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Abstract

Given two embeddings σ1 and σ2 of a labeled nonplanar graph in the projective plane, we give
a collection of maneuvers on projective-planar embeddings that can be used to take σ1 to σ2.

1 Introduction

Consider a labeled connected graph G with two cellular embeddings σ1 and σ2 in the projective plane.
In the case that G is planar, it is shown in [8] that there are embeddings ψ1, . . . , ψn of G (with σ1 = ψ1

and σ2 = ψn) such that ψi+1 is obtained from ψi by one of a list of given maneuvers of a graph embedded
in the projective plane. In this paper we solve the same problem for the case when G is not planar. This
problem has previously been considered in [10] and [18]; however, both contain errors. We will discuss
these and related results (which are also mentioned in the next paragraph) in Section 6.

There are many results in the literature concerning the reembeddings of graphs in various surfaces;
in particular, results relating the number of reembeddings to representativity (i.e., face width). The
classical result of Whitney [20] is that any 3-connected planar graph G has a unique embedding in the
plane. Robertson and Vitray [13] showed that for any orientable surface S of genus g, any 3-connected
graph G embedded in Σ with representativity at least 2g + 3 has a unique embedding in that surface.
Mohar [6] and Seymour and Thomas [15] lowered this bound to c log(g)/ log(log(g)). Robertson, Zha,
and Zhao [14] showed that, other than the three embeddings of C4×C4 in the torus, any graph with an
embedding of representativity at least 4 in the torus has a unique embedding in the torus. Robertson
and Mohar [7] have shown that for any surface S, there is a number f(S) such that for any 3-connected
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graph G, there are at most f(S) distinct embeddings of G in S with representativity at least 3.†† As
corollaries to our main result (in Section 6) we will reprove the following three related results of Negami
and Vitray for projective-planar embeddings. First, for any 3-connected graph with an embedding of
representativity at least 4 in the projective plane, that is the only embedding (Theorem 6.1). Second,
other than K6, for any 5-connected graph with an embedding of representativity 3 in the projective
plane, that is the only embedding (Theorem 6.2). Last, if G is 3-connected and has a 3-representative
embedding in the projective plane, then the number of embeddings of G in the projective plane is a
divisor of 12 (Theorem 6.3).

Before we state our main result, we would also like to mention a relationship between this problem
and a problem on signed graphs. If Σ1 and Σ2 are two signed graphs with the same labeled edge set,
then when does M(Σ1) = M(Σ2)? (Here M(Σi) is the frame matroid of the signed graph Σi. See
[21] for an introduction to signed graphs and their matroids.) Since the relationship between different
representations of the same matroid is very important in matroid theory, an answer to this question is
desirable. In [16] it is shown that if M(Σ1) is connected and not graphic, then M(Σ1) = M∗(G) for some
ordinary graph G iff Σ1 and G are topological duals in the projective plane. So if M(Σ1) = M(Σ2) =
M∗(G) is 3-connected, then Whitney’s 2-Isomorphism Theorem (see, for example, [11, Sec.5.3]) tells us
that G is the only ordinary graph that represents M∗(G). Thus the difference between Σ1 and Σ2 is
just that they are duals of two distinct embeddings of G in the projective plane. Hence this problem of
signed-graph matroid isomorphism contains the reembedding problem of projective-planar graphs as a
special case.

In Section 2, we will define three operations on a graph embedded in the projective plane: Q-Twists,
P-Twists, and W-Twists. (Here Q, P, and W stand for quadrilateral, Petersen, and Whitney.) Our
result is the following.

Theorem 1.1. Let G be a connected, nonplanar graph. If σ1 and σ2 are two embeddings of G on the
projective plane, then there exists a sequence of Q-Twists, P-Twists, and W-Twists taking σ1 to σ2.

Our main lemma to the proof of Theorem 1.1 (which we spend the vast majority of the paper proving)
is Lemma 1.2.

Lemma 1.2. Let G be a 3-connected, nonplanar graph. If σ1 and σ2 are two embeddings of G on the
projective plane, then there exists a sequence of Q-Twists and P-Twists taking σ1 to σ2.

A natural approach to proving Lemma 1.2 would be to find a topological subgraph H of G with
known flexibility in the projective plane and then examine the H-bridges and how they behave under
the flexibility of H. A natural candidate for H would be K3,3-subdivision because G is guaranteed to
have it unless G ∼= K5. However, it seems to us that such an approach is not feasible and so we start
with a subgraph H that is a subdivision of the Wagner graph V8. The Wagner graph V8 (also called the
4-rung Möbius Ladder) is obtained from an 8-cycle on vertices v1, v2, . . . , v8 by adding four vivi+4-chords.
In any projective-planar embedding of V8 its octagon must be embedded contractibly; with K3,3 there
is no such cycle that is guaranteed to be contractible. This property of V8 makes a proof of Lemma 1.2
starting with a V8-subdivision tractable as the reader will see in Section 4. Thus we split the proof of
Lemma 1.2 into two cases: where G contains a V8-minor (Section 4) and where G is V8-free (Section 5).
The V8-free case is facilitated by Theorem 1.3 which is a result proven independently by both Kelmans
and Robertson but remains unpublished. One might ask whether one could extend the techniques of
Section 4 to graphs with a K3,3-minor but no V8-minor in order to avoid using Theorem 1.3. We contend
that such an approach would actually just reproduce much of the details of a proof of Theorem 1.3.

††They also give examples to show that no such bound exists depending only on the surface for highly-connected
2-representative embeddings.
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Theorem 1.3. Let G be an internally 4-connected graph with no V8-minor. Then G belongs to one of
the following families:

1. Planar graphs

2. Subgraphs of double wheels (i.e., there exist two vertices a, b of G such that G \ {a, b} is a cycle)

3. Graphs with a 4-vertex edge cover (i.e., there exist four vertices a, b, c, d of G such that V (G) \
{a, b, c, d} is edgeless)

4. The line graph of K3,3

5. Graphs with seven or fewer vertices

2 Twisting Operations

A Q-Twist is one of the operations described in this paragraph. The full Q-Twist operation hinged at
1, 2, 3, 4 and latched at A,B is the operation shown in Figure 1 for a graph embedded in the projective
plane. One can identify and/or delete hinges and latches of the full Q-Twist to obtain a degenerate
Q-Twist. Several degenerate Q-Twists are shown in Figure 2. For the rightmost degenerate Q-Twist,
when the light grey block is a single edge we often refer to this operation as flipping an edge.

Figure 1.
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The Q-Twist operation hinged at 1, 2, 3, 4 and latched at A,B.

Figure 2.
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A P-Twist is one of the operations described in this paragraph. The full P-Twist is the operation
shown in the first column of Figure 3 for a graph embedded in the projective plane. The second and third
columns of Figure 3 are different drawings of the P-Twist. We refer these three drawings, respectively,
as the ‘bowtie’, ‘central’, and ‘pentagonal’ views. A degenerate P-Twist is obtained from a full P-Twist
by contracting a triangular patch or by contracting one side of a triangular patch. In Figure 4 we show
three typical degenerate P-Twists all obtained from the bowtie view of the full P-Twist. The first is
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obtained by contracting patches 2,4,8,9, the second is obtained by contracting patch 5, and the third is
obtained from the second by contracting the dark patches to two edges as labeled

Figure 3.
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The three views of the P-Twist

Figure 4.
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It is worth noting that the full P-Twist without the shading in the triangles is the line graph of
the Petersen graph, call it L(P ) where P is the Petersen graph. One can check that there are exactly
two distinct embeddings of P . Now since P is cubic, each embedding of P extends uniquely to an
embedding of L(P ) and any embedding of L(P ) comes from an embedding of P . Hence there are only
two embeddings of L(P ) and these embeddings are related by the full P-Twist. Furthermore, the two
embeddings cannot be related by a Q-Twist (or a sequence of Q-Twists) because in a Q-Twist there
are at most 6 vertices whose rotation of edges (up to reversal) is changed by the operation. In the two
embeddings of the line graph of the Petersen graph this change in rotation occurs at all 15 vertices.

Finally, a W-Twist hinged on vertices A and B is the operation shown in Figure 5.

Figure 5.
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3 Proof of Theorem 1.1

In this section we prove Theorem 1.1 assuming Lemma 1.2. Our proof will proceed by induction on
|V (G)| + |E(G)|. In the base case |V (G)| + |E(G)| = 15 and so G ∼= K5 or K3,3 which are both 3-
connected. The result then follows by Lemma 1.2. Suppose now that |V (G)| + |E(G)| > 15 and G is
connected but not 3-connected (the 3-connected case follows by Lemma 1.2).
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Proposition 3.1. If G is connected, nonplanar, projective planar, and not 3-connected, then G = H⊕tP
for t ∈ {1, 2} where P is planar and H is not.

Proof. Given that G is connected but not 3-connected, G = H ⊕t P for t ∈ {1, 2}. Since planarity is
closed under 1-sums and 2-sums, then without loss of generality H is not planar. It must be that P is
planar because otherwise G will contain one of the twelve excluded minors for projective planarity that
are not 3-connected. A proof for t = 1 is evident and a proof for t = 2 can be found in [12, §3].

Hence we can assume that G = H ⊕t P for t ∈ {1, 2} where P is planar and H is not. Let {x, y} be
the vertices of the separation and e be the xy-edge of H and P . So if σ1 and σ2 are distinct embeddings
of G in the projective plane, these restrict to embeddings σi|H and σi|P where the embeddings of P are
planar embeddings inside a disk. Hence, by induction, there is a sequence of Q-, P- and W-twists that
takes σ1|H to σ2|H . Also by Whitney’s theorem [9, Thm 2.6.8], there is a sequence of W-twists that
takes σ1|P to σ2|P . These operations on H and on P can all be performed independently of each other.

4 Proof of Lemma 1.2 for graphs with a V8-minor

The n-rung Möbius ladder V2n is the graph obtained from the cycle on vertex set {1, 2, . . . , 2n} by adding
an (i, n+ i)-edge for each 1 ≤ i ≤ n. Note that V4 ∼= K4 and V6 ∼= K3,3. In this section we prove Lemma
1.2 in the case that G has a V2n-minor for some n ≥ 4.

Let ν0 be the canonical projective-planar embedding of V2n with a facial 2n-cycle. Let νi with
i ∈ {1, 2, . . . , n} be the embedding obtained from ν0 by flipping in the (i, i+ n)-chord. (Figure 6 shows
the embeddings ν0 and ν4 for V8.) For n ≥ 4, one can check that there is no embedding of V2n in which
the 2n-cycle is noncontractible. Hence ν0, ν1, . . . , νn are all of the embeddings of V2n for n ≥ 4.

Figure 6.

1 3

2

4

5
6

7

8

1 3

2

4

5
6

7

8

Now let G be a 3-connected graph with two distinct embeddings on the projective plane, σ1 and
σ2. Let H be a V2n-subdivision contained in G with n a maximum. Since G is 3-connected we can now
rechoose H so that it has no local H-bridges (see, e.g., [3, Lemma 6.2.1]). This implies that any branch
of H that can be chosen to be a single edge is chosen as such. Let γi,j be the branch of H corresponding
to the (i, j)-edge of V2n and let CH be the cycle in H corresponding to the 2n-cycle of V2n.

Let σ1|H and σ2|H be the restrictions of the two embeddings σ1 and σ2 to H. Without loss of
generality, we can split the problem into the following five cases. In Case 1, suppose σ1|H = σ2|H = ν0.
In Case 2, suppose σ1|H = ν0 and σ2|H = ν1. In Case 3, suppose σ1|H = σ2|H = ν1. In Case 4, suppose
σ1|H = ν1 and σ2|H = ν2. Finally, in Case 5, suppose σ1|H = ν1 and σ2|H = νk with k ∈ {3, n− 1}.

Before beginning our case analysis, we will describe some general principles that we will use in all
(or most) of the cases.

Two embeddings of G in a closed surface S are the same iff they have the same facial boundary walks
iff G is fixed pointwise up to isotopy on S. Consider any embedding ψ of G in the projective plane.
Since any embedding of H ⊆ G is 2-representative, every facial boundary of H is a cycle in G. Now let
A be a facial boundary cycle of H of length `, let B1, . . . , Bt be the H-bridges of G that are embedded
inside of A, and let K be the graph K1,` with degree-1 vertices to be attached to the vertices of A. Since
G is 3-connected, we get that K ∪ A ∪ B1 ∪ · · · ∪ Bt is a 3-connected planar graph. As such the facial
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cycles of K ∪ A ∪ B1 ∪ · · · ∪ Bt are uniquely determined. Thus an embedding ψ of G in the projective
plane is uniquely determined by which face of H a given bridge is embedded in.

Since CH is contractible in all embeddings of H, we say that an H-bridge B is reembedded with
respect to σ1 and σ2 if B is inside the disk region of CH in exactly one of the embeddings. Otherwise, we
say B is fixed with respect to σ1 and σ2. We call B reembeddable when there is an embedding σ′2 of H∪B
with σ′2|H = σ2|H such that B is reembedded with respect to σ1 and σ′2. Evidently any reembedded
bridge is reembeddable and a fixed bridge may or may not be reembeddable.

Given σ1 and σ2, let H be the subgraph of H with edges and interior vertices of the chords of CH

that are flipped relative to σ1 and σ2 removed. We call this the fixed subgraph of H. Note that in
Cases 1 and 3, H = H; in Case 2, H is a V2n−2-subdivision with 2n − 2 ≥ 6; and in Cases 4 and 5, H
is a V2n−4-subdivision with 2n − 4 ≥ 4. In Case 3, σ1|H = σ2|H = ν1 and in all the remaining cases,
σ1|H = σ2|H = ν0. So now in Cases 1–3 (because 2n − 2 ≥ 6) the face of H in which a given H-bridge
B is embedded in σk is uniquely determined by whether B is interior or exterior to CH in σk. Thus the
embeddings σ1 and σ2 when restricted to H ∪ B are the same (i.e., fixed pointwise up to isotopy) iff B
is a fixed bridge. In Cases 4 and 5 with n ≥ 5, we get the same result for H-bridges and H. In Case 4
with n = 4, we do not, a priori, get this result for the faces of B in H. The only time this might fail is
when B has all of its attachments are on the γ3,7- and γ4,8-chords because there are exactly two faces in
H that are exterior to CH and B may be embedded in either one. In this case, however, since one of the
faces of H exterior to CH is also a face of H, this cannot happen. So again in Case 4 we get that σ1 and
σ2 restricted to H ∪ B are the same iff B is a fixed bridge. In Case 5 with n = 4, this possibility does
indeed happen (e.g., with the two embeddings of the Petersen graph relative to any V8-subdivision).
Therefore in all cases save Case 5 with n = 4, the embeddings σ1 and σ2 restricted to H and its fixed
H-bridges are the same embeddings. That is the difference between σ1 and σ2 is described exactly by
which H-bridges are reembedded. In Case 5 with n = 4, we do not use the terms fixed and reembedded.

Two H-bridges in G with attachments on a cycle C are called skewed with respect to C if they share
three common attachments on C or have pairs of alternating attachments on C. Also we say that B
belongs to face F of H in νi if all of its attachments are on F . Note that if two H-bridges B1 and B2

both belong to F and are skewed with respect to F then one of B1 and B2 must belong to some other
face as well.

The basic strategy for each case (except Case 5 with n = 4) is to first identify what the reembeddable
H-bridges are and then to define a sequence of Q-Twists taking σ1 to σ2. In this proof for graphs with
V8-minors, P-Twists only appear in Case 5 with n = 4. When defining a potential twist we must always
verify that there are no bridges (fixed or otherwise) that obstruct it.
Case 1: Note that any H-bridge B is reembeddable iff all of the attachments of B are on γi,i+1∪γi+n,i+1+n

for some i ∈ {1, 2, . . . , n}. So then each reembeddable bridge belongs to CH and the other face of
σ1|H = σ2|H with γi,i+1 ∪ γi+n,i+n+1 on its boundary. Call this latter face Fi.

If B is reembeddable, then either B is a single edge with one endpoint on γi,i+1 and the other on
γn+i,n+i+1, B has exactly one attachment on either γi,i+1 or γi+n,i+n+1 and at least two attachments on
the other as on the left in Figure 7, or B has a cut-vertex in its interior as on the right in Figure 7. We
will call single-edge bridges I-type bridges, the second kind V -type bridges, and the last kind X-type
bridges. For V -type bridges, let the singular attachment be called its apex.
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Figure 7.
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As V2n was taken with n maximal, we get the following restrictions on these three reembeddable
types of bridges. For I-type bridges, at least one attachment must be a branch vertex of H. For V -type
bridges, either the apex is a branch vertex of H or all of the non-apex attachments are branch vertices
of H. These will be called Vend-type and Vint-type for apex on a branch vertex and apex in the interior
of a branch, respectively. For X-type bridges, they cannot have interior attachments on both branches.

If B1, . . . , Bk are all reembeddable, all non-skewed with respect to CH , and all interior to CH in σj
then B1, . . . , Bk all must belong to the same Fi. The restrictions on the bridge structures in the previous
paragraph yield the following possible configurations for γi,i+1 ∪ γi+n,i+n+1 ∪ B1 ∪ · · · ∪ Bk inside CH .
If there is a Vint-type bridge in {B1, . . . , Bk}, then the remaining bridges in {B1, . . . , Bk} must all be
Vend-type and I-type and γi,i+1 ∪ γi+n,i+n+1 ∪ B1 ∪ · · · ∪ Bk must be as on the left of Figure 8. If there
is an X-type bridge in {B1, . . . , Bk}, then the remaining bridges in {B1, . . . , Bk} must all be Vend-type
and I-type and γi,i+1 ∪ γi+n,i+n+1 ∪B1 ∪ · · · ∪Bk must be as in the second configuration in Figure 8. If
there is no Vint-type or X-type bridge in {B1, . . . , Bk}, then γi,i+1 ∪ γi+n,i+n+1 ∪B1 ∪ · · · ∪Bk have one
of the two remaining types of configurations in Figure 8.

Figure 8. x
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Configurations of reembeddable non-skewed bridges interior to CH

A collection F of reembeddable V -type and I-type bridges sharing the same apex a and embedded
in the same face of H is called a fan with apex a. The other attachments of the bridges in F must all lie
on the same branch of H. We will call the first and last such attachments on this branch the extreme feet
of F . So now if B′ ⊆ {B1, . . . , Bk} are bridges that are reembedded from σ1 to σ2, since there cannot
be disjoint H-paths from γi,i+1 to γi+n,i+n+1 within the bridges of B′, either B′ is a single X-type bridge
or a fan. As with V -type bridges, we further describe fans as interior fans or endpoint fans for when
the apex is in the interior of a branch of H or on a branch vertex of H. Interior fans consist of at most
one Vint-type bridge along with at most two I-type bridges. We do not consider a single I-type bridge
as an interior fan.

Since σ1 6= σ2, there is some reembedded H-bridge. Either all of the reembedded bridges belong to
some Fi or not. Let the latter possibility be Case 1.1 and the former possibility be Case 1.2.
Case 1.1 Since reembeddable bridges belonging to different Fi’s are skewed with respect to CH , each
reembedded bridge belongs to one of Fi and Fj for some i 6= j. Let Bi be the collection of reembeddable
bridges belonging to Fi and Bj be the collection of reembeddable bridges belonging to Fj. Let B′i ⊆ Bi
and B′j ⊆ Bj be the bridges that are actually reembedded. Since bridges in Bi are skewed on CH to
bridges in Bj, we have without loss of generality, that the bridges of B′i are interior to CH in σ1, the
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bridges of B′j are interior to CH in σ2, and the bridges of Bi \ B′i and Bj \ B′j are all exterior to CH . We
can now go from σ1 to σ2 by first reembedding each bridge of B′i individually by a degenerate Q-Twist.
(We cannot necessarily reembed B′i all at once when it is a fan as there may be reembeddable but fixed
bridges that block this.) We then reembed each bridge of B′j individually by a single degenerate Q-Twist.
Case 1.2 Let B be the reembbedable bridges belonging to Fi and B′ ⊆ B be the ones that are actually
reembedded. In Case 1.2.1 there is an X-type bridge in B′. In Case 1.2.2 say there is no X-type bridge
in B′ and there an interior fan in B′. In Case 1.2.3 say there is no X-type and no interior fan in B′.
Case 1.2.1 If there is an X-type bridge X ∈ B′, then say without loss of generality X is interior to CH in
σ1. Thus the remaining bridges in B′ are all exterior to CH in σ1. Hence B′ \X is either a single X-type
bridge or B′ \ X is a fan with apex a. If B′ \ X is a single X-type bridge, call it X ′, then we go from
σ1 to σ2 by one full Q-Twist hinged on the extreme attachments of X ∪X ′ on γi,i+1 and γi+n,i+n+1 and
latched at the cut vertices in the interiors of X and X ′. If B′ \X is a fan with apex a, then we go from
σ1 to σ2 by one Q-Twist hinged on the extreme attachments of B′ on γi,i+1 and γi+n,i+n+1 and latched
at the cut vertex in the interior of X and at a save in embeddings like the one on the left in Figure 9
where there are bridges in the fan B′ \ X whose non-apex attachments are on a path not intersecting
the paths between the extreme feet of X. Each of these bridges must first be reembedded individually
by degenerate Q-Twists to obtain embedding σ′1 shown on the far right of Figure 9. Let B′′ ⊆ B′ be
the bridges remaining in Fi in σ′1. We now go from σ′1 to σ2 (the second embedding in Figure 9) by a
Q-Twist hinged on the extreme feet of B′′ ∪X and latched on a and the cut vertex of X.

Figure 9. x
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Case 1.2.1: The lower quadrilateral is the interior of CH .

Case 1.2.2 Let V be the reembedded interior fan. Without loss of generality, assume that V is interior
to CH in σ1. If B′ = V , then we can go from σ1 to σ2 by a single degenerate Q-Twist. Otherwise, B′ \V
is an interior or end fan inside Fi in σ1. Let these be Cases 1.2.2.1 and 1.2.2.2.
Case 1.2.2.1 If there is also an interior fan, call it N , in B′ \ V , then the possibilities for B′ in σ1
are shown in the first three configurations of Figure 10. We show the configurations with Vint bridges
included, but they actually need not be there or need not be reembedded; however they can be added
and/or made reembeded as there can be no other types of H-bridges blocking this modification. We can
now go from σ1 to σ2 by a single Q-Twist hinged on the extreme attachments of V and N when there
is no fixed Vint-type bridge in V or N ; otherwise, we go from σ1 to σ2 by two such Q-Twists where the
first Q-Twist reembeds the Vint-type bridge(s) in V and N and the second puts them back.

Figure 10.
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Case 1.2.2: The lower quadrilateral is the interior of CH .
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Case 1.2.2.2 Let N = B′ \ V . The apex of N is either on the same branch of H as the apex of V or
not. In the latter case, the configuration for V and N is the fourth one shown in Figure 10. (Again the
Vint-type bridge might not be in V , but can be added to it.) We can now go from σ1 to σ2 by a single
Q-Twists hinged on the non-apex attachments of V and latched at the apices of V and N . No fixed
bridges can block this.

In the former case, the configuration for V and N is last shown in Figure 10. Let Nr be the bridges
of N whose extreme attachments are both at or to the right of the apex of V . We now go from σ1 to
σ2 by first performing Q-Twists to individually reembed each bridge in Nr. Second, for the remaining
bridges of N \Nr, there can be no fixed H-bridges with attachments on the path connecting the extreme
attachments of N \ Nr. Hence we can now perform a Q-Twist hinged on the extreme attachments of
N \Nr and V and latched on the apex vertices of N and V .
Case 1.2.3 Here B′ consists of one or two end fans. We assume that there are two as the details for just
one are contained in the proof for two. Denote these two fans by N1 and N2. We split this Case into
the following subcases: in Case 1.2.3.1, both fans share the same apex, say a on γi,i+1; in Case 1.2.3.2,
the apices of the fans are the distinct endpoints of γi,i+1; in Case 1.2.3.3, the apices of the two fans are
on different branches.
Case 1.2.3.1 The fan Nj is contained in a possibly larger fan N j with apex a which might include
reembedable but fixed bridges. Such bridges are shown in black in Figure 11. Consider two H-bridges
B1 ∈ N1 and B2 ∈ N2 whose paths between their extreme feet on γi+n,i+1+n overlap in at least an edge.
It must be that B1 and B2 are both fixed or both reembedded. Therefore, the path γi+n,i+1+n decomposes
into subpaths P1, . . . , Pk (some possibly of length zero) with the following properties: first, Pm ∩ Pm+1

is a single vertex for each 1 ≤ m ≤ k − 1; second, each bridge in N1 ∪ N2 has all of its attachments
(aside from a) on some in Pl; third, each I-type bridge in N1 ∪N2 can then be assigned to a single Pl

containing its non-apex attachment such that all of the bridges which are assigned to Pl are either all
reembedded or all fixed; and fourth, if all bridges assigned to Pl are fixed, then all bridges assigned to
Pl+1 are all reembedded. Thus we can take σ1 to σ2 by a sequence of dk

2
e degenerate Q-twists, hinged

at endpoints of the Pl’s and latched at a.

Figure 11.
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Case 1.2.3.1: Fixed bridges are shown in black.

Case 1.2.3.2 Let at be the apex of Nt. Without loss of generality, say N1 is interior to CH in σ1.
The first embedding in Figure 12 shows N1 and N2 in σ1 where the lower quadrilateral is interior to
CH . The second embedding in Figure 12 shows N1 and N2 in σ2. Given {j, k} = {1, 2}, it may be
the case that there are bridges in Nj that have no attachment on γi+n,i+1+n that is to the left of the
rightmost attachment of Nk. If so, then assume without loss of generality that j = 1 such as what is
shown in Figure 12. Let N ′1 ⊆ N1 be the collection of these bridges. Each individual bridge in N ′1 may
be reembedded using a degenerate Q-Twist to obtain embedding σ′1 shown as the third embedding in
Figure 12. Now given {x, y} = {1, 2}, it may be the case that there are bridges in Nx that have no
attachment on γi+n,i+1+n that is to the right of the leftmost attachment of Ny. We reembed all of the
bridges in N2 ∪ (N1 \ N ′1) save these by a single Q-Twist (no fixed bridge may block this Q-Twist) to
obtain embedding σ′2 such as what is shown as the fourth embedding of Figure 12. Finally we go from
σ′2 to σ2 by performing individual Q-Twists on each of the remaining bridges of B′.
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Figure 12.

x

x

1 2

3 4

2 1

x

x

1 2

3 4

2 1

x

x

1 2

3 4

2 1

x

x

1 2

3 4

2 1

Case 1.2.3.2

Case 1.2.3.3 Let at be the apex of Nt. Because a1 and a2 are on different branches of H, the bridges of
N1 are skewed to the bridges of N2 in one of Fi or CH and not in the other. Without loss of generality,
say N1 is embedded in the skewed face in σ1. In Figure 13 the skewed face is the lower square region,
the first and second embeddings are σ1 and σ2. We may now reembed each bridge of N1 individually
by a Q-Twist to obtain the the third embedding in Figure 13. We then reembed each bridge of N2

individually by a Q-Twist to obtain σ2.

Figure 13.
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Case 1.2.3.3

Case 2 Suppose σ1|H = ν0 and σ2|H = ν1 (See Figure 14).

Figure 14.
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Embeddings of H in Case 2

There are three types of H-bridges that are reembeddable. First, any H-bridge B with attachments in
the interior of γ1,n+1 must be reembedded and so all of the other attachments of B are on exactly one of
γ1,2, γ1,2n, γn,n+1, γn+1,n+2. Let B2, B2n, Bn, and Bn+2, respectively, be the collections of these bridges
with attachments on the interior γ1,n+1. Second, H-bridges that have all attachments on γ2n,1 ∪ γ1,2 or
all attachments on γn,n+1 ∪ γn+1,n+2. These types of bridges must be reembedded and we denote the
collections of these bridges by B1 and Bn+1. Let B be the collection of all of these bridges in Bz along
with γ1,n+1. Third, bridges with attachments on both paths γ2n,1 ∪ γ1,2 and γn,n+1 ∪ γn+1,n+2. Let A
denote the collection of these types of bridges.

Recall that for any collection of reembedded H-bridges that are all interior or all exterior to CH ,
there must be a vertex c which prevents two vertex-disjoint CH-paths in the collection because any two
such paths would cross if reembedded.

Let α1 be the subpath of γ2n,1 ∪ γ1,2 between the extreme attachments of B. Let β1 be the similarly
defined subpath of γn+2,n+1∪γn+1,n. Any H-bridge in A exterior to CH in σ2 with attachments producing

10



an H-path that would cross some H-path of B if it were drawn exterior to CH must be a reembedded
bridge. Let A1 be the collection of such H-bridges. Now let H1 = H ∪ (

⋃
B)†† and we can perform a

Q-twist hinged on the endpoints of α1 and β1 in σ2|H1 and latched at some vertex c1 ∈ γ1,n+1. If this
Q-Twist can be extended to all of G in σ2, then we obtain an embedding σ3 for which σ1|H = σ3|H = ν0
and then we can go from σ1 to σ3 by a sequence of Q-Twists as in Case 1. If we cannot perform this
Q-Twist on all of G, then A1 6= ∅. Let H2 = H1 ∪ (

⋃
A1), α2 extends α1 to the extreme attachments

of A1 on γ2n,1 ∪ γ1,2, and β2 extends β1 similarly. Any H-bridge interior to CH in σ2 with attachments
producing an H-path that would cross some H-path of

⋃
(B ∪A1) if it were drawn interior to CH must

be a reembedded bridge. Let A2 be the collection of such H-bridges. We can now perform a Q-twist
hinged on the endpoints of α2 and β2 in σ2|H2 and latched at vertices ca2 and cb2. If this Q-Twist can
be extended to all of G in σ2, then we obtain an embedding σ3 and then go to σ1 as in Case 1. If not,
then A2 6= ∅. Let H3 = H2 ∪ (

⋃
A2), α3 extends α2 to the extreme attachments of A2 on γ2n,1 ∪ γ1,2,

and β3 extends β2 similarly. Any H-bridge exterior to CH in σ2 with attachments producing an H-path
that would cross some H-path of

⋃
(B∪A1∪A2) if it were drawn exterior to CH must be a reembedded

bridge. Let A3 be the collection of such H-bridges. If A3 = ∅, we finish by extending to all of G a
Q-Twist on σ2|H3 hinged on the endpoints of α3 and β3 and latched at ca3 and cb3 and then refer to Case
1. If A3 6= ∅, then we iterate this process again. Of course, this process must end as G is finite.

Figure 15.
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An illustration of the iterative process: the light grey bridges are B, the dark grey bridge is A1, and the
black bridge is A2.

Case 3 Suppose σ1|H = σ2|H = ν1. Consider the faces of H as labeled in Figure 16.

Figure 16.
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Embeddings of H in Case 3

The only types of reembeddable bridges are those with all attachments on γ1,2∪γn,n+1 or all attachments
on γ2n,1 ∪ γn+1,n+2. Let S and R, respectfully, be the collections of such bridges that are actually
reembedded. If there is some reembedded bridge B ∈ R ∪ S which contains an H-path with both
endpoints off of {v2, vn, vn+2, v2n}, then we may use this path to rechoose H so that we revert back to
Case 2. Thus the reembedded bridges of R∪S form one or two fans (fans are described in Case 1) with
apices in {v2, vn, vn+2, v2n}. So now all of the reembedding of G is happening within a 2-region Möbius
strip with regions R ∪ S and T as in Case 1.2.3 with all reembedded bridges forming fans with apices in
{v2, vn, vn+2, v2n}.
††When S is a set of sets, we use

⋃
S to denote the union of the sets in S.
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The only difference between our current situation and Case 1.2.3 is that γ1,n+1 cuts one region of the
strip and that there may be fixed H-bridges attached to γ1,n+1. However, γ1,n+1 and any of these fixed
bridges cannot interfere with the reembedding of the fans as described in Case 1.2.3. Thus we may take
σ1 to σ2 as in Case 1.2.3.
Case 4 Suppose σ1|H = ν1 and σ2|H = ν2 (see Figure 17).

Figure 17.
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Partition the reembedded (not just reembedable) bridges into two sets Bin and Bout for those that
are interior and exterior, respectively, to CH in σ1. Note that any H-bridge with an attachment on
the interior of γ1,n+1 is in Bin and any H-bridge with an attachment in the interior of γ2,n+2 is in Bout.
Suppose that B is an H-bridge with an attachment in the interior of γ1,n+1. Then all of the other
attachments of B are on exactly one of γ1,2n, γ1,2 ∪ γ2,3, γn,n+1, γn+1,n+2 ∪ γn+2,n+3. Let B1,2n, B1,2,3,
B1,n, B1,n+2,n+3, respectively, be the collections of these bridges with attachments on γ1,n+1. Similarly
bridges with attachments in the interior of γ2,n+2 partition into the following four classes: B2,1,2n, B2,3,
B2,n+1,n, B2,n+3.

Let B′1 be the collection H-bridges with all attachments on γ2n,1 ∪ γ1,2. Let B′n+1 be the collection of
H-bridges with all attachments γn,n+1 ∪ γn+1,n+2. Note B′1 ∪ B′n+1 ⊆ Bout. Similarly, we define B′2 and
B′n+2, where B′2 ∪B′n+2 ⊆ Bin.

Let B1 = B1,2n∪B1,2,3∪B1,n∪B1,n+2,n+3∪B′1∪B′n+1∪γ1,n+1 and B2 = B2,1,2n∪B2,3∪B2,n+1,n∪B2,n+3∪
B′2 ∪ B′n+2 ∪ γ2,n+2. Now B1 ∪ B2 ⊆ Bin ∪ Bout with equality being possible. Let Fout = Bout \ (B1 ∪ B2)
and Fin = Bin \ (B1 ∪ B2). Without loss of generality, consider some D ∈ Fin. The bridge D cannot
have attachments on the interior of either γ1,n+1 or γ2,n+2; furthermore, D must have attachments on
both α = γ2n,1 ∪ γ1,2 ∪ γ2,3 and β = γn,n+1 ∪ γn+1,n+2 ∪ γn+2,n+3 and these must be all of the attachments
of D. Note now that either the only attachment of D on α is v1 or the only attachment of D on β is
vn+1 (assume the former) because otherwise D would cross γ1,n+1 in σ2. So now all such bridges in Fin

have v1 as their sole attachment on α, otherwise they would cross D in either σ1 or σ2 (depending on
which side of the chord γ1,n+1 they are on). Similarly, all bridges in Fout must have either v2 as their
sole attachment on α or vn+2 as their sole attachment on β.

Let α1 be the subpath of α between the extreme endpoints of B1. Let β1 be the subpath of β between
the extreme endpoints of B1. Let H1 = H∪(

⋃
B1). Any H-bridge exterior to CH in σ1 with attachments

producing an H-path that would cross some H-path of B1 if it were drawn exterior to CH must be a
reembedded bridge. Let A1 be the collection of such H-bridges. We can now perform a Q-twist hinged
on the endpoints of α1 and β1 in σ1|H1 and latched at some vertex c1 ∈ γ1,n+1. If this Q-Twist can be
extended to all of G in σ1, then we obtain an embedding σ3 for which σ3|H = ν0 and σ2|H = ν2 and then
we can go from σ3 to σ2 by a sequence of Q-Twists as in Case 2. If we cannot perform this Q-Twist on
all of G in σ1, then A1 6= ∅. In Figure 18, we have examples of where B2∩A1 6= ∅ (the left configuration)

and where B2 ∩ A1 = ∅ (the right two configurations). Let Â1 = A1 ∪ B2 when B2 ∩ A1 6= ∅ and let

Â1 = A1 when B2 ∩ A1 = ∅.
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Figure 18.

x

x

12n 32

13 2 2n

nn+3

Inside CH

OR

x

x

12n 32

13 2 2n

nn+3

Inside CH

OR

x

x

12n 32

13 2 2n

nn+3

Inside CH

Let H2 = H1 ∪
(⋃
Â1

)
and α2 and β2 extend α1 and β1 to the extreme attachments of Â1 on α and

β. Any H-bridge interior to CH in σ1 with attachments producing an H-path that would cross some
H-path of

⋃
(B1 ∪ Â1) if it were drawn interior to CH must be a reembedded bridge. Let A2 be the

collection of such bridges. In Figure 19, the black bridges in the first two configurations form A2 and in
the third configuration we must have that A2 = ∅.

Figure 19.
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We can now perform a Q-twist hinged on the endpoints of α2 and β2 in σ1|H2 and latched at one or two
vertices ca2 and cb2. If this Q-Twist can be extended to all of G in σ1, then we obtain an embedding σ3
for which σ3|H = ν0 or ν2 (depending on whether or not B2 is contained in Â1 or not) and σ2|H = ν2 and
then we can go from σ3 to σ2 by a sequence of Q-Twists as in Case 2 or Case 3. If we cannot perform this
Q-Twist on all of G in σ1, then A2 6= ∅. If so, then let H3 = H2 ∪ (

⋃
A2) and α3 and β3 extend α2 and

β2 to the extreme attachments of A2 on α and β. Any H-bridge exterior to CH in σ1 with attachments
producing an H-path that would cross some H-path of

⋃
(B1 ∪ Â1 ∪ A2) if it were drawn exterior to

CH must be a reembedded bridge. Let A3 be the collection of such H-bridges. (In Figure 19, the first
configuration must have A3 = ∅ but the second configuration may have A3 nonempty.) If A3 = ∅, we
finish by extending to all of G a Q-Twist on σ2|H3 hinged on the endpoints of α3 and β3 and latched at

ca3 and cb3 and then refer to either Case 2 or Case 3. If A3 6= ∅, then we define Â3 similarly to Â1 and
iterate this process again. This process must end as G is finite.
Case 5: Suppose σ1|H = ν1 and σ2|H = νj for 3 ≤ j ≤ n− 1. See Figure 20. In Case 5.1 say that n ≥ 5
and in Case 5.2 say that n = 4.

Figure 20.
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Embeddings of H in Case 5

Case 5.1 Since n ≥ 5, there are only two types of reembeddable bridges. Following similar notation
as we did in Case 4, the first type of reembeddable bridges partition into the following 12 sets: B1,2,
B1,2n, B′1 and Bn+1,n, Bn+1,n+2, B

′
n+1 and Bj,j−1, Bj,j+1, B

′
j, and Bn+j,n+j−1, Bn+j,n+j+1, B

′
n+j. Say that
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bridges in the first six sets go along with γ1,n+1 and bridges from the second six sets go along with γj,n+j.
The second type of reembeddable bridges partition into fans with apices from {v1, v2, vn, vn+1, vn+2, v2n}
or {vj−1, vj, vj+1, vn+j−1, vn+j, vn+j+1}. Say that bridges in fans with apex from the first set go along
with γ1,n+1 and bridges in fans with apex from the second set go along with γj,n+j.

So now in σ1 all reembeddable bridges going along with γj,n+j must be exterior to CH except those
in B′j ∪ B′n+j which are must be interior to CH . Similarly, in σ2 all reembeddable bridges going along
with γ1,n+1 must be exterior to CH except those in B′1 ∪B′n+1 which must be interior to CH . Therefore
there is an embedding σ3 of G with all bridges going along with γj,n+j and all bridges going along with
γ1,n+1 exterior to CH except the bridges in B′1 ∪ B′n+1 ∪ B′j ∪ B′n+j which are all interior to CH . Note
that σ3|H = ν0 and so we go from σ1 to σ3 by a sequence of Q-Twists as in Case 2 and we go from σ3
to σ2 by a sequence of Q-Twists as in Case 2.
Case 5.2 Here n = 4 and so σ1|H = ν0 and and σ2|H = ν3. See Figure 21 for a different rendering
of these embeddings. Recall that CH is the octagon on v1v2v3v4v5v6v7v8 which is on the lower right in
these figures.

Figure 21.
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In this case, a fixed H-bridge along with the fixed subgraph H need not actually be fixed pointwise in
σ1 and σ2. This is because there may be H-bridges with all their attachments on γ2,6 ∪ γ4,8. So we do
not use the terms fixed and reembedded in this case. We now partition the types of H-bridges that
can exist in both embeddings of H into four different classes. First, a singular bridge is a single v2v4-,
v4v6-, v6v8-, or v2v8-edge. For each of these singular bridges we say it has corner vertex v3, v5, v7, or
v1, respectively. Second, a corner bridge has all attachments on two adjacent branches of H and is not
a singular bridge. The branch vertex incident to both branches of a corner bridge is called the corner
vertex of the bridge. Third, an antipodal bridge is a bridge that has all attachments on CH that is not
a corner bridge or a singular bridge. From Figure 21 we see that any antipodal bridge has all of its
attachments on some γa,1+a ∪ γ4+a,5+a. Note that, by the maximality of V8 among all V2n-subdivisions
in G, such a bridge cannot have attachments in the interiors of both γa,1+a and γ4+a,5+a and that an
antipodal bridge is exterior to CH in both embeddings. Fourth, a Petersen bridge is not a corner bridge
or singular bridge and either has an attachment in the interior of one of γ2,6 and γ4,8 or has all of its
attachments on at least three vertices from {v2, v4, v6, v8}. Note that a Petersen bridge is always exterior
to CH in both embeddings with all attachments on γ2,6 ∪ γ4,8. Further note that it is impossible to have
both an antipodal bridge and a Petersen bridge, as both are exterior to CH in both embeddings.

We split the remainder of this case into five subcases. In Case 5.2.1 we say that there is a Petersen
bridge with attachments in the interiors of both γ2,6 and γ4,8. If there is no Petersen bridge having
attachments in the interiors of both γ2,6 and γ4,8, then without loss of generality we can say that in Case
5.2.2 that there is a Petersen bridge with attachments v4, v8, and v9 where v9 is an interior vertex of
γ2,6, in Case 5.2.3 that there is a Petersen bridge attached at v8 and v9 where v9 is an interior vertex of
γ2,6, in Case 5.2.4 that there is a Petersen bridge having three or four attachments all of which are from
{v2, v4, v6, v8}, and in Case 5.2.5 that there is no Petersen bridge. In Cases 5.2.1–5.2.4 let B denote the
Petersen bridge identified.
Case 5.2.1 There is an H-path in B whose union with H forms a subdivision of the Petersen graph,
call this subdivision P . Rechoose P so that it has no local bridges and the same branch vertices. There
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are two distinct labeled embeddings of P in the projective plane (a fact one can check or see [18])
and we claim that σ1|P 6= σ2|P . If we assume that σ1|P = σ2|P , then since any embedding of P has
representativity 3, any P -bridge belongs to a unique face of P and so by 3-connectivity the embedding
of a P -bridge in its face is unique up to isotopy and so σ1 = σ2, a contradiction.

Now, one can check that any P -bridge in G must have all of its attachments on two adjacent branches
of P in order to belong to a face of both embeddings of P . Again we now have a unique corner vertex
of P for any P -bridge. One can also check that for any uv-branch of P , that the corner bridges for u
and the corner bridges for v do not overlap along the uv-branch or else they will cross in either σ1 or
σ2. Thus we can go from σ1 to σ2 by a P-Twist or a degenerate P-Twist.
Case 5.2.2 Here H ∪B again contains a Petersen graph subdivision and we finish as in Case 5.2.1.
Case 5.2.3 Here H ∪ B contains a subdivision of the 1-edge contraction of the Petersen graph, call it
P ′, where σ1|P ′ and σ2|P ′ are as shown in Figure 22. Note that any P ′-bridge is either an H-bridge or
has attachments on the interior of the v8v9-branch of P ′. Let H and P ′ be the collections of these two
types of P ′-bridges. The v8v9-branch may now be rechosen as in [9, 6.2.1] so that there are no local
P ′-bridges on the v8v9-branch and so since H has no local bridges, neither does P ′.

Figure 22.
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Recall that there can be no antipodal bridges in H and so any bridge in H is either a corner bridge or
a singular bridge. Furthermore any corner bridge at v8 must have all of its attachments on γ1,8 ∪ γ7,8.
Any bridge in P ′ is either a corner bridge with corner vertex v9 or has all attachments on γ4,8 ∪ γ8,9.
Thus there is a 1-edge decontraction G′ of G at v8 which extends the embeddings σ1 and σ2 to σ′1 and
σ′2 analogous to what is shown in Figure 23. Note that the figure depicts only corner bridges at v8 and
not singular bridges. However, any singular bridge that may exist can be assigned to either v8 or v′8 as
needed. So now G′ contains a subdivision of the Petersen graph and is 3-connected and so σ′1 and σ′2
are related by a single P-Twist as in Case 5.2.1. Thus σ1 and σ2 are related by this same P-Twist or a
P-Twist obtained by a contraction of it.

Figure 23.
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Case 5.2.4 Here H ∪ B contains a subdivision of the 1-edge contraction of the Petersen graph and so
we finish as in Case 5.2.3.
Case 5.2.5 If there are no singular H-bridges, then since there are no Petersen bridges, then any H-
bridge that is interior to CH in both σ1 to σ2 or exterior to CH in both σ1 to σ2 is fixed pointwise (up to
isotopy) with respect to H and so we finish as in Case 5.1. So assume there are singular bridges. Either
there is a singular bridge that is exterior to CH in both embeddings or not. If not, then, similarly, any
H-bridge that is interior to CH in both σ1 to σ2 or exterior to CH in both σ1 to σ2 is fixed pointwise
(up to isotopy) with respect to H and so we finish as in Case 5.1. If so, then assume, without loss of
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generality, that the singular bridge is a v6v8-edge. Let H ′ be the union of H and the v6v8-edge. So σ1|H′

and σ2|H′ are as shown in Figure 24.

Figure 24.
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Now in this case, we can perform a 1-edge decontraction of G at v8 similar to Case 5.2.3 that extends
the embeddings. Again we get that σ1 and σ2 are related by a single P-Twist.

5 Proof of Lemma 1.2 for V8-free graphs

In this section, we will prove Lemma 1.2 in the case where G is V8-free. Formally, we assume that G is
3-connected and V8-free and has two embeddings σ1 and σ2 in the projective plane. We will show that
these two embeddings are related by Q-Twists and P-Twists. We use Theorem 1.3 which characterizes
internally 4-connected graphs with no V8-minor. Hence we need to analyze the 3-separations of G to
reduce to an internally 4-connected sub-structure in G. Two degenerate cases are where G is a 3-sum
of two planar graphs (Section 5.1) and G is a 3-sum of two non-planar graphs (Section 5.2). The main
analysis comes in Section 5.3.

5.1 A 3-sum of two planar graphs

Let G be a 3-connected, non-planar graph that is embedded in the projective plane and G not internally
4-connected. Then there is a 3-sum G = G1⊕3G2. In this section we will prove Lemma 1.2 for the case
for which G1 and G2 are both planar. The proof follows from Propositions 5.1 and 5.2. (We actually do
not use the assumption that G is V8-free in this section.)

Recall that a cycle in a graph is peripheral if it is chordless and non-separating. Also recall that in
a 3-connected planar graph the peripheral cycles are exactly the facial cycles.

Proposition 5.1. Suppose G is 3-connected, projective planar, nonplanar, and G = G1 ⊕3 G2 where
both G1 and G2 are planar. Then the triangle of summation is non-peripheral in at least one of G1 and
G2. Furthermore, G = K3 ⊕3 H1 ⊕3 H2 ⊕3 · · · ⊕3 Hk where 3 ≤ k ≤ 4, each Hi is planar and summed
into K3, and the triangle of summation is peripheral in Hi.

Proof. If the triangle of summation in G1 ⊕3 G2 is peripheral in both, then G = G1 ⊕3 G2 is planar, a
contradiction. Supposing the triangle is not peripheral in G1, we get that G = K3⊕3G1,1⊕3G1,2⊕3G2

where the sums are all at K3. Repeating this process we get that G = K3 ⊕3 H1 ⊕3 H2 ⊕3 · · · ⊕3 Hk in
which each Hi is planar with its triangle of summation being peripheral and k ≥ 3. We cannot have that
k ≥ 5 because then G will contain a K3,5-minor, which is not projective planar, a contradiction.

Consider the six embeddings shown on the left in Figure 25. Ignoring the shaded triangles, one can
check that these six embeddings are all of the embeddings of K3,3 in the projective plane. Each arrow
represents a Q-Twist between the two embeddings at its ends. For example, to change the embedding
at the top of the figure to the adjacent one clockwise to it, use a Q-twist hinged at 1, 3, b, c and latched
at a. Similarly on the right of Figure 25 we show all of the embeddings and Q-Twists between them for
K3,4.
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Proposition 5.2. If G = K3 ⊕3 H1 ⊕3 H2 ⊕3 · · · ⊕3 Hk is as in Proposition 5.1 and σ1 and σ2 are two
embeddings of G in the projective plane, then we can go from σ1 to σ2 by a sequence of Q-Twists.

Proof. Given G = K3 ⊕3 H1 ⊕3 H2 ⊕3 · · · ⊕3 Hk as in Proposition 5.1. If k = 3, then G contains a
subdivision H of K3,3 with H-bridges as shown on the left in Figure 25 and so G has the six embeddings
in the projective plane as shown. The arrows now represent Q-Twists that are modified from the ones
for K3,3. For example, to change the embedding at the top to the one the adjacent one clockwise to it,
use a Q-twist hinged at b, c, and two cut-vertices on the (a, 1)-path and (a, 3)-path and latched at a.
For k = 4, G contains a subdivision H of K3,4 and we get the structure and embeddings of G as shown
on the right of Figure 25. These are related by the same Q-twists as in the case where k = 3.

Figure 25.
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5.2 A 3-sum of two non-planar graphs

In this section we prove Lemma 1.2 for the case that G is a 3-sum of two nonplanar graphs. The proof
follows from Proposition 5.3. (We actually do not use the assumption that G is V8-free in this section.)

Proposition 5.3. If G is 3-connected and G = G1 ⊕3 G2 where each Gi is nonplanar, then we can go
from any one embedding of G in the projective plane to any other embedding by a sequence of Q-Twists.

Proof. Since each Gi is nonplanar and 3-connected, either Gi
∼= K5 or Gi contains a K3,3-subdivision.

From [17, 10.3.9], if Gi contains a K3,3-subdivision, then Gi contains a minor from Figure 26 where the
triangle of summation of Gi is shown in bold. Call the left-hand graph T1 and the right-hand graph T2.

Figure 26.

Neither G1 nor G2 can contain a T2-minor because then if the other term is isomorphic to K5 or
contains either a T1- or T2-minor it will imply that G = G1 ⊕3 G2 contains a K3,5-minor. This makes G
not projective planar, a contradiction. Thus for each i, Gi

∼= K5 or Gi contains a T1-minor.
If G1

∼= G2
∼= K5, then G = G1 ⊕3 G2 consists of K3,4 along with two additional edges that connect

pairs of 3-valent vertices, and possibly some edges of a triangle on the 4-valent vertices. Let K̂3,4 be
the graph obtained from K3,4 by adding (1, 2)- and (2, 4)-edges. Since K3,4 has the six embeddings as

described before, the embeddings of K̂3,4 are obtained from these six embeddings. On the left of Figure

27, we show these six embeddings of K̂3,4. The arrows between the embeddings correspond to Q-Twists

similar to those in Proposition 5.2. In the middle of Figure 27, we show the four embeddings of K̂3,4
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that allow the (a, b)-edge. This (a, b)-edge has two possible placements shown by dashed lines in the
figure. Again, the flexibilities are obtained by similar Q-Twists and flipping of the (a, b)-edge. Finally,

on the right of Figure 27, we show the two embeddings of K̂3,4 that allow the (a, b)-edge and (b, c)-edge.
These two edges each have two possible placements shown by dashed lines in the figure. Again, these
are related by Q-Twists and flipping of the (a, b)- and (b, c)-edges. It is not possible to embed all three
edges of the triangle {a, b, c}.

Figure 27.
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So now we may assume without loss of generality that G1 contains a T1-minor. Label the vertices
of K3,4 as va, vb, vc, v1, v2, v3, v4 as in Figure 25. Now if G2

∼= K5, then G contains a minor isomorphic
to the graph obtained from K3,4 by a single split at vertex va leaving a 3-separation with v1 and v2 on
one side and v3 and v4 on the other side. Call this graph S1. We get the similar result when G2 has
a T1-minor and the two minors in G1 and G2 are summed with the 3-valent vertices on the triangle of
summation identified. If G1 and G2 both have T1-minors and the sum does not have the 3-valent vertices
coinciding, then G contains a minor isomorphic to the graph obtained from K3,4 by splits at va and at
vb that leave a 3-separation with v1 and v2 on one side and v3 and v4 on the other side. Call this graph
S2. Note that if we split the third 4-valent vertex of K3,4 in a way that preserves the separation of v1, v2
from v3, v4, then we obtain a graph that is an excluded minor for projective planarity. So we split the
remainder of the proof into two cases: in Case 1, G contains an S1-subdivision as described and in Case
2, G contains an S2-subdivision as described. In each case we assume that v1, v2 ∈ G1 and v3, v4 ∈ G2.
Case 1 Of the six embeddings of K3,4 (see Figure 25) there are four that extend to embeddings of S1.
The bottom and lower left embeddings in Figure 25 do not extend. By symmetry we need only show
how to go from the embedding of G with the embedding of S1 corresponding to the top embedding in
Figure 25 to an embedding of G with the embedding of S1 given by one of the other three.

For each of the three cases, Figure 28 shows all of the possible S1-bridges that can occur in both
embeddings of S1 with 3-separation of G at va′′ , vb, vc. Bridges around the split vertex va are shown
in lighter colors. The reader can check that no other S1-bridges are possible. In the first case, we go
from the first embedding to the second by a degenerate Q-Twist hinged at va′′ , vc and latched at vb.
In the second case, we go from the first to the second embedding by a Q-twist hinged at v1′ , vb, v3′ , vc
and latched at v2′ , v4′ . In the third case, we go from the first embedding to the second embedding by a
degenerate P-Twist obtained from the central view of the P-Twist (see Figure 3) with v4 in the center
patch 7, the patches 0 and 9 contracted to make vb, and patches 3 and 4 contracted to make vc.
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Figure 28.
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Case 2 Of the six embeddings of K3,4 (see Figure 25) there are two that extend to embeddings of S2.
They are the two embeddings on the right in Figure 25. The possible S2-bridges that can occur in both
embeddings of S2 all fall into the shaded regions of Figure 29. (Recall that edge from the split at vertex
va and the edge from the split at vertex vb are on separate sides of the 3-separation.)

Figure 29.
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So now we can go from the first embedding to the second by a degenerate Q-Twist hinged at va′ and b
and latched at vc.

5.3 Reduction to an internally 4-connected frame

In this section we prove Lemma 1.2 for the case that G is V8-free and cannot be written as a 3-sum of
two planar or two nonplanar terms. A 3-connected nonplanar graph G admits a patch decomposition
with an internally 4-connected frame FG and patches Pi when either G is internally 4-connected (and is
its own frame with no patches) or G = FG ⊕3 P1 ⊕3 P2 ⊕3 · · · ⊕3 Pk where

• FG is an internally 4-connected non-planar graph,

• each Pi is planar and summed into a triangle of FG,

• the triangle of summation is peripheral in Pi,

• no three Pi are summed into the same triangle of FG.

.

Proposition 5.4. If G is 3-connected, nonplanar, and G cannot be written as a 3-sum of two planar
or two nonplanar terms, then G admits a patch decomposition or any two embeddings of G are related
by a sequence of Q-Twists.

Proof. We proceed by induction on |V (G)|+ |E(G)|. In the base case |V (G)|+ |E(G)| = 15 and G = K5

or K3,3 and our result is immediate. So now say that |V (G)|+|E(G)| > 15. If G is internally 4-connected,
then we have our result. If not, then write G = G′ ⊕3 P where the summation is along triangle T and
|E(P )| ≥ 4. By assumption G′ is nonplanar and P is planar. Rechoose G′ and P so that the number of
vertices in P is maximal. If T is not peripheral in P , then because P is planar we get that P = P1⊕3 P2

where the 3-sum is on T and T is peripheral in each Pi.
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Either G′ cannot be written as a 3-sum of two planar or two nonplanar terms or it can. Let these
be Case 1 and Case 2.

Case 1 By the inductive hypothesis, we then get that G′ = FG′ ⊕3 Q1 ⊕3 Q2 ⊕3 · · · ⊕3 Qm as stated in
our desired result. Let Ti be the triangle in FG′ along which the summation with Qi is taken. By the
maximality of P and the fact that G is not a 3-sum of two nonplanar graphs, it must be that T is a
triangle of FG′ and is not on the same vertices of any Ti. Thus either G = FG′⊕3Q1⊕3Q2⊕3 · · ·⊕3Qm⊕P
or G = FG′ ⊕3 Q1 ⊕3 Q2 ⊕3 · · · ⊕3 Qm ⊕ P1 ⊕3 P2 satisfies our desired conclusion.

Case 2 We assume that G′ = G1 ⊕3 G2 where G1 and G2 are both planar or both nonplanar. (Assume
that T ⊂ G2.) It cannot be the latter case because then G = G1 ⊕3 (G2 ⊕3 P ) where G1 and G2 ⊕3 P
are both nonplanar, a contradiction. If both G1 and G2 are planar, then rechoose G1 and G2 so that
there is a maximum number of vertices in G1 and T ⊂ G2. Let T ′ be the triangle of summation for
G1 ⊕3 G2. Note that since G is not a 3-sum of two planar terms, it must be that G2 ⊕3 P is nonplanar.
Hence T is nonperipheral in either G2 or P . If T is nonperipheral in G2 and peripheral in P , then
G2 = G′2 ⊕3 G

′′
2 summed along T and where T ′ is in G′2. Thus G = (G1 ⊕3 G

′
2) ⊕3 (G′′2 ⊕3 P ) where

(G′′2⊕3P ) is planar. This contradicts the maximality of P . So it must be that T is not peripheral in P and
G = G1⊕3G2⊕3(P1⊕3P2) (see Figure 30). By a similar argument the maximality of G1 implies that T ′ is
nonperipheral in G1 and hence G1 = H1⊕3H2 along T ′ which makes G = (H1⊕3H2)⊕3G2⊕3 (P1⊕3P2).
In Cases 2.1, 2.2, 2.3, and 2.4 say that |V (T ) ∩ V (T ′)| = 0, 1, 2, and 3, respectively. In all three cases,
let V (T ) = {a, b, c} and V (T ′) = {a′, b′, c′}.

Figure 30.
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Case 2.1 The graph M constructed by taking two vertex-disjoint copies of K2,3 and connecting the 3-
partite sets by three edges is one of the 35 excluded minors for projective-planar graphs. Since G2 must
be 3-connected, there are three vertex-disjoint paths linking V (T ) to V (T ′). Thus G has an M -minor,
a contradiction.

Case 2.2 Say that V (T )∩V (T ′) = {c}. Since G2 is 3-connected, there are disjoint paths in G2\c linking
{a, b} and {a′, b′} (assume without loss of generality that these two paths link a to a′ and b to b′) and so
G contains as an S2-subdivision, call it S. The two embeddings of S2 are shown in Figure 29. So in this
case, the S-bridges in G fall into the shaded regions shown in Figure 31 where the S-bridges in G2 are
shown in darker grey. Any S-bridge in H1∪H2∪P1∪P2 is fixed pointwise up to isotopy with respect to
a fixed embedding of S2; however, the bridges in G2 each may have up to two possible placements in two
of the dark shaded regions. Thus the configuration of the bridges in G2 and their possible reembeddings
are as described in Case 1.2.3.1 of Section 4 where the reembeddings are shown to be related to each
other by sequences of Q-Twists. The two reembeddings of the S2-subdivision are related to each other
by a single Q-Twist hinged on a′, b′ and latched at c.

Figure 31.
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Case 2.3 Say that V (T ) ∩ V (T ′) = {b, c}. In this case G contains an S1-subdivision, call it S, rooted
on {a, a′, b, c} and with 3-valent vertices v1 ∈ P1, v2 ∈ P2, v3 ∈ H1, v4 ∈ H2. Of the six embeddings of
K3,4 shown in Figure 25 with corresponding labels, only four allow the decontraction to S1. The bottom
and bottom left embeddings of K3,4 do not extend to S1.

Now if v is a vertex in G2 \ {a, a′, b, c}, then by 3-connectivity there are three internally-disjoint
paths in G2 connecting v to {a, a′, b, c}. In the four possible embeddings of S1, the only possibilities are
that v is linked to {a, a′, b} or {a, a′, c}. Furthermore, if v links to {a, a′, c}, then no other vertex in
G2 \ {a, a′, b, c} links to {a, a′, b}.

If there are vertices in G2 \ {a, a′, b, c} and they all link to {a, a′, b}, then there are two possible
embeddings of S with all of the S-bridges falling into the shaded regions shown on the left of Figure 32.
Similar to Case 2.2 above, the S-bridges in H1∪H2∪P1∪P2 are fixed with respect to a fixed embedding
of S1 but the bridges in G2 each have up to two possible placements. So as in the previous case, any
two embeddings of G are related by a sequence of Q-Twists.

If there are vertices in G2 \ {a, a′, b, c} and they all link to {a, a′, c}, then the embeddings of S are as
shown on the right in Figure 32 with S-bridges in the shaded regions. Similar to what is explained in
the previous paragraph, any two embeddings of G are related by a Q-Twist

Figure 32.
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If there are no vertices in G2 \ {a, a′, b, c}, then the S-bridges of G are all corner bridges cornered at
v1, v2, v3, v4 which are all fixed pointwise with respect to a given embedding of the S1-subdivision save
for single-edge bridges on {a, a′, b, c}. So since there are four embeddings of S in the projective plane,
all embeddings of G are shown in Figure 33 up to flexibility of single edges (which is accounted for by
degenerate Q-Twists). The first embedding goes to the second by a Q-Twist hinged at a′, c and latched
at b. The first embedding goes to the third by a Q-Twist hinged at b, c and latched at a, a′ (the bridges
in the twisted patch is shown in darker grey). The third embedding goes to the fourth by a Q-Twist
hinged at a′, b and latched at c.

Figure 33.
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Case 2.4 Here we must have that |V (G2)| = 3 because otherwise G will contain a K3,5-minor, a
contradiction of projective planarity. However now if |V (G2)| = 3, then G = G1 ⊕3 P where both G1

and P are planar, a contradiction.
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Now consider a 3-connected nonplanar graph G that has a patch decomposition FG ⊕3 P1 ⊕3 P2 ⊕3

· · · ⊕3 Pk. Note that FG is a minor of G by 3-connectivity and the definition of 3-summing. (We do not
consider a Y -Delta operation to be a 3-sum.) If G is embedded in the projective plane, then the patch
decomposition naturally yields a unique embedding (up to flipping single edges in FG that are not in G)
of FG with triangular shaded patches in the places of the Pi’s. Similarly such a patch embedding of FG

corresponds to a unique embedding of G. So now let ψ1 and ψ2 be two embeddings of G and σ1 and σ2
associated patch embeddings with flexible single edges placed arbitrarily. Thus if we can explain how
to go from σ1 to σ2 by Q-Twists and P-Twists, then we will have explained how to go from ψ1 to ψ2

by Q-Twists and P-Twists. Thus Theorem 5.5 suffices to complete the proof of Lemma 1.2 for the case
where G is V8-free.

Theorem 5.5. If G is 3-connected, nonplanar, V8-free, and has a patch decomposition, then we can go
from σ1 to σ2 by a sequence of Q-Twists and P-Twists.

The proof of Theorem 5.5 begins as follows. Since G does not contain a V8-minor, neither does FG

(because FG is a minor of G) and so Theorem 1.3 yields cases for the exact structure of FG. In Section
5.3.1, we assume that FG has five vertices; in Section 5.3.2, FG is a double wheel; in Section 5.3.3, FG

has six vertices; in Section 5.3.4, FG has seven vertices; in Section 5.3.8, FG is 4-vertex coverable; and
in Section 5.3.9, FG

∼= L(K3,3).

5.3.1 Frames on five vertices

Given that FG has five vertices and is nonplanar, we get that FG
∼= K5. There are 27 distinct labeled

embeddings of K5 on the projective plane. Twelve of the 27 have a facial 5-cycle and the remaining 15
do not (see Figure 34).

Figure 34.
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Denote the embedding with facial 5-cycle a, b, c, d, e by σ(abcde). We need not consider the 15 em-
beddings without a facial 5-cycle by the following argument. If σ1 is as in the right of Figure 34, then
because edges (2, 3) and (4, 5) form the diagonals of quadrilateral face (3, 5, 2, 4), at least one of (2, 3)
or (4, 5) can be flipped across the boundary by a degenerate Q-Twist because there can be at most two
triangular patches in the face (3, 5, 2, 4). Thus we obtain a new patch embedding σ′1 with K5 having a
facial 5-cycle. So for the remainder of this section, we assume that both σ1 and σ2 are facial 5-cycle type
embeddings.

Of the 12 embeddings of K5 with a facial 5-cycle, the patches fall into two types: outside patches
have their attachments on one of the 5 triangular faces of K5 and inside patches that do not. Outside
patches may be embedded in either the interior or exterior of the pentagon, while inside patches must
be embedded in the interior. Therefore, if a double patch occurs, then they are outside patches. In Case
1 say there is a double patch and in Case 2 there is not. Note that there cannot be two sets of double
patches.
Case 1 Assume the double patch is on the vertices (1, 2, 3). These two triangular patches are embedded
so that they meet at an edge and at the antipodal vertex from that edge on the 5-face. Moreover, either
they meet in the same edge of triangle (1, 2, 3) in both σ1 and σ2 or not. Without loss of generality in
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Case 1.1, the two patches meet at the (2, 3)-edge in both σ1 and in σ2 and in Case 1.2, the patches meet
at (2, 3) in σ1 and at (1, 3) in σ2.
Case 1.1 Either the cyclic order along the 5-cycle is the same or the vertices 4 and 5 have been
transposed. If they are the same, it is clear that the embeddings are identical. The pair of embeddings
with 4 and 5 transposed are shown on the left in Figure 35 with all possible patches included. The
Q-Twist latched at 1 and hinged at 2 and 3 takes one embedding to the other.

Figure 35.
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K5-Frames with a double patch - Case 1 is a Q-Twist while Case 2 is a P-Twist

Case 1.2 We can assume that the first embedding of the frame is σ(14235), while the second is either
σ(15243) or σ(14253). The first possibility with all possible patches included is shown on the right of Figure
35. This pair of embeddings can be seen to be related by a degenerate P-Twist as follows: from the patch
structure in Figure 3, contract patches 0 and 8 to form node 1, contract patches 2 and 7 to form node
2, contract patch 5 to form node 3, the intersection of patches 4 and 6 form node 4 and the intersection
of patches 3 and 4 form node 5 (this actually describes the P-Twist that takes the second embedding
to the first). If the second possibility occurs, then a Q-Twist on latched at 2 and hinged at 1 and 3 will
take the embeddings to the first possibility.
Case 2 Now we assume that there are no double patches on the K5-frame. It is possible that an outside
patch may be embedded inside the pentagonal face. Since the patch is not doubled, however, it may be
moved outside the pentagonal face by a degenerate Q-Twist. So we can assume that all outside patches
are actually embedded outside the pentagonal face.

Without loss of generality we can assume that σ1 = σ(12345). This is shown in the center of Figure 36.
We can obtain the other 11 pentagonal embeddings of K5 from σ(12345) by performing any permutation on
1,2,3,4,5 and then rotating so that vertex 1 is at the top and then possibly reflecting around a vertical axis
through vertex 1. There are 10 2-cycle permutations in S5 and these give rise to five distinct embeddings
which are shown at a distance 1 from the center of Figure 34. There are 10 3-cycle permutations in
S5 and these give rise to another five distinct embeddings which are shown at a distance two from the
center of Figure 34. The remaining two permutations in S5 give the one remaining embedding, σ(14253).
Since we have now accounted for all 12 pentagonal embeddings and have shown symmetry by 2-cycle
and 3-cycle permutations, we can split the remainder of the proof in this section into four subcases: in
Case 2.1, σ2 = σ1; in Case 2.2, the permutations of σ1 and σ2 differ by a 2-cycle permutation; in Case
2.3, the permutations of σ1 and σ2 differ by a 3-cycle permutation; and in Case 2.4, σ2 = σ(14253).
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Figure 36.

1

2

3 4

5

1

2

3

4

5

1 2

34

5

1

2

34

5

1

2

34

5

1

2

3

4

5

1

23

45

1

2

3

4

5

1

2

3

4

5

12

34

5

1

2

3

4

5

1

2

3 4

5

In each case, we will find all of the maximal sets of patches that embed in both frame embeddings
and then show how the two embeddings are related by a sequence of (degenerate) Q-Twists or P-Twists.
Note that given two patches that could possibly embed in a given frame embedding, they can embed
simultaneously unless they are both inside bridges and they share consecutive attachments along the
5-cycle.

Relative to the two frame embeddings, there are: In-In patches that are inside patches in both
embeddings of K5, In-Out patches that are inside patches in σ1 and outside patches in σ2, Out-In
Patches, and Out-Out Patches.
Case 2.1 Once any patch in the interior of the 5-cycle that can be reembedded on the outside has been
moved out by a degenerate Q-Twist, all the other patches must be fixed. Hence the embeddings are
identical.
Case 2.2 By renumbering and reflecting around the vertical axis, we can assume that σ2 = σ(12354).
Since outside patches have been moved to the exterior to the pentagon, we can assume that all Out-Out
patches (i.e. (1, 3, 4), (1, 3, 5) and (2, 4, 5)) exist.

There are three possible In-In patches, (1, 2, 3), (3, 4, 5), and (1, 4, 5). In Case 2.2.1, say that the
(1, 2, 3)-patch exists and in Case 2.2.2 say that it does not.
Case 2.2.1 Neither of the In-Out patches (2, 3, 4) nor (1, 4, 5) can exist in both σ1 and σ2 as they are
blocked by the (1, 2, 3)-patch. Similarly, the Out-In Patches (2, 3, 5) and (1, 2, 4) cannot exist. Finally
either of the remaining In-In patches (3, 4, 5) and (1, 4, 5) can exist, but not both simultaneously. Hence
there are only two maximal patch structures in this case (and they are symmetric). See Figure 37. Note
that a Q-Twist hinged at 1, 3, 4, 5 and latched at 1 and 3 will take one embedding to the other.

Figure 37.
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σ(12345) and σ(12354) with In-In patches (1, 2, 3) and (3, 4, 5) - Related by a Q-Twist

Case 2.2.2 Here either the (3, 4, 5)-patch or (1, 4, 5)-patch may exist, but not both simultaneously. By
symmetry we either have that the (3, 4, 5)-patch exists or there is no In-In patch.

In the first case, the only admissible patches are (1, 2, 5) and (1, 2, 4). Further they can both occur
simultaneously. As can be seen in Figure 38, these embeddings are related by a Q-Twist hinged at
2, 3, 4, 5 and latched at 2 and 3.
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Figure 38.

1

2

34

5

1

2

3

4

5

σ(12345) and σ(12354) with patch (3, 4, 5) - Related by a Q-Twist

In the second case, note that all four remaining patches can occur simultaneously as shown in Figure
39. The embeddings are related by a degenerate Q-Twist that moves the patch (2, 4, 5) from the inside
to the outside of the 5-cycle.

Figure 39.
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σ(12345) and σ(12354) with no In-In Patch - Related by a Q-Twist

Case 2.3 By renumbering and reflecting around the vertical axis, we can assume that σ2 = σ(12453). As
before, we can assume that both Out-Out patches (i.e., (1, 3, 4) and (2, 3, 5)) exist and are embedded on
the outside of the 5-cycle. There are two possible In-In patches for σ1 and σ2: the (1, 2, 3)-patch and the
(3, 4, 5)-patch: in Case 2.3.1, both of these patches exists; in Case 2.3.2, the (1, 2, 3)-patch exists and
the (3, 4, 5)-patch does not; in Case 2.3.3, the (1, 2, 3)-patch does not exist and the (3, 4, 5)-patch does;
and in Case 2.3.4, neither patch exists.
Case 2.3.1 Here none of the In-Out or Out-In patches can exist. This leads to the embeddings in Figure
40 which are related by a degenerate P-Twist. Consider the P-Twist in the Bowtie view from Figure
3. We obtain our desired degenerate P-Twist taking one embedding to the other as follows: Contract
the patch labeled 1 to obtain node 1, contract the patch labeled 3 to obtain node 2, contract the two
patches labeled 0 and 9 to obtain node 3, finally contract the edges on the patches labeled 2 and 4 that
avoid the patches labeled 1 and 3 to obtain nodes 5 and 4 respectively.

Figure 40.
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σ(12345) and σ(12453) with both In-In Patches - Related By a P-Twist

Case 2.3.2 Here the only possible In-Out patch is (1, 4, 5) and the only possible Out-In patch is (2, 4, 5).
Both can occur simultaneously. These two embeddings are shown in Figure 41. They are related by
Q-Twists as follows. On the left embedding flip the (1, 3, 4)-patch, (1, 3)-edge, and (1, 4)-edge into the
central pentagon. On the right embedding flip the (2, 3, 5)-patch, (2, 3)-edge, and (2, 5)-edge into the
central pentagon. The resulting embeddings are the same because they both have the same central
pentagon (1, 2, 4, 3, 5) with no interior patches.
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Figure 41.
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σ(12345) and σ(12453) with five patches - Related by Q-Twists

Case 2.3.3 Here the only possible In-Out patch is (1, 2, 5) and the only possible Out-In patch is (1, 2, 4).
Both can occur simultaneously. These two embeddings are related by a degenerate P-Twist as shown
in Figure 42. Consider the P-Twist in the Bowtie view from Figure 3, then contract patches 1 and 2 to
obtain vertex 2 and patch 9 to obtain vertex 5, contract the edge of patch 3 that avoids patch 8, the
edge of patch 6 that avoids patch 2, and the edge of patch 0 that avoids patch 9.

Figure 42.
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σ(12345) and σ(12453) with five patches - Related by a P-Twist

Case 2.3.4 There are three In-Out patches and three Out-In patches to consider. It is clear that the
maximal possible patch sets of In-Out patches are {(2, 3, 4), (4, 5, 1)} and {(2, 3, 4), (1, 2, 5)}; similarly,
the maximal possible patch sets of Out-In patches are {(1, 3, 5), (1, 2, 4)} and {(1, 3, 5), (2, 4, 5)}. Fur-
thermore, these maximal possibilities can occur simultaneously. This leads to four pairs of embeddings,
each happen to be symmetric. One such pair is shown in Figure 43. They are related by a single Q-Twist
hinged on 1,2,4,5 and latched on 1,4.

Figure 43.
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σ(12345) and σ(12453) with no In-In Patches - Related by a Q-Twist

Case 2.4 By renumbering and reflecting around the vertical axis, we can assume that σ2 = σ(14253).In
this case, there are no Out-Out patches and no In-In patches possible. There are five possible In-Out
patches {(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 1), (5, 1, 2)} and five possible Out-In patches {(1, 4, 2), (4, 2, 5),
(2, 5, 3), (5, 3, 1), (3, 1, 4)} for the pair of embeddings. Moreover, any patch from one set can embed
simultaneously with any patch from the second.

So without loss of generality, we assume that (1, 2, 3) exists in the patch structure. There are two
possible In-Out patches that can also occur, (3, 4, 5) and (4, 5, 1). By symmetry, we can assume that
(3, 4, 5) occurs. Similarly, we consider the pairs of Out-In patches that occur. Up to symmetry and
reversing σ1 and σ2, there are only two maximal structure that occurs: (1, 2, 3), (3, 4, 5), (2, 3, 5) and
(1, 2, 4) as shown in Figure 44, and (1, 2, 3), (3, 4, 5), (2, 3, 5) and (1, 3, 4) as shown on the left in Figure
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45. The first pair of patch embeddings are related by a P-Twist obtained from the Bowtie view in Figure
3, as follows: Contract patch 1 to obtain node 1, contract patch 3 to obtain node 2, contract patches 0
and 9 to obtain node 3, contact the edge of patch 4 that avoids patch 3 to obtain node 4, finally contract
the edge of patch 2 that avoids patch 2 to obtain node 5. The patches 4, 5, 6 and 7 remain. The leftmost
patch embedding in Figure 45 is related to the rightmost embedding in the figure by flipping the (1, 3)-
and (3, 5)-edges into the central pentagon. The reembedding from the middle embedding to the right
embedding is the same reembedding as in Figure 40.

Figure 44.
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σ(12345) and σ(13524) with patches (1, 2, 3), (3, 4, 5), (2, 3, 5) and (1, 2, 4) - Related by a P-Twist

Figure 45.
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σ(12345) and σ(13524) with patches (1, 2, 3), (3, 4, 5), (2, 3, 5) and (1, 3, 4)
Related by a Q-twist then a P-Twist

5.3.2 Frames that are subgraphs of double wheels

Let DWn denote the double wheel graph with adjacent hub vertices whose rim has length n. Assume
that FG is isomorphic to an internally 4-connected subgraph of DWn. Note that DW3

∼= K5, which was
analyzed in Section 5.3.1. Hence we assume that n ≥ 4. Assume that v1, v2, . . . , vn are the vertices of
the rim R in cyclic order and call the hub vertices a and b.

We assume that the projective plane is rendered as a disk with boundary covered by v1, . . . , vn, v1, . . .,
vn where vi = vi = vi but where the underlined vertices are along the top half of the disk and the
overlined vertices are along the bottom half of the disk. In Figure 46 we show eight different embeddings
of DWn rendered in this way. Let νi be the embedding with two quadrangular faces on {vi, vi−1, a, b}.
The embeddings ν1 and ν2 are shown in Figure 46. Let νi,a be the embedding obtained from νi by
reembedding the avi-spoke and define νi,b similarly: the embeddings νn,a, νn,b, ν1,a, ν1,b, ν2,a, and ν2,b
are also shown in Figure 46. If both avi- and bvi-spokes are reembedded, the resulting embedding is
νi+1. One can show that there is no embedding of DWn for n ≥ 4 such that the rim cycle separates the
projective plane and hence these 3n embeddings of DWn are all the possible embeddings.

Deleting the ab-hub-edge or any rim edge from DWn results in a planar graph. So for n even, the
only internally 4-connected non-planar spanning subgraph G of DWn is obtained by deleting spokes
av2t−1 and bv2t for all 1 ≤ t ≤ n

2
; call this subgraph AWn. For n odd, there are no internally 4-connected

non-planar subgraphs. Note that if FG
∼= AW4

∼= K3,3, then this case will be analyzed in Section 5.3.3.
Hence for this section, we can assume that FG is isomorphic to DWn for n ≥ 4 or AWn for n ≥ 6.
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Figure 46.
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Some Reembedings of Double Wheels

In this and subsequent sections, we will often show that a certain patch structure on a frame graph
FG will give rise to a subdivision of V8 in the graph G. In these cases, we can refer back to the proof in
Section 4 to complete the proof.

First, suppose σ1 and σ2 are two patch embeddings of FG = AWm for m ≥ 6. Note that for any
embedding of AWn with n ≥ 6 the rim R must be non-contractible. Furthermore, νi,a restricted to AWn

is the same as νi+1 restricted to AWn. Thus the only embeddings of AWn are ν1, . . . , νn restricted to
AWn. Also since AWn has no triangles, it has no patches. So if σ1 = νj and σ2 = νk, we can take σ1 to
σ2 by a sequence of degenerate Q-Twists that move one spoke of the wheel at a time.

Now suppose σ1 and σ2 are two patch embeddings of FG = DWn for n ≥ 4. There are two types of
patches possible in these embeddings of DWn, hub patches on (a, b, vj) and rim patches on (a, vj, vj+1)
or (b, vj, vj+1). In Case 1 say that n ≥ 5 and in Case 2 say that n = 4.
Case 1 Label the rim vertices of DW5 by 1,2,3,4,5 and the hub vertices by 6,7. If we perform a ∆Y
operation on triangle 1, 6, 7 and then delete edges (2, 6), (4, 6), (3, 7), (5, 7) we obtain V8. Thus any hub
patch on FG

∼= DWn implies that G has a V8-minor and so we assume there are no hub patches on FG.
Also if we double the (1, 2)-edge and then perform ∆Y operations on triangles 1,2,6 and 1,2,7, then we
can contract the (2, 3)-edge and delete edges (3, 6), (4, 6), (3, 7), (5, 7) we obtain V8. Thus any two rim
patches (a, vj, vj+1) and (b, vj, vj+1) on FG will imply that G has a V8-minor and so we assume that there
are no two such patches. In Case 1.1 say that there is a double rim patch and in Case 1.2 say there is
no double rim patch.
Case 1.1 In Figure 47, we show all of the patch embeddings of DWn with a double rim patch on (v1, vn, a)
up to exchanging of the two patches. Other patches may be present but they are fixed pointwise with
respect to our renderings. These embeddings are all related by degenerate Q-Twists that move a single
edge or interchange the patches.

Figure 47.
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Case 1.2 Here for each rim edge (vj−1, vj) either there is no rim patch on (vj−1, vj), a single (vj−1, vj, a)-
patch, a single (vj−1, vj, b)-patch, but not both rim patches. As shown in Figure 47, a (vj−1, vj, a)-patch
is fixed pointwise in our rendered embeddings of DWn save in νj−1,b, νj, and νj,a. In a given embedding
of DWn, two rim patches with nonadjacent rim edges cannot both be flexible. Similarly, two rim patches
with adjacent rim edges and the same hub vertex cannot both be flexible. Two rim patches with adjacent
edges and different hub vertices are both flexible in a single embedding of DWn. Figure 48 shows all of the
possible patch embeddings for DWn with a (vn, v1, a)-patch and (v1, v2, b)-patch in the five embeddings
of DWn in which one or both patches are flexible.

Figure 48.
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So we see that any patch embedding of DWn without two patches on the same rim edge may use any
embedding of the frame DWn. When any single patch or any single edge of DWn is flexibile, they may
be reembedded individually by Q-Twists in a certain order. When multiple rim patches and single edges
are flexible, the possible embeddings are shown in Figure 48 where again we see that we may always
reembed patches and edges individually to get from one embedding to another.
Case 2 First we give some patch configurations on DW4 that produce a V8-minor in G. For this
discussion label the rim vertices of DW4 with 1,2,3,4 and hub vertices with a,b.

First, any hub patch and rim patch together create a V8-minor. To see this perform ∆Y -operations
on triangles (1, 2, a) and (4, a, b) and delete the (3, b)-edge to obtain V8. Next perform ∆Y -operations
on triangles (1, 2, a) and (1, a, b) and delete the (4, a)- and (3, b)-edges to obtain V8.

Second, any two hub patches with adjacent rim vertices together create a V8-minor. To see this
perform ∆Y -operations on the triangles (1, a, b) and (2, a, b) and delete the (3, a)- and (4, b)-edges to
obtain V8. Note also that it is not possible at all to embed two hub patches with nonadjacent rim
vertices.

So now the only possible patch configurations that do not produce a V8-minor in G are a single or
double hub patch or solely rim patches. In the latter case, we obtain the result that any two patch
embeddings are related by Q-Twists as in Case 1. In the former case, we show all possible patch
embeddings of DW4 with a single hub patch, say (1, a, b) in Figure 49. In some of the embeddings it is
possible to have a double hub patch. One can see that these embeddings are all related by Q-Twists.
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Figure 49.
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5.3.3 Frames on six vertices

In each of Sections 5.3.3–5.3.8, we will use the following naming conventions for the many graphs needed
in the analysis. Given two graphs G and H, GH will denote the disjoint union while G will denote the
complement of G. For k a positive integer, Ck will be the cycle on k edges, Pk will be the path on k
edges, Mk will be the matching graph on k edges, Kk will be the complete graph on k vertices and Ek

will be the edgeless graph on k vertices. Let N4 be a 3-pan graph, i.e. a triangle with a pendant edge.
Let B7, the bowtie graph, be obtained by identifying the vertices of degree one in two copies of N4.

There are four internally 4-connected nonplanar graphs on six vertices: K6, K6\e, DW4, and K3,3.
We have analyzed the case where FG

∼= DW4 in Section 5.3.2 on double wheels. In the case that
FG
∼= K3,3, there are no patches because K3,3 has no triangles. There are six embeddings of K3,3 and

they are shown in Figure 25 and they are all related by Q-Twists. So we need only analyze the cases for
K6 and K6\e. Let these be Cases 1 and 2, respectively.
Case 1 There is a unique unlabeled projective-planar embedding of K6, which is a triangulation. If there
are no patches on the frame, then there are twelve distinct embeddings. To see this consider the vertex
0 fixed in the center of a 5-cycle. Vitray [19, Thm.5.2.3] showed that a Q-twist on such an embedding
has the effect of transposing two vertices on the 5-cycle. Hence, any embedding of K6 with no patches
can be obtained from any other embedding by a sequence of Q-Twists. Note that a given patch might
not be allowable in one of the intermediate embeddings in the sequence.

To analyze the possible patch structures, label the vertices 0, 1, 2, 3, 4, 5. In Figure 50 we show the
six possible labeled embeddings where 0, 1, 5 is a facial triangle and 4, 5, 6 is a noncontractible cycle.
The remaining six embeddings of K6 have 4, 5, 6 as a facial triangle and 0, 1, 5 as a noncontractible cycle.

Figure 50.
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Without loss of generality assume there is a (0, 1, 5)-patch. So we can assume that each of σ1 and σ2
is one of the embeddings shown in Figure 50. Since K6 is 3-representative in the projective plane, any
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patch must be embedded within the triangular face of its three vertices of attachment and there can be no
double patches. This implies that any two patch embeddings of K6 with the same underlying embedding
of K6 and the same set of patches are the same patch embeddings. So without loss of generality assume
we have patch embedding σ1 with K6 as shown in the upper left of Figure 50. Up to symmetry there
are two types of frame embeddings possible for σ2, one with a transposition on the boundary and one
with a rotation on the boundary. These two patch embeddings are shown in with the maximal patch
structures in Figure 51.

Figure 51.
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The reembedding on the left is a Q-Twist hinged at 0, 2, 3, 5 and latched at 1, 4 (and then reflected
along a horizontal line). The reembedding on the right is a degenerate P-Twist obtained from the central
view of the P-Twist (see Figure 3) by contracting patches 6 and 2 to an edge, patches 3 and 8 to an
edge, and patches 5 and 9 to an edge.
Case 2 Suppose FG

∼= K6\e, K6 with the edge (1, 2) removed. There are two types of embeddings of this
graph: those that extend to an embedding of K6 and those that do not. There are twelve embeddings of
the first type and six of the latter type which are shown in Figure 52. In each of these six embeddings
the embedding of the K4 induced on {3, 4, 5, 6} can be assumed to be fixed.

Figure 52.
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Six of the eighteen embeddings of K6\e

Given any patch embedding of FG = K6\e, if the frame is embedded in an extendable fashion,
then the quadrilateral face of FG bounded by vertices 1, u, 2, v cannot have a (1, 2, u)- or (1, 2, v)-patch
because these are not triangles in FG. Thus we can flip the (u, v)-edge into the quadrilateral and so FG

is now embedded in a nonextendable fashion. Therefore we can assume that we have patch embeddings
σ1 and σ2 with the embeddings of FG as in Figure 52. After relabeling, we can assume that σ1 is the
leftmost embedding in Figure 52. Up to symmetry there are four possibilities for σ2: the first, the third,
the fourth, or the fifth embedding in the Figure. Let these be Cases 2.1–2.4, respectively. In each case
notice that there are exactly two 2-representative cuts in each of the embeddings of FG and no cut can
be moved off a vertex onto an incident edge. Thus the placement of patches is uniquely determined in
each embedding of FG.
Case 2.1 Here we must have σ1 = σ2 as any patch has a unique position up to isotopy.
Case 2.2 Here the only possible patches incident to vertices 1 or 2 are: (2, 3, 6), (1, 3, 6), (1, 4, 5), and
(2, 4, 5). There may also be patches on 3, 4, 5, 6 as well but these are exterior to the quadrilateral on
3, 4, 5, 6 and so we can go from σ1 to σ2 by a single Q-Twist hinged at 3, 4, 5, 6 and latched at 1 and 2.
Case 2.3 Up to symmetry the maximal configuration of patches possible is shown in Figure 53. We can
go from the first embedding to the second by two Q-Twists. The first hinged on 3, 4, 5, 6 and latched on
1, 6 and the second hinged on 3, 4, 5, 6 and latched on 2, 4.
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Figure 53.
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Case 2.4 The intermediate patch embedding in Case 2.3 has up to symmetry the maximal possible
configuration of patches and so we go between the two embeddings by the first Q-Twist in Case 2.3.

5.3.4 Frames on seven vertices

In this section, we assume that G has a frame graph FG which has seven vertices.

Proposition 5.6. There are exactly 28 internally 4-connected graphs on seven vertices. Of these graphs,
one is planar and seven are non-projective planar.

Proof. Let G be an internally-4-connected graph on seven vertices. If δ(G) = 6, then G must be
isomorphic to K7. If δ(G) = 5, then ∆(G) = 1. Hence G is isomorphic to either M1E5, M2E3 or M3E1,
which are all internally 4-connected. In the case when δ(G) = 4, as C4E3, C4M1E1, C4P2 and C4C3 are
not internally-4-connected, G must be one of the following 21 graphs: C3E4, C5E2, C6E1, C7, P2E4,
P3E3, P4E2, P5E1, P6, C3C3E1, P2P2E1, P2P3, C3P2E1, C3P3, C3M1E2, C3M2, C5M1, P2M1E2, P2M2,
P3M1E1, and P4M1.

Finally, in the case δ(G) = 3, let v be a 3-valent vertex and label the neighbors of v as v1, v2, v3 and
the remaining three vertices as va, vb, vc. By internal 4-connectivity, v1, v2, v3 are independent. Vertex
v1 must then be adjacent to at least two of v1, vb, vc. If v1 is only adjacent to va and vb, then by internal
4-connectivity va and vb are nonadjacent. In order to excluded 3-separations with five vertices on each
side we now must have that vc is adjacent to both va and vb and v2 and v4 are both adjacent to all of
va, vb, vc. Thus G = B7. If v1 has degree 4, then without loss of generality v2 and v3 both have degree 4
and since K3,4 is not internally 4-connected we now get that G = C3K1,3 or G = C3N4.

Note that C5M1 is a planar double wheel. Further, M3E1 and P4E2 are isomorphic to A2 and B1

respectively in Archdeacon’s list of 35 minor-minimal non-projective-planar graphs (see, e.g., [9]). Hence,
M3E1, P4E2, M2E3, M1E5, P3E3, P2E4 and K7 are all not projective-planar.

Hence we need to consider the flexibility of graphs G whose frame FG is isomorphic to one of the
graphs in the set L which consists of the 20 internally 4-connected projective planar, non-planar graphs
listed in the proof of Proposition 5.6. We will analyze these graphs according to whether they contain
a K3,4-subgraph, a C7-subgraph, or neither.

There are 13 graphs in L that contain a K3,4-subgraph: C3E4, P2M1E2, C3M1E2, P3M1E1, P2P2E1,
P2M2, C3P2E1, C3M2, P2P3, C3C3E1, C3P3, C3K1,3 and C3N4. These 13 graphs will be analyzed in
Section 5.3.5

There are four graphs in L that do not contain a K3,4-subgraph but contain a C7: C7, P6, P5E1, and
P4M1. These four graphs will be analyzed in Section 5.3.6.

There are three remaining graphs in L : C6E1, C5E2 and B7. These three graphs will be analyzed in
Section 5.3.7.
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5.3.5 Frames that contain a K3,4 subgraph

First, we consider the case when FG is isomorphic to one of the 13 graphs in L that contain a K3,4-
subgraph. The six embeddings of K3,4 are shown on the left of Figure 54 where the arrows represent
relation by a single Q-Twist. Label the vertices of the two partite sets of the K3,4-subgraph are {1, 2, 3}
and {4, 5, 6, 7}. In Case 1, we will consider the case when vertices 1, 2, 3 are independent. In Case 2, we
will consider the case when there is at least one edge in {1, 2, 3}.
Case 1 Here K3,4 ⊆ FG ⊆ C3E4. Each of the six embeddings of K3,4 extend uniquely to an embedding
of C3E4. These embeddings are shown on the right of Figure 54. The only 2-representative cuts of an
embedding of K3,4 pass through two of the vertices {1, 2, 3}. In particular, there are no 2-representative
cuts that pass through the interior of an edge. As such any patch on FG has a unique placement in any
embedding of FG.

Any two embeddings of FG are related by either a single Q-Twist or a single P-Twist. The arrows in
Figure 54 represent Q-Twists similar to the one show on the top right of the figure for C3E4 latched at
{4, 6} and hinged at {2, 3, 5, 7} which transpose the vertices in 2 and 3. Any patches on FG common to
both of these embeddings are preserved by this Q-Twist. For two embeddings not connected by an arrow
(without loss of generality take the top embedding and the lower left embedding) there is a degenerate
P-Twist that will reembed the graph C3E4 with a rotation on vertices {1, 2, 3}. This can be seen by
contracting patches 0, 1, 4, 7 in the central view of the P-Twist structure shown in Figure 3. Note that
all patches that embed in both frame embeddings obey the P-Twist. See Figure 55.

Figure 54.
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Flexibility of K3,4 and C3E4 by Q-Twists

Figure 55.
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Rotations of {1, 2, 3} in C3E4 by Degenerate P-Twist

Case 2 Of the 13 graphs contained in L that contain a K3,4-subgraph, it remains to consider the case
when FG is isomorphic to one of those graphs that contain at least one edge on the vertices {1, 2, 3}.
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These are the five graphs: P2M1E2, P3M1E1, P2P2E1, P2P3 and P2M2. These will be Cases 2.1–2.5
respectively.
Case 2.1 We may assume that there is an edge {1, 2} in FG. As before, all of the edges on {4, 5, 6, 7}
are uniquely embeddable in each of the six embeddings of K3,4. By symmetry, we may assume that
(4, 5) is the missing edge on {4, 5, 6, 7}. However, once the remaining five edges are in place, the edge
(1, 2) can only be embedded in two of the six cases (See Figure 56). These two embeddings with all of
their possible common patches are related by a Q-Twist hinged as shown in Figure 56.

Figure 56.
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Flexibility of P2M1E2 by Q-Twists

Case 2.2 We can assume that the missing edges are (1, 3) and the path {6, 4, 7, 5}. Again, the three
remaining edges on {4, 5, 6, 7} are uniquely embeddable in each of the six embeddings of K3,4. After
these edges are in place, the edges (1, 2) and (2, 3) only embed in two of the six possible cases. However,
in both cases, one of the edges can embed in two distinct ways. See Figure 57 for these four embeddings
along with all of the possible common patches. The flexible edges are shown as dotted lines in both
positions. These embeddings are related by a single Q-Twist hinged at 1, 2, 3, 6 and latched at 2, 5 and
by reembeddings of the single edges as shown.

Figure 57.
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Flexibility of P3M1E1 by Q-Twists

Case 2.3 We can assume that the missing paths are {2, 1, 3} and {5, 4, 6}. Again, the four edges on
{4, 5, 6, 7} are uniquely embeddable in each of the six embeddings of K3,4. In this graph, the edge (2, 3)
is not embeddable in two of the six embeddings, while in the remaining four, it belongs to a unique
face. Hence there are exactly four embeddings of P2P2E1 as shown on the left in Figure 58. The arrows
between embeddings in Figure 58 indicate Q-Twist operations relating the two embeddings. All possible
patches in common to the two embeddings in the top row are shown to respect the Q-Twist. The
maximal sets of patches for the pairs of embeddings in the other three cases also obey the respective
Q-Twists similarly. All possible common patches for the upper left and lower right embeddings are
shown in the rightmost column of Figure 58. These two patch embeddings are related by a degenerate
P-Twist as follows. Take the bowtie view of the P-Twist and contract patches 2,5,8 and contract an edge
of 7 and 0 to as shown in the three columns on the right in Figure . The P-Twist operation to relate the
patch structures on the lower left and upper right embeddings is similar. Note that these embeddings are
not related by a Q-Twist as there are seven vertices whose cyclic ordering of their neighbors is changed,
while a Q-Twist only allows for at most six such vertices.
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Figure 58.
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Case 2.4 This graph is isomorphic to P2P2E1 with the edge (5, 7) deleted. The only embeddings in
addition to the ones in Case 2.3 are shown in Figure 59 where the (2, 3)-edge can be reembedded as
shown. So now any two patch embeddings are related as they are in Case 2.3 after possible reembedding
of the (2, 3)-edge.

Figure 59.
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Flexibility of P2P3 by Q-Twists

Case 2.5 We can assume that the missing path is {2, 1, 3} and the missing matching is (4, 5) and (6, 7).
Again, the four edges on {4, 5, 6, 7} are uniquely embeddable in each of the six embeddings of K3,4. In
this case, the edge (2, 3) is not embeddable in four of the six embeddings of K3,4, while in the remaining
two, the edge can belong to two faces in each embedding. Hence there are four embeddings of P2M2 as
shown in Figure 60 with the flexible (2, 3)-edge as indicated. Regardless of the position of the (2, 3)-edge,
the possible common patches shown in Figure 60 follow the Q-Twist indicated by the shading of the
patches.

Figure 60.
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5.3.6 Frames that contain C7

Now we will consider the flexibility of the graphs in L that contain a C7-subgraph, but no K3,4-subgraph.
There are four such graphs, C7, P6, P5E1, and P4M1. Consider these to be Cases 1–4, respectively. See
Figure 61.

Figure 61.
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Graphs C7, P6, P5E1, and P4M1

Case 1 The graph C7 has 15 embeddings on the projective plane. To describe them, let the vertices
of the seven cycle be {1, 2, 3, 4, 5, 6, 7}, the remaining edges are (i, i + 4) for 1 ≤ i ≤ 7 (mod 7). It is
straightforward to verify that in any embedding the seven cycle must be contractible. Further, at most
two of the non-cycle edges can belong to the interior of the 7-cycle in any embedding. Moreover, if there
are two non-cycle edges in the 7-face, they must share a common endpoint. Hence the embeddings fall
into three types: the standard embedding with all non-cycle edges in the outside of the cycle; the seven
embeddings with a single non-cycle edge inside the 7-cycle; the seven embeddings with both non-cycle
edges incident with vertex i inside the 7-cycle. Recall that moving a single edge from the inside of the
7-cycle to the outside of the cycle is a degenerate Q-Twist and so any two embeddings of C7 are related
by Q-Twists. This completes Case 1 because any one patch on FG

∼= C7, creates a V8-minor in G. This
can be seen as follows. Up to symmetry we may assume there is a patch on {1, 4, 5} and so G contains
a minor equal to the graph obtained from C7 by a ∆Y -operation on the triangle {1, 4, 5}. By inspection
one can find a V8-subgraph.
Case 2 Consider the graph P6. We can assume that this graph is obtained from C7 as described above
by adding the edge (1, 3). Any embedding of this graph contains an embedding of C7. In none of the 15
embeddings of C7 is it possible to add the edge (1, 3) to the outside of the 7-cycle. It can also be checked
that in 10 of the 15 embeddings of C7 the edge (1, 3) can be included inside the 7-cycle. Moreover, any
two of these embeddings are related by moving single edges in and out of the 7-cycle in succession.

As in Case 1, if there were a patch attached to a triangle of C7, then G would contain a V8-minor.
Hence we need only consider triangles that contain the new edge, (1, 3). There are two such triangles
(1, 3, 4) and (1, 3, 7). One can check that a ∆Y -operation on either triangle also leads to a V8-subgraph
in G.
Case 3 Consider the graph P5E1. We can assume that this graph is obtained from C7 by adding the
edges (1, 3) and (1, 6). Both of these edges must be embedded inside the 7-cycle in each embedding.
Only edges that are not skew to either (1, 3) or (1, 6) on the 7-cycle can be moved to the inside of the
7-cycle. This allows only five embeddings of P5E1: the embedding shown in Figure 61, the embedding
with (3, 6)-edge flipped in, the embedding with (1, 4)-edge flipped in, the embedding with (1, 5)-edge in
and the embedding with both (1, 4)- and (1, 5)-edge flipped in. Again these embeddings are all related
by Q-Twists.

As in Case 2, if there is any patch on FG other than the (1, 3, 6)-patch, then there is a V8-minor in
G. The (1, 3, 6)-patch, however, can only be placed in the embedding of P5E1 that is shown in Figure 61
and the embedding of P5E1 with the (3, 6)-edge flipped into the 7-cycle. This pair of patch embeddings
is related by flipping an edge.
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Case 4 We can assume that this graph is obtained from C7 by adding the edges (1, 3) and (4, 6). Again,
both of these edges must be inside the 7-cycle in each embedding. Only edges that are not skew to either
(1, 3) or (4, 6) can be moved to the inside of the 7-cycle. This allows only eight embeddings of P4M1.
When there are no patches, these embeddings are related by Q-Twists. Similar to in Case 2, any patch
would create a V8-minor in G.

5.3.7 Frame isomorphic to remaining three graphs on seven vertices

There are only three more graphs in L to consider. They are C5E2, C6E1 and B7. The graph C5E2 is a
double wheel graph and was considered in Section 5.3.2.

Frames isomorphic to C6E1 The graph C6E1 consists of a 3-prism plus a seventh vertex adjacent
to each of those in the prism. If we label the two triangles of the prism as 1,2,3 and 4,5,6, then one can
check that both triangles must be embedded contractibly. Furthermore, the prism cannot be embedded
in a disk and so all possible embeddings of C6E1 are shown in Figure 62 where the dashed lines represent
edges with flexibilities. This makes a total of twelve different embeddings.

Figure 62.
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Let σ1 and σ2 be two different embeddings of G with FG
∼= C6E1. Without loss of generality assume

that σ1|FG
is shown on the left in Figure 62. There are three possibilities for σ2|FG

.
If σ2|FG

is also as shown on the left in the figure, then only a (1, 4, 7)-patch on FG can be embedded
in more than one place. This would be the only difference between σ1 and σ2 aside from the flexible
(1, 7)- and (1, 4)-edges. Thus we can go from σ1 to σ2 by at most three Q-Twists.

If σ2|FG
is also as shown in the middle in the figure, the patches common to both embeddings of FG

are shown in Figure 63. As long as the flexible edges incident to vertex 7 are embedded as shown in
Figure 63, then we can go between the embeddings shown in this figure by a degenerate Q-Twist whose
three patches are given the three different shades in Figure 63. The flexible edges incident to vertex 7
can be, of course, reembedded by Q-Twists. The case were σ2|FG

is also as shown on the right in the
figure is resolved with a similar Q-Twist.

Figure 63.
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Frame isomorphic to B7 Consider the case when the frame graph FG is isomorphic to B7. Let the
K3,3 subgraph of B7 have partite sets {1, 2, 3} and {5, 6, 7} and let the remaining vertex be adjacent to
{2, 3, 6, 7}. The K3,3 subgraph can be embedded in exactly six ways. The final vertex 4 can then be
embedded in a unique face in four of those embeddings and in one of two faces in the remaining two
embeddings. Thus Figure 64 shows all embeddings of B7.

37



Notice that there are only four triangles in B7 and hence only four possible patches: (4, 2, 6), (4, 6, 3),
(4, 3, 7), and (4, 7, 2). Furthermore, no patch can embed in more then one place in any of the eight
embeddings of B7. Thus if two embeddings of G have the frame FG embedded in the same way, then
the two embeddings of G are the same.

Now in each of the embeddings labeled A, B, C, D, E, or F , all four patches can embed simul-
taneously as shown in Figure 65. It is straightforward to check that those pairs of embeddings with
arrows connecting them are related by degenerate Q-Twists. For example, embedding A can be taken
to embedding B by a Q-Twist hinged at 5, 3, 2, 7 and latched at 1, 7. In this case, we do not need to
worry about the pairs of embeddings at distance two, since all possible patches obey the intermediate
embedding, we can simply use two Q-Twists.

In embedding H, only two patches are possible, (4, 2, 6) and (4, 3, 7). It is clear that a Q-Twist will
take that patch embedding to the patch embedding corresponding to embedding F . That embedding is
then related to any other patch embedding with those two patches as above. The case of embedding G
is symmetric. If the two embeddings of the frame correspond to embeddings H and G, then there can
be no patches and they are related by a Q-Twist.

Figure 64.
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Eight Embeddings of B7

Figure 65.
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Patch Embeddings of B7
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5.3.8 Frames that are 4-vertex coverable graphs

Suppose FG is a 4-vertex coverable graph on at least 8 vertices. Hence there exist four vertices a, b, c, d ∈
V (FG) such that V (FG) \ {a, b, c, d} = {v1, v2, v3, . . . , vt} is independent. Note that t ≥ 4 and all of the
vertices vi must have exactly three or four neighbors in {a, b, c, d}. Let v1, . . . , vm have degree four, while
vm+1, . . . , vt have degree three in G. Note that, as K4,4 cannot be embedded in the projective plane,
m ≤ 3. Also note that if two vertices in vm+1, . . . , vt have the same three neighbors, those vertices would
violate internal-4-connectivity and so n = t−m ≤ 4.

Suppose m = 3 and n ∈ {1, 2, 3, 4}, then FG contains a K3,4 subgraph. There is a unique (non-
labeled) embedding of K3,4 in the projective plane (see Figure 54). By inspection it is not possible to
have another vertex adjacent to three of a, b, c, d and so n = 0, a contradiction.

Suppose m = 2 and n ∈ {2, 3, 4}. It follows from Euler’s formula for bipartite graphs on the
projective plane that |E(G)| ≤ 2|V (G)| − 2. This implies that n = 2 because if n ∈ {3, 4}, then
|E(G)| ≥ 3n+ 8 > 2n+ 10 = 2|V (G)| − 2, a contradiction.

If m = 2 and n = 2, then say that v3 is adjacent to a, b, c and v4 is adjacent to b, c, d. Let B be the
induced bipartite subgraph of FG on partite sets {a, b, c, d} and {v1, v2, v3, v4}. The only other edges of
FG are on vertices a, b, c, d.

Considering the six possible embeddings of the K3,3-subgraph of B on {a, b, c, v1, v2, v3}, one can see
that only two of the six possible embeddings to an embedding of B and that these extensions are unique
(see Figure 66). The only possible edge on {a, b, c, d} in E(FG) \E(B) is (a, d) (shown as a dashed edge
in the figure). Any other edge would be in the neighborhood of cubic vertices v3 or v4 would violate
internal 4-connectivity. Now the only possible patches on F (G) are (a, d, v1) and (a, d, v2) and the two
embedding with both of these patches are related by a single Q-Twist.

Figure 66.
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Flexibility of K4,4 −M2

Supposem = 1 and n ∈ {3, 4}. If n = 4, then FG contains aK4,5−M4-subgraph, which is one of the 35
minor-minimal non-projective planar graphs (see, e.g., [1]). Thus n = 3 and so FG contains a K4,4−M3-
subgraph on say partite sets {a, b, c, d} and {v1, v2, v3, v4} with missing edges (v1, b), (v2, c), (v3, d). This
subgraph contains all of the edges of FG except perhaps for any edges on {a, b, c, d}; however, adding
any such edge would violate internal 4-connectivity and so this subgraph is in fact FG itself. Since the
graph is triangle free, there are no patches. Note that this graph is the alternating wheel AW6 with rim
{b, v2, d, v1, c, v3} and hubs a and v4 whose flexibilities are described in Section 5.3.2.

Suppose m = 0 and n = 4. The subgraph of FG minus any edges on {a, b, c, d} is the cube and we
can add all possible edge on {a, b, c, d} and remain planar, a contradiction.

5.3.9 Frame isomorphic to the line graph of K3,3

There are six embeddings of the line graph of K3,3 which correspond to the embeddings of K3,3 itself.
Topologically the embeddings all look as shown in Figure 67, we show one such embedding. If FG is
isomorphic to the line graph of K3,3, then the only patches can be as shown in Figure 67. The six
possible embeddings are all related by Q-Twists as with the embeddings of K3,3.
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Figure 67.
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6 A review of previous work

Flexibility of embeddings of graphs in the projective plane and its relationship with representativity has
been studied previously in several places, e.g., [4], [5], [10], [18], and [19]. In particular, results placing
an upper bound on the number of embeddings of a well-connected graph of a certain representativity
have been of interest. In this section we review some of these results and provide new proofs where
necessary because some errors were made in the past.

In [18, Cor.3.1] it is stated that any two distinct 3-representative embeddings of a graph in the
projective plane are related by a sequence of Q-Twists, Whitney twists, and a degenerate P-Twisting
operation that is there called a T-Twist. The line graph of the Petersen graph, L(P ), has exactly two
distinct embeddings and they are not related by any of these operations. As discussed in Section 2, the
two embeddings of L(P ) are not related by a Q-Twist. Similarly, the T-Twist operation as shown in [18,
p.345] has at most seven vertices whose rotation systems change as a result of the operation. Whereas
the two embeddings of the L(P ) have fifteen such vertices.

In [10, Thm.1.4] it is stated that any two distinct embeddings of a 3-connected graph in the projective
plane are reembeddings of one of five different types. Of all of the types described, only one (which is
called Type II and is shown in [10, Fig.9]) is for 3-representative embeddings. An inspection of this
figure reveals that it is a full Q-Twist and the two embeddings of the Petersen graph are not related by
a Q-Twist.

In our search of the previous literature, we found two results that expressly quote one or both of the
two re-embedding statements in [10] and [18]; Theorem 6.1 (originally stated in [10, Thm. 5.3] and [18,
Cor. 3.2]) and Theorem 6.2 (originally stated in [10, Thm. 1.3]). We provide proofs of both of these
theorems based on Lemma 1.2.

Theorem 6.1 follows immediately from Lemma 1.2 but another quick proof can also be done from
the work in either [19] or [2] where the minor-minimal 3-representative embeddings of graphs in the
projective plane are determined.

Theorem 6.1. If G is 3-connected and has a 4-representative embedding in the projective plane, then
this embedding is the unique embedding of G in the projective plane.

Proof. Since G is 3-connected, Lemma 1.2 implies that any flexibility of G on the projective plane is
accounted for by Q-Twists and P-Twists; however, these structures all imply G has representativity at
most 3, a contradiction.

Theorem 6.2. If G � K6, is 5-connected, and has a 3-representative embedding in the projective plane,
then this embedding is the unique embedding of G in the projective plane.

Proof. If we assume that G has two distinct embeddings in the projective plane, then by Lemma 1.2
the flexibilities are accounted for by Q-Twists and P-Twists. We will see that each possibility leads to
a contradiction.
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In a Q-Twist, any degeneracies lead to a 2-representative embedding and so the Q-Twist is non-
degenerate. Now if there is any interior vertex in any one of the three quadrilateral patches, then there
is a 4-separation of that vertex from one of the hinge or latch vertices, a contradiction. Thus G has 6
vertices that are the hinges and latches of the Q-Twist and since K6 is minor-minimally 3-representative,
G ∼= K6.

In a P-Twist or degenerate P-Twist, the patches are all triangular. Any interior vertex inside a
triangular patch is separated from any vertex off of the patch by the 3 corner vertices of the patch.
This is a contradiction of 5-connectivity unless all vertices of G are on this patch. In this case, G would
consist of this planar triangular patch and edges outside of the patch connecting the three corners of
the patch. One can check that this cannot have a 3-representative embedding, a contradiction. Thus all
of the triangular patches of G contain no interior vertices and so G is a minor of the line graph of the
Petersen graph, call it L(P ). Once we show that K6 is the only 5-connected minor of L(P ), our result
will follow.

We actually prove the stronger result that the only minor of L(P ) that is simple and with minimum
degree at least 5 is K6. If |V (G)| = 6, then we must have that G ∼= K6.

If |V (G)| = 7, then the only way that the minimum degree of G can be at least 5 is if G has a
subgraph isomorphic to K7 minus a 3-edge matching. This graph, however, is one of the 35 minor-
minimal non-projective-planar graphs, a contradiction.

If |V (G)| = t ≥ 8, then let C1, . . . , Ct be the connected components of L(P ) that correspond to the
vertices of G. Since t ≥ 8 and |V (L(P ))| = 15, some Ci consists of a single vertex; however, L(P ) is
4-regular which is a contradiction of the fact that G has minimum degree at least 5.

In the final paragraph of [18, p.346], a third result closely related to the previous two theorems
is stated. It is claimed that the number of reembeddings of a 3-connected 3-representative graph is
a divisor of 12, however the reasoning is incorrect. It is stated that the number of reembeddings of
a 3-connected 3-representative graph G is equal to the number of reembeddings of some minimal 3-
representative minor; however this is not always the case as G may be uniquely embeddable, whereas
the 15 minimal 3-representative embeddings all have non-trivial flexibilities. Here we state the theorem
formally and give a complete proof. Note that the proof does not rely on Lemma 1.2, but we include
this result here for completeness.

Theorem 6.3. If G is 3-connected and has a 3-representative embedding in the projective plane, then
the number of distinct embeddings of G in the projective plane is a divisor of 12. Moreover, for any
divisor of 12 there is a 3-connected 3-representative graph with that number of distinct projective planar
embeddings.

Proof. Consider a connected graph G and all of its embeddings in the projective plane. These partition
into equivalence classes based on equality of the underlying unlabeled embedding. Thus each equivalence
class corresponds to a subgroup of the automorphism group of G. Call these equivalence classes of
embeddings the topological classes of G.

If G has a 3-representative embedding in the projective plane, then the main result of [19] implies that
the embedding has a subdivision, call it H, of one of the embeddings in [18, Fig.2]. By 3-connectivity and
3-representativity of G, the embeddings of the H-bridges of G are uniquely determined up to isotopy by
the embedding of H. Thus there is an injection from topological classes of G into the topological classes
of H such that the group of embeddings for a given topological class of G is a subgroup of the group
of embeddings for the corresponding topological class of H. Hence the number of distinct embeddings
of G in a topological class divides the number of distinct embeddings in the corresponding topological
class of H.
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In [19] the number of distinct embeddings of each topological class shown in [18, Fig.2] is calculated.
Furthermore, note that all of the topological classes save for Classes V and VI are for different underlying
graphs. Aside from H being in Classes V and VI, the number of distinct embeddings of G is a divisor
of 12. For H in one of Classes V and VI, the number of distinct embeddings of G is a sum of either one
or two divisors of 3, which is always a divisor of 12.

The moreover part of the statement follows from the fact that for each divisor of 12, one of the fifteen
minimal 3-representative embeddings in [18, Fig.2] has that many reembeddings.
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