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1. What is it about the degrees of the vertices of a graph that tells you
whether there is an Euler circuit, or just an Euler path or neither?

If you have a graph, an Euler circuit is a circuit passes over every edge and that doesn't repeat any
edges and starts and ends at the same spot.

If you have a graph, an Euler path is a path passes over every edge and that doesn't repeat any edges
and starts and ends at different vertices.

If a graph has exactly 2 odd vertices, then there is an Euler path.
Moreover, the path has to start at one odd vertices, and end at the
other.

If a graph has all even vertices (and no odd), then there is an
Euler circuit. You can start and end at any vertex.

If a graph has more than 2 odd vertices, then there is no Euler path
in the graph.

The Traveling Salesman Problem

e Hamilton path

A path that visits each VERTEX of the graph once and only once.
e Hamilton circuit

A circuit that visits each VERTEX of the graph once and only once (at the end, of
course, the circuit must return to the starting vertex).

e Euler path

A path that visits each EDGE of the graph once and only once.
e Euler circuit

A circuit that visits each EDGE of the graph once and only once (at the end, of
course, the circuit must return to the starting vertex).

http://en.wikipedia.org/wiki/William Rowan Hamilton
3
http://wps.prenhall.com/esm_tannenbaum_excursions_5/14/3687/943975.cw/index.html
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http://www.flashandmath.com/mathlets/discrete/graphtheory/hamiltongraphs.html
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Do the following graphs have
Euler Paths? Euler Circuits? Hamilton Paths? Hamilton Circuits?

If not, why not? If so, list them.
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Do the following graphs have
Euler Paths? Euler Circuits? Hamilton Paths? Hamilton Circuits?

If not, why not? If so, list them.
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Do the following graphs have
Euler Paths? Euler Circuits? Hamilton Paths? Hamilton Circuits?

If not, why not? If so, list them.
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Reasons why a graph might not have a Hamilton Circuit:

1. If the graph is disconnected

2. If the graph has a;ertex of eree ozne.

3. If the graph has an edge that is a bridge.
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But there is no "nice" reason that explains when a graph has no Hamilton Circuit.

The only reason a connected graph has no Euler circuit is that it has odd vertices.
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Examples of Graphs: Do they have a Hamilton Circuit?
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Icosahedron

The Petersen Graph
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http://www.flashandmath.com/mathlets/discrete/graphtheory/graph2.html

Two nice planar Non-Hamiltonian Graphs
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A graph that can be proven non-

Hamitonian using Grinberg's theorem

Tutte graph

http://en.wikipedia.org/wiki/W. T. Tutte
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NP-Complete Problems

There are many famous algorithm questions (some about graphs, some about various
other math problems) that are so-called NP-Complete.

Nobody knows a "simple, quick" way to answer them without more or less trying every

possible case. Like finding a hamilton circuit. However, if someone shows you a solution,
it is easy to see that it works. Again like a Hamilton circuit.

Suppose somebody gives you a big graph (say 60 vertices). What do you have to check
to see itit has an

Euler Circuit? Hamilton Circuit?
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There are, however, nice theorems that identify special situations where a graph
must have a Hamilton circuit.

For instance, the previous graph must be Hamiltonian by:
Tutte's Theorem : Any 4-regular planar graph has a Hamiltonian circuit.

Another well-known known theorems is:

Dirac’s theorem:

If a connected graph has N vertices (N > 2) and all of them have
degree bigger or equal to N/ 2, then the graph has a Hamilton circuit.

But nothing is known to work for all graphs to decide if it has a Hamilton circuit or not, other than
checking all possible circuits.


http://en.wikipedia.org/wiki/np-complete
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If a graph has a Hamilton circuit, then how many different
Hamilton circuits does a it have?

A graph with N vertices in which every pair of distinct

vertices is joined by an edge is called a complete graph on N
vertices and denoted by the symbol K.
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How many edges are there in a complete graph (no loops

or multiple edges) with "n" vertices? ﬁbl: 4 s % ¢ 0-\!\
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