Multiple polynomial correlation sequences and nilsequences

A. Leibman
Department of Mathematics
The Ohio State University
Columbus, OH 43210, USA
e-mail: leibman@math.ohio-state.edu

February 1, 2010

Abstract

A basic nilsequence is a sequence of the form $\psi(n)=f\left(T^{n} x\right)$, where x is a point of a compact nilmanifold X, T is a translation on X, and $f \in C(X)$; a nilsequence is a uniform limit of basic nilsequences. Let $X=G / \Gamma$ be a compact nilmanifold, Y be a subnilmanifold of $X, g(n)$ be a polynomial sequence in G, and $f \in C(X)$; we show that the sequence $\int_{g(n) Y} f, n \in \mathbb{Z}$, is the sum of a basic nilsequence and a sequence that converges to 0 in uniform density. This implies that, given an ergodic invertible measure preserving system (W, \mathcal{B}, μ, T), with $\mu(W)<\infty$, polynomials $p_{1}, \ldots, p_{k} \in \mathbb{Z}[n]$, and sets $A_{1}, \ldots, A_{k} \in \mathcal{B}$, the sequence $\mu\left(T^{p_{1}(n)} A_{1} \cap \ldots \cap T^{p_{k}(n)} A_{k}\right)$ is the sum of a nilsequence and a sequence that converges to 0 in uniform density. We also get a version of this result for the case where p_{i} are polynomials in several variables.

0. Introduction

A (d-step) nilmanifold is a compact homogeneous space of a (d-step) nilpotent Lie group; one can show that any d-step nilmanifold has the form G / Γ, where G is a d-step nilpotent (not necessarily connected) Lie group and Γ is a discrete co-compact subgroup of G. Elements of G act on X by translations; a (d-step) nilsystem is a (d-step) nilmanifold $X=G / \Gamma$ with a translation $a \in G$ on it. Nilsystems play an important role in studying "non-conventional", or "multiple", ergodic averages $\frac{1}{N} \sum_{n=1}^{N} T^{p_{1}(n)} h_{1} \ldots \ldots T^{p_{k}(n)} h_{k}$, where T is a transformation of a finite measure space $(W, \mu), p_{1}, \ldots, p_{k} \in \mathbb{Z}[n]$, and $h_{1}, \ldots, h_{k} \in$ $L^{\infty}(W)$. (See [HK1], [Z], [HK2].)

Let $X=G / \Gamma$ be a nilmanifold and Y be a subnilmanifold of X. Let g be a polynomial sequence in G, that is, a sequences of the form $g(n)=a_{1}^{p_{1}(n)} \ldots a_{r}^{p_{r}(n)}$, where $a_{1}, \ldots, a_{r} \in G$ and p_{1}, \ldots, p_{r} are polynomials taking on integer values on the integers. It is shown in [L1] that the closure of the sequence $g(n) Y, X^{\prime}=\overline{\bigcup_{n \in \mathbb{Z}} g(n) Y}$, is a disjoint finite union of subnilmanifolds of X, and, if X^{\prime} is a single subnilmanifold, the sequence $g(n) Y$ is well distributed in X^{\prime}. (That is, for every $f \in C\left(X^{\prime}\right)$,

Supported by NSF grants DMS-0600042.
$\frac{1}{N_{2}-N_{1}} \sum_{n=N_{1}+1}^{N_{2}} \int_{g(n) Y} f d\left(g(n) \mu_{Y}\right)_{N_{2}-N_{1} \rightarrow \infty}^{\longrightarrow} \int_{X^{\prime}} f d \mu_{X^{\prime}}$, where μ_{Y} and $\mu_{X^{\prime}}$ are the normalized Haar measures on Y and on X^{\prime} respectively.)

We were inspired by the following example. Let X be the 2-dimensional torus $\mathbb{T}^{2}=(\mathbb{R} / \mathbb{Z})^{2}$ and G be the group generated by the ordinary rotations of X and by the transformation $a(x, y)=(x, y+x)$; then G is a nilpotent Lie group acting on X transitively, which turns X to a nilmanifold. Choose an irrational $\alpha \in \mathbb{T}$ and put $b(x, y)=(x+\alpha, y+x)$, then $b \in G$. Let $Y_{1}=\{(0, t), t \in \mathbb{T}\}$ and $Y_{2}=\{(t, 0), t \in \mathbb{T}\}$. Then $b^{n} Y_{1}=\{(n \alpha, t), t \in \mathbb{T}\}$ and $b^{n} Y_{2}=\left\{\left(t+n \alpha, n t+\frac{n(n-1)}{2} \alpha\right), t \in \mathbb{T}\right\}, n \in \mathbb{Z}$. Both sequences $b^{n} Y_{1}$ and $b^{n} Y_{2}, n \in \mathbb{Z}$, are dense in X, but their behaviors are different: the sequence $b^{n} Y_{1}$ consists of congruent subtori that simply "rotate" along X, whereas the members of the sequence $b^{n} Y_{2}, n \in \mathbb{Z}$, become more and more dense in X. We can say that the sequence $b^{n} Y_{2}$ converges to X : $\int_{g(n) Y_{2}} f d \mu_{Y_{2}} \longrightarrow \int_{X} f d \mu_{X}$ for any $f \in C(X)$, whereas the sequence $b^{n} Y_{1}$ converges to X only in average: $\frac{1}{N_{2}-N_{1}} \sum_{n=N_{1}+1}^{N_{2}} \int_{g(n) Y_{1}} f d \mu_{Y_{1}} \longrightarrow \int_{X} f d \mu_{X}$ for any $f \in C(X)$. It is clear what difference between Y_{1} and Y_{2} causes this effect: Y_{1} is a normal subgroup of G whereas Y_{2} is not.

Our goal was to show that in the general situation the sequence $g(n) Y$ has a "mixed" behavior: $g(n) Y$ converges to a subnilmanifold Z (the normal closure of Y), which, in its turn, rotates along X. We, however, have been unable to prove this, and only prove the weaker fact that $g(n) Y$ converges to Z "in uniform density" (see Proposition 2.1). Our proof essentially uses a result from a recent paper by Green and Tao ([GT]) about the "uniform distribution" of subnilmanifolds (see Appendix).

In the terminology introduced in [BHK], a basic d-step nilsequence is a sequence of the form $\psi(n)=h\left(R^{n} w\right)$, where w is a point of a d-step nilmanifold M, R is a translation on M, and $h \in C(M)$; a d-step nilsequence is a uniform limit of basic d-step nilsequences. The algebra of nilsequences is a natural generalization of Weyl's algebra of almost periodic sequences, which are just 1-step nilsequences. We obtain, as a corollary, that for any $f \in C(X)$ the sequence $\int_{g(n) Y} f d \mu_{g(n) Y}$ is a sum of a basic nilsequence and a sequence that tends to 0 in uniform density (Theorem 2.5 below). We apply this fact to show that for any ergodic invertible measure preserving system (W, \mathcal{B}, μ, T) with $\mu(W)<\infty$, polynomials $p_{1}, \ldots, p_{k} \in \mathbb{Z}[n]$, and sets $A_{1}, \ldots, A_{k} \in \mathcal{B}$, the "multiple polynomial correlation sequence" $\varphi(n)=\mu\left(T_{1}^{p_{1}(n)} A_{1} \cap \ldots \cap T_{k}^{p_{k}(n)} A_{k}\right), n \in \mathbb{Z}$, is a sum of a nilsequence and a sequence that tends to 0 in uniform density (Theorem 3.1 below). (A special case of this theorem, when $p_{i}(n)=i n, i=1, \ldots, k$, was established in [BHK].) The question whether this is true for non-ergodic systems remains open to us. We also formulate and sketch the proof of a "multiparameter" version of this result: when p_{1}, \ldots, p_{k} are polynomials of m integer variables, then the sequence $\varphi(n)=\mu\left(T_{1}^{p_{1}(n)} A_{1} \cap \ldots \cap T_{k}^{p_{k}(n)} A_{k}\right), n \in \mathbb{Z}^{m}$, is a sum of an (m-parameter) nilsequence and a sequence that tends to 0 in (ordinary) density (Theorem 4.3).

1. Nilmanifolds and subnilmanifolds

We will now give necessary definitions and list some facts that we will need below; details and proofs can be found in [M], [L1], [L2], [L4], and [L5]. Throughout the paper, let
$X=G / \Gamma$ be a compact nilmanifold, where G is a nilpotent Lie group and Γ is a discrete subgroup of G, and let $\pi: G \longrightarrow X$ be the natural projection. By $\mathbf{1}_{X}$ we will denote the point $\pi\left(\mathbf{1}_{G}\right)$ of X.

By G^{o} we will denote the identity component of G. We will assume that the group G / G^{o} is finitely generated (which is enough for our goals).

Note that if G is disconnected, X can be interpreted as a nilmanifold, $X=G^{\prime} / \Gamma^{\prime}$, in different ways; for example, if X is connected, $X=G^{o} /\left(\Gamma \cap G^{o}\right)$. If X is connected and we study the action on X of a sequence $g(n)$ in G, we may always assume that G is generated by G^{o} and the elements of g.

Every nilpotent Lie group G is a factor of a simply-connected (not necessarily connected) torsion free nilpotent Lie group. (As such, a suitable "free nilpotent Lie group" F can be taken. If G^{o} has l_{1} generators, G / G^{o} has l_{2} generators, and G is d-step nilpotent, then $F=\mathcal{F} / \mathcal{F}_{d+1}$, where \mathcal{F} is the free product of l_{1} copies of \mathbb{R} and l_{2} copies of \mathbb{Z}, and \mathcal{F}_{d+1} is the $(d+1)$ st term of the lower central series of \mathcal{F}.) Thus, we may and will assume that G is simply connected and torsion-free. The identity component G^{o} of G is then an exponential Lie group, which means that for every element $a \in G^{o}$ there exists a (unique) one-parametric subgroup a^{t} such that $a^{1}=a$.

A Malcev basis of G is a finite set $\{e 1, \ldots, e k\}$ of elements of Γ, with $e_{1}, \ldots, e_{k_{1}} \in G^{o}$ and $e_{k_{1}+1}, \ldots, e_{k} \notin G^{o}$, that generates Γ and is such that every element $a \in G$ can be uniquely written in the form $a=e_{1}^{u_{1}} \ldots e_{k}^{u_{k}}$ with $u_{1}, \ldots, u_{k_{1}} \in \mathbb{R}$ and $u_{k_{1}+1}, \ldots, u_{k} \in \mathbb{Z}$; we call u_{1}, \ldots, u_{k} the coordinates of a. Thus, Malcev coordinates define a homeomorphism $G \simeq \mathbb{R}^{k_{1}} \times \mathbb{Z}^{k-k_{1}}, a \leftrightarrow\left(u_{1}, \ldots, u_{k}\right)$, and we may identify G with $\mathbb{R}^{k_{1}} \times \mathbb{Z}^{k-k_{1}}$.

If L is a connected closed normal subgroup of G of dimension l such that the lattice $L \cap \Gamma$ is co-compact in L, the Malcev coordinates on G can be chosen so that $e_{1}, \ldots, e_{l} \in$ $L \cap \Gamma$; then $e_{1}^{u_{1}} \ldots e_{k}^{u_{k}} \in L$ iff $u_{l+1}, \ldots, u_{k}=0$, and L is identified with the subspace $\mathbb{R}^{l} \times\{0\}^{k-l} \subseteq \mathbb{R}^{k_{1}} \times \mathbb{Z}^{k-k_{1}}$. We will call such coordinates on G compatible with L.

Let X be connected. Then, under the identification $G^{o} \leftrightarrow \mathbb{R}^{k_{1}}$, the cube $[0,1)^{k_{1}}$ is the fundamental domain of X. We will call the closed cube $Q=[0,1]^{k_{1}}$ the fundamental cube of X in G^{o} and identify X with Q. When X is identified with its fundamental cube Q, the normalized Haar measure μ_{X} on X coincides with the standard Lebesgue measure μ_{Q} on Q.

In Malcev coordinates, multiplication in G is a polynomial operation: there are polynomials q_{1}, \ldots, q_{k} in $2 k$ variables with rational coefficients such that for $a=e_{1}^{u_{1}} \ldots e_{k}^{u_{k}}$ and $b=e_{1}^{v_{1}} \ldots e_{k}^{v_{k}}$ we have $a b=e_{1}^{q_{1}\left(u_{1}, v_{1}, \ldots, u_{k}, v_{k}\right)} \ldots e_{k}^{q_{k}\left(u_{1}, v_{1}, \ldots, u_{k}, v_{k}\right)}$. This implies that "life is polynomial" in nilpotent Lie groups: homomorphisms are polynomial mappings, connected closed subgroups are images of polynomial mappings and are defined by systems of polynomial equations.

A subnilmanifold Y of X is a closed subset of the form $Y=H x$, where H is a closed subgroup of G and $x \in X$. For a closed subgroup H of G, the set $\pi(H)=H \mathbf{1}_{X}$ is closed, and so is a subnilmanifold, iff the subgroup $\Gamma \cap H$ is co-compact in H; we will call the subgroup H with this property rational.

If Y is a subnilmanifold of X such that $\mathbf{1}_{X} \in Y$, then $H=\pi^{-1}(Y)$ is a closed subgroup of G, and $Y=\pi(H)=H \mathbf{1}_{X} . H$, however, does not have to be the minimal subgroup with this property: if Y is connected, then the identity component H^{o} of H also satisfies
$Y=\pi\left(H^{o}\right)$.
Given a subnilmanifold Y of X, by μ_{Y} we will denote the normalized Haar measure on Y; we have $a \mu_{Y}=\mu_{a Y}$ for all $a \in G$.

Let Z be a subnilmanifold of $X, Z=L x$, where L is a closed subgroup of G. We say that Z is normal if L is normal. In this case the nilmanifold $\widehat{X}=X / Z=G /(L \Gamma)$ is defined, and X splits into a disjoint union of fibers of the projection mapping $X \longrightarrow \widehat{X}$. (Note that if L is normal in G^{o} only, then the factor $X / Z=G^{o} /(L \Gamma)$ is also defined, but the elements of $G \backslash G^{o}$ do not act on it.)

One can show that a subgroup L is normal iff $\gamma L \gamma^{-1}=L$ for all $\gamma \in \Gamma$; hence, $Z=\pi(L)$ is normal iff $\gamma Z=Z$ for all $\gamma \in \Gamma$.

If H is a closed rational subgroup of G then its normal closure L (the minimal normal subgroup of G containing H) is also closed and rational, thus $Z=\pi(L)$ is a subnilmanifold of X. We will call Z the normal closure of the subnilmanifold $Y=\pi(H)$. If L is normal then the identity component of L is also normal; this implies that the normal closure of a connected subnilmanifold is connected.

Let X be connected and k-dimensional, and let Z be an l-dimensional connected normal subnilmanifold of X. Let L be the connected normal closed subgroup of G such that $Z=L x$; choose Malcev coordinates on G compatible with L, and let Q be the fundamental cube of X in G^{o} associated with these coordinates. Then the fundamental cube of Z is the subcube $[0,1]^{l} \times\{0\}^{k-l}$ of Q, and the fundamental cube of X / Z is the orthogonal projection of Q to the $(k-l)$-dimensional subspace associated with the last $k-l$ coordinates on Q.

Let X be connected. We will need the fact that "almost all" subnilmanifolds of X are "quite uniformly" distributed in X. (This is in complete analogy with the situation on tori: if X is a torus, for any $\varepsilon>0$ there are only finitely many subtori V_{1}, \ldots, V_{r}, of codimension 1 in X, such that any subtorus Y of X that contains 0 and is not contained in $\bigcup_{i=1}^{r} V_{i}$ is ε-dense and " ε-uniformly distributed" in X.) The following proposition is a corollary (of a special case) of the result obtained in [GT] (see Appendix for details):

Proposition 1.1. For any $f \in C(X)$ and any $\varepsilon>0$ there are finitely many subnilmanifolds V_{1}, \ldots, V_{r} of X, connected, of codimension 1 , and containing $\mathbf{1}_{X}$, such that for any connected subnilmanifold Y of X with $\mathbf{1}_{X} \in Y$, either $Y \in V_{i}$ for some $i \in\{1, \ldots, r\}$, or $\left|\int_{Y} f d \mu_{Y}-\int_{X} f d \mu_{X}\right|<\varepsilon$, (or both).

Identifying a subnilmanifold Y of X with the measure μ_{Y} on X, we introduce the weak* topology on the set of subnilmanifolds of X; in this topology, given subnilmanifolds Z, Y_{1}, Y_{2}, \ldots of X, we write $Y_{n} \longrightarrow Z$ if $\int_{Y_{n}} f d \mu_{Y_{n}} \longrightarrow \int_{Z} f d \mu_{Z}$ for every $f \in C(X)$. It now follows from Proposition 1.1 that if connected subnilmanifolds Y_{1}, Y_{2}, \ldots of X, with $\mathbf{1}_{X} \in Y_{n}$ for all n, are such that for any proper subnilmanifold V of X (connected, of codimension 1, and with $\left.\mathbf{1}_{X} \in V\right)$ the set $\left\{n \in \mathbb{Z}: Y_{n} \subseteq V\right\}$ is finite, then $Y_{n} \longrightarrow X$.

For a set $S \in \mathbb{Z}$, the uniform (or Banach) density of S is $\mathcal{D}(S)=\lim _{N_{2}-N_{1} \rightarrow \infty} \frac{\left|S \cap\left[N_{1}, N_{2}\right]\right|}{N_{2}-N_{1}}$ (if it exists). We will say that a sequence of points $\left(\omega_{n}\right)_{n \in \mathbb{Z}}$ of a topological space Ω converges to $\omega \in \Omega$ in uniform density if for every neighborhood U of ω one has $\mathcal{D}\left(\left\{n \in \mathbb{Z}: \omega_{n} \notin U\right\}\right)=0$. It follows from Proposition 1.1 that, given connected subnilmanifolds Y_{1}, Y_{2}, \ldots of X with $\mathbf{1}_{X} \in Y_{n}$ for all n, if for any proper subnilmanifold V of X
(connected, of codimension 1, and with $\mathbf{1}_{X} \in V$) one has $\mathcal{D}\left(\left\{n \in \mathbb{Z}: Y_{n} \subseteq V\right\}\right)=0$, then $Y_{n} \longrightarrow X$ in uniform density.

2. Polynomial orbits of subnilmanifolds and nilsequences

Our main technical result is the following proposition.
Proposition 2.1. Let X be connected and let $Y=\pi(H)$ be a connected subnilmanifold of X, where H is a connected closed subgroup of G. Let g be a polynomial sequence in G with $g(0)=\mathbf{1}_{G}$ such that $g(\mathbb{Z}) Y$ is dense in X, and assume that G is generated by G^{o} and the elements of g. Let Z be the normal closure of Y in X; then $g(n) Y-g(n) Z \longrightarrow 0$ in uniform density.

Remark. We believe that, actually, $g(n) Y-g(n) Z \longrightarrow 0$ (that is, for any $f \in C(X)$, $\left|\int_{g(n) Y} f d \mu_{g(n) Y}-\int_{g(n) Z} f d \mu_{g(n) Z}\right| \longrightarrow 0$ as $\left.n \rightarrow \infty\right)$.

Proof. Let L be the identity component of $\pi^{-1}(Z)$. Choose Malcev's coordinates in G^{o} compatible with L, and let Q be the corresponding fundamental cube in G^{o}. Q is compact, and is as well compact with respect to the uniform norm when elements of G are interpreted as transformations of X. Represent $g(n)=t_{n} \gamma_{n}$ so that $\gamma_{n} \in \Gamma$ and $t_{n} \in Q$, $n \in \mathbb{Z}$. Since Z is normal, $\gamma_{n} Z=Z$ for all n, so that $g(n) Z=t_{n} \gamma_{n} Z=t_{n} Z, n \in \mathbb{Z}$. We have $g(n) Y=t_{n} \gamma_{n} Y, n \in \mathbb{Z}$, and since Q is compact, we only have to show that $\gamma_{n} Y \longrightarrow Z$ in uniform density.

Let Q^{\prime} be the fundamental cube of X / Z and let $\tau: Q \longrightarrow Q^{\prime}$ be the natural projection. Since the sequence $(g(n) Z)$ is well distributed in X, the sequence $\left(\tau\left(t_{n}\right)\right)$ is well distributed in Q^{\prime}, which means that for any measurable subset U of Q^{\prime} whose boundary is a null-set, $\mathcal{D}\left(\left\{n \in \mathbb{Z}: \tau\left(t_{n}\right) \in U\right\}\right)=\mu_{Q^{\prime}}(U)$.

Let V be a subnilmanifold of Z, connected, of codimension 1 in Z, and with $\mathbf{1}_{X} \in V$; based on Proposition 1.1, we only need to show that the set $\left\{n \in \mathbb{Z}: \gamma_{n} Y \subseteq V\right\}$ has zero uniform density. Let K be the identity component of $\pi^{-1}(V)$; we have $\gamma_{n} H \gamma_{n}^{-1} \subseteq L$ for all $n \in \mathbb{Z}$, and have to prove that the set $S=\left\{n \in \mathbb{Z}: \gamma_{n} H \gamma_{n}^{-1} \subseteq K\right\}$ has zero uniform density.

Since K is a proper subgroup of L, there exists $b \in G$ such that $b H b^{-1} \nsubseteq K$. By assumption, G is generated by G^{o} and g. The group G^{o} is generated by Q, thus $t H t^{-1} \nsubseteq K$ for some $t \in Q$ or $g(n) H g(n)^{-1} \nsubseteq K$ for some $n \in \mathbb{Z}$. So, there exists $a \in H$ such that tat ${ }^{-1} \notin K$ for some $t \in Q$ or $g(n) a g(n)^{-1} \notin K$ for some $n \in \mathbb{Z}$. Let $S^{\prime}=\{n \in \mathbb{Z}$: $\left.\gamma_{n} a \gamma_{n}^{-1} \in K\right\}$; since $S \subseteq S^{\prime}$, it suffices to show that $\mathcal{D}\left(S^{\prime}\right)=0$. (This would not be a problem if γ_{n} were a polynomial sequence, but it is not.)

Consider the mapping $\eta(n, t)=t^{-1} g(n) a g(n) t$ from $\mathbb{Z}^{m} \times G^{o}$ to L; this is a polynomial mapping. Let χ be a homomorphism $L \longrightarrow \mathbb{R}$ such that $K=\{\chi=0\}$. Let $\theta=\chi \circ \eta$; then θ is a polynomial, and it is shown above that $\theta \not \equiv 0$. Since K has codimension 1 in L, it contains $[L, L]$, and so, is normal in L; hence, for any $s \in L$ we have $\theta(n, t s)=$ $\chi\left(s^{-1} t^{-1} g(n) a g(n)^{-1} t s\right)=\chi\left(t^{-1} g(n) a g(n)^{-1} t\right)=\theta(n, t)$ for all $t \in G^{o}, n \in \mathbb{Z}$. Thus, θ is defined on $\mathbb{Z} \times\left(G^{o} / L\right)$: there exists a polynomial θ^{\prime} on $\mathbb{Z} \times\left(G^{o} / L\right)$ such that $\theta(n, t)=$ $\theta^{\prime}(n, \tau(t)), t \in G^{o}, n \in \mathbb{Z}$. Let P be the restriction of θ^{\prime} to $\mathbb{Z} \times Q^{\prime}$. Now, $n \in S^{\prime}$ iff
$\gamma_{n} a \gamma_{n}^{-1}=t_{n}^{-1} g(n) a g(n)^{-1} t_{n} \in K$, iff $\theta\left(n, t_{n}\right)=0$, iff $P\left(n, \tau\left(t_{n}\right)\right)=0$.
Write P in coordinates on $Q^{\prime}, P(n, u)=\sum_{\alpha \in A} q_{\alpha}(n) u^{\alpha}, n \in \mathbb{Z}, u \in Q^{\prime}$, where A is a set of multiindices and for each $\alpha \in A, q_{\alpha}(n)$ is a polynomial in n. We want to show that the set of zeroes of the polynomials $P_{n}(u)=P(n, u)$ in Q^{\prime} "converges", as $n \rightarrow \infty$, to a set of zero measure. Let $d=\max \left\{\operatorname{deg} q_{\alpha}, \alpha \in A\right\}$. Then for any $\alpha \in A$, a finite limit $b_{\alpha}=\lim _{n \rightarrow \infty} n^{-d} q_{\alpha}(n)$ exists, and is nonzero for some α. Thus, as $n \rightarrow \infty$, the polynomials $n^{-d} P_{n}(u)$ converge uniformly on Q^{\prime} to the nonzero polynomial $p(u)=\sum_{\alpha \in A} b_{\alpha} u^{\alpha}$. The set $N=\left\{u \in Q^{\prime}: p(u)=0\right\}$ has zero measure. Given $\varepsilon>0$, find $\delta>0$ such that the set $N_{\delta}=\left\{u \in Q^{\prime}:|p(u)|<\delta\right\}$ has measure $<\varepsilon$. Let n_{0} be such that $|P(n, u)-p(u)|<\delta$ on Q^{\prime} for $|n|>n_{0}$; then for $|n|>n_{0}$ the set $D_{n}=\left\{u \in Q^{\prime}: P(n, u)=0\right\}$ is contained in N_{δ}. The sequence $u_{n}=\tau\left(t_{n}\right), n \in \mathbb{Z}$, is well distributed in Q^{\prime} and the boundary of N_{δ} is a null-set, so $\mathcal{D}\left\{n \in \mathbb{Z}: u_{n} \in N_{\delta}\right\}=\mu_{Q^{\prime}}\left(N_{\delta}\right)<\varepsilon$. Now,

$$
S^{\prime}=\left\{n \in \mathbb{Z}: P\left(n, u_{n}\right)=0\right\} \subseteq\left\{n \in \mathbb{Z}: u_{n} \in D_{n}\right\} \subseteq\left\{-n_{0}, \ldots, n_{0}\right\} \cup\left\{n \in \mathbb{Z}: u_{n} \in N_{\delta}\right\},
$$

thus $\mathcal{D}\left(S^{\prime}\right)<\varepsilon$. Hence, $\mathcal{D}\left(S^{\prime}\right)=0$.
Corollary 2.2. Let X be connected, let Y be a connected subnilmanifold of X, let g be a polynomials sequence in G, let $g(\mathbb{Z}) Y$ be dense in X, and let $f \in C(X)$. There exists a factor-nilmanifold \widehat{X} of X, a point $\hat{x} \in \widehat{X}$, and a function $\hat{f} \in C(\widehat{X})$ such that $\int_{g(n) Y} f d \mu_{g(n) Y}-\hat{f}(g(n) \hat{x}) \longrightarrow 0$ in uniform density.

Proof. We may assume that $g(0)=\mathbf{1}_{G}$, that G is generated by G^{o} and the elements of g, and that $Y \ni \mathbf{1}_{X}$. Let Z be the normal closure of Y in X, then $\int_{g(n) Y} f d \mu_{g(n) Y}-$ $\int_{g(n) Z} f d \mu_{g(n) Z} \longrightarrow 0$ in uniform density. Let $\widehat{X}=X / Z, \hat{x}=\{Z\} \in \widehat{X}$, and $\hat{f}=$ $E(f \mid \widehat{X}) \in C(\widehat{X})$; then $\int_{g(n) Y} f d \mu_{g(n) Y}-\int_{g(n) Z} f d \mu_{g(n) Z} \longrightarrow 0$ in uniform density, and $\int_{g(n) Z} f d \mu_{g(n) Z}=\hat{f}(g(n) \hat{x})$ for all n.

We now involve nilsequences into our consideration. Recall that a basic d-step nilsequence is a sequence of the form $\psi(n)=h\left(R^{n} w\right)$, where w is a point of a d-step nilmanifold M, R is a translation on M, and $h \in C(M)$. We find it worthy to expand this notion. Given a polynomial sequence $g(n)=a_{1}^{p_{1}(n)} \ldots a_{r}^{p_{r}(n)}$ in a nilpotent group with $\operatorname{deg} p_{i} \leq s$ for all i, we will say that g has naive degree $\leq s$. (The term "degree" had already been reserved for another parameter of a polynomial sequence.) Let us call a sequence of the form $\psi(n)=h(g(n) w)$, where w is a point of a d-step nilmanifold $M=J / \Lambda, g$ is a polynomial sequence of naive degree $\leq s$ in J, and $h \in C(M)$, a basic polynomial d-step nilsequence of degree $\leq s$. Actually, any basic polynomial nilsequence is a basic nilsequence, as the following proposition says; the reason why we introduce this notion is that we do not want to loose the valuable information about the way a nilsequence was produced.

Proposition 2.3. (See [L1], Proposition 3.14) Any basic polynomial d-step nilsequence of degree $\leq s$ is a ds-step basic nilsequence.

Clearly, basic polynomial d-step nilsequences of degree $\leq s$ form an algebra; we will also need the following fact:

Lemma 2.4. Let $\psi_{0}, \ldots, \psi_{m-1}$ be basic polynomial d-step nilsequences of degree $\leq s$. Then the sequence $\left(\ldots, \psi_{0}(0), \ldots, \psi_{m-1}(0), \psi_{0}(1), \ldots, \psi_{m-1}(1), \psi_{0}(2), \ldots, \psi_{m-1}(2), \ldots\right)$ is also a basic polynomial d-step nilsequence of degree $\leq s$.

Proof. For each $i=0, \ldots, m-1$, let $M_{i}=J_{i} / \Lambda_{i}$ be the d-step nilmanifold, g_{i} be the polynomial sequence in $J_{i}, w_{i} \in M_{i}$ be the point, and $h_{i} \in C\left(M_{i}\right)$ be the function such that $\psi_{i}(n)=h\left(g_{i}(n) w_{i}\right), n \in \mathbb{Z}$. If, for some i, J_{i} is not connected, it is a factor-group of a free d-step nilpotent group with continuous and discrete generators, which, in its turn, is a subgroup of a free d-step nilpotent group with only continuous generators (see [L1]); thus after replacing, if needed, M_{i} by a larger nilmanifold and extending h_{i} to a continuous function on this nilmanifold we may assume that every J_{i} is connected. In this case for any element $b \in J_{i}$ and any $r \in \mathbb{N}$ a r-th root $b^{1 / r}$ exists in J_{i}, and thus the polynomial sequence $b^{p(n)}$ in J_{i} makes sense even if a polynomial p has non-integer rational coefficients. Thus, for each i, we may construct a polynomial sequence g_{i}^{\prime} in J_{i}, of the same naive degree as g_{i}, such that $g_{i}^{\prime}(m n+i)=g_{i}(n)$ for all $n \in \mathbb{Z}$. Put $M=\mathbb{Z}_{m} \times \prod_{i=0}^{m} M_{i}, g=\left(1, g_{0}^{\prime}, \ldots, g_{m-1}^{\prime}\right)$, $w=\left(0, w_{0}, w_{1}, \ldots, w_{m-1}\right) \in M$, and $h\left(i, v_{0}, \ldots, v_{m-1}\right)=h_{i}\left(v_{i}\right),\left(i, v_{0}, \ldots, v_{m-1}\right) \in M$. Then M is a d-step nilmanifold, $h \in C(M)$, and the basic polynomial nilsequence $\psi(n)=$ $h(g(n) w)=h_{i}\left(g_{i}^{\prime}(n) w_{i}\right)=h_{i}\left(g_{i}(k) w_{i}\right)=\psi_{i}(k)$ whenever $n=k m+i, i=0,1, \ldots, m-1$.

We now get:
Theorem 2.5. Let $X=G / \Gamma$ be a d-step nilmanifold, let Y be a subnilmanifold of X, let g be a polynomial sequence in G of naive degree $\leq s$, let $f \in C(X)$, and let $\varphi(n)=\int_{g(n) Y} f d \mu_{g(n) Y}, n \in \mathbb{Z}$. There exists a basic polynomial d-step nilsequence ψ of degree $\leq s$ such that $\varphi(n)-\psi(n) \longrightarrow 0$ in uniform density.
Proof. If both Y and $\overline{g(\mathbb{Z}) Y}$ are connected (in which case $\overline{g(\mathbb{Z}) Y}$ is a nilmanifold), the assertion follows from Corollary 2.2.

Now assume that Y is connected but $\overline{g(\mathbb{Z}) Y}$ is not. Then, by Theorem B in [L1], there exists $m \in \mathbb{N}$ such that $\overline{g(m \mathbb{Z}+j) Y}$ is connected for every $i=0, \ldots, m-1$. Thus, for every $i=0, \ldots, m-1$, there exists a basic polynomial d-step nilsequence ψ_{i} of degree $\leq s$ such that $\varphi(m n+i)-\psi_{i}(n) \longrightarrow 0$ in uniform density, and the assertion follows from Lemma 2.4.

Finally, if Y is disconnected and Y_{1}, \ldots, Y_{l} are the connected components of Y, then $\int_{g(n) Y} f d \mu_{g(n) Y}=\sum_{i=1}^{l} \int_{g(n) Y_{i}} f d \mu_{g(n) Y_{i}}, n \in \mathbb{Z}$, and the result holds since it holds for Y_{1}, \ldots, Y_{l}.

3. Multiple polynomial correlation sequences and nilsequences

Now let (W, \mathcal{B}, μ) be a probability measure space and let T be an ergodic invertible measure preserving transformation of W. Let p_{1}, \ldots, p_{k} be polynomials taking on integer values on the integers. Let $A_{1}, \ldots, A_{k} \in \mathcal{B}$ and let $\varphi(n)=\mu\left(T^{p_{1}(n)} A_{1} \cap \ldots \cap T^{p_{k}(n)} A_{k}\right)$, $n \in \mathbb{Z}$; or, more generally, let $h_{1}, \ldots, h_{k} \in L^{\infty}(W)$ and $\varphi(n)=\int_{W} T^{p_{1}(n)} h_{1} \ldots . . T^{p_{k}(n)} h_{k} d \mu$, $n \in \mathbb{Z}$. Using results from [HK2] it can be shown (see the argument in [BHK], Corollary 4.5) that, given $\varepsilon>0$, there exist a d-step nilsystem $(X, a), X=G / \Gamma, a \in G$, and functions $f_{1}, \ldots, f_{k} \in L^{\infty}(X)$ such that, for $\phi(n)=\int_{X} a^{p_{1}(n)} f_{1} \cdot \ldots \cdot a^{p_{k}(n)} f_{k} d \mu_{X}, \mathcal{D}(\{n \in \mathbb{Z}:$
$|\phi(n)-\varphi(n)|<\varepsilon\})=0$; after replacing f_{i} by L^{1}-close continuous functions, we may assume that $f_{1}, \ldots, f_{k} \in C(X)$. Moreover, there is a universal integer d that works for all systems (W, \mathcal{B}, μ, T), functions h_{i}, and ε, and depends only on the polynomials p_{i}; the minimal integer c for which $d=c+1$ has this property is called the complexity of the system $\left\{p_{1}, \ldots, p_{k}\right\}$ (see [L6]). Applying Theorem 2.5 to the nilmanifold $X^{k}=G^{k} / \Gamma^{k}$, the diagonal subnilmanifold $Y=\{(x, \ldots, x), x \in X\} \subseteq X^{k}$, the polynomial sequence $g(n)=\left(1_{G}, a^{p_{1}(n)}, \ldots, a^{p_{k}(n)}\right), n \in \mathbb{Z}$, in G^{k} and the function $f\left(x_{0}, x_{1}, \ldots, x_{k}\right)=f_{1}\left(x_{1}\right)$. $\ldots f_{k}\left(x_{k}\right) \in C\left(X^{k}\right)$, we establish the existence of a basic polynomial d-step nilsequence ψ of degree $\leq s=\max _{i}\left(\operatorname{deg} p_{i}\right)$ such that $\phi(n)-\psi(n) \longrightarrow 0$ in uniform density. Summarizing, we get that $\varphi(n)=\phi(n)+\delta(n)=\psi(n)+\lambda(n)+\delta(n)$, where $\psi(n)$ is a basic polynomial d-step nilsequence of degree $\leq s, \lambda(n) \longrightarrow 0$ in uniform density, and $|\delta|<\varepsilon$.

We will say that a numerical sequence ψ is a polynomial d-step nilsequence of degree $\leq s$ if it is a uniform limit of basic polynomial d-step nilsequences of degree $\leq s$. (It follows from Proposition 2.3 that any polynomial d-step nilsequence of degree $\leq s$ is a $d s$-step nilsequence.)

We obtain:
Theorem 3.1. Let (W, \mathcal{B}, μ, T) be an ergodic invertible measure preserving system with $\mu(W)<\infty$, let $h_{1}, \ldots, h_{k} \in L^{\infty}(W)$, let p_{1}, \ldots, p_{k} be polynomials taking on integer values on the integers, and let $\varphi(n)=\int_{W} T^{p_{1}(n)} h_{1} \cdot \ldots \cdot T^{p_{k}(n)} h_{k} d \mu, n \in \mathbb{Z}$. Let the complexity of $\left\{p_{1}, \ldots, p_{k}\right\}$ be c and $s=\max _{i}\left(\operatorname{deg} p_{i}\right)$; then there exists a polynomial $(c+1)$-step nilsequence ψ of degree $\leq s$ such that $\varphi(n)-\psi(n) \longrightarrow 0$ in uniform density.
Proof. We copy the proof of Theorem 1.9 in $[\mathrm{BHK}]$. For each $l \in \mathbb{N}$, let ψ_{l} be a basic polynomial d-step nilsequence of degree $\leq s, \lambda_{l}$ be a sequence that tends to 0 in uniform density, and δ_{l} be a sequence with $\left|\delta_{l}\right|<1 / l$, such that $\varphi=\psi_{l}+\lambda_{l}+\delta_{l}$. Then for any $l, r,\left|\psi_{l}-\psi_{r}\right| \leq \frac{1}{l}+\frac{1}{r}+\left|\lambda_{l}-\lambda_{r}\right|$, thus $\left|\psi_{l}(n)-\psi_{r}(n)\right| \leq 2\left(\frac{1}{l}+\frac{1}{r}\right)$ for all $n \in \mathbb{Z}$ but a set of zero uniform density. Nilsystems are distal systems, each point of a nilsystem is uniformly recurrent (which means that it returns to any its neighborhood regularly, see $[\mathrm{F}]$ and [L1]), thus any nilsequence visits any interval in \mathbb{R} for $n \in \mathbb{Z}$ from a set of positive uniform density, - or never. Hence, the (polynomial, and just ordinary) nilsequence $\psi_{l}-\psi_{r}$ satisfies $\left|\psi_{l}(n)-\psi_{r}(n)\right| \leq 2\left(\frac{1}{l}+\frac{1}{r}\right)$ for all $n \in \mathbb{Z}$. Hence, the sequence $\left(\psi_{l}\right)_{l=1}^{\infty}$ of basic polynomial $(c+1)$-step nilsequences of degree $\leq s$ is Cauchy in $l^{\infty}(\mathbb{Z})$, and has a limit ψ that is a polynomial $(c+1)$-step nilsequence of degree $\leq s$. The sequence $\varphi-\psi$ is the uniform limit of the sequences λ_{l}, and thus tends to zero in uniform density.
Remark. We believe that Theorem 3.1 remains true without the assumption that T is ergodic, but do not see how to prove this. The problem is to show that "an integral of nilsequences is a nilsequence plus a negligible sequence", that is, given a finite measure space Ω and a measurable function $\Psi: \Omega \times \mathbb{Z} \longrightarrow \mathbb{C}$ such that for each $\omega \in \Omega, \psi(n)=\Psi(\omega, n)$ is a nilsequence, the sequence $\psi(n)=\int_{\Omega} \Psi(\omega, n) d \omega$ is a sum of a nilsequence and a sequence that tends to 0 in uniform density.

4. The multiparameter case

We now switch to the multiparameter case, that is, to the situation where p_{i} are
polynomials of $m \geq 1$ integer variables. We say that a mapping $g: \mathbb{Z}^{m} \longrightarrow G$ is an (m-parameter) polynomial sequence in G if $g(n)=a_{1}^{p_{1}(n)}{ }^{(n)} a_{r}^{p_{r}(n)}$, where $a_{1}, \ldots, a_{r} \in G$ and p_{1}, \ldots, p_{r} are polynomials $\mathbb{Z}^{m} \longrightarrow \mathbb{Z}$. It is shown in [L2] that, if g is an m parameter polynomial sequence in G and Y is a connected subnilmanifold of X, then the closure of the sequence $g(n) Y, X^{\prime}=\overline{\bigcup_{n \in \mathbb{Z}^{m}} g(n) Y}$, is a disjoint finite union of subnilmanifolds of X, and, if X^{\prime} is a single subnilmanifold, the sequence $g(n) Y$ is well distributed in X^{\prime}. (That is, for every $f \in C\left(X^{\prime}\right)$ and any Følner sequence $\left(\Phi_{N}\right)$ in \mathbb{Z}^{m}, $\left.\lim _{N \rightarrow \infty} \frac{1}{\left|\Phi_{N}\right|} \sum_{n \in \Phi_{N}} \int_{g(n) Y} f d \mu_{g(n) Y}=\int_{X^{\prime}} f d \mu_{X^{\prime}}.\right)$

For a subset $S \subseteq \mathbb{Z}^{m}$, we define the density $d(S)$ of S by $d(S)=\lim _{N \rightarrow \infty} \frac{\left|S \cap[-N, N]^{m}\right|}{(2 N)^{m}}$, if it exists, and say that a sequence of points $\left(\omega_{n}\right)_{n \in \mathbb{Z}^{m}}$ of a topological space Ω converges to $\omega \in \Omega$ in density if for every neighborhood U of $\omega, d\left(\left\{n \in \mathbb{Z}^{m}: \omega_{n} \notin U\right\}\right)=0$.

For the case of multiparameter sequences we get a result similar to Proposition 2.1, but weaker since the "ordinary" density instead of the uniform density \mathcal{D} appears in it:
Proposition 4.1. Let $X=G / \Gamma$ be a connected nilmanifold and let $Y=\pi(H)$ be a connected subnilmanifold of X, where H is a connected closed subgroup of G. Let g : $\mathbb{Z}^{m} \longrightarrow G$ be a polynomial sequence with $g(0)=\mathbf{1}_{G}$ such that $g\left(\mathbb{Z}^{m}\right) Y$ is dense in X, and assume that G is generated by G^{o} and the elements of g. Let Z be the normal closure of Y in X; then $g(n) Y-g(n) Z \longrightarrow 0$ in density.

Proof. The beginning of the proof is the same as for Proposition 2.1, but we will repeat it. Let L be the identity component of $\pi^{-1}(Z)$. Choose Malcev coordinates in G^{o} compatible with L, and let Q be the corresponding fundamental cube in G^{o}. Q is compact, and is as well compact with respect to the uniform norm when elements of G are interpreted as transformations of X. Represent $g(n)=t_{n} \gamma_{n}$ so that $\gamma_{n} \in \Gamma$ and $t_{n} \in Q, n \in \mathbb{Z}^{m}$. Since Z is normal, $\gamma_{n} Z=Z$ for all n, so that $g(n) Z=t_{n} \gamma_{n} Z=t_{n} Z, n \in \mathbb{Z}^{m}$. We have $g(n) Y=t_{n} \gamma_{n} Y, n \in \mathbb{Z}$, and since Q is compact, we only have to show that $\gamma_{n} Y \longrightarrow Z$ in density. Let Q^{\prime} be the fundamental cube of X / Z and let $\tau: Q \longrightarrow Q^{\prime}$ be the natural projection. Since the sequence $(g(n) Z)$ is well distributed in X, the sequence $\left(\tau\left(t_{n}\right)\right)$ is well distributed in Q^{\prime}.

Let V be a subnilmanifold of Z, connected, of codimension 1 in Z, and with $\mathbf{1}_{X} \in V$; based on Proposition 1.1, we only need to show that the set $\left\{n \in \mathbb{Z}^{m}: \gamma_{n} Y \subseteq V\right\}$ has zero density. Let K be the identity component of $\pi^{-1}(V)$; we have $\gamma_{n} H \gamma_{n}^{-1} \subseteq L$ for all $n \in \mathbb{Z}^{m}$, and have to prove that the set $S=\left\{n \in \mathbb{Z}^{m}: \gamma_{n} H \gamma_{n}^{-1} \subseteq K\right\}$ has zero density.

Since K is a proper subgroup of L and L is the normal closure of H in G there exists $b \in G$ such that $b H b^{-1} \nsubseteq K$. By assumption, G is generated by G^{o} and g. The group G^{o} is generated by Q, thus $t H t^{-1} \nsubseteq K$ for some $t \in Q$ or $g(n) H g(n)^{-1} \nsubseteq K$ for some $n \in \mathbb{Z}^{m}$. So, there exists $a \in H$ such that $t a t^{-1} \notin K$ for some $t \in Q$ or $g(n) a g(n)^{-1} \notin K$ for some $n \in \mathbb{Z}^{m}$. Let $S^{\prime}=\left\{n \in \mathbb{Z}^{m}: \gamma_{n} a \gamma_{n}^{-1} \in K\right\}$; since $S \subseteq S^{\prime}$, it suffices to show that $d\left(S^{\prime}\right)=0$.

Consider the mapping $\eta(n, t)=t^{-1} g(n) a g(n)^{-1} t$ from $\mathbb{Z}^{m} \times G^{o}$ to L; this is a polynomial mapping. Let χ be a homomorphism $L \longrightarrow \mathbb{R}$ such that $K=\{\chi=0\}$. Let $\theta=\chi \circ \eta$; then θ is a polynomial, and it is shown above that $\theta \not \equiv 0$. Since K is normal in L, for any $s \in L$ we have $\theta(n, t s)=\chi\left(s^{-1} t^{-1} g(n) a g(n)^{-1} t s\right)=\chi\left(t^{-1} g(n) a g(n)^{-1} t\right)=\theta(n, t)$ for all $t \in G^{o}, n \in \mathbb{Z}^{m}$. Thus, θ is defined on $\mathbb{Z}^{m} \times\left(G^{o} / L\right)$: there exists a polynomial θ^{\prime} on
$\mathbb{Z}^{m} \times\left(G^{o} / L\right)$ such that $\theta(n, t)=\theta^{\prime}(n, \tau(t)), t \in G^{o}, n \in \mathbb{Z}^{m}$. Let P be the restriction of θ^{\prime} to $\mathbb{Z}^{m} \times Q^{\prime}$. Now, $n \in S^{\prime}$ iff $\gamma_{n} a \gamma_{n}^{-1}=t_{n}^{-1} g(n) a g(n)^{-1} t_{n} \in K$, iff $\theta\left(n, t_{n}\right)=0$, iff $P\left(n, \tau\left(t_{n}\right)\right)=0$.

Extend P to a polynomial on $\mathbb{R}^{m} \times Q^{\prime}$. Write P in coordinates: $P(w, u)=$ $\sum_{\alpha \in A} q_{\alpha}(w) u^{\alpha}$, where A is a set of multiindices and for each $\alpha \in A, q_{\alpha}$ is a polynomial on \mathbb{R}^{m}. Let $d=\max \left\{\operatorname{deg} q_{\alpha}, \alpha \in A\right\}$. For each $\alpha \in A$, let q_{α}^{*} be the homogeneous part of q_{α} of degree d. Let Σ be the sphere $\left\{\xi \in \mathbb{R}^{m}:|\xi|=1\right\}$ and let $\Xi=\{\xi \in \Sigma$: $q_{\alpha}^{*}(\xi) \neq 0$ for some $\left.\alpha \in A\right\}$. For every $\xi \in \Sigma$ and $\alpha \in A, \lim _{s \rightarrow \infty} s^{-d} q_{\alpha}(s \xi)=q_{\alpha}^{*}(\xi)$, thus the polynomials $P_{s}(\xi, u)=s^{-d} P(s \xi, u)$ converge as $s \rightarrow \infty$ to the polynomial $p_{\xi}(u)=\sum_{\alpha \in A} q_{\alpha}^{*}(\xi) u^{\alpha}$ uniformly on $\Sigma \times Q^{\prime}$. (Example: for $P\left(\left(w_{1}, w_{2}\right),\left(u_{1}, u_{2}\right)\right)=$ $\left(w_{1}^{2}+w_{2}\right) u_{1}^{2}+w_{2} u_{1} u_{2}+2 w_{1} w_{2} u_{2}$ we have $p_{\xi}\left(u_{1}, u_{2}\right)=w_{1}^{2} u_{1}^{2}+2 w_{1} w_{2} u_{2}, \xi=\left(w_{1}, w_{2}\right) \in \Sigma$, and $\Xi=\left\{\xi \in \Sigma: p_{\xi} \neq 0\right\}=\left\{\left(w_{1}, w_{2}\right) \in \Sigma: w_{1} \neq 0\right\}$.)

Fix $\varepsilon>0$. For $\xi \in \Xi$, let $N_{\xi}=\left\{u \in Q^{\prime}: p_{\xi}(u)=0\right\}$ and let $\delta_{\xi}>0$ be such that the set $N_{\xi, \delta_{\xi}}=\left\{u \in Q^{\prime}:\left|p_{\xi}(u)\right|<\delta_{\xi}\right\}$ has measure $<\varepsilon$. Let $U_{\xi} \subset \Xi$ be an open neighborhood of ξ such that $\left|p_{\zeta}(u)-p_{\xi}(u)\right|<\delta_{\xi} / 2$ for all $\zeta \in U_{\xi}$ and $u \in Q^{\prime}$. Let $s_{\xi}>0$ be such that $\left|s^{-d} P(s \zeta, u)(u)-p_{\zeta}(u)\right|<\delta_{\xi} / 2$ for all $s>s_{\xi}, \zeta \in U_{\xi}$, and $u \in Q^{\prime}$. Then for any $s>s_{\xi}$ and $\zeta \in U_{\xi},\left\{u \in Q^{\prime}: P(s \zeta, u)=0\right\} \subseteq N_{\xi, \delta_{\xi}}$.

Since the sequence $u_{n}=\tau\left(t_{n}\right), n \in \mathbb{Z}^{m}$, is well distributed in Q^{\prime}, for every $\xi \in \Xi$ there exists $M_{\xi} \in \mathbb{N}$ such that for any $M>M_{\xi}$ and any $v \in \mathbb{R}^{m}, \left.\frac{1}{M^{m}} \right\rvert\,\left\{n \in v+[1, M]^{m}: u_{n} \in\right.$ $\left.N_{\xi, \delta_{\xi}}\right\} \mid<2 \varepsilon$. If $v \in \mathbb{R}^{m}$ and $M \in \mathbb{N}$ are such that $|v|>s_{\xi}+\sqrt{m} M$ and $v+[1, M]^{m} \subset \mathbb{R}_{+} U_{\xi}$, then for any $w \in v+[1, M]^{m}$ we have $\left\{u \in Q^{\prime}: P(w, u)=0\right\} \subseteq N_{\xi, \delta_{\xi}}$. Thus, for such v and $M, \frac{1}{M^{m}}\left|\left\{n \in v+[1, M]^{m}: P\left(n, u_{n}\right)=0\right\}\right|<2 \varepsilon$, and hence, $\frac{1}{M^{m}}\left|S^{\prime} \cap\left(v+[1, M]^{m}\right)\right|<2 \varepsilon$.
$E=\Sigma \backslash \Xi$ is a proper algebraic subvariety of Σ, therefore there exists a compact set $D \subset \Xi$ such that $d\left(\mathbb{R}_{+} D \cap \mathbb{Z}^{m}\right)>1-\varepsilon$. (Indeed, E can be represented as a finite union of smooth submanifolds of Σ of dimension $\leq m-2$, thus it can be covered by a finite union \mathcal{E} of open balls with $\sigma(\mathcal{E})<\varepsilon \sigma(\Sigma)$, where σ is the standard ($m-1$)-dimensional volume on Σ. For such a set \mathcal{E} we have $d\left(\mathbb{R}_{+} \mathcal{E} \cap \mathbb{Z}^{m}\right)=\sigma(\mathcal{E}) / \sigma(\Sigma)<\varepsilon$, and for $D=\Sigma \backslash \mathcal{E}$ we have $d\left(\mathbb{R}_{+} D \cap \mathbb{Z}^{m}\right)>1-\varepsilon$.) Let ξ_{1}, \ldots, ξ_{l} be such that $\bigcup_{j=1}^{l} U_{\xi_{j}} \supseteq D$ and let $s=\max _{1 \leq j \leq l} s_{\xi_{j}}, M=\max _{1 \leq j \leq l} M_{\xi_{j}}$. Let $r>s+\sqrt{m} M$ be such that for any cube $C=v+[1, M]^{m} \subset \mathbb{R}_{+} D$ with $|v|^{\prime}>r$ we have $C \subset \mathbb{R}_{+} U_{\xi_{j}}$ for some j. Then for any such cube C we have $\frac{1}{|C|}\left|S^{\prime} \cap C\right|<2 \varepsilon$. Thus, $d\left(S^{\prime}\right)<3 \varepsilon$. Hence, $d\left(S^{\prime}\right)=0$.

Remark. The proof of Proposition 4.1 gives more information about the set $S=\{n \in$ $\left.\mathbb{Z}^{m}:\left|\int_{g(n) Y} f-\int_{g(n) Z} f\right|>\varepsilon\right\}$ than just the fact that S has zero density. Actually, the uniform density of S is zero, - if we ignore a small set \mathcal{E} of "bad" directions in \mathbb{R}^{m}; indeed, S has uniform density 0 in $\mathbb{R}_{+}(\Sigma \backslash \mathcal{E}) \cap \mathbb{Z}^{m}$, whereas $\sigma(\mathcal{E})<\varepsilon \sigma(\Sigma)$.

We say that a mapping $\psi: \mathbb{Z}^{m} \longrightarrow \mathbb{C}$ is a basic polynomial d-step m-parameter nilsequence of degree $\leq s$ if there exist a d-step nilmanifold $M=J / \Lambda$, a polynomial mapping $g: \mathbb{Z}^{m} \longrightarrow J$ of naive degree $\leq s$, a function $h \in C(M)$, and a point $w \in M$ such that $\psi(n)=h(g(n) w), n \in \mathbb{Z}^{m}$, and we will say that an m-parameter numerical sequence is a polynomial d-step nilsequence of degree $\leq s$ if it is a uniform limit of basic polynomial d-step m-parameter nilsequences of degree $\leq s$. The definitions and facts related to oneparameter polynomial sequences and nilsequences are translated almost literally to the
multiparameter case; one only has to use results from [L2] and [L3] instead of the corresponding results from [L1] and [HK2]. (In particular, any (basic) polynomial m-parameter nilsequence is a (basic) m-parameter nilsequence; see the proof of Theorem B* in [L2].) In the same way as we got Theorems 2.5 and 3.1, we now obtain:

Theorem 4.2. Let $X=G / \Gamma$ be a d-step nilmanifold, let Y be a subnilmanifold of X, let $g: \mathbb{Z}^{m} \longrightarrow G$ be a polynomials sequence of naive degree $\leq s$, let $f \in C(X)$, let $\varphi(n)=\int_{g(n) Y} f d \mu_{g(n) Y}, n \in \mathbb{Z}^{m}$. There exists a basic polynomial d-step m-parameter nilsequence ψ of degree $\leq s$ such that $\varphi(n)-\psi(n) \longrightarrow 0$ in density.

Theorem 4.3. Let (W, \mathcal{B}, μ, T) be an ergodic invertible measure preserving system with $\mu(W)<\infty$, let $h_{1}, \ldots, h_{k} \in L^{\infty}(W)$, let p_{1}, \ldots, p_{k} be polynomials $\mathbb{Z}^{m} \longrightarrow \mathbb{Z}$, and let $\varphi(n)=\int_{W} T^{p_{1}(n)} h_{1} \cdot \ldots \cdot T^{p_{k}(n)} h_{k} d \mu, n \in \mathbb{Z}^{m}$. Let the complexity of $\left\{p_{1}, \ldots, p_{k}\right\}$ be c and let $s=\max _{i}\left(\operatorname{deg} p_{i}\right)$; then there exists a $(c+1)$-step m-parameter polynomial nilsequence ψ of degree $\leq s$ such that $\varphi(n)-\psi(n) \longrightarrow 0$ in density.

5. Appendix

We will show here how Proposition 1.1 can be derived from Green-Tao's result in [GT].

We first need to introduce some terminology from [GT]. Let G be a connected nilpotent Lie group with a discrete cocompact subgroup Γ, and let $X=G / \Gamma$.

A filtration G_{\bullet} on G is a finite decreasing sequence of subgroups $G=G_{1} \supseteq G_{2} \supseteq$ $\ldots \supseteq G_{d} \supseteq G_{d+1}=\left\{\mathbf{1}_{G}\right\}$ with the property that $\left[G_{i}, G_{j}\right] \subseteq G_{i+j}$ for all i, j.

For a sequence $g: \mathbb{Z} \longrightarrow G$, "the derivative" ∂g is defined by $(\partial g)(n)=g(n)^{-1} g(n+1)$, $n \in \mathbb{Z}$. Given a filtration $G_{\bullet}=\left(G_{1} \supseteq G_{2} \supseteq \ldots \supseteq G_{d}\right)$ on G, poly $\left(\mathbb{Z}, G_{\bullet}\right)$ denotes the group of polynomial sequences g in G with the property that, for each $i=1, \ldots, d, \partial^{i} g$ takes values in G_{i},

Given a filtration $G_{\bullet}=\left(G_{1} \supseteq G_{2} \supseteq \ldots \supseteq G_{d}\right)$ on G, a Malcev basis \mathcal{M} adapted to this filtration can be constructed (which means that for any $i, \mathcal{M} \cap G_{i}$ is a basis in G_{i}), and this basis naturally defines a locally Euclidean metric ρ on X.

A (horizontal) character on X is a mapping $\chi: X \longrightarrow \mathbb{R} / \mathbb{Z}$ induced by a character on the torus $T=[G, G] \backslash X$ (or equivalently, by a continuous homomorphism $G \longrightarrow \mathbb{R} / \mathbb{Z}$ trivial on Γ). A Malcev basis in G defines coordinates $\left(t_{1}, \ldots, t_{l}\right)$ on T, and in these coordinates any character χ on X has the form $m_{1} t_{1}+\ldots+m_{l} t_{l},\left(t_{1}, \ldots, t_{l}\right) \in T$, with $m_{1}, \ldots, m_{l} \in \mathbb{Z}$; the modulus $|\chi|$ of χ is defined by $|\chi|=\left|m_{1}\right|+\ldots+\left|m_{l}\right|$.

Given $\delta>0$, a finite sequence $\left(x_{1}, \ldots, x_{N}\right)$ is said to be δ-equidistributed in X if $\left|\frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right)-\int_{X} f d \mu_{X}\right|<\delta\|f\|_{\text {Lip }}$ for any Lipschitz function f on X, where $\|f\|_{\text {Lip }}=$ $\sup |f|+\sup _{x \neq y} \frac{\rho(f(x), f(y))}{\rho(x, y)}$.

The following theorem was obtained in [GT]:
Theorem 5.1. ([GT] Theorem 1.16) Let $G \bullet$ be a filtration on G and let $g \in \operatorname{poly}\left(\mathbb{Z}, G_{\bullet}\right)$. There exist constants C and c, which only depend on X, such that for any $\delta>0$ small enough and any $N \in \mathbb{N}$, either the sequence $(g(n))_{n=1}^{N}$ is δ-equidistributed in X, or there is a nontrivial character χ on X with $|\chi|<C \delta^{-c}$ such that $\mid \chi(g(n))-\chi\left(g(n-1) \mid<C \delta^{-c} / N\right.$
for all $n \in\{1, \ldots, N\}$.
(In this theorem and below, the "either ... or ..." expression should be understood in the "inclusive" sense, that is, that both possibilities may also occur simultaneously.)
(We skipped some details; in particular, there is also a condition on the Malcev basis chosen in G and so, on the metric on X; this condition is satisfied if δ is small enough.)

We do not need much from this very strong "quantitative" theorem. Let X be connected but G not necessarily connected; represent X as $X=G^{o} /\left(\Gamma \cap G^{o}\right)$. Define the filtrations $G_{\bullet}=\left\{G_{1} \supseteq G_{2} \supseteq \ldots\right\}$ on G and $G_{\bullet}^{o}=\left\{G_{1}^{o} \supseteq G_{2}^{o} \supseteq \ldots\right\}$ on G^{o} by $G_{1}=G, G_{i}=\left[G_{i-1}, G\right]$ for $i \geq 2$, and $G_{i}^{o}=G_{i} \cap G^{o}, i \in \mathbb{N}$. Let $f \in C(X)$, and let $\varepsilon>0$. Choose a Lipschitz function h on X with $|h-f|<\varepsilon / 3$. Choose $\delta>0$ small enough to satisfy Theorem 5.1 and such that $\delta\|f\|_{\text {Lip }}<\varepsilon / 3$. Let $\chi_{1}, \ldots, \chi_{r}$ be the nontrivial characters on X satisfying $\left|\chi_{i}\right|<C \delta^{-c}$. Then for any $g \in \operatorname{poly}\left(\mathbb{Z}, G_{\bullet}^{o}\right)$ and $N \in \mathbb{N}$, either there exists i such that $\left|\chi_{i}\left(g(n) \mathbf{1}_{X}\right)-\chi_{i}\left(g(n-1) \mathbf{1}_{X}\right)\right|<$ $C \delta^{-c} / N$ for all $n=1, \ldots, N$, or $\left|\frac{1}{N} \sum_{n=1}^{N} h\left(g(n) \mathbf{1}_{X}\right)-\int_{X} h d \mu_{X}\right|<\delta\|f\|_{\text {Lip }}$, and then $\left|\frac{1}{N} \sum_{n=1}^{N} f\left(g(n) \mathbf{1}_{X}\right)-\int_{X} f d \mu_{X}\right|<\varepsilon$. Sending N to infinity, we get that either $\chi_{i}\left(g(n) \mathbf{1}_{X}\right) \equiv 1$ for some i, or $\lim \sup _{N \rightarrow \infty}\left|\frac{1}{N} \sum_{n=1}^{N} f\left(g(n) \mathbf{1}_{X}\right)-\int_{X} f d \mu_{X}\right| \leq \varepsilon$.

Now let Y be a connected subnilmanifold of X with $\mathbf{1}_{X} \in Y$. Choose an element $a \in G$ such that the sequence $\left(a^{n} \mathbf{1}_{X}\right)_{n \in \mathbb{N}}$ is dense in Y. Choose $\gamma \in \Gamma$ such that $a \gamma^{-1} \in G^{o}$. (Such γ exists since $X=G / \Gamma$ is connected.) Put $g(n)=a^{n} \gamma^{-n}, n \in \mathbb{N}$; then $g(n) \mathbf{1}_{X}=a^{n} \mathbf{1}_{X}$ for all n, and since $g \in \operatorname{poly}\left(\mathbb{Z}, G_{\bullet}\right)$ and $g(n) \in G^{o}$ for all n, we have $g \in \operatorname{poly}\left(\mathbb{Z}, G_{\bullet}^{o}\right)$. Let $\chi_{1}, \ldots, \chi_{r}$ be as above, let $V_{i}^{\prime}=\left\{x \in X: \chi_{i}(x)=0\right\}, i=1, \ldots, r$, and for each i, let V_{i} be the connected component of the nilmanifold V_{i}^{\prime} that contains $\mathbf{1}_{X}$. We have that either $\chi_{i}\left(a^{n} \mathbf{1}_{X}\right) \equiv 1$ for some i, or $\limsup _{N \rightarrow \infty}\left|\frac{1}{N} \sum_{n=1}^{N} f\left(a^{n} \mathbf{1}_{X}\right)-\int_{X} f d \mu_{X}\right| \leq \varepsilon$. In the first case, $Y \subseteq V_{i}^{\prime}$, and so, $Y \subseteq V_{i}$; in the second case, since $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(a^{n} \mathbf{1}_{X}\right)=$ $\int_{Y} f d \mu_{Y}$ by [L1] (or by one more application of Theorem 5.1), we get that $\mid \int_{Y} f d \mu_{Y}-$ $\int_{X} f d \mu_{X} \mid \leq \varepsilon$. We obtain

Corollary (Proposition 1.1). Let X be a connected nilmanifold. For any $f \in C(X)$ and any $\varepsilon>0$ there are subnilmanifolds V_{1}, \ldots, V_{r} of X, connected, of codimension 1, and containing $\mathbf{1}_{X}$, such that for any connected subnilmanifold Y of X with $\mathbf{1}_{X} \in Y$, either $Y \in V_{i}$ for some $i \in\{1, \ldots, r\}$, or $\left|\int_{Y} f d \mu_{Y}-\int_{X} f d \mu_{X}\right|<\varepsilon$.

Acknowledgment. I thank Vitaly Bergelson for corrections and good advice. I also thank an anonymous referee and Dan Rudolph, the editor, for corrections and help in preparing this paper.

Bibliography

[BHK] V. Bergelson, B. Host and B. Kra, Multiple recurrence and nilsequences., Inventiones Math. 160 (2005), no. 2, 261-303.
[F] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, 1981.
[GT] B. Green and T. Tao, The quantitative behaviour of polynomial orbits on nilmanifolds,
preprint. Available at arXiv:0709.3562v2.
[HK1] B. Host and B. Kra, Non-conventional ergodic averages and nilmanifolds, Annals of Math. 161 (2005), no. 1, 397-488.
[HK2] B. Host and B. Kra, Convergence of polynomial ergodic averages, Israel J. of Math. 149 (2005), 1-19.
[L1] A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold, Ergodic Theory and Dyn. Syst. 25 (2005), 201-213.
[L2] A. Leibman, Pointwise convergence of ergodic averages for polynomial actions of \mathbb{Z}^{d} by translations on a nilmanifold, Ergodic Theory and Dyn. Syst. 25 (2005), 215-225.
[L3] A. Leibman, Convergence of multiple ergodic averages along polynomials of several variables, Israel J. of Math. 146 (2005), 303-315.
[L4] A. Leibman, Rational sub-nilmanifolds of a compact nilmanifold, Ergodic Theory and Dyn. Syst. 26 (2006), 787-798.
[L5] A. Leibman, Orbits on a nilmanifold under the action of a polynomial sequences of translations, Ergodic Theory and Dyn. Syst. 27 (2007), 1239-1252.
[L6] A. Leibman, Orbit of the diagonal in the power of a nilmanifold, preprint. Available at http://www.math.ohio-state.edu/~leibman/preprints
[M] A. Malcev, On a class of homogeneous spaces, Amer. Math. Soc. Transl. 9 (1962), 276-307.
[Z] T. Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc. 20 (2007), no. 1, 53-97.

