambda(n) + \delta(n)$, where $\psi(n)$ is a basic polynomial d-step nilsequence of degree $\leq s, \lambda(n) \longrightarrow 0$ in uniform density, and $|\delta| < \varepsilon$.

We will say that a numerical sequence ψ is a polynomial d-step nilsequence of degree $\leq s$ if it is a uniform limit of basic polynomial d-step nilsequences of degree $\leq s$. (It follows from Proposition 2.3 that any polynomial d-step nilsequence of degree $\leq s$ is a ds-step nilsequence.)

We obtain:

Theorem 3.1. Let (W, \mathcal{B}, μ, T) be an ergodic invertible measure preserving system with $\mu(W) < \infty$, let $h_1, \ldots, h_k \in L^{\infty}(W)$, let p_1, \ldots, p_k be polynomials taking on integer values on the integers, and let $\varphi(n) = \int_W T^{p_1(n)} h_1 \cdots T^{p_k(n)} h_k d\mu$, $n \in \mathbb{Z}$. Let the complexity of $\{p_1, \ldots, p_k\}$ be c and $s = \max_i (\deg p_i)$; then there exists a polynomial (c + 1)-step nilsequence ψ of degree $\leq s$ such that $\varphi(n) - \psi(n) \longrightarrow 0$ in uniform density.

Proof. We copy the proof of Theorem 1.9 in [BHK]. For each $l \in \mathbb{N}$, let ψ_l be a basic polynomial *d*-step nilsequence of degree $\leq s$, λ_l be a sequence that tends to 0 in uniform density, and δ_l be a sequence with $|\delta_l| < 1/l$, such that $\varphi = \psi_l + \lambda_l + \delta_l$. Then for any $l, r, |\psi_l - \psi_r| \leq \frac{1}{l} + \frac{1}{r} + |\lambda_l - \lambda_r|$, thus $|\psi_l(n) - \psi_r(n)| \leq 2(\frac{1}{l} + \frac{1}{r})$ for all $n \in \mathbb{Z}$ but a set of zero uniform density. Nilsystems are distal systems, each point of a nilsystem is uniformly recurrent (which means that it returns to any its neighborhood regularly, see [F] and [L1]), thus any nilsequence visits any interval in \mathbb{R} for $n \in \mathbb{Z}$ from a set of positive uniform density, – or never. Hence, the (polynomial, and just ordinary) nilsequence $\psi_l - \psi_r$ satisfies $|\psi_l(n) - \psi_r(n)| \leq 2(\frac{1}{l} + \frac{1}{r})$ for all $n \in \mathbb{Z}$. Hence, the sequence $(\psi_l)_{l=1}^{\infty}$ of basic polynomial (c+1)-step nilsequences of degree $\leq s$ is Cauchy in $l^{\infty}(\mathbb{Z})$, and has a limit ψ that is a polynomial (c+1)-step nilsequence of degree $\leq s$. The sequence $\varphi - \psi$ is the uniform limit of the sequences λ_l , and thus tends to zero in uniform density.

Remark. We believe that Theorem 3.1 remains true without the assumption that T is ergodic, but do not see how to prove this. The problem is to show that "an integral of nilsequences is a nilsequence plus a negligible sequence", that is, given a finite measure space Ω and a measurable function $\Psi: \Omega \times \mathbb{Z} \longrightarrow \mathbb{C}$ such that for each $\omega \in \Omega$, $\psi(n) = \Psi(\omega, n)$ is a nilsequence, the sequence $\psi(n) = \int_{\Omega} \Psi(\omega, n) d\omega$ is a sum of a nilsequence and a sequence that tends to 0 in uniform density.

4. The multiparameter case

We now switch to the multiparameter case, that is, to the situation where p_i are

polynomials of $m \geq 1$ integer variables. We say that a mapping $g: \mathbb{Z}^m \longrightarrow G$ is an (m-parameter) polynomial sequence in G if $g(n) = a_1^{p_1(n)} \dots a_r^{p_r(n)}$, where $a_1, \dots, a_r \in G$ and p_1, \dots, p_r are polynomials $\mathbb{Z}^m \longrightarrow \mathbb{Z}$. It is shown in [L2] that, if g is an m-parameter polynomial sequence in G and Y is a connected subnilmanifold of X, then the closure of the sequence g(n)Y, $X' = \bigcup_{n \in \mathbb{Z}^m} g(n)Y$, is a disjoint finite union of subnilmanifolds of X, and, if X' is a single subnilmanifold, the sequence g(n)Y is well distributed in X'. (That is, for every $f \in C(X')$ and any Følner sequence (Φ_N) in \mathbb{Z}^m , $\lim_{N\to\infty} \frac{1}{|\Phi_N|} \sum_{n \in \Phi_N} \int_{g(n)Y} f d\mu_{g(n)Y} = \int_{X'} f d\mu_{X'}$.)

For a subset $S \subseteq \mathbb{Z}^m$, we define the density d(S) of S by $d(S) = \lim_{N \to \infty} \frac{|S \cap [-N,N]^m|}{(2N)^m}$, if it exists, and say that a sequence of points $(\omega_n)_{n \in \mathbb{Z}^m}$ of a topological space Ω converges to $\omega \in \Omega$ in density if for every neighborhood U of ω , $d(\{n \in \mathbb{Z}^m : \omega_n \notin U\}) = 0$.

For the case of multiparameter sequences we get a result similar to Proposition 2.1, but weaker since the "ordinary" density instead of the uniform density \mathcal{D} appears in it:

Proposition 4.1. Let $X = G/\Gamma$ be a connected nilmanifold and let $Y = \pi(H)$ be a connected subnilmanifold of X, where H is a connected closed subgroup of G. Let $g: \mathbb{Z}^m \longrightarrow G$ be a polynomial sequence with $g(0) = \mathbf{1}_G$ such that $g(\mathbb{Z}^m)Y$ is dense in X, and assume that G is generated by G^o and the elements of g. Let Z be the normal closure of Y in X; then $g(n)Y - g(n)Z \longrightarrow 0$ in density.

Proof. The beginning of the proof is the same as for Proposition 2.1, but we will repeat it. Let L be the identity component of $\pi^{-1}(Z)$. Choose Malcev coordinates in G^o compatible with L, and let Q be the corresponding fundamental cube in G^o . Q is compact, and is as well compact with respect to the uniform norm when elements of G are interpreted as transformations of X. Represent $g(n) = t_n \gamma_n$ so that $\gamma_n \in \Gamma$ and $t_n \in Q$, $n \in \mathbb{Z}^m$. Since Z is normal, $\gamma_n Z = Z$ for all n, so that $g(n)Z = t_n \gamma_n Z = t_n Z$, $n \in \mathbb{Z}^m$. We have $g(n)Y = t_n \gamma_n Y$, $n \in \mathbb{Z}$, and since Q is compact, we only have to show that $\gamma_n Y \longrightarrow Z$ in density. Let Q' be the fundamental cube of X/Z and let $\tau: Q \longrightarrow Q'$ be the natural projection. Since the sequence (g(n)Z) is well distributed in X, the sequence $(\tau(t_n))$ is well distributed in Q'.

Let V be a subnilmanifold of Z, connected, of codimension 1 in Z, and with $\mathbf{1}_X \in V$; based on Proposition 1.1, we only need to show that the set $\{n \in \mathbb{Z}^m : \gamma_n Y \subseteq V\}$ has zero density. Let K be the identity component of $\pi^{-1}(V)$; we have $\gamma_n H \gamma_n^{-1} \subseteq L$ for all $n \in \mathbb{Z}^m$, and have to prove that the set $S = \{n \in \mathbb{Z}^m : \gamma_n H \gamma_n^{-1} \subseteq K\}$ has zero density.

Since K is a proper subgroup of L and L is the normal closure of H in G there exists $b \in G$ such that $bHb^{-1} \not\subseteq K$. By assumption, G is generated by G^o and g. The group G^o is generated by Q, thus $tHt^{-1} \not\subseteq K$ for some $t \in Q$ or $g(n)Hg(n)^{-1} \not\subseteq K$ for some $n \in \mathbb{Z}^m$. So, there exists $a \in H$ such that $tat^{-1} \notin K$ for some $t \in Q$ or $g(n)ag(n)^{-1} \notin K$ for some $n \in \mathbb{Z}^m$. Let $S' = \{n \in \mathbb{Z}^m : \gamma_n a \gamma_n^{-1} \in K\}$; since $S \subseteq S'$, it suffices to show that d(S') = 0.

Consider the mapping $\eta(n,t) = t^{-1}g(n)ag(n)^{-1}t$ from $\mathbb{Z}^m \times G^o$ to L; this is a polynomial mapping. Let χ be a homomorphism $L \longrightarrow \mathbb{R}$ such that $K = \{\chi = 0\}$. Let $\theta = \chi \circ \eta$; then θ is a polynomial, and it is shown above that $\theta \neq 0$. Since K is normal in L, for any $s \in L$ we have $\theta(n,ts) = \chi(s^{-1}t^{-1}g(n)ag(n)^{-1}ts) = \chi(t^{-1}g(n)ag(n)^{-1}t) = \theta(n,t)$ for all $t \in G^o$, $n \in \mathbb{Z}^m$. Thus, θ is defined on $\mathbb{Z}^m \times (G^o/L)$: there exists a polynomial θ' on

 $\mathbb{Z}^m \times (G^o/L)$ such that $\theta(n,t) = \theta'(n,\tau(t)), t \in G^o, n \in \mathbb{Z}^m$. Let P be the restriction of θ' to $\mathbb{Z}^m \times Q'$. Now, $n \in S'$ iff $\gamma_n a \gamma_n^{-1} = t_n^{-1} g(n) a g(n)^{-1} t_n \in K$, iff $\theta(n,t_n) = 0$, iff $P(n,\tau(t_n)) = 0$.

Extend P to a polynomial on $\mathbb{R}^m \times Q'$. Write P in coordinates: $P(w, u) = \sum_{\alpha \in A} q_\alpha(w) u^\alpha$, where A is a set of multiindices and for each $\alpha \in A$, q_α is a polynomial on \mathbb{R}^m . Let $d = \max\{\deg q_\alpha, \ \alpha \in A\}$. For each $\alpha \in A$, let q_α^* be the homogeneous part of q_α of degree d. Let Σ be the sphere $\{\xi \in \mathbb{R}^m : |\xi| = 1\}$ and let $\Xi = \{\xi \in \Sigma : q_\alpha^*(\xi) \neq 0 \text{ for some } \alpha \in A\}$. For every $\xi \in \Sigma$ and $\alpha \in A$, $\lim_{s \to \infty} s^{-d} q_\alpha(s\xi) = q_\alpha^*(\xi)$, thus the polynomials $P_s(\xi, u) = s^{-d}P(s\xi, u)$ converge as $s \to \infty$ to the polynomial $p_{\xi}(u) = \sum_{\alpha \in A} q_\alpha^*(\xi) u^\alpha$ uniformly on $\Sigma \times Q'$. (Example: for $P((w_1, w_2), (u_1, u_2)) = (w_1^2 + w_2)u_1^2 + w_2u_1u_2 + 2w_1w_2u_2$ we have $p_{\xi}(u_1, u_2) = w_1^2u_1^2 + 2w_1w_2u_2$, $\xi = (w_1, w_2) \in \Sigma$, and $\Xi = \{\xi \in \Sigma : p_{\xi} \neq 0\} = \{(w_1, w_2) \in \Sigma : w_1 \neq 0\}$.)

Fix $\varepsilon > 0$. For $\xi \in \Xi$, let $N_{\xi} = \{u \in Q' : p_{\xi}(u) = 0\}$ and let $\delta_{\xi} > 0$ be such that the set $N_{\xi,\delta_{\xi}} = \{u \in Q' : |p_{\xi}(u)| < \delta_{\xi}\}$ has measure $< \varepsilon$. Let $U_{\xi} \subset \Xi$ be an open neighborhood of ξ such that $|p_{\zeta}(u) - p_{\xi}(u)| < \delta_{\xi}/2$ for all $\zeta \in U_{\xi}$ and $u \in Q'$. Let $s_{\xi} > 0$ be such that $|s^{-d}P(s\zeta, u)(u) - p_{\zeta}(u)| < \delta_{\xi}/2$ for all $s > s_{\xi}, \zeta \in U_{\xi}$, and $u \in Q'$. Then for any $s > s_{\xi}$ and $\zeta \in U_{\xi}, \{u \in Q' : P(s\zeta, u) = 0\} \subseteq N_{\xi,\delta_{\xi}}$.

Since the sequence $u_n = \tau(t_n), n \in \mathbb{Z}^m$, is well distributed in Q', for every $\xi \in \Xi$ there exists $M_{\xi} \in \mathbb{N}$ such that for any $M > M_{\xi}$ and any $v \in \mathbb{R}^m, \frac{1}{M^m} |\{n \in v + [1, M]^m : u_n \in N_{\xi,\delta_{\xi}}\}| < 2\varepsilon$. If $v \in \mathbb{R}^m$ and $M \in \mathbb{N}$ are such that $|v| > s_{\xi} + \sqrt{m}M$ and $v + [1, M]^m \subset \mathbb{R}_+ U_{\xi}$, then for any $w \in v + [1, M]^m$ we have $\{u \in Q' : P(w, u) = 0\} \subseteq N_{\xi,\delta_{\xi}}$. Thus, for such v and $M, \frac{1}{M^m} |\{n \in v + [1, M]^m : P(n, u_n) = 0\}| < 2\varepsilon$, and hence, $\frac{1}{M^m} |S' \cap (v + [1, M]^m)| < 2\varepsilon$.

 $E = \Sigma \setminus \Xi \text{ is a proper algebraic subvariety of } \Sigma, \text{ therefore there exists a compact set } D \subset \Xi \text{ such that } d(\mathbb{R}_+D \cap \mathbb{Z}^m) > 1 - \varepsilon. \text{ (Indeed, } E \text{ can be represented as a finite union of smooth submanifolds of } \Sigma \text{ of dimension } \leq m-2 \text{, thus it can be covered by a finite union } \mathcal{E} \text{ of open balls with } \sigma(\mathcal{E}) < \varepsilon \sigma(\Sigma), \text{ where } \sigma \text{ is the standard } (m-1)\text{-dimensional volume on } \Sigma. \text{ For such a set } \mathcal{E} \text{ we have } d(\mathbb{R}_+\mathcal{E}\cap\mathbb{Z}^m) = \sigma(\mathcal{E})/\sigma(\Sigma) < \varepsilon, \text{ and for } D = \Sigma \setminus \mathcal{E} \text{ we have } d(\mathbb{R}_+D \cap \mathbb{Z}^m) > 1 - \varepsilon.) \text{ Let } \xi_1, \dots, \xi_l \text{ be such that } \bigcup_{j=1}^l U_{\xi_j} \supseteq D \text{ and let } s = \max_{1 \leq j \leq l} s_{\xi_j}, M = \max_{1 \leq j \leq l} M_{\xi_j}. \text{ Let } r > s + \sqrt{m}M \text{ be such that for any cube } C = v + [1, M]^m \subset \mathbb{R}_+D \text{ with } |v| > r \text{ we have } C \subset \mathbb{R}_+U_{\xi_j} \text{ for some } j. \text{ Then for any such cube } C \text{ we have } \frac{1}{|C|}|S' \cap C| < 2\varepsilon. \text{ Thus, } d(S') < 3\varepsilon. \text{ Hence, } d(S') = 0.$

Remark. The proof of Proposition 4.1 gives more information about the set $S = \{n \in \mathbb{Z}^m : |\int_{g(n)Y} f - \int_{g(n)Z} f| > \varepsilon\}$ than just the fact that S has zero density. Actually, the uniform density of S is zero, – if we ignore a small set \mathcal{E} of "bad" directions in \mathbb{R}^m ; indeed, S has uniform density 0 in $\mathbb{R}_+(\Sigma \setminus \mathcal{E}) \cap \mathbb{Z}^m$, whereas $\sigma(\mathcal{E}) < \varepsilon \sigma(\Sigma)$.

We say that a mapping $\psi: \mathbb{Z}^m \longrightarrow \mathbb{C}$ is a basic polynomial d-step m-parameter nilsequence of degree $\leq s$ if there exist a d-step nilmanifold $M = J/\Lambda$, a polynomial mapping $g: \mathbb{Z}^m \longrightarrow J$ of naive degree $\leq s$, a function $h \in C(M)$, and a point $w \in M$ such that $\psi(n) = h(g(n)w), n \in \mathbb{Z}^m$, and we will say that an m-parameter numerical sequence is a polynomial d-step nilsequence of degree $\leq s$ if it is a uniform limit of basic polynomial d-step m-parameter nilsequences of degree $\leq s$. The definitions and facts related to oneparameter polynomial sequences and nilsequences are translated almost literally to the multiparameter case; one only has to use results from [L2] and [L3] instead of the corresponding results from [L1] and [HK2]. (In particular, any (basic) polynomial *m*-parameter nilsequence is a (basic) *m*-parameter nilsequence; see the proof of Theorem B^{*} in [L2].) In the same way as we got Theorems 2.5 and 3.1, we now obtain:

Theorem 4.2. Let $X = G/\Gamma$ be a d-step nilmanifold, let Y be a subnilmanifold of X, let $g: \mathbb{Z}^m \longrightarrow G$ be a polynomials sequence of naive degree $\leq s$, let $f \in C(X)$, let $\varphi(n) = \int_{g(n)Y} f \, d\mu_{g(n)Y}, n \in \mathbb{Z}^m$. There exists a basic polynomial d-step m-parameter nilsequence ψ of degree $\leq s$ such that $\varphi(n) - \psi(n) \longrightarrow 0$ in density.

Theorem 4.3. Let (W, \mathcal{B}, μ, T) be an ergodic invertible measure preserving system with $\mu(W) < \infty$, let $h_1, \ldots, h_k \in L^{\infty}(W)$, let p_1, \ldots, p_k be polynomials $\mathbb{Z}^m \longrightarrow \mathbb{Z}$, and let $\varphi(n) = \int_W T^{p_1(n)}h_1 \cdots T^{p_k(n)}h_k d\mu$, $n \in \mathbb{Z}^m$. Let the complexity of $\{p_1, \ldots, p_k\}$ be c and let $s = \max_i(\deg p_i)$; then there exists a (c+1)-step m-parameter polynomial nilsequence ψ of degree $\leq s$ such that $\varphi(n) - \psi(n) \longrightarrow 0$ in density.

5. Appendix

We will show here how Proposition 1.1 can be derived from Green-Tao's result in [GT].

We first need to introduce some terminology from [GT]. Let G be a connected nilpotent Lie group with a discrete cocompact subgroup Γ , and let $X = G/\Gamma$.

A filtration G_{\bullet} on G is a finite decreasing sequence of subgroups $G = G_1 \supseteq G_2 \supseteq$ $\ldots \supseteq G_d \supseteq G_{d+1} = \{\mathbf{1}_G\}$ with the property that $[G_i, G_j] \subseteq G_{i+j}$ for all i, j.

For a sequence $g: \mathbb{Z} \longrightarrow G$, "the derivative" ∂g is defined by $(\partial g)(n) = g(n)^{-1}g(n+1)$, $n \in \mathbb{Z}$. Given a filtration $G_{\bullet} = (G_1 \supseteq G_2 \supseteq \ldots \supseteq G_d)$ on G, poly $(\mathbb{Z}, G_{\bullet})$ denotes the group of polynomial sequences g in G with the property that, for each $i = 1, \ldots, d, \partial^i g$ takes values in G_i ,

Given a filtration $G_{\bullet} = (G_1 \supseteq G_2 \supseteq \ldots \supseteq G_d)$ on G, a Malcev basis \mathcal{M} adapted to this filtration can be constructed (which means that for any $i, \mathcal{M} \cap G_i$ is a basis in G_i), and this basis naturally defines a locally Euclidean metric ρ on X.

A (horizontal) character on X is a mapping $\chi: X \longrightarrow \mathbb{R}/\mathbb{Z}$ induced by a character on the torus $T = [G, G] \setminus X$ (or equivalently, by a continuous homomorphism $G \longrightarrow \mathbb{R}/\mathbb{Z}$ trivial on Γ). A Malcev basis in G defines coordinates (t_1, \ldots, t_l) on T, and in these coordinates any character χ on X has the form $m_1 t_1 + \ldots + m_l t_l$, $(t_1, \ldots, t_l) \in T$, with $m_1, \ldots, m_l \in \mathbb{Z}$; the modulus $|\chi|$ of χ is defined by $|\chi| = |m_1| + \ldots + |m_l|$.

Given $\delta > 0$, a finite sequence (x_1, \ldots, x_N) is said to be δ -equidistributed in X if $\left|\frac{1}{N}\sum_{n=1}^N f(x_n) - \int_X f d\mu_X\right| < \delta \|f\|_{\text{Lip}}$ for any Lipschitz function f on X, where $\|f\|_{\text{Lip}} = \sup |f| + \sup_{x \neq y} \frac{\rho(f(x), f(y))}{\rho(x, y)}$.

The following theorem was obtained in [GT]:

Theorem 5.1. ([GT] Theorem 1.16) Let G_{\bullet} be a filtration on G and let $g \in \text{poly}(\mathbb{Z}, G_{\bullet})$. There exist constants C and c, which only depend on X, such that for any $\delta > 0$ small enough and any $N \in \mathbb{N}$, either the sequence $(g(n))_{n=1}^{N}$ is δ -equidistributed in X, or there is a nontrivial character χ on X with $|\chi| < C\delta^{-c}$ such that $|\chi(g(n)) - \chi(g(n-1))| < C\delta^{-c}/N$ for all $n \in \{1, ..., N\}$.

(In this theorem and below, the "either ... or ..." expression should be understood in the "inclusive" sense, that is, that both possibilities may also occur simultaneously.) (We skipped some details; in particular, there is also a condition on the Malcev basis

chosen in G and so, on the metric on X; this condition is satisfied if δ is small enough.)

We do not need much from this very strong "quantitative" theorem. Let X be connected but G not necessarily connected; represent X as $X = G^o/(\Gamma \cap G^o)$. Define the filtrations $G_{\bullet} = \{G_1 \supseteq G_2 \supseteq \ldots\}$ on G and $G_{\bullet}^o = \{G_1^o \supseteq G_2^o \supseteq \ldots\}$ on G^o by $G_1 = G$, $G_i = [G_{i-1}, G]$ for $i \ge 2$, and $G_i^o = G_i \cap G^o$, $i \in \mathbb{N}$. Let $f \in C(X)$, and let $\varepsilon > 0$. Choose a Lipschitz function h on X with $|h - f| < \varepsilon/3$. Choose $\delta > 0$ small enough to satisfy Theorem 5.1 and such that $\delta ||f||_{\text{Lip}} < \varepsilon/3$. Let χ_1, \ldots, χ_r be the nontrivial characters on X satisfying $|\chi_i| < C\delta^{-c}$. Then for any $g \in \text{poly}(\mathbb{Z}, G_{\bullet}^o)$ and $N \in \mathbb{N}$, either there exists i such that $|\chi_i(g(n)\mathbf{1}_X) - \chi_i(g(n-1)\mathbf{1}_X)| < C\delta^{-c}/N$ for all $n = 1, \ldots, N$, or $|\frac{1}{N}\sum_{n=1}^N h(g(n)\mathbf{1}_X) - \int_X h \, d\mu_X| < \delta ||f||_{\text{Lip}}$, and then $|\frac{1}{N}\sum_{n=1}^N f(g(n)\mathbf{1}_X) - \int_X f \, d\mu_X| < \varepsilon$. Sending N to infinity, we get that either $\chi_i(g(n)\mathbf{1}_X) \equiv 1$ for some i, or $\lim \sup_{N \to \infty} |\frac{1}{N}\sum_{n=1}^N f(g(n)\mathbf{1}_X) - \int_X f \, d\mu_X| \leq \varepsilon$.

Now let Y be a connected subnilmanifold of X with $\mathbf{1}_X \in Y$. Choose an element $a \in G$ such that the sequence $(a^n \mathbf{1}_X)_{n \in \mathbb{N}}$ is dense in Y. Choose $\gamma \in \Gamma$ such that $a\gamma^{-1} \in G^o$. (Such γ exists since $X = G/\Gamma$ is connected.) Put $g(n) = a^n \gamma^{-n}$, $n \in \mathbb{N}$; then $g(n)\mathbf{1}_X = a^n\mathbf{1}_X$ for all n, and since $g \in \operatorname{poly}(\mathbb{Z}, G_{\bullet})$ and $g(n) \in G^o$ for all n, we have $g \in \operatorname{poly}(\mathbb{Z}, G_{\bullet})$. Let χ_1, \ldots, χ_r be as above, let $V'_i = \{x \in X : \chi_i(x) = 0\}$, $i = 1, \ldots, r$, and for each i, let V_i be the connected component of the nilmanifold V'_i that contains $\mathbf{1}_X$. We have that either $\chi_i(a^n\mathbf{1}_X) \equiv 1$ for some i, or $\limsup_{N \to \infty} \left| \frac{1}{N} \sum_{n=1}^N f(a^n\mathbf{1}_X) - \int_X f d\mu_X \right| \leq \varepsilon$. In the first case, $Y \subseteq V'_i$, and so, $Y \subseteq V_i$; in the second case, since $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N f(a^n\mathbf{1}_X) = \int_Y f d\mu_Y$ by [L1] (or by one more application of Theorem 5.1), we get that $\left| \int_Y f d\mu_Y - \int_X f d\mu_X \right| \leq \varepsilon$. We obtain

Corollary (Proposition 1.1). Let X be a connected nilmanifold. For any $f \in C(X)$ and any $\varepsilon > 0$ there are subnilmanifolds V_1, \ldots, V_r of X, connected, of codimension 1, and containing $\mathbf{1}_X$, such that for any connected subnilmanifold Y of X with $\mathbf{1}_X \in Y$, either $Y \in V_i$ for some $i \in \{1, \ldots, r\}$, or $\left| \int_Y f d\mu_Y - \int_X f d\mu_X \right| < \varepsilon$.

Acknowledgment. I thank Vitaly Bergelson for corrections and good advice. I also thank an anonymous referee and Dan Rudolph, the editor, for corrections and help in preparing this paper.

Bibliography

- [BHK] V. Bergelson, B. Host and B. Kra, Multiple recurrence and nilsequences., *Inventiones Math.* 160 (2005), no. 2, 261–303.
- [F] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, 1981.
- [GT] B. Green and T. Tao, The quantitative behaviour of polynomial orbits on nilmanifolds,

preprint. Available at arXiv:0709.3562v2.

- [HK1] B. Host and B. Kra, Non-conventional ergodic averages and nilmanifolds, Annals of Math. 161 (2005), no. 1, 397–488.
- [HK2] B. Host and B. Kra, Convergence of polynomial ergodic averages, Israel J. of Math. 149 (2005), 1-19.
- [L1] A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold, *Ergodic Theory and Dyn. Syst.* **25** (2005), 201-213.
- [L2] A. Leibman, Pointwise convergence of ergodic averages for polynomial actions of \mathbb{Z}^d by translations on a nilmanifold, *Ergodic Theory and Dyn. Syst.* **25** (2005), 215-225.
- [L3] A. Leibman, Convergence of multiple ergodic averages along polynomials of several variables, Israel J. of Math. 146 (2005), 303-315.
- [L4] A. Leibman, Rational sub-nilmanifolds of a compact nilmanifold, Ergodic Theory and Dyn. Syst. 26 (2006), 787-798.
- [L5] A. Leibman, Orbits on a nilmanifold under the action of a polynomial sequences of translations, *Ergodic Theory and Dyn. Syst.* **27** (2007), 1239-1252.
- [L6] A. Leibman, Orbit of the diagonal in the power of a nilmanifold, preprint. Available at http://www.math.ohio-state.edu/~leibman/preprints
- [M] A. Malcev, On a class of homogeneous spaces, Amer. Math. Soc. Transl. 9 (1962), 276-307.
- [Z] T. Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc. 20 (2007), no. 1, 53-97.