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Abstract

Let G be a finitely generated nilpotent group of unitary operators
on a Hilbert space H. We prove that H is decomposable into a direct
sum H =

⊕
α∈A Lα of pairwise orthogonal closed subspaces so that

elements of G permute the subspaces Lα, and if T (Lα) = Lα, then
the action of T on Lα is either scalar or has continuous spectrum.
We also provide examples showing that analogous results do not hold
for solvable non-nilpotent groups.

0. Introduction

Let H be a Hilbert space and let G be a group of unitary operators on H. Then H
is the sum of two G-invariant orthogonal subspaces: H = Hc(G) ⊕ Hwm(G) such that G

is weakly mixing on Hwm(G) and has discrete spectrum on Hc(G). The space Hc(G) is

spanned by finite-dimensional G-invariant subspaces of H, and consists of vectors whose

orbits under the action of G are precompact: Hc(G) =
{

u ∈ H
∣

∣ Gu is precompact
}

. We

will say that G is compact on Hc(G). The space Hwm(G) is the maximal G-invariant

subspace M of H such that for any unitary action of G on a Hilbert space N , the space

M⊗N does not contain nonzero elements which are invariant with respect to the G-action

(defined onM⊗N by T (u⊗ v) = Tu⊗ Tv, T ∈ G). If G is an amenable (in particular,

abelian or nilpotent) group, then Hwm(G) can also be described as the maximal subspace of

H such that for any ε > 0 and any u ∈ Hwm(G) and v ∈ H, the set
{

T ∈ G
∣

∣ |〈Tu, v〉| > ε
}

has zero density in G (with respect to a F/olner sequence).

Now assume that we are interested in weakly mixing/compact properties of individual

elements of G. For a unitary operator T on H, denote by Hwm(T ) the space

{

u ∈ H
∣

∣ the set
{

n ∈ Z
∣

∣ |〈Tnu, v〉| < ε
}

has zero density in Z for any v ∈ H
}

,

∗ Supported by NSF grant DMS-9706057

1



and by Hc(T ) the space

{

u ∈ H
∣

∣ the set
{

Tnu
∣

∣ n ∈ Z
}

is precompact
}

.

Then Hc(T ) is the subspace of H generated by eigenvectors of T , Hwm(T ) is the maximal

subspace of H where T has continuous spectrum, and H = Hc(T ) ⊕ Hwm(T ) ([KN]).

Now, for T ∈ G, the decomposition H = Hc(G) ⊕ Hwm(G) gives very little information

about Hc(T ) and Hwm(T ): one can only claim that Hc(G) ⊆ Hc(T ) and hence, Hwm(T ) ⊆
Hwm(G). It may even happen that G is weakly mixing on H while all its elements are

compact on H. This is not the case, however, when G is a finitely generated abelian

group: if the generators of G are compact on H, then G itself is compact on H. For such
G, the following structure theorem can be formulated:

Theorem A. Let G be a finitely generated abelian group of unitary operators on a Hilbert

space H. Then H is a direct sum H =
⊕

γ∈ΓHγ of G-invariant closed subspaces such

that for every γ ∈ Γ, there is a subgroup Hγ of G whose action is scalar on Hγ , and any

T ∈ G \Hγ is weakly mixing on Hγ .

Proof. Assume that there is T1 ∈ G which is neither scalar nor weakly mixing on H. Let
H1 be an eigenspace of T1; then H1 is a closed G-invariant proper subspace of H. If there
is T2 ∈ G which is neither scalar nor weakly mixing on H1, pick a nontrivial eigenspace

H2 ⊂ H1 for T2, and so on. Since the subgroup of G which is scalar on Hk+1 is bigger

than the subgroup of G which is scalar on Hk, and since G satisfies the ascending chains

condition, this process can not be infinite. As a result we get a closed G-invariant subspace

HK such that every T ∈ G is either scalar or weakly mixing on HK . Passing to H⊥
K and

applying the Zorn lemma completes the proof.

Theorem A, despite its triviality, is a useful tool in proving ergodic theorems involving

several commuting unitary operators: it allows to reduce the problem to the situation where

any product of the given operators is either scalar or weakly mixing. The aim of this paper

is to generalize Theorem A to the case where G is a finitely generated nilpotent group;

counterexamples in §3.4 suggest that the class of nilpotent groups is the natural domain

to which this theorem can be extended. We prove the following:

Theorem N. Let G be a finitely generated nilpotent group of unitary operators on a

Hilbert space H. Then H is representable as the direct sum of a system {Lα}α∈A of closed

pairwise orthogonal subspaces so that

(a) elements of G permute these subspaces: for any T ∈ G and α ∈ A one has T (Lα) = Lα′

for some α′ ∈ A, and

(b) if T preserves Lα, T (Lα) = Lα, then either T is scalar on Lα or T is weakly mixing

on Lα.
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Some fragments of our “structure theory for unitary actions of nilpotent groups”

were obtained and utilized in [L] and [BL1]. As a direct corollary of Theorem N let us

mention the following generalization of the classical von Neumann theorem, proved in

[BL1]: if unitary operators T1, . . . , Tt on a Hilbert space H generate a nilpotent group, then

for any polynomials p1, . . . , pt ∈ Z[n] and any u ∈ H, limN→∞
1
N

∑N
n=1 T

p1(n)
1 . . . T

pt(n)
t u

exists in H. In [L], the structure theory was developed for the (more complicated) case

of nilpotent groups of unitary cocycles on a Hilbert bundle, and for nilpotent groups of

measure preserving transformations of a measure space. In this paper we present the

structure theorem in full detail and in a self-contained way in the purely “Hilbertian”

situation. In particular, we are avoiding here the usage of the apparatus of G-polynomials,

used in [L] and [BL1].

The structure of the paper is as follows. In Section 1 we collect necessary background

information about nilpotent groups and introduce some notation. In Section 2 we define

what we call a primitive action of a nilpotent group of unitary operators on a Hilbert space

and study its properties. Finally in Section 3 we show that any unitary action of a finitely

generated nilpotent group is reducible to primitive actions. We also provide examples which

show that the results of this paper do not extend to polycyclic non-nilpotent groups.

Acknowledgment. I thank V. Bergelson for his support, encouragement and help. I also

thank the referee for corrections and useful suggestions.

1. Notation and background

1.1. A group G is called nilpotent if it possesses a finite central series, that is, a sequence

of normal subgroups {1G} = G0 ⊆ G1 ⊆ . . . ⊆ Gk = G such that for each i = 1, . . . , d,

Gi/Gi−1 is in the center of G/Gi−1. The minimal length d of a central series in G is called

the nilpotency class of G.

We will need the following facts (for proofs see [KM] and [H], or [BL1]):

1.2. Lemma. Any subgroup and any factor group of a nilpotent group are nilpotent. Any

subgroup of a finitely generated nilpotent group is finitely generated.

1.3. Lemma. Let G be a finitely generated nilpotent group. Then any nondecreasing

sequence H1 ⊆ H2 ⊆ . . . of its subgroups stabilizes.

1.4. Lemma. If G is a finitely generated nilpotent group such that all its generators have

finite orders, then G is finite.

1.5. Lemma. Let G be a finitely generated nilpotent group. Then there is a finite set

S1, . . . , Ss ∈ G such that for every T ∈ G there are a1, . . . , as ∈ Z such that T = Sa1
1 . . . Sas

s .

1.6. Let H be a subgroup of a group G. We will call the set of elements of G having finite
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order modulo H the closure of H (in G) and denote it by H:

H =
{

T ∈ G
∣

∣ Tn ∈ H for some n ∈ N
}

.

We will say that H is closed if H = H.

1.7. Lemma. If G is a nilpotent group and H is its subgroup, then H is a closed subgroup

of G. If G is finitely generated, then H has finite index in H.

1.8. For a subgroup H of a group G we denote by N(H) the normalizer of H in G:

N(H) = {T ∈ G
∣

∣ T−1HT = H}. We also define N0(H) = H, Nk(H) = N
(

Nk−1(H)
)

,

k = 1, 2, . . ..

1.9. Lemma. If G is a nilpotent group of nilpotency class d, then for any subgroup H of

G, Nd(H) = G.

1.10. Lemma. If H is a closed subgroup of a nilpotent group G, then N(H) is also closed

in G.

1.11. Let a group G act on a set V . For v ∈ V , we will denote its orbit {Tv}T∈G by Gv.

The stabilizer Stab(v) of v ∈ V is the subgroup {T ∈ G
∣

∣ Tv = v} of G.

1.12. Lemma. Let a nilpotent group G act on a set V , let T1, . . . , Tt generate G, and let

for some v ∈ V all sets {Tn
1 v}n∈Z, . . . , {Tn

t v}n∈Z be finite. Then the orbit Gv is finite.

1.13. Now, let G be a group of unitary operators on a Hilbert space H. Given u ∈ H, we
will say that G is scalar on u if Tu = λ(T )u with λ(T ) ∈ C for all T ∈ G. By abuse of

language, we will say that G is finite on u if the set Gu is finite, and that G is compact

on u if Gu is precompact in H. If L is a subspace of H, we will say that G is scalar, finite

or compact on L if G is, respectively, scalar, finite or compact on every u ∈ L.
We define

Hf(G) =
{

u ∈ H
∣

∣ G is finite on u
}

, and Hc(G) =
{

u ∈ H
∣

∣ G is compact on u
}

.

1.14. Let T be a unitary operator on H. We will say that T is scalar, finite or compact

on u ∈ H if the group {Tn}n∈Z is, respectively, scalar, finite or compact on u.

If T is not finite on u, that is, if the set {Tnu}n∈Z is infinite, we will say that T is

totally ergodic on u.

We will say that T is weakly mixing on u if limN→∞
1
N

∑N
n=1

∣

∣〈Tnu, v〉
∣

∣ = 0 for all

v ∈ H.
If L is a subspace of H, we will say that T is scalar, finite, compact, totally ergodic or

weakly mixing on L if T is, respectively, scalar, finite, compact, totally ergodic or weakly

mixing on every u ∈ L.
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1.15. Lemma. Let T be a unitary operator on a Hilbert space H. Assume that T

is weakly mixing on u ∈ H, and let a sequence {v(n)}n∈N be precompact in H. Then

limN→∞
1
N

∑N
n=1

∣

∣〈Tnu, v(n)〉
∣

∣ = 0.

Proof. Fix any ε > 0, and let v1, . . . , vk be an ε-net for the set
{

v(n)
∣

∣ n ∈ N
}

. Let

N = C1 ∪ . . . ∪ Ck be a partition of N such that ‖v(n)− vj‖ < ε whenever n ∈ Cj . Then

lim
N→∞

1

N

N
∑

n=1

∣

∣〈Tnu, v(n)〉
∣

∣

= lim
N→∞

1

N

∑

1≤n≤N
n∈C1

∣

∣〈Tnu, v(n)〉
∣

∣+ . . .+ lim
N→∞

1

N

∑

1≤n≤N
n∈Ck

∣

∣〈Tnu, v(n)〉
∣

∣

≤ lim
N→∞

1

N

∑

1≤n≤N
n∈C1

∣

∣〈Tnu, v1〉
∣

∣+ . . .+ lim
N→∞

1

N

∑

1≤n≤N
n∈Ck

∣

∣〈Tnu, vk〉
∣

∣+ ε‖u‖

≤ lim
N→∞

1

N

N
∑

n=1

∣

∣〈Tnu, v1〉
∣

∣+ . . .+ lim
N→∞

1

N

N
∑

n=1

∣

∣〈Tnu, vk〉
∣

∣+ ε‖u‖ −→
N→∞

ε‖u‖.

Since ε is arbitrary, the statement follows.

1.16. For a unitary operator T on H, we define

Hf(T ) =
{

u ∈ H
∣

∣ T is finite on u
}

, Hc(T ) =
{

u ∈ H
∣

∣ T is compact on u
}

,

and Hwm(T ) =
{

u ∈ H
∣

∣ T is weakly mixing on u
}

.

It follows from Lemma 1.15 that Hwm(T ) ⊥ Hc(T ). The following fact is well known (see

[KN]):

Theorem. Let T be a unitary operator on a Hilbert space H. Then Hc(T ) is the subspace

generated by eigenvectors of T and Hwm(T ) = Hc(T )⊥.

1.17. For u ∈ H, we define

Gc(u) =
{

T ∈ G
∣

∣ T is compact on u
}

, and Gf(u) =
{

T ∈ G
∣

∣ T is finite on u
}

.

If L is a subspace of H, we also define

Gc(L) =
{

T ∈ G
∣

∣ T is compact on L
}

, and Gf(L) =
{

T ∈ G
∣

∣ T is finite on L
}

.

1.18. Lemma. Let G be a nilpotent group of unitary operators on a Hilbert space H and

let u ∈ H. Then Gf(u) is a subgroup of G.

Proof. Gf(u) = Stab(u), which is a subgroup of G by Lemma 1.7.
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1.19. Lemma. Let G be a nilpotent group generated by unitary operators T1, . . . , Tt on a

Hilbert space H. Then

Hf(G) =
⋂

T∈G

Hf(T ) =
t
⋂

i=1

Hf(Ti).

Proof. This follows from Lemma 1.12.

Statements analogous to Lemma 1.18 and Lemma 1.19 hold for Gc and Hc as well,

but we will be able to show this only in the end of the paper (see Corollaries 3.2 and 3.3

below).

1.20. Finally, the last piece of notation: If H is a Hilbert space and {Lα}α∈A is a system

of pairwise orthogonal subspaces of H, then by
⊕

α∈A Lα we will understand the closure

of the direct sum of the subspaces Lα.

2. Primitive actions

2.1. Definition. Let G be a finitely generated nilpotent group of unitary operators on a

Hilbert space H. We will say that the action of G is primitive if H is the direct sum of a

system {Lα}α∈A of closed pairwise orthogonal subspaces of H so that:

(a) G transitively acts on the set of indices A so that T (Lα) = LTα for T ∈ G, α ∈ A.

(b) For α ∈ A, let Hα ⊆ G be the stabilizer of α. Then every element of Hα is either

scalar on Lα, or weakly mixing on Lα.

We will call the decomposition H =
⊕

α∈A Lα a primitive decomposition of H.

2.2. Example. Here is an example of a primitive action of a nilpotent group. Let

{ui,j}i,j∈Z be an orthonormal basis in a Hilbert space H. Let S, P and T be the operators

on H defined by Sui,j = ui,j+1, Pui,j = ui,j+i and Tui,j = ui+1,j . The group H generated

by S, P, T is nilpotent: S commutes with both P and T , and [P, T ] = P−1T−1PT = S.

Let Li,j = Span(ui,j), then H =
⊕

i,j∈Z
Li,j is a primitive decomposition of H: elements

of H permute the subspaces Li,j , the stabilizer of Li,j under this action is the subgroup

Hi,j generated by PS−i, and the action of Hi,j on Li,j is trivial.

2.3. Let us concentrate on primitive actions. Through this section we will assume that G

is a finitely generated nilpotent group of unitary operators on a Hilbert space H, and that

the action of G on H is primitive; let {Lα}α∈A be the corresponding system of subspaces

of H.

2.4. For α ∈ A, let Hα ∈ G be the stabilizer of α: Hα =
{

P ∈ G
∣

∣ Pα = α
}

. Then

T (Lα) = Lα for T ∈ Hα, and T (Lα) ⊥ Lα for T ∈ G \Hα.

Denote by Eα the subgroup ofHα consisting of operators which are scalar on Lα: Eα =
{

P ∈ Hα

∣

∣ P |Lα
= λ IdLα

, λ ∈ C
}

. Also, let Fα =
{

P ∈ Hα

∣

∣ P |Lα
= e2πir IdLα

, r ∈ Q
}

.
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2.5. Lemma. {Hα}α∈A, {Eα}α∈A and {Fα}α∈A are classes of conjugate subgroups in G.

Proof. Let α, α′ ∈ A, let T ∈ G be such that Tα = α′. Then T (Lα) = Lα′ , Hα′ =

THαT
−1, Eα′ = TEαT

−1 and Fα′ = TFαT
−1.

2.6. It is clear that Eα and Fα are normal subgroups of Hα. It is also easy to see that

Eα and Fα are closed in Hα. Indeed, if T ∈ Hα \ Eα, then T preserves Lα and is weakly

mixing on Lα. So, for any n 6= 0, Tn is also weakly mixing on Lα, and thus Tn 6∈ Eα.

Also, if T ∈ Eα \ Fα, then Tn 6∈ Fα for all n 6= 0.

2.7. Lemma. For any α ∈ A, Gc(Lα) = Eα, G
f(Lα) = Fα, and every T ∈ G \ Eα is

weakly mixing on Lα.

Proof. If T ∈ Eα then for some n ∈ N, Tn is scalar on Lα, and thus T is compact on Lα.

Let T ∈ G \Eα. If T 6∈ Hα, then Tn 6∈ Hα for all n 6= 0, so TnLα ⊥ Lα for all n 6= 0, and

so, T is weakly mixing on Lα. If T ∈ Hα \Eα, then Tn ∈ Hα \Eα for some n ∈ N, so Tn

is weakly mixing on Lα, and thus T is weakly mixing on Lα.

Analogously, since all elements of Fα are finite on Lα, every T ∈ Fα is finite on Lα.

And if T ∈ Eα \Fα, then Tn ∈ Eα \Fα for some n ∈ N, and then Tnmu 6= u for all m 6= 0

and u ∈ Lα.

2.8. The following example shows that the subgroups Eα and Fα are not necessarily normal

in Eα and Fα. As a result, elements Lα and Lα′ of the primitive decomposition that

have coinciding “compact” and “finite” subgroups Gc(Lα) and Gf(Lα) may have different

“scalar” and “rational scalar” subgroups Eα and Fα.

Example. Let vectors u1, u2, u3, u4 form an orthonormal basis of a (4-dimensional) space

H, let T and S be operators on H that permute the vectors of the basis in the following

way:
u1 u2

T
x



y

x



y
T

u3←→
S

u4

Let G be the group generated by T and S; one can easily check that G is nilpotent

(|G| = 8, and thus G is nilpotent as a finite p-group). Put Li = Span(ui), i = 1, 2, 3, 4,

then H =
⊕4

i=1 Li is a primitive decomposition of H corresponding to G. We have

F1 = F2 = E1 = E2 = 〈S〉 (the group generated by S) and F3 = F4 = E3 = E4 = 〈TST 〉.
The group G itself is finite on H, so Ei = Fi = G for i = 1, 2, 3, 4, and Ei, Fi are not

normal in G.

2.9. Now, instead of subspaces Lα, we will consider some finite sums of these subspaces.

As a result, we will lose the information about subgroups of G whose actions are scalar on

elements of the new “primitive decomposition”, but get better properties of the subgroups

of G which are compact or finite on these subspaces.
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2.10. Proposition. Let G be a finitely generated nilpotent group of unitary operators on

a Hilbert space H. Assume that the action of G on H is primitive. Then H is representable

as a direct sum of pairwise orthogonal closed subspaces {Lβ}β∈B so that:

(1) G acts transitively on the set of indices B so that T (Lβ) = LTβ for any T ∈ G and

β ∈ B.

(2) For β ∈ B, let Hβ be the stabilizer of β in G. Then every T 6∈ Hβ acts on β without

finite cycles: Tnβ 6= β for all n 6= 0, and so, TnLβ ⊥ Lβ for all n 6= 0.

(3) For β ∈ B, Hβ contains normal subgroups Eβ and Fβ such that Fβ is finite on Lβ, Eβ

is compact on Lβ, every P ∈ Eβ \ Fβ is totally ergodic on Lβ, and every T ∈ Hβ \ Eβ is

weakly mixing on Lβ.

Proof. Let H =
⊕

α∈A Lα be a primitive decomposition of H.
Let α ∈ A. Then for T ∈ G and α′ = Tα,

Hα′ = THαT−1 = THαT
−1.

Thus if T ∈ Hα, then Hα′ = Hα. Consider the equivalence relation defined on A by α ∼ α′

if α′ = Tα for some T ∈ Hα. We have a partition B of A onto pairwise disjoint equivalence

classes under ∼: A =
⋃

β∈B β, where β = Hαα for any α ∈ β. Since by Lemma 1.7, Hα is

of finite index in Hα, all β ∈ B are finite.

Now, let β ∈ B and T ∈ G. Take any α ∈ β and let α′ = Tα. Then

Hα′α′ = THαT
−1Tα = Tβ,

and so, Tβ is the equivalence class β′ ∈ B that contains α′. Hence an action of G on B is

well defined. This action is transitive since the action of G on A is transitive.

(1) For β ∈ B define Lβ =
⊕

α∈β Lα ⊆ H. Clearly, the subspaces Lβ , β ∈ B, span H.
Since β ∈ B are pairwise disjoint, Lβ are pairwise orthogonal. And for β ∈ B and T ∈ G,

LTβ = T (Lβ).

(2) Let β ∈ B. Take any α ∈ β. Then Tα ∈ β if and only if T ∈ Hα. So, the stabilizer Hβ

of β in G is Hα. Since the subgroup Hβ = Hα is closed in G, the action of G on B has no

finite cycles: if T 6∈ Hβ , then Tnβ 6= β for all n 6= 0.

(3) Again, let β ∈ B and let α ∈ β. Since Eα, Fα ⊆ Hα, Eα, Fα ⊆ Hα = Hβ . Now, for

any T ∈ N(Eα), TEαT
−1 = TEαT−1 = Eα, so N(Eα) ⊆ N(Eα). Since Hα ⊆ N(Eα),

Hα ⊆ N(Eα). Since Eα is closed, N(Eα) is closed by Lemma 1.10. So, Hβ = Hα ⊆ N(Eα).

Hence, Eα is normal in Hβ . Analogously, Fα is normal in Hβ .

Now, let α′ ∈ β. Then α′ = Tα for some T ∈ Hβ . Thus Eα′ = TEαT
−1 = Eα, and,

analogously, Fα′ = Fα. So, we can put Eβ = Eα and Fβ = Fα for any α ∈ β. Then Eβ

and Fβ are normal subgroups of Hβ . By Lemma 2.7, for any α ∈ β and any u ∈ Lα,

Gc(u) = Eβ , G
f(u) = Fβ and every T ∈ Hβ \ Eβ is weakly mixing on u. Hence, Fβ is

finite on Lβ Eβ is compact on Lβ , every P ∈ Eβ \ Fβ is totally ergodic on Lβ and every

T ∈ Hβ \ Eβ is weakly mixing on Lβ .
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2.11. Corollary of the proof. Every Lβ in Proposition 2.10 is a sum of finitely many

elements Lα of the primitive decomposition of H. For each β ∈ B and α ∈ A with Lα ⊆ Lβ,

Eβ = Eα and Fβ = Fα. In particular, Eα is a subgroup of finite index in Eβ, and Fα is a

subgroup of finite index in Fβ.

For the rest of the section we fix the decomposition H =
⊕

β∈B Lβ described in

Proposition 2.10.

2.12. Lemma. There exists M ∈ N such that for any β ∈ B and any u ∈ Lβ, the

cardinality of the set Fβu does not exceed M .

Proof. Fix any β ∈ B. Let α ∈ β. The group Fα is scalar and finite on Lα, thus the

cardinality |Fαu0| of the orbit Fαu0 does not depend on the choice of (nonzero) u0 ∈ Lα.

Put M = IndFβ
(Fα)|Fαu0|. Then |Fβu| = M for all nonzero u ∈ Lα. It follows that

|Fβu| ≤M for all u ∈ Lβ .

Now, let β′ ∈ B and u′ ∈ Lβ′ . Choose T ∈ G such that Tβ′ = β. Then Tu′ ∈ Lβ ,

and so

|Fβ′u′| = |T−1FβTu
′| = |FβTu

′| ≤M.

2.13. Corollary. There exists M ∈ N such that for any β ∈ B and any T ∈ Fβ, T
M is

trivial on Lβ.

2.14. For u ∈ H and β ∈ B, let uβ be the “β-coordinate” of u, that is the projection of u

onto Lβ , and let B(u) =
{

β ∈ B
∣

∣ uβ 6= 0
}

.

Lemma. For u ∈ H, Gc(u) =
⋂

β∈B(u) Eβ and Gf(u) =
⋂

β∈B(u) Fβ. It follows that Gc(u)

is a subgroup of G.

Proof. For every β ∈ B(u) one has Gc(uβ) = Eβ , and it is clear that if T ∈ Gc(uβ)

for all β ∈ B(u), then T ∈ Gc(u). Let T ∈ G, T 6∈ Eβ for some β ∈ B(u). For any

β ∈ B, Tnuβ ∈ LTnβ , so Tnuβ is the (Tnβ)-coordinate of Tnu: Tnuβ = (Tnu)Tnβ .

If T 6∈ Hβ , the sequence Tnuβ , n ∈ Z, consists of pairwise orthogonal vectors of equal

lengths. If T ∈ Hβ \Eβ , then T preserves Lβ and is weakly mixing on Lβ , so the sequence

{Tnuβ}n∈Z is not precompact in Lβ . In both cases, the set
{

Tnu
∣

∣ n ∈ Z
}

can not be

precompact.

In the same way, for any β ∈ B(u) one has Gf(uβ) = Fβ . And if T ∈ Fβ for all

β ∈ B(u), it follows from Corollary 2.13 that T is finite on u. The rest of the proof is

analogous to that for Hc-spaces.

2.15. Lemma. For any T ∈ G, Hc(T ) =
⊕

β∈B
T∈Eβ

Lβ and Hf(T ) =
⊕

β∈B
T∈Fβ

Lβ.

Proof. This directly follows from Lemma 2.14.
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2.16. Lemma. For any subgroup H of G, the subspaces
⋂

T∈H Hc(T ) and
⋂

T∈H Hf(T )

are H-invariant,
⋂

T∈H Hc(T ) =
⊕

β∈B
H⊆Eβ

Lβ and
⋂

T∈H Hf(T ) =
⊕

β∈B
H⊆Fβ

Lβ.

Proof. Let B(H) =
{

β ∈ B
∣

∣ H ⊆ Eβ

}

. Since for any β ∈ B(H), Eβ is a subgroup of the

stabilizer Hβ of β, B(H) is an H-invariant subset of B. Thus the space
⊕

β∈B(H) Lβ is

H-invariant, and it follows from Lemma 2.15 that
⋂

T∈H Hc(T ) =
⊕

β∈B(H) Lβ .

For Hf-spaces the proof is completely analogous.

2.17. Lemma. For any subgroup H of G one has Hc(H) =
⋂

T∈H Hc(T ) =
⊕

β∈B
H⊆Eβ

Lβ

and Hf(H) =
⋂

T∈H Hf(T ) =
⊕

β∈B
H⊆Fβ

Lβ.

Proof. For Hf-spaces the statement follows from Lemma 1.19 and Lemma 2.16. It is

also clear that Hc(H) ⊆ Hc(T ) for all T ∈ H. We only have to check that Hc(H) ⊆
⋂

T∈H Hc(T ). Let u ∈ ⋂

T∈H Hc(T ), we will be done if we show that the set Hu is

precompact.

Fix ε > 0. Let S1, . . . , Ss ∈ H be elements of G such that for every T ∈ H, T =

Sa1
1 . . . Sas

s for some a1, . . . , as ∈ Z (see Lemma 1.5). The set {Sas
s u}as∈Z is precompact;

let Vs be a finite ε-net in it. Since by Lemma 2.16 the space
⋂

T∈H Hc(T ) is H-invariant,

all elements of H are compact on elements of Vs. Thus the sets {Sas−1

s−1 v}as−1∈Z, v ∈ Vs,

are precompact, and we can find a finite ε-net Vs−1 in the set
⋃

v∈Vs
{Sas−1

s−1 v}as−1∈Z. It is

easy to see that Vs−1 is a 2ε-net for the set {Sas−1

s−1 Sas
s u}as−1,as∈Z. Continuing in this way,

we come to a finite set V1, which, by the choice of S1, . . . , Ss, is an sε-net for Hu.

3. Decomposition of a general action into primitive ones

3.1. Now let us return to general, non-primitive actions of a nilpotent group. Here is our

main result:

Theorem. Let G be a finitely generated nilpotent group of unitary operators on a Hilbert

space H. Then H is representable as a direct sum of G-invariant closed subspaces on each

of which the action of G is primitive.

3.2. Corollary. Let G be a nilpotent group of unitary operators on a Hilbert space H.
Then for any u ∈ H, Gc(u) is a subgroup of G.

Proof. We have to check that, given P,Q ∈ Gc(u), their product PQ is in Gc(u). Thus

we can replace G by the group generated by P and Q, and so, assume that G is finitely

generated.

Let H =
⊕

γ∈ΓHγ be a decomposition of H into a sum of G-invariant subspaces such

that the action of G is primitive on each of them. For u ∈ H, let uγ be the projection

of u onto Hγ . Then T ∈ G is compact on u if and only if T is compact on each uγ . So,

Gc(u) =
⋂

γ∈Γ G
c(uγ). Lemma 2.14 implies the result.
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3.3. Corollary. Let G be a nilpotent group of unitary operators on a Hilbert space H,
and let T1, . . . , Tt generate G. Then

Hc(G) =
⋂

T∈G

Hc(T ) =
t
⋂

i=1

Hc(Ti).

Proof. If T1, . . . , Tt are compact on u, then by Corollary 3.2, all elements of G are compact

on u. And if T1, . . . , Tt are finite on u, then all elements of G are finite on u. Now the

result follows from Theorem 3.1 and Lemma 2.17.

3.4. Counterexamples. Let us now bring two examples that show that the “structure

theory” developed above can not be extended to unitary actions of non-nilpotent groups.

Of course, if no restrictions on the group of unitary operators are imposed, one can achieve

any effect. Our goal was to find groups which would be maximally close to nilpotent ones,

yet for which the statements above would fail. The following examples demonstrate that

our theory fails already for polycyclic groups, namely for groups possessing subnormal

series with cyclic factors: {1G} = G0 ⊆ G1 ⊆ . . . ⊆ Gk = G, Gi−1 is normal in Gi and

Gi/Gi−1 is cyclic for i = 1, . . . , k.

3.4.1. Let H = C2, and let T and S be the unitary operators onH given by T =

(

1 0
0 −1

)

and S =

(

1/2 −
√
3/2√

3/2 1/2

)

. Then the group G generated by T and S is isomorphic to the

dihedral group D6, which is polycyclic. However the primitive decomposition described in

Definition 2.1 does not exist for it: H is not a direct sum of two subspaces permuted by T

and S.

3.4.2. In our second example the action of a polycyclic group is primitive in the sense of

Definition 2.1, but Corollary 3.2 fails for this action. This shows that “the second version

of the structure theorem”, Proposition 2.10, does not hold in this case.

Let {ui, u
′
i}i∈Z be an orthonormal basis in a Hilbert space H, let T and S be the

operators on H that act on the elements of this basis in the following way:

· · · u−1 u0 u1 · · ·
T
x



y
T
x



y
T
x



y

· · · −→
S

u′
−1−→

S
u′
0 −→

S
u′
1 −→

S
· · ·

(it is assumed that Sui = ui, i ∈ Z). The group G generated by T and S is polycyclic: one

can check that the sequence of subgroups 〈S〉 ⊂ 〈S, TST 〉 ⊂ G is a subnormal series in G.

The subspaces Li = Span(ui) and L′
i = Span(u′

i), i ∈ Z, define a primitive decomposition

in the sense of Definition 2.1. However, Gc(L0) = Gf(L0) is not a subgroup of G: T, S ∈
Gc(L0), but ST 6∈ Gc(L0).
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3.5. Proof of Theorem 3.1. It is enough to find a nonzero G-invariant subspace H′

of H such that the action of G on H′ is primitive: then we can pass to the orthogonal

complement of H′ in H, and the Zorn lemma will give the result. Moreover, it is enough

to find a closed subspace L of H such that if H is a subgroup of G that preserves L, then
T (L) ⊥ L for all T ∈ G \ H, and every P ∈ H is either weakly mixing or scalar on L.
Indeed, in this case we can put A to be the set of left cosets of H in G, and for α ∈ A,

Lα = TL for any T ∈ α; the obtained set {Lα}α∈A defines a primitive decomposition

H′ =
⊕

α∈A Lα of the G-invariant subspace H′ = Span
{

TL
∣

∣ T ∈ G
}

.

Let K be a maximal subgroup of G for which the subspace L = Hc(K) is nontrivial;

such a subgroup exists by Lemma 1.3. K is a closed subgroup: since K is of finite index

in K by Lemma 1.7, Hc(K) = Hc(K).

Let T ∈ N(K) \K. Then T (L) = Hc(TKT−1) = L, so T preserves L. If T had an

eigenvector u ∈ L, then for the group K ′ generated by K and T we would have u ∈ Hc(K ′),

that contradicts the choice of K. Thus, T is weakly mixing on L.
Now, let T ∈ N2(K) \ N(K). Let P ∈ K be such that Q = T−1PT ∈ N(K) \ K.

Then for any u, v ∈ L one has

∣

∣〈Tu, v〉
∣

∣ =
∣

∣〈PTu, Pv〉
∣

∣ =
1

N

N
∑

n=1

∣

∣〈PnTu, Pnv〉
∣

∣ =
1

N

N
∑

n=1

∣

∣〈TQnu, Pnv〉
∣

∣

=
1

N

N
∑

n=1

∣

∣〈Qnu, T−1Pnv〉
∣

∣.

Since Q is weakly mixing on u and the sequence T−1Pnv is precompact, by Lemma 1.15

limN→∞
1
N

∑N
n=1

∣

∣〈Qnu, T−1Pnv〉
∣

∣ = 0 and so, 〈Tu, v〉 = 0. It follows that T (L) ⊥ L.
Since N(K) is closed by Lemma 1.10, Tn 6∈ N(K) for all n 6= 0, and thus, T is weakly

mixing on L.
Now we can use induction on k to show that if T ∈ Nk(K) \N(K), then T (L) ⊥ L:

find P ∈ K for which Q = T−1PT ∈ Nk(K) \ K, then Q is weakly mixing on L, and
∣

∣〈Tu, v〉
∣

∣ = limN→∞
1
N

∑N
n=1

∣

∣〈Qnu, T−1Pnv〉
∣

∣ = 0. It now follows from Lemma 1.9 that

T (L) ⊥ L for all T ∈ G \N(K).

Denote the group N(K) by H. Then K is normal in H, T (L) ⊥ L for any T ∈ G \H,

T (L) = L for T ∈ H, T is compact on L if T ∈ K and T is weakly mixing on L if

T ∈ H \K. The only remaining problem is that K may not be scalar on L. Let E be the

subgroup of K which is scalar on L: for P ∈ E let P |L = µ(P ) IdL, µ(P ) ∈ C. Assume

that E 6= K. Let {1G} = G0 ⊆ G1 ⊆ . . . ⊆ Gd = G be a central series in G, let i be such

that E ∩Gi = K ∩Gi and E ∩Gi+1 6= K ∩Gi+1. Pick any S ∈ (K ∩Gi+1) \ (E ∩Gi+1).

Then for any T ∈ H, the commutator [S, T ] = S−1T−1ST ∈ Gi and since K is normal

in H, [S, T ] ∈ K. Thus [S, T ] ∈ K ∩ Gi ⊆ E. Let L′ ⊂ L be an eigenspace of S, let

S|L′
= λ IdL′ . Then for any T ∈ H and any u ∈ L,

STu = TS[S, T ]u = λµ([S, T ])Tu,
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and so either Tu ∈ L′ (if µ([S, T ]) = 1), or Tu ⊥ L′. Let H ′ be the subgroup of H that

preserves the subspace L′. Then T (L′) ⊥ L′ for all T ∈ H \H ′ and so, for all T ∈ G \H ′.

Let E′ be the subgroup of H ′ which is scalar on M ′. Then E′ contains S and thus

E′ is greater than E. Let us replace L by L′, H by H ′, E by E′ and K by K ∩H ′. Since

this enlarges the subgroup E, by Lemma 1.3, after several such steps we will come to the

position where K = E.
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