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Preface 

The  golde~z age oftmuthemntics---rhur \vas  not 
the uge of Euclid, rt I S  ottrs. 

C.J. KEYSER 

This time of writing is the hundredth anniversary of the publication ( 1  892) 
of Poincart's first note on topology, which arguably marks the beginning 
of the subject of algebraic, or "combinatorial," topology. There was earlier 
scattered work by Euler, Listing (who coined the word "topology"), Mobius 
and his band, Riemann, Kiein, and Betti. Indeed, even as early as 1679, Le~bniz 
indicated the desirability of creating a geometry of the topological type. The 
establishment of topology (or "analysis situs" as it was often called at the 
time) as a coherent theory, however, belongs to Poincart. 

Curiously, the beginning of general topology, also called "point set 
topology," dates fourteen years later when FrCchet published the first abstract 
treatment of the subject in 1906. 

Since the beginning of time, or at least the era of Archimedes, smooth 
manifolds (curves, surfaces, mechanical configurations, the universe) have 
been a central focus in mathematics. They have always been at the core of 
interest in topology. After the seminal work of Milnor, Smale. and many 
others, in the last half of this century, the topological aspects of smooth 
manifolds, as distinct from the differential geometric aspects, became a subject 
in its own right. While the major portion of this book is devoted to algebrarc 
topology, I attempt to give the reader some glimpses into the beautiful and 
important realm of smooth manifolds along the way, and to instill the tenet 
that the algebra~c tools are primarily intended for the understanding of the 
geometric world. 

This book 1s intended as a textbook for a beginning (first-year graduate) 
course in algebraic topology with a strong flavoring of smooth rnanlfold 
theory. The choice of top~cs represents the ideal (to the author) course 
In practice, however, most such courses would omit many of the subjects in 
the book. I would expect that most such courses would assume prevlous 
knowledge of general topology and co would skip that chapter, or be llm~ted 
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to a brief run-through of the more important parts of it. The section on 
homotopy should be covered, however, at some point. I do not go deeply 
into general topology, but I do  believe that I cover the subject as completely 
as a mathematics student needs unless he or she intends to specialize in that 
area. 

It is hoped that at least the introductory parts of the chapter on 
differentiable manifolds will be covered. The first section on the Implicit 
Function Theorem might best be consigned to individual reading. In practice, 
however, I expect that chapter to be skipped in many cases with that material 
assumed covered in another course in differential geometry, ideally concurrent. 
With that possibility in mind, the book was structured so that that material 
is not essential to the remainder of the book. Those results that use the 
methods of smooth manifolds and that are crucial to other parts of the 
book are given separate treatment by other methods. Such duplication is 
not so large as to be consumptive of time, and, in any case, is desirable from 
a pedagogic standpoint. Even the material on differential forms and 
de Rham's Theorem in the chapter on cohomology could be omitted with 
little impact on the other parts of the book. That would be a great shame, 
however, since that material is of such interest on its own part as well as 
serving as a motivation for the introduction of cohomology. The section on 
the de Rham theory of CPn could, however, best be left to assigned reading. 
Perhaps the main use of the material on differentiable manifolds is its impact 
on examples and applications of algebraic topology. 

As is common practice, the starred sections are those that could be omitted 
with minimal impact on other nonstarred material, but the starring should 
not be taken as a recommendation for that aim. In some cases, the starred 
sections make more demands on mathematical maturity than the others and 
may contain proofs that are more sketchy than those elsewhere. 

This book is not intended as a source book. There is no attempt to present 
material in the most general form, unless that entails no expense of time or 
clarity. Exceptions are cases, such as the proof of de Rham's Theorem, where 
generality actually improves both efficiency and clarity. Treatment of esoteric 
byways is inappropriate in textbooks and introductory courses. Students are 
unlikely to retain such material, and less likely to ever need it, if, indeed, 
they absorb it in the first place. 

As mentioned, some important results are given more than one proof, as 
much for pedagogic reasons as for maintaining accessibility of results essential 
to algebraic topology for those who choose to skip the geometric treatments 
of those results. The Fundamental Theorem of Algebra is given no less than 
four topological proofs (in illustration of various results). In places where 
choice is necessary between competing approaches to a given topic, preference 
has been given to the one that leads to the best understanding and intuition. 

In the case of homology theory, I first introduce singular homology and 
derive its simpler properties. Then the axioms of Eilenberg, Steenrod, and 
Milnor are introduced and used exclusively to derive the computation of 
the homology groups of cell complexes. I believe that doing this from the 
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axioms, without recourse to singular homology, leads to a better grasp of the 
functorial nature of the subject. (It also provides a uniqueness proof gratis.) 
This also leads quickly to the major applications of homology theory. After 
that point, the difficult and technical parts of showing that singular homology 
satisfies the axioms are dealt with. 

Cohomology is introduced by first treating differential forms on manifolds, 
~ntroducing the de Kham cohomology and then linking it to singular 
homology. This leads naturally to singular cohomology. After development 
of the simple properties of singular cohomology, de Rham cohomology is 
returned to and de Rham's famous theorem is proved. (This is one place 
where treatment of a result in generality, for all differentiable manifolds and 
not just compact ones, actually provides a simpler and cleaner approach.) 

Appendix B contains brief background material on "naive" set theory. 
The other appendices contain ancillary material referred to in the main text, 
usually in reference to an inessential matter. 

There is much more material in this book than can be covered in a one-year 
course. Indeed, if everything is covered, there is enough for a two-year course. 
As a suggestion for a one-year course, one could start with Chapter 11, 
assigning Section 1 as individual reading and then covering Sections 2 through 
11. Then pick up Section 14 of Chapter I and continue with Chapter 111, 
Sections 1 through 8, and possibly Section 9. Then take Chapter IV except 
for Section 12 and perhaps omitting some details about CW-complexes. Then 
cover Chapter V except for the last three sections. Finally, Chapter VI can 
be covered through Section 10. If there is time, coverage of Hopf's Theorem 
in Section 11 of Chapter V is recommended. Alternatively to the coverage 
of Chapter VI, one could cover as much of Chapter VII as is possible, 
particularly if there is not sufficient time to reach the duality theorems of 
Chapter V1. 

Although I do make occasional historical remarks, I make no attempt at 
thoroughness in that direction. An excellent history of the subject can be 
found in Dieudonni: [ I  1. That work is, in fact, much more than a history and 
deserves to be in every topologist's library. 

Most sections of the book end with a group of problems, which are 
exercises for the reader. Some are harder, or require more "maturity," than 
others and those are marked with a + . Problems marked with a + are those 
whose results are used elsewhere in the main text of the book, explicitly or 
implicitly. 

Glen E. Bredon 
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CHAPTER I " 

General Topology 

A round man cannot be expected t o j t  in a 
square hole right away. He must have time to 

modify his shape. 

1. Metric Spaces 

We are all familiar with the notion of distance in euclidean n-space: If x and 
y are points in Rn then 

This notion of distance permits the definition of continuity of functions from 
one euclidean space to another by the usual 6-6 definition: 

f :  Rn -+ Rk is continuous at x€Rn if, given E > 0, 
36 > 0 3 dist(x, y) < 6 => dist( f (x), f (y)) < E.  

Although the spaces of most interest to us in this book are subsets of euclidean 
spaces, it is useful to generalize the notion of "space" to get away from such 
a hypothesis, because it would be very complicated to try to verify that spaces 
we construct are always of this type. In topology, the central notion is that 
of continuity. Thus it would usually suffice for us to treat "spaces" for which 
we can give a workable definition of continuity. 

We could define continuity as above for any "space" which has a suitable 
notion of distance. Such spaces are called "metric spaces." 

1.1. Definition. A metric space is a set X together with a function 

dist: X x X -+ R, 

called a metric, such that the following three laws are satisfied: 

(1) (positivity) dist(x, y) 2 0 with equality o x = y; 
(2)  (symmetry) dist(x, y) = dist(y, x); and 
(3) (triangle inequality) dist(x, z) 5 dist(x, y) + distb, z). 
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CHAPTER I - 
i 

I General Topology 

A round man cannot be expected tofir in a 
square hole right away. He must have time to 

modify his shape. 

1. Metric Spaces 

We are all familiar with the notion of distance in euclidean n-space: If x and 
y are points in Rn then 

j 
This notion of distance permits the definition of continuity of functions from 
one euclidean space to another by the usual E-6 definition: 

f:  Rn+ Rk is continuous at xeRn if, given E > 0, 
36 > 03dist(x,y) < 6 * dist(f(x),j(y)) < c. 

Although the spaces of most interest to us in this book are subsets of euclidean 
spaces, it is useful to generalize the notion of "space" to get away from such 
a hypothesis, because it would be very complicated to try to verify that spaces 
we construct are always of this type. In topology, the central notion is that 
of continuity. Thus it would usually suffice for us to treat "spaces" for which 
we can give a workable definition of continuity. 

We could define continuity as above for any "space" which has a suitable 
notion of distance, Such spaces are called "metric spaces." 

1.1. Definition. A metric space is a set X together with a function 

dist: X x X --+ R, 

called a metric, such that the following three laws are satisfied: 

(1) (positivity) dist(x, y) 2 0 with equality o x  = y; 
(2)  (symmetry) dist(x, Y) = dist(y, x); and 
( 3 )  (triangle inequality) dist(x, z) 5 dist(x, y) + dist(y, 2). 



In a metric space X we define the "€-ball," 6 > 0, about a point XEX to be 

Also, a subset U c X is said to be "open" if, for each point X E U ,  there is 
an €-ball about x completely contained in U. A subset is said to be "closed" 
if its complement is open. If y~B,(x)  and if 6 = 6 - dist (x, y) then B,(y) c B,(x) 
by the triangle inequality. This shows that all €-balls are open sets. 

I t  turns out that, for metric spaces, continuity can be expressed completely 
in terms of open sets: 

1.2. Proposition. A function f :  X -+ Y between metric spaces is continuous e 
f- ' (U) is open in X for each open subset U of Y. 

PROOF. I f f  is continuous and U c Y is open and f ( x ) ~ U  then there is an 
e > 0 such that B,(.f(x)) c U .  By continuity, there is a 6 > 0 such that f maps 
the 6-ball about x into B,( f (x)). This means that B,(x) c f - '(U).  This implies 
that f - ' ( U )  is open. 

Conversely, suppose f(x)  = y and that E > 0 is given. By hypothesis, 
,f -'(B,(y)) is open and contains x. Therefore, by the definition of an open 
set, there is a 6 > 0 such that B,(x) c f -'(B,(y)). It follows that if dist(x, x') < 6 
then f (xf)€B,(y), and so dist(f (x), f(xl)) < E ,  proving continuity in the E-6 
sense. 

The only examples of metric spaces we have discussed are euclidean spaces 
and, of course, subsets of those. Even with those, however, there are other 
reasonable metrics: 

It is not hard to verify, from the following proposition, that these three 
metrics give the same open sets, and so behave identically with respect to 
continuity (for maps into or out of them). 

1.3. Proposition. Ifdist, and dist, are metrics on the same set X which satisfy 
the hypothesis that for any point XEX and E > 0 there is a f i  > 0 suc.11 thut 

dist,(x, y) < 6 * dist,(x,~j) < E ,  

and 

dist,(x, y) < ii ' * dist,(x, y) < c, 

then these metrics define the same open sets in X .  

PROOF. The proof is an easy exercise in the definition of open sets and is 
left to the reader. 

PROBLEMS 

1. Consider the set X of all continuous real valued functions on [0, I] Show that 

dist( f, g )  = JO1 i f(x) - g w l  dx 

defines ametricon X Is th~s still thecase ifcont~nuity is weakened to ~ntegrabil~ty? 
I 

1 
2. +If X is a metric space and x, is a given point in X, show that the function 

", f: X -+ R given by f ( x )  = dist(x, x,) is continuous. 

i 
3. +If A is a subset of a metric space X then define a real valued function d on X 

Y. by d(x) = dist(x, A) = inf{dist(x, y)l Y E A ) .  Show that d is continuous. (H i i~ t :  Use the 

I tria~igle inequality to show that Id(x,) - d(x,)l 2 dist(x,, xz).) 

b 
t 
t 2. Topological Spaces 
5 

Although most of the spaces that will interest us in this book are metric 
spaces, or can be given the structure of metric spaces, we will usually only 
care about continuity of mappings and not the metrics themselves. Since 
continuity can be expressed in terms of open sets alone, and since some 
constructions of spaces of interest to us do not easily yield to construction 
of metrics on them, it is very useful to discard the idea of metrics and to 
abstract the basic properties of open sets needed to talk about continuity. 
This leads us to the notion of a general "topological space." 

2.1. Definition. A topological space is a set X together with a collection of 
subsets of X called "open" sets such that: 

(1) the intersection of two open sets is open; 
(2) the union of any collection of open sets is open; and 
(3) the empty set $3 and whole space X are open. 

Additionally, a subset C c X is called "closed" if its complement X - C is 
open. 

Topological spaces are much more general than metric spaces and the 
range of difference between them and metric spaces is much wider than that 
between metric spaces and subspaces of euclidean space. For example, it 1s 
possible to talk about convergence of sequences of points in metric spaces 
with little difference from sequences of real numbers. Continu~ty of functions 
can be described in terms of convergence of sequences rn metric spaces. One 
can also talk about convergence of sequences in general topological spaces 
but that no longer is adequate to describe continuity (as we shall see later). 
Thus it is necessary to exercise care in developing the lheory of general 
topological spaces. We now begin that development, starting with some 
further basic definitions. 



. ....., ,... ,, .I an0 1 are topological spaces and .f: X -+ Y is a function, 
then f is said to be continuous if f - '(U) is open for each open set U c Y. 
A map is a continuous function. 

Since closed sets are just the complements of open sets and since inverse 
images preserve complements (i.e., J -  '(Y - B) = X - f - '(B)), i t  follows that 
a function f: X -+ Y is continuous o f  - '(F) is closed for each closed set 
F c  Y. 

2.3. Definition. If X is a topological space and XEX then a set N is called 
a neighborhood of x in x if there is an open set U c N with XEU. 

Note that a neighborhood is not necessarily an open set, and, even though 
one usually thinks of a neighborhood as "small," it need not be: the entire 
space X is a neighborhood of each of its points. 

Note that the intersection of any two neighborhoods of x in X is a 
neighborhood of .u, which follows from the axiom that the intersection of 
two open sets is open. 

The intuitive notion of "smallness" of a neighborhood is given by the 
concept of a neighborhood basis at a point: 

2.4. Definition. If X is a topological space and xeX then a collection B, of 
subsets of X containing x is called a neighborhood basis at x in X if each 
neighborhood of x in X contains some element of B, and each element of B, 
is a neighborhood of x. 

Neighborhood bases are sometimes convenient in proving functions td be 
continuous: 

2.5. Definition. A function f :  X -+ Y between topological spaces is said to 
be continuous at x, where XEX, if, given any neighborhood N of f(x) in Y, 
there is a neighborhood M of x in X such that f(M) c N. 

Since f ( f  - ' (N) )cN,  this is the same as saying that f -'(N) is a 
neighborhood of x, for each neighborhood N off (x). Clearly, this need only 
be checked for N belonging to some neighborhood basis at f(x). 

2.6. Proposition. A function f :  X -+ Y between topolog~cal spuces is 
continuousoit  is continuous at each point xcX. 

PROOF. Suppose that f is continuous, i.e., that f - ' ( U )  is open for each open 
U c Y. Let N be a neighborhood of f'(x) in Y and let U be an open set.such 
that f ( x ) ~ U  c N as guaranteed by the definition of neighborhood. Then 
X E  f - ' ( U ) c  f -'(N) and f -'(U) is open. It follows that f- ' (N) is a 
neighborhood of x. Thus f is continuous at x. 

Conversely, suppose that I is continuous at each point and let U c Y be 
an open set. For any ref -yU), f - ' ( U )  is thena neighborhood of u. Thus 
there exists an open set V ,  in JY with X E V ~  c cf'-'(U). Hence f - ' ( U )  is the 
union of the sets V,  for x ranging over j-'(U). Since the union of any 
collection of open sets is open, it foilows that f - '(u) is open. But U was an 
arbitrary open set in Y and. consequently, f is continuous. 0 

2.7. Definition. A function JI-.Y 'MI Y between tonological spaces is called a 
homeomorphism if f - ': Y -* X exlsr- :' - f la  i:*r*.- u,, -ad onto) and 
both f and f - ' are continuous. The notation X x Y means ,.... ' i s  

homeomorphic to Y. 

Two topologicai spaces are, then, homeomorphic if there is a one one 
correspondence between them as sets which also ma!ces the open sets 
correspond. Homeomorphic spaces are considered as essentially the same. 
One of the main problems in topology is to find methods of deciding when 
two spaces are homeomorphic or not. 

To describe a topological space it is not necessary to describe completely 
the open sets. This can often be done more simply using the notion of a 
"basis" for the topology: 

2.8. Definition. If X is a topological space and 13 is a collection of subsets 
of X, then B is called a basis for the topology of X if the open sets are 
precisely the unions of members of B. (In particular, the members of B are 
open.) A collection S of subsets of X is called a suhbasis for the topology of 
X if the set B of finite intersections of members of S is a basis. 

Note that any collection S of subsets of any set X is a subbasis for some 
topology on X ,  namely, the topology for which the open sets are the arbitrary 
unions of the finite intersections of members of S. (The empty set and whole 
set X are taken care of by the convention that an intersection of an empty 
collection of sets is h e  whole set and the union of an empty collection of 
sets is the empty set.) Thus, to define a topology, it suffices to specify some 
collection of sets as a subbasis. The resulting topology is called the topology 
"generated" by this subbasis. 

In a metric space the collection of +-balls, for all E > 0, is a basis, So is 
the collection of €-balls for s = 1, 4, 3, .  . . . 

Here arr: some examples of topological spaces: 

1. (Trivial topobgy-) Any set X with only the empty set and the whole set 
X as open. 

2. (Discrete topidoy,) Any set X with all subsets being open. 
3. Any set X with open set5 being those subsets of X whose complements 

are finite, togetkr wiwirh &he empty set. (That is, the dosed sets are finite 
sets -and X itself.) 



4. X = wv{ to )  with the open sets being all subsets of co together with 
complements of finite sets. (Here, o denotes the set of natural numbers.) 

5. Let X be any partially ordered set. For a 6 X  cons~der the one-slded 
illtervals ( P E X  la < P)  and f P ~ X l a  > a). The "order topology" on X is 
the topology generated by these intervals. The "strong order topology" is 
the topology generated by these intervals together with the complements 
of finite sets. 

6. Let X = I  x I where I is the unit interval [O, I]. Give this the "dictionary 
ordering," i.e., (x, JJ) < js, t )  e either x c s or (x = s and y < tf. Let X have 
the order topology for this ordering. 

7. Let X be the real line but with the topology generated by the "half open 
intervals" [x, 1)). This is called the "half open interval topology." 

8. Let X =nu (Q) be the set of ordinal numbers up to and including the 
least uncountable ordinal R; see Theorem B.28. Give it the order topology. 

2.9. Definition. A topological space is said to be,first countable if each point 
has a countable neighborhood basis. 

2.10. Definition. A topological space is said to be second countable if its 
topology has a countable basis. 

Note that all metric spaces are first countable. Some metric spaces are 
not second countable, e.g., the space consisting of any uncountable set with 
the metric dist(x, y) = 1 if x # y, and dist(x,x) = 0 (which yields the discrete 
topology). 

Euclidean spaces are second countable since the E-balls, with E rational, 
about the points with all rational coordinates, is easily seen to be a basis. 

2.1 1. Definition. A sequence f,, f,, . . . of functions from a topological space 
X to a metric space Y is said to converge uniformly to a function f :  X-+ Y 
if, for each E > 0, there is a number n such that i > n * dist(f,(x), J(x)) < E for 
all XEX. 

2.12. Theorem. If a sequence f,, f,, . . ., o f  continuous functions .from a 
topological space X  to a metric space Y converges uniformly to a .function 
f: X -t Y ,  then f is continuous. 

PROOF. Given 6 > 0, let no be such that 

n 2 no * distCf(x), f,,(x)) < 4 3  for all XEX. 

Given a point x,, the continuity off,,, implies that there is a neighborhood 
N of x, such that X E  N dist (f,,(x), f,,(xo)) < €13. Thus, for any X E  N we have 
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2.13:Definition. A function 1': X -+ Y between topological spaces IS said to 
be opett i f  { ( U )  is open in Y for all open U c X. I t  1s said to be closed if f(C) 
is closed in Y for all closed C c X .  

2.14. Definition. I f  X is a set and some condition is given on subsets of X 
which may or may not hold for any particular subset, then if therc is a 
topology T whose open sets satisfy the condition, and such that, for any 
topology T' whose open sets satisfy the condition, then the T-open sets are 
also T'-open (i.e., T c T'), then T is called the smallest (or weakest or ~.oarsesr) 
topology satisfying the condition. If, instead, for any topology T' whose open 
sets satisfy the condition, any T'-open sets are also T-open, then T IS called 
the largest (or strongest orfinest) topology satisfying the condition. 

The terms "weak" and "strong" are the oldest historically. However, they 
are used in some places to mean the opposite of the above meaning in general 
topology. Even some topology books disagree on their meaning. For this 
reason, the terms "coarse" and "fine" were introduced to rectify the confusion. 
They are metaphors for thinking of open sets as grains in a rock (the fewer 
grains, the coarser the rock). The terms "smallest" and "largest" were 
introduced for the same reason, and they are mathematically more preclse 
as applied to the topologies as collections of open sets. We prefer the latter 
terms in general. 

For example (see Section 13), iff: X -, Y is a function and X  is a topological 
space, then there is a largest topology on Y making f continuous, namely 
that topology having open sets {V r Y 1 f -'(V) is open in X ) .  There is also 
a smallest such topology, the trivial topology, but it is not very interesting. 
Also see Sections 8 and 13 for other examples of this concept. 

If a topology is the largest one satisfying some given condition then usually 
(in fact, always) there is another condition for which the given topology is 
the smallest one satisfying the new condition. For example, the topology on 
Y, in the example of the previous paragraph, is the smallest topology satisfying 
the condition "for all spaces Z and all functions y: Y -+ Z, y 0 f continuous 3 g 
continuous." Thus it is meaningless to argue whether a glven topology is 
"weak" or "strong," etc., unless the defining condition is specified. 

1 Show that rn a topological space X: 
(a) the union of two closed sets is closed; 
(b) the intersectron of any collection of closed sets is closed; and 
(c) the empty set (a and whole space X are closed 

2. Conslder the topology on the real lrne generated by the half open rntervals [x ,  y) 
together with those of the form (x,y].  Show that thls colncrdes with the discrete 
topology. 

3. Show that the space !2u{R) in the order topology cannot be given a metric 
consistent wrth its topology. 
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4. + If f :  X--+ Y is a function between topological spaces, and f - ' (U)  is open for 
each open U in some subbasis for the topology of Y, show that f is continuous. 

5. 0 Suppose that S is a set and that we are given, for each XES, a collection N(x) 
of subsets of S satisfying: 
(1) NEN(x) => XEN; 
(2) N, MEN(x) => 3 P ~ N ( x ) 3  P c N nM, and 
(3) XES => N(x) f 0. 
Then show that there is a unique topology on S such that N(x) is a neighborhood 
basis at x, for each XES. (Thus a topology can be defined by the specification of 
such a collection of neighborhoods at each point.) 

3. Subspaces 

There are several techniques for producing new topological spaces out of old 
ones. The simplest is the passing to a "subspace," which is merely an arbitrary 
subset inheriting a topology from the mother space in a quite natural 
way. 

3.1. Definition. If X is a topological space and A c X then the relative 
topology or the subspace topology on A is the collection of intersections of 
A with open sets of X. With this topology, A is called a subspace of X. 

The following propositions are all easy consequences of the definitions 
and the proofs are left to the reader: 

3.2. Proposition. If Y is a subspace of X then A c Y is closed in Y o  A = . 

Y n B for some closed subset B of X .  

3.3. Proposition. If X is a topological space and A c X then there is a largest 
open set U with U c A. This set is called the "interior" of A in X and is 
denoted by int(A). 

3.4. Proposition. If X is a topological space and A c X then there is a smallest 
closed set F with A c F c X. This set is called the "closure" of A in X and 
is denoted by 2. 

If we need to specify the space in which a closure is taken (the X), we 
shall use the notation AX. A consequence of the following fact is that this 
notation need not be used very often: 

3.5. Proposition. If A c Y c  X then AY = A X n  Y. Thus, if Y is closed in X 
then AY = AX. El 

3.6. Definition. If X is a topological space and A c X then the boundary or 
fiontier of A is defined to be a A  = bdry(A) = 2 n X  - A. 

3.7. Proposition. If Y c X then the set of intersections of Y with members of 
a basis of X is a basis ofthe relative topology of Y .  

3.8. Proposition. I f  X, Y, Z are topological spaces and Y is a subspace of X 
and Z is a subspace of Y ,  then Z is a subspace of X .  

3.9. Proposition. IfX is a metric space and A c X then 2 coincides with the 
set of limits in X of sequences of points in A. 

PROOF. If x is the limit of a sequence of points in A then any open set about 
x contains a point of A. Thus x$int(X - A). Since X - int(X - A) = A (see 
the problems at the end of this section), xeA. Conversely, if X E ~  and n > 0 
is any integer, then B,,,(x) must contain a point in A because otherwise x 
would lie in int(X - A). Take one such point and name it x,. Then it follows 
immediately that x = lim(x,) is a limit of a sequence of points in A. C] 

3.10. Definition. A subset A of a topological space X is called dense in X if 
2 = X. A subset A is said to be nowhere dense in X if int(A) = 0. 

1. + Let X be a topological space and A, B c X. 
(a) Show that 

int(A) = { ~ E X J ~ U  open3aeU c A) 
and x =  ( X E X ~ Q U  open with XEU, U n A  Z. 0). 

- 
(b) Show that A is openoA - = int(A) and that A is closed- A = A. 
(c) Show that X - int(A) = X - A and that X - 3 = int(X - A). 
(d) Show that int(AnB)= int(A)nint(B) and that A= BuB. 
(e) Show that 

nint(A,) 2 int(r) A,) = int(nint(A,)), 

U & c closure(u A,) = cIosure(U A), 
Uint(A,) c i n t (u  A,), 

0 A, 2 closure(n A,), 

and give examples showing that these inclusions need not be equalities. 
(f)  Show A c B *[Ac B and int(A)cint(B)]. 

2. For A c X, a topological space, show that X is the disjoint union of int(A), 
bdry(A), and X - 1. 

3. +-Show that a metric space is second countableoit has a countable dense set 
(a countable set whose closure is the whole spice). (Such a metric space is called 
"separable.") 



4. + Show that the union of two nowhere dense sets is nowhere dense. 

5. A topological space X is said to be "irreducible" if, whenever X = FuG with F 
and G closed, then either X = F or X = G. A subspace is irreducible if it 1s so in  
the subspace topology. Show that if X is irreducible and U c X is open, then U 
is irreducible. 

6. A "Zariski space" is a topological space with the property that every descending 
chain F ,  2 F ,  2 F ,  =, ... of closed sets is eventually constant. Show that every 
Zariski space can be expressed as a finite union X = Y, u Y,  u ..- u Y, where the 
Y, are closed and irreducible and Y, Yj for i # j. Also show that this decomposition 
is unique up to order. 

7. Let X be the real line with the topology for which the open sets are 0 together 
with the complements of finite subsets. Show that X is qn irreducible Zariski space. 

8. 4 Let X = A u B, where A and B are closed. Let f:  X -+ Y be a function. If the 
restrictions off to A and Bare both continuous then show that f is continuous. 

4. Connectivity and Components 

In a naively intuitive sense, a connected space is a space in which one can 
move from any point to any other point without jumps. Another way to 
view it intuitively is as the idea that the space does not fall into two o r  
more pieces which are separated from one another. There are two ways 
of making these crude ideas precise and both of them will be important 
to us. One of them, called "connectivity," is the subject of this section, 
while the other, called "arcwise connectivity," is taken up in the problems 
at the end. 

4.1. Definition. A topological space X is called connected if it is not the 
disjoint union of two nonempty open subsets. 

4.2. Definition. A subset A of a topological space X is called clopen if it is 
both open and closed in X. 

4.3. Proposition. A topological space X is connected o its only dopen subsets 
are X and a. 
4.4. Definition. A discrete valued map is a map (continuous) from a 
topological space X to a discrete space D. 

4.5. Proposition. A topological space X is connected o every discrete valued 
map on X is constant. 

PROOF. If X is connected and d: X -+ D is a discrete valued map and if y e D  
is in the range of d, then d W 1 ( y )  is clopen and nonempty and so must equal 
X ,  and so d is constant with only value y. 
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Conversely, if X is not connected then X = U u V for some disjoint clopen 
sets U and V. Then the map d: X -, (0, l)  which is 0 on U and is 1 on V is 
a nonconstant discrete valued map. 0 

4.6. Proposition. If .f: X -, Y is continuous and X is connected, then f ( X )  is 
connected. 

PROOF. Let d: f ( X ) +  D be a discrete valued map. Then do f is a discrete 
valued map on X and hence must be constant. But that implies that d is 
constant, and hence that f (X) is connected. 

4.7. Proposition. If (Yi) is a collection of connected sets in a topological space 
X and $no two of the Y, are disjoint, then Yi is connected. 

PROOF. Let d: U Y, -, D be a discrete valued map. Let p,q be any two points 
in U Y;.. Suppose p~ Yi and q~ Yj and r e  Y, n Yj. Then, since d must be constant 
on each Yi, we have d(p) = d(r) = d(q). But p and q were completely arbitrary. 
Thus d is constant. C1 

4.8. Corollary. The relation "p and q belong to a connected subset of X is 
an equivalence relation. CI 

4.9. Definition. The equivalence classes of the equivalence relation in 
Corollary 4.8 are called the components of X. 

4.10. Proposition. Components of space X are connected and closed. Each 
connected set is contained in a component. (Thus the components are "maximal 
connected subsets.") Components are either equal or disjoint, and fill out X .  

PROOF. The last statement follows from the fact that the components are 
equivalence classes of an equivalence relation. By definition, the component 
of X containing p is the union of all connected sets containing p, and that 
is connected by Proposition 4.7. This also implies that a connected set lies 
in a component. That a component is closed follows from the fact that the 
closure of a connected set is connected (left to the reader in the problems 
below). 

4.1 1. Proposition. The statement "d(p) = d(q) for every discrete valued map d 
on X" is an equivalence relation. 

4.12. Definition. The equivalence classes of the relation in Proposition 4.1 1 
are called the quasi-components of X. 

4.13. Proposition. Quasi-components of a space X are closed. Each connected 
set is contained in a quasi-component. (In particular, each component is con- 
tained in a quasi-component.) Quasi-components are either equal or disjoint, 
and fill out X .  



PROOF. If peX then the quasi-component containing it is just 

( q e  X I d(y) = d(p) for all discrete valued maps d I\. 
But this is 

0 ( d -  '(d(p))jd a discrete valued map) 

which is an intersection of closed sets and hence is closed. The rest is obvious. 

PROBLEMS 

1. + If A is a connected subset of the topological space X and if A c H c 2 then 
show that B is connected. 

2. + A space X is said to be "locally connected if for each X E X  and each 
neighborhood N of x, there is a connected neighborhood V of x with V c N. 
If X  is locally connected, show that its components are open and equal its 
quasi-components. 

3. + Show that the unit interval [O,l] in the real number is connected. (Hint: Assume 
that [O,l] = U u V, where U and V are disjoint nonempty open sets, and 1~ V. 
Consider x = sup(U). Show that x < 1 and derive a contradiction.) 

4. Consider the subspace X of the unit square in the plane consisting of the vertical 
line segments ( l /n )  x [O,1] for n = l,2,3 ,..., and the two points (0,O) and (0,l). 
Show that the latter two points are components of X but not quasi-components. 
Show that the two point set ((0,0), (0, I)} is a quasi-component which is not 
connected. 

5. + A topological space X is said to be "arcwise connected" if for any two points 
p and q in X there exists a map I: [O,1] -+ X with 40) = p and ).(I) = q. A space 
X is "locally arcwise connected" if every neighborhood of any point contains an 
arcwise connected neighborhood. An "arc component" is a maximal arcwise 
connected subset. Show that: 
(a) an arcwise connected space is connected; 
(b) a space is the disjoint union of its arc components; 
(c) an arc component of a space is contained in some component; 
(d) the arc components of a locally arcwise connected space are clopen, and 

coincide with the components; 
(e) the space with exactly two points p and q and open sets (ZI, { p i ,  { p , q }  (only) 

1s arcwlse connected; and 
( f )  the subspace of the plane consisting of (0) x [ - 1, I] u {(x, sln(l/x))lx > Of is 

connected but not arcwise connected. 

5. Separation Axioms 

The axioms defining a topological space are extremely general and weak. It 
should be no surprise that most spaces of interest will have further restrictions 
on them. We refer here not to structures like a metric, but to conditions 

completely descr~bable in terms of the topology itself, i.e., in terms of the 

t 
points and open sets. We begin with the so-called separation axioms. 

:. 
i 

k 5.1. Definition. The separation axioms: i 
> 
i (To) A topological space X is called a To-space if for any two points x  # y 

there is an open set containing one of them but not the other. 
i ( T I )  A topological space X is called a TI-space if for any two points x # y 

i there is an open set containing x but not y and another open set 
containing y but not x. 

(T,) A topological space X is called a T,-space or Hausdoff if for any two 
points x # y there are disjoint open sets U  and V with XE U  and YE V .  

f (T,) A TI-space X is called a T,-space or regular if for any point x  and closed 
B set F not containing x  there are disjoint open sets U  and V with x e U  

and F c V. 
(T,) A TI-space X is called a T4-space or normal if for any two disjoint 

closed sets F and G there are disjoint open sets U  and V with F c U  

I and G c V. 

I 
8 Axiom T o  simply says that points can be distinguished by the open sets 
2 in which they lie. 
t Axiom T, is the same as saying that one-point sets (singletons) are closed 

sets, because if we single out a point x and, for each different point y we 
take U ,  to be an open set containing y but not x, then X - {x} = U U ,  is the 
union of open sets and so is open. Conversely, if (x) is closed then the open ! set X - {x} can be taken, in the axiom, as the open set containing any other F point. 

5 Axiom T ,  is the most important of these axioms and will be assumed in 
: the majority of the text of this book. We shall see later that it essentially 
t 
P means that "limits" are unique. 

5.2. Proposition. A Hausdoff space is regular e the closed neighborhoods of 
uny point form a neighborhood basis of the point. 

PROOF. Suppose that X is regular, let X E  V, with V open, and put C = X - V. 
By regularity there are open sets U ,  W, with x e U ,  C c W ,  and U n W = a 
Then X - W is closed, and we have X - W c X - C = V, so any neighborhood 
V of x contains a closed neighborhood X - W of x, as was to be shown. 

Conversely, suppose that every point has a closed neighborhood basis. 
Let x$C  with C closed and put V = X - C. By the assumption, there is 
an open set U with 0 c V = X - C and X E U .  Then C c X - U ,  and 
U n ( X  - U )  = jZI. Thus X is regular. 

5.3. Corollary. A suhspace of a regular space is regular. 

PROOF. I f  A c X is a subspace, just intersect a closed neighborhood basis in 
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X of a voint a e A  with A and you get a closed neighborhood basis of a t 

PROBLEMS 

1. Give an example of a space that is not To, and an example of a To-space that 
is not T,. ( H ~ n t :  Spaces with only two points sufftce.) 

2. Show that a finite TI-space is discrete. t 
3. Consider the set o of natural numbers together with two other points named x , y .  

Put a partial ordering on this set which orders o as usual and makes both x and 
y greater than any integer, but does not order x  against ):. Give this the strong 
order topology. Show it is TI but not Hausdorff. 

4. Consider the space X whose point set is the plane but whose open sets are given 
by the basis consisting of the usual open sets in the plane together with the sets 
{ ( x ,  y ) ( x 2  + y2 < a, y  + 0) v ((0,O)) for all a > 0. Show that X is Hausdorff but 
not regular. 

5. -+ Show that a subspace of a Hausdorff space is Hausdorff. 

6. .+ Show that a Hausdorff space is normalofor any sets U open and C closed 
with C c U there is an open set V with C c V c c U .  

7. Show that there is a smallest topology on the real numbers such that every singleton 
is closed. Which of the separation axioms does it satisfy? 

8. Show that ifa Zariski space (see Section 3, Problem 6) is Hausdorff then it is finite. 

9. + 4 Show that a metric space is normal. 

6. Nets (Moore-Smith Convergence) 9 
In metric spaces continuity of functions can be expressed in terms of the 
convergence of sequences. This is not true in general topological spaces. ! 
However, there is a generalization of sequences that does work and permits t 

proofs of some things analogously to  proofs using sequences in metric spaces. 
This can be of great help to the intuition. The generalization of a sequence 
is called a net, and we will develop this subject in this section. Although we 
will use this concept in proving a couple of important results in subsequent 
sections, those results will not be used in the main body of the book, 
and for that reason, this section can be skipped without serious harm to 
subsequent developments. 

6.1. Definition. A directed set D is a partially ordered set such that, for any 
two elements cr and /? of D, there is a TED with r 2 x and s 2 /?. 

6.2. Definition. A net in a topological space X is a directed set D together 
with a function cb: D -+ X. 

Note that a sequence is simply a net based on the natural numbers as 
indexing set. 

63. Definition. If @. D -t X is a net in the topological space X and A c X 
then we say that cf, is frequently in A if for any a e D  there is a P 2 a such 
that Q(B)EA. It is said to be eventually in A if there is an aeD  such that 
@(/?)E A for all P 2 a. 

6.4. Definition. A net @ D -+ X in a topological space is said to converge to 
XEX if, for every neighborhood U c X of x, cf, is eventually in U. 

Note that if a net cf, is eventually in two sets U and V then it is eventually 
in U n  V. Also, this is impossible if U n  V = This proves half of the 
following fact. The remainder of the proof constructs a net which is typical 
of the nets encountered with general topologicai spaces. 

6.5. Proposition. A topological space X is Hausdorf fe  any two limits of any 
convergent net are equal. (Thus one can speak of the limit of a net in such a 
space.) 

PROOF. The implication *follows from the preceding discussion. Thus 
suppose that X is not Hausdorff, and that x , y ~ X  are two points which 
cannot be separated by open sets. Consider the directed set whose elements 
are ordered pairs a = (U, I/ )  of open sets where XEU and y e V  with the 
ordering ( U , V ) > ( A , B ) o ( U c A  and V c B ) .  For any a= (U ,V) ,  let 
@(u) be some point in U n V .  This defines a net cf, which we claim converges 

z * 

to both x and y. 
To see this, let W be any neighborhood of x. We claim that cf, is eventually 

in W. In fact, take any open set V containing y and an open set U with 
x e U c  W and let a = ( U , V ) .  I f f l=(A,B)>cr  then A c U  and B c  V so 
that @(@)eAn B c U c W, as claimed. Thus cf, converges to x. Similarly, it 
converges to y. 

Next we show that nets are "sufficient" to describe continuity. 

6.6. Proposition. A function f: X -+ Y between two topological spaces is 
continuous- for every net cf, in X converging to XEX, the net f ocf, in Y 
converges to f(x). 

PROOF. First suppose that f is continuous and let @ be a net in X converging 
to x. Let V be any open set in Y containing j ' (x)  and put U = f - ' ( V ) ,  which 
is a neighborhood of x. By definition of convergence, @ is eventually in U, 
and so j o @  is eventually in V, and thus converges to f(x). 

Conversely, suppose that f is not continuous. Then there is an open set 
V c Y such that K = f -'(V) is not open. Let XEK - int(K). Consider the 
directed set consisting of open neighborhoods of x ordered by inclusion, i.e., 



A < B means A 3 B.,F'or any such neighborhood A of x,  A cannot be 
completely inside K ,  so we can choose a point W , E A  - K. Define the net cD 
by putting @(A)  = w,. If N is any neighborhood of x and if B 2 N (i.e., B c N) 
then @(B)  = w ~ E B -  K c N ,  showing that cD is eventually in N. Thus cD 
converges to x.  However ( j  .@)(A)$ V ,  for any A, so that f 00 is not eventually 
in V ,  and thus does not converge to f (x) .  

Given a particular net cD: D -+ X let x, = @(a), for  ED. Then it is common 
to speak of { x , }  as being the net in question. This notation makes discussion 
of nets similar to the notation commonly used with sequences. For example, 
one can phrase the condition in Proposition 6.6 as 

f(1im x,) = lim( f (x,)) .  

6.7. Proposition. If A c X then A coincides with the set of limits of nets in A 
which converge in X .  

PROOF. If X E A  then any open neighborhood U of x must intersect A 
nontrivially. Thus we can base a net on this set of neighborhoods, ordered 
by inclusion and such points x , € U n A .  This clearly converges to x. 
Conversely, if ( x , )  is any net of points in A which converges to a point X E X  
then, by definition, this net is eventually in any given neighborhood of x.  
Thus any neighborhood of x contains a point in A and so ~ € 2 .  (Here we 
are using Problem 1(a) of Section 3.) 

In the case of ordinary sequences, a subsequence can be thought of 
in two different ways: ( 1 )  by discarding elements of the sequence and 
renumbering, or ( 2 )  by composing the sequence, thought of as a function 
Z+ -t X, with a function h: Z +  Z+,  such that i > j  * h(i) > h( j ) .  The first 
of these turns out to be inadequate for nets in general spaces. For the second 
method, a little thought should convince the reader that the last condition 
of monotonicity of h is stronger than is necessary for the usual uses of 
subsequences. Modifying it leads to the more general notion of a "subnet," 
which we now define. 

6.8. Definition. If D and D' are directed sets and h: D'-+ D is a function, then 
h is called final if, V ~ E D ,  3 6'6 D' 3 (a' 2 6' =. h(al) > 6) .  

6.9. Definition. A subnet of a net p: D -t X ,  is the composition pdh of p with 
a final function h: D' -+ D. 

6.10. Proposition. A net { x , )  is frequently in each neighborhood of a given 
point X E X  o i t  has a suhnet which converges to x. 

PROOF. Consider the directed set D' consisting of ordered pairs (a ,  U )  where 
acD,  U is a neighborhood of x, and x ,EU,  ordered by the D ordering and 

inclusion. If (a, U )  and ( p ,  V )  are In D' then, since ( x , )  is frequently in I /  n V ,  - 
there is a y 2 a, /I with X,EU n V .  Thus (y, U n V)ED' and 0 1 ,  U n V )  2 (a ,  U) ,  
(p ,  V ) ,  showing that D' is directed. Map D' - -+D by (ct, U ) H X .  For any  ED, 
we have ( 6 , X ) s D 1 .  Now (a, U )  2 (6, X )  implies that a 2 6, which means that 
D'-+D is final, and so (x,,,,} is a subnet of (x,). We claim that it converges 
to x.  Let N be any neighborhood of w. By assumption, there is some x p € N .  
If (a, U )  2 (/j, N )  then xfa.,, = X,EU c N. Consequently, ( x , , , , , )  is eventually 
in N. The converse is immediate. 

Next we treat a powerful concept for nets which has no analogue for 
sequences. 

6.11. Definition. A net in a set X is called universal if, for any A c X ,  the 
net is either eventually in A or eventually in X - A. 

6.12. Proposition. The composition of a universal net in X with a function 
f: X -+ Y is a universal net in Y. 

PROOF. If A c Y then the net is eventually in either f - ' (A )  or X - f - ' ( A )  
by definition. But X - f - ' (A)  = f - ' (Y  - A)  and it follows that the composed 
net is eventually in either A or Y - A, respectively. 

Except for somewhat trivial cases, the definition of a universal net may 
seem so strong that the reader may reasonably doubt the existence of universal 
nets. However: 

6.13. Theorem. Every net has a universal subnet. 

PROOF. Let { x , l a e P )  be a net in X. Consider all collections C of subsets of 
X such that: 

I ( 1 )  A E C  * ( x , )  is frequently in A; and 
( 2 )  A, BEC 3 A n BEC.  

For example, C = {X) is such a collection. Order the family of all such 
collections C by inclusion. The union of any simply ordered set of such 
collections is clearly such a collection, i.e., satisfies ( 1 )  and (2) .  By the 
Maximality Principle, there is a maximal such collection C, .  

Let Po = ( ( A , ~ ) E C ,  x P J x , E A )  and order Po by 

This glves a partial order on P ,  making P,, into a directed set. Map Po -, P 
by taking ( A , a )  to a. This is clearly final and thus defines a subnet we shall 
denote by {x,,,,,}. We claim that this subnet is universal. 

Suppose S is any subset of X such that (x,,,,,) is frequently in S, Then, 
for any ( A , a ) e P O ,  there is a (B,/ j)  L ( A , a )  in P,, with xp = x ( ~  ,,,, ES. Then 
B c A, f l  r a, and X ~ E B .  Thus x , ) e S n B  c S n  A .  We conclude that (x,; is 
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frequently in S n  A, for any A&,. But then we can throw S and all the sets 
S n A ,  for A&,, into C ,  and conditions ( 1 )  and (2) will still hold. By 
maximality, we must have SEC,. If { . K ( ~ , ~ ) }  were also frequently in X - S 
then X - S would be in C,, and so = Sn(X - S) would be in C,, by (2), 
and this is contrary to (1). Thus we conclude that (x,,.,,) is not frequently 
in X - S,  and so is eventually in S. 

We have shown that if (x( , ,~,)  is frequently in a set S then, in fact, 
eventually in S. This implies that (x(,,,,f is universal. a 

Note that this proof uses the Axiom of Choice in the guise of the Maximality 
Principle. In fact, it can be shown that Theorem 6.13 is equivalent to  the 
Axiom of Choice. 

The following fact is immediate from the definitions: 

6.14. Proposition. A stkbnet of a universal net is universa[. [II 

1. Show that a sequence is a universal net if and only if it is eventually constant. 

2. Consider the space X =Qu(SZ) of ordinals up to and including the first 
uncountable ordinal f2 with the order topology. Show explicitly that there is a net 
in SZ which converges to {Q) but that there is no sequence which does so. 

3. Prove Proposition 6.14. 

4. + Let H be a dense set in the topological space X and let f :  H -+ Y be a map with 
Y regular. Let g:X+ Y be afunction. Suppose that for any net {ha} in W with 
ha -+ X E X  we have f  (ha) -+ g(x). Then show that g: X -+ Y is continuous. Also show 
that the cond~tion of regularity on Y is needed by giving a counterexample 
without it. 

7. Compactness 

The notion of compactness is one of the most important ideas in mathematics. 
The reader has undoubtedly already met it in connection with some of the 
fundamental facts about the real numbers used in calculus. 

7.1. Definition. A coverirlg of a topological space X is a collection of sets 
whose union is X. It is an open covering if the sets are open. A subcover is 
a subset of this collection which still covers the space. 

If A c X then, for convenience, we sometimes use "cover A" for a collection 
of subsets of X whose union contains A. 

7.2. Definition. A topological space X is said to be compact if every open 
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covcring of X hits a finite subcover. (This is sometimes referred to as the 
Heiiie-Borel property.) 

7.3. Definition. A collection C of sets has the .finite intersection property if 
the intersection of any fin~te subcollection is nonempty. 

The following fact is just a simple translation of the definition of compact- 
ness in terms of open sets to a statement about the (closed) complements of 
those sets: 

7.4. Theorem. A topological space X  is compact - for every collection of closed 
subsets o f X  which has thefinite intersection property, the intersection of the 
entire collection is nonempty. 

7.5. Theorem. If X is a Hausdorjjf space, then any compact subset of X is closed. 

PROOF. Let A c X be compact and suppose X E X  - A. For a€ A let a€ U,  and 
xeVa be open sets with U a n  Va = a. Now A = U ( U a n  A), which implies, by 
compactness of A, that there are u,, a,, . . . ,a,,eA, such that A c U,, u ... u Ua,x = 

U .  But x e V a , n . . . n V a n =  V, which is open, and U n V = % .  Thus X E V  c 
X - U c X - A and V is open. Since this is true for any X E X  - A, we conclude 
that X - A is open, and so A is closed. 

7.6. Theorem. If X is compact and f :  X -+ Y is continuous, then f ( X )  is 
compact. 

P 
i PROOF. We may as well replace Y by f ( X )  and so assume that f is onto. 
I For any open cover of Y look at the inverse images of its sets and apply the 
k 
1 compactness of X.  
f 

7.7. Theorem. If X is compact, and A c X is closed, then A is compact. 

PROOF. Cover A by open sets in X, throw in the open set X - A and apply 
the compactness of X. 

The following fact provides an easy way to check that certain constructions 
yield homeomorphisms, as we shall see: 

7.8. Theorem. I S X  I S  compuct and Y 1s Nausdor/fand J :  X -t Y is c.onritzuous, 
one-one, and onto, then / 1.5 u homeomorphism. 

PROO~.  We are to show that f - ' 1s continuous. That is the same as yhowlng 
that f is a closed mapping (takes closed sets to closed sets). But ~f A c X 1s 
closed, then A IS compact by Theorem 7.7, so ( ( A )  is compact by Theorem 
7.6, whence f ( A )  is closed by Theorem 7.5. 0 



7.9. Theorem. The unit interval I = [O,l] is compact, 

PROOF. Let U be an open covering of I. Put 

S = { s ~ l  I[O,s] is covered by a finite subcollection of U).  

Let b the least upper bound of S. Clearly S must be an interval of the form 
S = [0, b) or S = [0, b]. In the former case, however, consider a set UEU 
containing the point b. This set must contain an interval of the form [a, h]. 
But then we can throw U in with the hypothesized finite cover of [O, a] to 
obtain a finite cover of [0, b]. Thus we must have that S = [0, b] for some 
b€[O, I]. But if b < 1, then a similar argument shows that there is a finite 
cover of [0, c] for some c > b, contradicting the choice of b. Thus b = 1 and 
we have found the desired finite cover of [0, I]. 

Note, of course, that any finite closed interval [a, b] of real numbers is 
homeomorphic to [0, 1) and hence is also compact. Any closed subset of 
[a, b] is then compact. By looking at the covering of any subset of R by the 
intervals ( -  n,n), we see that a compact set in R must be bounded. 
Consequently, a subset of R is compacto i t  is closed and bounded. The 
reader is cautioned not to think that this holds in all metric spaces; see. 
Corollary 8.7 and Theorem 9.4. 

7.10. Theorem. A real valued map on a compact space assumes a muximum 
value. 

PROOF. If f :  X -+ R is continuous and X is compact then f (X) is compact 
by Theorem 7.6. Thus f (X) is closed and bounded. Thus sup(f (X)) exists, 
is finite, and belongs to f (X) since f (X) is closed. 

7.1 1. Theorem. A compact Hausdor- space is normal. 

PROOF. Suppose X is compact Hausdorff. We will first show that X is regular. 
For this, suppose C is a closed subset and x$C. Since X is Hausdorff, for 
any point yeC  there are open sets Uy and Vy with XEU,, ~ E V , ,  and 
U y n  Vy = @. Since C is closed, it is compact, and the sets Vy cover it. 
Thus there are points y ,,..., y,, so that C c VY,u.. .u V,,, If we put 
U = U y , n . . . n U y n a n d  V=Vy,u- . .uVy, ,  t h e n x ~ U , C c V , a n d  U n V = @  
as desired. The remainder of the proof goes exactly the same way with C 
playing the role of x and the other closed set playing the role of C. 

The following notion is mainly of use for locally compact spaces X, Y (see 
Section 1 I ) ,  but makes sense for all topological spaces: 

7.12. Definition. A map f :  X -+ Y between topological spaces is said to be 
proper i f f  -'(C) is compact for each compact subset C of Y. 

7.13. Theorem. 1f'f:X -+ Y is a closed map and f -'(y) is compact fi)r euch 
YE Y, then j i s  proper. 

PROOF. Let C c Y be compact and let {U,I~EA)  be a collection of open sets 
whose union contains 1-'(C). For any y s C  there is a finite subset A ,  c A 
such that 

f -'(Y) c U{U,I~EA,). 
Put 

wy = U{Uala~A,)  
and 

vy= Y -  f ( X -  W,), 

which is open. Note that f -'(Vy) c Wy and y€VY. Since C is compact and is 
covered by the Vy7 there are points y,, . . . , y, such that C c Vy, u .-. u V,,  Thus 

= U ( U , I ~ E A ~ , ;  i =  l ,2  ,..., n}, 

a finite union. 

7.14. Theorem. For a topological space X the following are equivalent: 

(1) X is compact. 
(2) Every collection of closed subsets of X with thefinite intersection property 

has a nonempty intersection. 
(3) Every universal net in X converges. 
(4) Every net in X has a convergent subnet. 

PROOF. We have already handled the equivalence of (1) and (2). For the rest: 
(1) s ( 3 )  Suppose {xu) is a universal net that does not converge. Then 

given xeX, there is an open neighborhood U, of x such that x, is not 
eventually in U,. Then xa is eventually in X - U ,  by definition of universal. 
That is, there is an index P, such that cc2Px*x,$Ux. Cover X by 
U,, u ... u U,, Let a 2 fl,, for all i. Then x,$Uxi for any i, which means that 
x,$X, an absurdity. 

(3) * (4) is clear since every net has a universal subnet. 
(4) - (2)  Let F =  (C) be a collection of closed sets with the finite 

intersection propety. We can throw in all finite intersections and so assume 
that F is closed under finite intersection. Then I?, ordered by C 2 C' o C c C', 
is directed. For each CEF  let x,fC7 defining a net. By assumption, there is a 
convergent subnet, given by a final map f: D -+ F, say. Thus, for NED, f (a)€F 
and X ~ ( , , E  f(a). Suppose xf(,,-+x. Let CEF. Then there is a P ~ D z ~ a > f l  => 

f(a) c C, and so x ~ ~ , E  f (a) c C. Since Cis closed it follows from Proposition 6.7 
that xeC. Thus x e n ( C ~ F ) ,  proving (2). 

i 1 .  Give a d~rect proof of ( 1 )  -(4) in Theorem 7.14 without use of universal nets. 

2. -1) Let X be a compact space and let {C,Ia€A} be a collection of closed sets, 
closed w ~ t h  respect to finite intersections. Let C =  n C ,  and suppose that C c U 
wrth U open Show that C, c U for some a. 



3. Give an example showing that the hypothesis, in Theorem 7.13, that f is closed, 
cannot be dropped. 

8. Products 

Let X and Y be topological spaces. Then we can define a topology (called 
the "product topology") on X x Y by taking the collection of sets U x V to 
be a subbase, where U c X and V c Y are open. Since 

U, x V,nU, x V,=(U,nU,) x(V,nV,), 

this is, in fact, a basis. Therefore the open sets are precisely the arbitrary 
unions of such "rectangles." 

Similarly we can define a product topology on finite products 
XI  x X ,  x ... x X ,  of topological spaces. 

For an infinite product X { x , l a ~ A ) ,  we define the product topology as 
the topology with a basis consisting of the sets X { U , ( a e A )  where the U ,  
are open and where we demand that U ,  = X ,  for all but a finite number of 
a's. Note that the collection of sets of the form U ,  x X ( X s l @  # a )  is a sub- 
basis for the product topology. This topology is also called the "Tychonoff 
topology." 

8.1. Proposition. The projections n,: X x Y -+ X and n,: X x Y -+ Y are 
continuous, and the product topology is the smallest topology for which this is 
true. Similarly for the case of infinite products. 

PROOF. The subbasis last described consists of exactly those sets which must 
be open for the projections to be continuous, and the proposition is just 
expressing that. 

8.2. Proposition. If X is compact then the projection n,: X x Y -+ Y is closed. 

PROOF. Let C c X x Y be closed. We are to show that Y - ny(C) is open. 
Let y$ny(C), i.e., ( x , y ) $ C  for all E X .  Then, for any X G X ,  there are open 
sets U, c X and Vx c Y such that xeU,, y~ V,, and (U, x V x ) n C  = (a. 

Since X is compact there are points x,,. . .,x,EX such that 
U x , u . . . u U x n = X  . Let V = V x , n . - - n V  x,,. Then 

Thus, yeV c Y - x y ( C )  and V is open. Since y was an arbitrary point of 
Y - ny(C) it follows that this set is open, and so its complement x y ( C )  
is closed. 0 

8.3. Corollary. If X is compact then n,: X x Y -+ Y is proper 

PROOF. This follows immediately from Theorem 7.13 and Proposition 8.2. 
a 
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. 8.4. Corollary. I f X  and Y are both c*onipuct, thgn X x Y is compact. a 
8.5. Corollary (Tychonoff Theorem for Finite Products). If' thc.  X, are compact 
then X, x ..- x X n  is compact. a 
8.6. Corollary. The cube I" c Rn is compact. 

8.7. Corollary. A subspace of Rn is compact o it is closed and bounded. 

PROOF. Let X be the subspace in question. 
(*) Since X is compact, it is closed. Cover X by the open balls of radius 

k  about the origin, k  = 1,2,. . . . Since this has, by hypothesis, a finite subcover, 
X must be in one of these balls, and hence is bounded. 
(0 If X is closed and bounded, then it is in some ball of radius k  about 

the origin, which in turn is contained in [- k,  k ]  x ... x [ -  k, k ]  (n times), 
which is compact. Thus X is a closed subset of a compact set and so is 
compact by Theorem 7.7. 

8.8. Proposition. A net in a product space X = X X ,  converges to the point 
(. . . , x,, . . .) o its composition with each projection n,: X -+ X ,  converges to x,. 

PROOF. This is an easy exercise in the definition of product spaces and of 
convergence of nets, which will be left to the reader. a 
8.9. Theorem (Tychonoff). The product of an arbitrary collection of compact 
spaces is compact. 

PROOF. Let X = X X ,  where the X ,  are compact. Let f: D -+ X be a universal 
net in X .  Then the composition n,o f is also a universal net by Proposition 
6.12. Therefore this composition converges, say to x ,  by Theorem 7.14. But 
this means that the original net converges to the point whose crth coordinate 
is x ,  by Proposition 8.8 and so X is compact by Theorem 7.14. 

Tychonoff's Theorem has the reputation of being difficult. So, how can 
we prove it with such ease here? The answer is that the entire difficulty has 
been subsumed in the results about universal nets. The basic facts about 
universal nets depend on the axiom of choice, and so i t  follows that so does 
the Tychonoff Theorem. In fact, it is known that the Tychonoff Theorem is 
equivalent to the axiom of choice. That is why we gave a separate treatment 
of the finite case, which does not depend on the axiom of choice. (Also, the 
finite case is all that is needed in the main body of this book.) 

If X is a space and A is a set, the product of A copies of X IS often denoted 
by X" and can be thought of as the space of funct~ons f :  A -+ X. In t h~s  
context, Proposition 8.8 takes the following form: 

8.10. Proposition. A net {fa) in X A  converges to J E x A  o V YE X ,  j,(x) -+ J (x). 
In purtlculur, lim( f,(x)) = (lim f,)(x). 0 



When A also has a topology, the notation X A  is often used for the set of 
all continuous functions f:  A+ X. In that context a topology is often used 
on this set that differs from the product topology. There are several useful 
topologies in particular circumstances, and so the context must indicate what 
topology, if any, is meant by this notation. 

8.1 1. Definition. If X and Y are spaces, then their topological sum or disjoint 
union X + Y is the set X x (0) u Y x {l} with the topology making X x (0) 
and Y x (1) clopen and the inclusions xw(x, 0) of X -+ X + Y and yt-r(y, 1) 
of Y -+ X + Y homeomorphisms to their images. More generally, if ( X , l a ~  A )  
is an indexed family of spaces then their topological sum + , X ,  is u ( X ,  x {a) (aeA) given the topology making each X, x {a) clopen and each 
inclusion xc*(x, P) of X g  -+ + ,X, a homeomorphism to its image X g  x f P}. 

In ordinary parlance, if X and Y are disjoint spaces, one regards X + Y 
as X u  Y with the topology making X and Y open subspaces. 

1. Let X and Y be metric spaces. Define a metric on X x Y by 

dist((xl,yl ), (x2,y2)) = ( d i ~ t ( x ~ , x ~ ) ~  + 
Show that the topology induced by this metric is the product topology. 

2. Do the same as Problem 1 for the metric: 

3. 0 For a collection of spaces Y, show that a function f: X -+ X (Y,) is 
continuous - each composition X -t X { Y,) -t Y,, with the projection, is 
continuous. 

4. 4 Show that an arbitrary product of Hausdorff spaces is Hausdorff. Also show 
that an arbitrary product of regular spaces is regular. (Hint: Use Proposition 5.2 
for the latter.) 

5. If X is a topological space, the "diagonal" of X x X is the subspace 
A = { (x, x )  ~xEX). Show that X is Hausdorffs A is closed in X x X. 

6. .+ Let f ,  g: X -+ Y be two maps. If Y is Hausdorff then show that the subspace 
A  = { x ~ X l  f(x) = g(x)) is closed in X. 

7. Give an alternative proof of Proposition 8.2 using nets. 

8. 4 Let A  be an uncountable set. For each a f A  let X ,  = { O , l )  with the discrete 
topology. Put X = X (That is, X = {0, l i A . )  Let  EX be the point with all 
components pa = 1. Let K = {q~Xlq, = 0 except for a countable number of a} .  
(a) Show that p does not have a countable neighborhood basis. 
(b) Show that there is no neighborhood basis for p simply ordered by inclusion. 
(c) Show that K = X but that if H is a countable subset of K then H c K. 
(d) Give an explicit description of a net in K wh~ch converges to p. 

9. 4 -+ Show that a product of a farnllxof connected spaces is connected. Do the 
same for arcwise connectiv~ty. 

9. Metric Spaces Again 

In this section we discuss the central concept of "completeness" of a metric 
space, which says, intuitively, that sequences that should converge do, in 
fact, converge. We also show that certain topological conditions on a topo- 
logical space suffice for the existence of a metric on that space consistent 
with the given topology. 

9.1. Definition. A Cauchy sequence in a metric space is a sequence x,, x,, x,, . . . 
such that Vr>O, 3 N > 0 3 n , m > N * d i s t ( x n , x , ) < ~ .  

9.2. Definition. A metric space X is called complete if every Cauchy sequence 
in X converges in X. 

9.3. Definition. A metric space X is totally bounded if, for each E > 0,X can 
be covered by a finite number of r-balls. 

9.4. Theorem. In a metric space X the following conditions are equivalent: 

( 1 )  X is compact. 
(2) Each sequence in X has a convergent subsequence. 
(3) X is complete and totally bounded. 

PROOF. (1) -(2) Let {x,) be a sequence. Suppose that x is not a limit of a 
subsequence. Then there is an open neighborhood U ,  of x containing x, for 
only a finite number of n. Since X can be covered by a finite number of the 
U,, this contradicts the infinitude of indexes n. 

(2) *(3) Let (x,) be a Cauchy sequence. It follows from (2) that some 
subsequence x,, -+x for some xeX. The triangle inequality then implies that 
x,+x and hence X is complete. Now suppose that X is not covered by a 
finite number of r-balls. Then one can choose points xl,x2,.  . . such that 
dist(xi,xj) > r for all j < i. It follows that the distance between any two of 
these points is greater than r. Such a sequence can have no convergent 
subsequences, contrary to (2). So, in fact, X must be totally bounded. 

(3) (2) Let {x,) be an arbitrary sequence in X. Since X is totally bounded 
by assumption, it can be covered by a finite number of I-balls. Thus some 
one of these 1-balls, say B,, must contain x, for an infinite number of n. Next, 
X, and hence B,, can be covered by a finite number of ;-balls and so one 
of these balls, say B,, must be such that B, nB ,  contains x, for an infinite 
number of n. Continuing in this way we can find, for n = 1,2,3.. . , a  (l/n)-ball 
B, such that B,  nB,n,..nB, contains xi for an infinite number of i. Thus 
we can choose a subsequence {x,~)  such that x,,eBI n ... n B i  for all i. If i < j 
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then it follows that~x,, and xn, are both in Bi and hence dist(x,,,~,~,)-< l/i. 
This implies that this subsequence is Cauchy and so it must converge by 
completeness. 

(2) ==. (1) Suppose (U,\RGA) is an open covering of X. Since X is totally 
bounded (by (2) * (3)), we can find a dense sequence of points xl, x,, . . . in 
X. For each xi there is a positive integer n such that Bl,,(xl) c U ,  for some 
a. Denote one such U ,  by Vn,i. Now, given XEX, there is an n such that 
B2,,(x) c U, for some a. By density, there is also an i such that dist(x,, x) < l/n. 
Then B,,,(x,) c B,,,(x) c U, so that Vn,, is defined. Thus, x~B,,,(x~) c Vn,i. 
Therefore the VnYi cover X and this is a countable subcover of the original 
cover. Let us rename this countable subcover (Vl, V2,. . .}. If this has a finite 
subcover then we are done. If not then the closed sets 

are all nonempty. Also note that C, 3 C, z, C, 3 Choose xieCi for each 
i. By our assumption, there is a convergent subsequence x,-+x, say. Since 
x,,EC, for all n, > n, and C, is closed, x must be in C,, for all n. Thus 

This contradiction completes the proof. 

It clearly would be desirable to know when a given topological space can 
be given the structure of a metric space, in which case the space is called 
"metrizable." There are several known theorems of this nature. We shall be 
content with giving one of the simpler criteria. This development will span 
the rest of this section. 

9.5. Definition. A Hausdorff space X is said to be completely regular, or 
T3L, if, for each point XEX and closed set C c X with x$C, there is a 
mip f: X -+ [O,l] such that f (x) = 0 and f r 1 on C. 

By following such a function with a map [0, I] 4 [O,l] which is 0 on [O,$] 
and stretches [i, I] onto [0, I], we see that the function f in Definition 9.5 
can be taken so that it is 0 on a neighborhood of x. 

9.6. Proposition. Suppose X is a metric space. Define: 

Then dist and dist' give rise to the same topology on X. 

PROOF. It is clear that the topology only depends on the open €-balls for 
small E, and these are the same in the two metrics. 
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9.7. Proposition. Let Xi, i r 1,2, 3 , .  . .,be a metric space with metric bounded . 
by 1 (see Proposition 9.6). Define a metric on X (Xi) by dist(x, y) =xi dist(xi, yi)/ 
2', where x, is the ith coordinate of x, etc. Then this metric gives rise to the 
product topology. 

PROOF. Let X denote the product space with the product topology, and X' 
the same set with the metric topology. By Problem 3 of Section 8, to show 
that XI-+ X is continuous, it suffices to show that its composition with the 
projection to each Xi is continuous. But this projection decreases distance 
and then multiplies it by the constant 2' and that clearly implies continuity. 
For the converse, it sufices to show that for any point XEX, the €-ball about 
x contains a neighborhood of x in the product topology. Recall that 

Let n be so large that 2-" < €14 and then let yieXi be such that dist(xi, yi) < €12 
for i = 1,2,. . . , n - 1 and arbitrary for i 2 n. Then we compute 

< €12 + €12 = €. 
Thus 

x~B,,,(x,) x ..- x B,l,(~n-l) x X, x X,+, x 0 . -  c B,(x) 

and the middle term is a basic open set in the product topology. 

9.8. Lemma. Suppose that X is Hausdorff and that fi: X +[O, 11 are maps 
(i = 1,2,3,. . .) such that, for any point XEX and any closed set C c X with 
x$C, there is an index i such that f,(x)=O and f i =  1 on C. Define 
f : X 3  X ([O,1]1i= 1,2,3 ,...) by f(x)= X {fi(x)li= 1,2,3 ,... ). Then f is 
an embedding, i.e., a homeomorphism onto its image. 

PROOF. f is continuous by Problem 3 of Section 8. It is also clear that f is 
one-one (but not onto). Thus it suffices to show that: C c X closed => f (C) 
is closed in f(X). Suppose we have a sequence C,EC such that f (ci) -+ f(x). 
It then suffices to show that XEC. If not, then there is an index i such that 
f,(x) = 0 and fi E 1 on C. Then 1 = fi(cn) --+ f,(x) = 0 and this contradiction 
concludes the proof. 

9.9. Lemma. Suppose that. X is a second countable and completely regular 
space and let S be a countable basis for the open sets. For each pair U ,  VES 
with 0 c V, select a map f :  X -+ [O,l] which is 0 on U and 1 on X - V, provided 
such a function exists. Call this set of maps F, possibly empty, and note that 



F is countable. Then-for each XGX and each closed set C c X-with v$C, there 
is an f E F  with f - 0 on a neighborhood of x and f - 1 on C. 

PROOF. The whole point of the lemma is, of course, that the map f can be 
chosen from the previously defined countable collection F. Given x#C as 
stated, we can find a VES with XEV c X - C (by definition of a basis). Since 
X is completely regular we can find a mapg: X -+ [O,1] which is 0 at x and 
1 on X - V. As remarked below Definition 9.5, this can be assumed to be 
0 on a neighborhood of x. This contains a neighborhood UES and so we have 
provided a triple U, V,g satisfying the initial requirements in the lemma. By 
assumption, this g can be replaced by another map f G F  with the same 
properties and this f clearly satisfies the final requirements. 

9.10. Theorem (Urysohn Metrization Theorem). If a space X is second 
countable and completely regular then it is metrizable. 

PROOF. Find a countable family F of functions satisfying Lemma 9.9. Apply 
Lemma 9.8 to obtain an embedding of X into a countable (!) product of unit 
intervals. Finally, apply Proposition 9.7 to see that this countable product 
of intervals, and hence X, is metrizable. 

The following lemma will be useful to us later on'in the book. The diameter, 
diam(A), of a subset A of a metric space is sup{dist(p,q)lp,q~A). 

9.11. Lemma (Lebesque Lemma). Let X be a compact metric space and let 
{U,) be an open covering of X. Then there is a 6 > 0 (a "Lebesque number" 
for the covering) such that ( A  c X, diam(A) < 6) => A c U, for some a. 

PROOF. For each XEX there is an ~ ( x )  > 0 such that B,,,,,(x) c U ,  for some 
a. Then X is covered by a finite number of the baHs B,(,,(x), say for 
x = x,, . . . , x,. Define 6 = min{e(xi)li = 1,. . . , n). Suppose diam(A) < 6 and 
pick a point u,EA. Then there is an index 1 < i l n  such that 
dist(a,, x,) < ~ ( x , ) .  If a €  A, then dist(a, a,) < 6 5 ~(x , ) .  By the triangle 
inequality, dist(a, x,) < 2 ~ ( x , ) .  Thus A c B,,(,,,(xi) c U, for some a. 

1. Show that a countable product of coples of the real line 1s metrizable. 

2. -+ Show that a subspace of a completely regular space is completely regular. 

3. Let X be a metric space. If {x,) and {y , )  are Cauchy sequences In X such that 
d~st(x,, y , ) + O  then call {x,,) and ( y , )  "equivalent." Let Y be the set of equ~valence 
classes [{x,,',] of Cauchy sequences {x,} in X. G ~ v e  Y the metrrc 

dist([{x.)], f { y , ) ] )  = lim dist(x,,y,). 

(a) Show that this is a metrlc on Y. 

Show that the function f : X  -+ Y given by x++[{x}] is an isometric embedding 
of X as a dense subspace of Y. ("Isometric" means "preserving distance.") 
Show that Y is complete. (It is called the "completion" of X.) 
If g: X -+ Z is an isometry (into) and Z is complete then show that there is a 

h 
unique factorization X Y -Z of g with h an isometry. 

(e) If g(X), in part (d), is dense in Z then show that h is onto. 

4. Show that a completely regular space is regular. 

5. + Show that an uncountable product of unit intervals is not first countable and 
hence is not metrizable. 

10. Existence of Real Valued Functions 

In the metrization theorem of the last section, we gave conditions for 
metrizability that included complete regularity of the space. This relies on 
knowing about the existence of sufficiently many, in some sense, continuous 
real valued functions on the space. That leaves open the question of finding 
purely topological assumptions that will guarantee such functions, and that 
is what we are going to address in this section. 

10.1. Lemma. Suppose that, on a topological space X, we are given, for each 
dyadic rational number r = m/2" (0 5 m 1 2 7 ,  an open set U, such that 
r < s 3 U ,  c Us. Then the function f: X + R dejined by 

is continuous. 

E 
PROOF. Note that, for r dyadic: 

I f(x) < r + XEU, hence f(x) 2 r e xgU,, 

f f (x )< r  G XGU, hence f ( x ) > r  =e- x$Ur => X E X -  U,. 

f > Thus, for a real, 
E 
i f - ' ( -co,a)={xl  f ( x ) < a ) = U { ~ , [ r < a )  
i which is open, and 

I which is also open. Since these half infinite intervals give a subbasis for the 
i topology of R, f is continuous. (See Problem 4 of Section 2.) 

10.2. Lemma (Urysohn's Lemma). IfX is normal and F c U where F is closed 
and U is open, then there is a rnapJ: X -t [O,1] which is 0 on F and I on X - U .  
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.. PK(K)F. Put U = U and use normality to find t; c U,, u, c U ,, 
UO c Ul12 and Ul12 c U,, 

UO c UIl4 and UlI4 c UIl2 and Dl,, c U,,, and G,,, c U , ,  

and so on. Apply Lemma 10.1. 

10.3. Corollary. Normality Complete Regularity. I3 

10.4. Theorem (Tietze Extension Theorem). Let X be normal and F c X be 
closed and let f :  F -+ R be continuous. Then there is a map g: X 4 R such that 
g(x) = f (x) for all XEF. Moreover, it can be arranged that 

sup f (x) = sup g(x) and inf f (x) = inf g(x). 
XEF XEX XGF XPX 

PROOF. First let us take the case in which f is bounded. Without loss of 
generality, we can assume 0 I j(x) r 1 with infimum 0 and supremum 1. By 
the Urysohn Lemma (Lemma 10.2), there exists a function g,: X -, [O,:] such 
that 

Put f, = f - g, and note that 0 < f,(x) <; for all xeF. 
Repeating this, find g,: X -+ [O, 3-i] such that 

0 if x ~ F a n d  f,(x)<f.$, 
g2(x) = 

x $ if XEF and fl(x) 2 S.:. 

Put f, = f, - 9, and note that 0 I f,(x) I ($)2 for a11 xeF. 
For the inductive step, suppose we have defined a function f, with 

0 5 f,(x) I (3)" for XEF. Then find g,, ,: X - ,  [O,(f)($)"] such that 

0 if XG F and f,(x) 5 ($)(+)", 
gn+l(x)= {(*)($)" if XEF and/.(x) 2 ($)(f)D. 

Put L,+l = f n  -g,,+,. 
Now put g(s) = Cg,(x). This series converges uniformly since 0 I g,(x) < 

($)($)"-I. Thus g is continuous, by Theorem 2.12. 
For XEF we have 

f -s1 =f1 ,  
fi -g2=f2,  

..* 

By adding and canceling we get 

f -(gl + g 2 +  . , -+g , )=  f, and 01f,(x)5(f)", 
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and taking the limit gives that g(x) = f ( x )  on F. Clearly the bounds are also 
correct. 

Now we consider the unbounded cases: 

Case I: f is unbounded in both directions. 
Case 11: f is bounded below by a. 
Case 111: f is bounded above by b. 

Let h be a homeomorphism: 

( - co, co) --+ (0, I )  in Case I, 

[a, co) 4 [O,1) in Case 11, 

( - co, b] + 0 1 in Case 111. 

Then ho f is bounded by 0,l  and we can extend it to g, say. If we can 
arrange that g,(x) is never 0 (resp. 1) if ha f is never 0 (resp. 1) then g = h-' ag, 
would be defined and would extend f .  

Thus put 

C={xlg,(x)=Oorl} inCaseI ,  

c = (x l~ l (x )  = 1) in Case 11, 

C =  {xIg~(x) =o)  in Case 111. 

Then C is closed and C n  F = 0, so there exists a function k: X -, [O,1] such 
that k E 0 on C and k = 1 on F. Put g, =keg, + (1 - k).$.  Then g, is always 
between g, and with g2#g l  on C. Also, g, =g ,  = hof on F. Thus 
g = h-log, extends f in the desired manner. 0 

1. If X is a compact Hausdorff space then show that its quasi-components are 
connected (and hence that its quasi-components coincide with its components). 
[Hint: If C is a quasi-component, let C = 0 C, where the C, are the clopen sets 
containing C. If C is disconnected, then C = A u B ,  A n  B = ,@, A, B closed. Let 
f :  X -+ [O,l] be 0 on A and 1 on B. Put U = f - ' (LO,  i)) and apply Problem 2 of 
Section 7.1 

2. +- If F is a closed subspace of the normal space X then show that any map F -t Rn 
can be extended to X. 

1 1. Locally Compact Spaces 

There are many spaces, the most important being euclidean spaces, which 
are not compact but which contain enough compact subspaces to be important 
for many properties of the space itself. One class of such spaces is the subject 
of this section. 

11.1. Definition. A topological space is said to be locally compact if every 
point has a compact neighborhood. 



11.2. Theorem. If X is a locally compact Hausdorff'space then each neighbor- 
lzood of a point X E X  contains a compact neighborhood of x. (That is, the 
compact neighborhoods of x form a neighborhood basis at x.) In particular, X 
is completely regular. 

PROOF. Let C be a compact neighborhood of x and U an arbitrary 
neighborhood of x. Let V c C n  U be open with X E  K Then i7 c C is compact 
Hausdorff and therefore regular. Thus there exists a neighborhood N c V 
of x in C which is closed in v and hence closed in X. Since N is closed in 
the compact space C, it is compact by Theorem 7.7. Since N is a neighborhood 
of x in p and since N = N n V, N is a neighborhood of x in the open set V 
and hence in X. CI 

11.3. Theorem. Let X be a locally compact Hausdorff space. Put 
X +  = X u  ( a }  where co just represents some point not in X .  Define an open 
set in X+ to be either an open set in X c X +  or X+ - C where C c X  is 
compact. Then this defines a topology on X +  which makes X +  into a compact 
Hausdorff space called the "one-point compactification" of X. Moreover, this 
topology on X +  is the only topology making X+ a compact Hausdorff space 
with X as a subspace. 

PROOF. The whole space X+ and @ are clearly open. If V c X is open and 
U = X + - C  with C c X  compact then U n V =  V-C which is open in X 
(C being closed in X by Theorem 7.5). The other cases of an intersection of 
two open sets are trivial. 

For arbitrary unions of open sets, let U = U {U,]. If all the U, are open 
subsets of X then the union is clearly open. If some Up = X +  - C then 
X f  - U =  O{X+ - U,) = C n ( n { ~ -  U,ltl#P)) which is closed in C 
and therefore compact. Thus, this is a topology. 

Suppose that (U,) is an open cover of X + .  One of these sets, say U p ,  
contains ( a } .  Then X - Ug is compact and hence is covered by a finite 
subcollection of the other U,. Therefore X +  is compact. 

To see that X f  is Hausdorff, it clearly sufices to separate w, from any 
point X E X .  Let V be an open neighborhood of x in X such that I/ c X is 
compact. Then X E V  and c o ~ X  - v provide the required separation. 

For uniqueness, let U c X +  be an open set in some such topology. Then 
C = X" - U is closed and therefore compact. If C c X then U is open in the 
described topology. If C # X then U c X and must be open in X since X is 
a subspace. Thus, again U is open in the described topology. It remains to 
show that we are forced to take the described open sets as open. Since X is 
a subspace, if U c X is open in X then U = U'n X for some U' open in X + .  
But X is an open subset of X +  since points are closed in a Hausdorff space, 
so U = U'nX is open in X'. Next, if C IS compact in X then it is compact 
in X +, since compactness does not depend on the contaming space, and thus 
C is closed in X +. It follows that X + - C is open in X +. 0 

Note that  if X is already compact, then co is an isolated point (clopen) 
< 

in X +  and X is also clopen in X f .  

11.4. Theorem. Suppose that X and Y are locally compact, Hausdorflspaces 
and rhatf:  X -+ Y is continuous. Then f is proper o f  extends to u continuous 
f'+ : x +  --r Y +  by setting f +(aX) = my.  

PROOF. = : f + exists as a function, so it suffices to check continuity of it. 
Suppose U c Y + is open. In case U c Y then ( f  +)-  '(U) = 1-'(U) is open. 
In the other case, U = Y +  - C with C c Y compact. Then ( f  +)-'(U)= 
X+ - f -'(C) is open in X +  since f -'(C) is compact, and therefore closed, 
by properness. 
e : If f +  exists then ( f+ ) - ' ( a , )=  {a,} and thus ( f  +)-'(Y)= X. If 

C c Y is compact then it is closed and so f - '(C) is closed in X + and hence 
is compact and is contained in X. Thus f is proper. 

11.5, Proposition. If f :X -+ Y is a proper map between locally compact 
Hausdorff spaces, then f is closed. 

PROOF. There is an extension f +: X +  -, Y+.  If F c X is closed in X then 
F u ( a )  is closed in X+ and hence compact. Consequently, f + (F u (a ) )  is 
compact by Theorem 7.6 and hence closed in Y + by Theorem 7.5. But then 
f (F)= f+(Fu(co})nY is closed in Y. 

11.6. Definition. A subspace A of a topological space is said to be locally 
closed if each point ~ E A  has an open neighborhood U, such that U,nA is 
closed in U,. 

11.7. Proposition. A subspace A c X is locally closed o it has the form 
A = C n  U where U is open in X and C is closed in X .  

PROOF. Put U = U {u,la~A}, as in Definition 1 1.6, which is open, and C = 2 
which is closed. Then 

C ~ U = = A ~ ( U U , ) = U ( A ~ U , ) = U ( A ~ U , ) = A ~ U = A .  U 

11.8. Theorem. For a HausdorfS space X the followrng conditions are 
equivalent: 

( 1 )  X i~ locally compact. 
( 2 )  X is u Iocully closed subspace of a compact Huusdorf spuce. 
(3) X is a locally closed subspace of a locally compact Huusdorj'space. 

PROOF. If X is locally compact then it is an open subspace of its one-point 
compactification. Thus (1)*(2). Clearly, (2)=.(3) .  I f  Y 3 X is locally compact 
and X = C n  U where C c Y is closed and U c Y is open, then C is locally 



compact, and X = U n C  is open in C and hence is also locally compact. , 

Thus (3)-(1). Cr3 

The remainder of this section is 1101 used in the remainder of this book 
and so can be skipped. It assumes knowledge of nets from Section 6. 

The preceding results suggest the question of when a topologicdl space 
X can be embedded in a compact, Hausdorff space Y (as a subspace). Since 
Y is normal, it is also completely regular. Since a subspace of a completely 
regular space is completely regular, it follows that X must be completely 
regular. This turns out to be the precise condition needed. 

If X is a completely regular space, consider the set F of all maps 
f :  X -+ [O, 1 1 .  Define 

by @(x)(f) = f(x). (Here we regard an element of [O, 1 I F  as a function 
F-, CO, 11.) 

11.9. Definition. If X is a completely regular space, and 0: X-+ [0, 1lF is 
defined as above then the closure of @(X) is called the stone-Cech 
compactz$cation of X and is denoted by P(X).  

11.10. Theorem. If X is a completely regular space, then P(X) is compact 
Hausdorff and @: X -+ P ( X )  is an embedding. 

PROOF. The function @ is one-one since, if @(x) = @(y), then f (x) = f (y) for 
all maps f:  X -+ [O,1] and this implies that x = y by complete regularity. 

To prove continuity, let x, be a net in X converging to x. Then 

for all maps f:  X -+ [O,l]. This implies that lim @(xu) = @(x) by Proposition 
8.8. 

For continuity of the inverse, suppose that {x,) is a net in X such that 
@(x,) converges to @(x). Then, for all maps f: X -, [O, 11, 

lim (f(xa)) = I'm (@(xu)( f ) )  = '(x)(f) =f (XI. 

I f  x, does not converge to x then there is a neighborhood U of x such that 
xu is frequently in X - U. But there is a map I: X -+[0,1] which is 0 at x 
and 1  on X - U .  Thus /'(xu) is frequently 1, while f ( x )  = 0 contradicting the 
convergence off (x,) to f (x). n 

11.1 1. Theorem. I f  X is completely regular and f :  X -t R is u bounded reul 
vulued map, then f can he extended uniquely to u map B ( X )  -+ R. 

PROOF. It suffices to treat the case in which the image of f is in [O, I]. 
Consider the function 7: [O, l j F - +  R defined by T(,u) = p(,f). If  (pa) is a net in 
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[O, l]\onverging to (1 then 

which shows that f is continuous. 
If XEX thenf(@(x)) = (@(x))( f )  = f ( x ) ,  showing t ha t7  does extend .f: El 

The problems give other properties,of the stone-Cech compactification. 

1. Show that the stone-Cech compactification p(.) is a functor on completely regular 
spaces by showing that a map f :  X -+ Y induces a unique commutative diagram 

2. Show that the stone-tech compactification is the "largest" compactification of a 
completely regular space X by showing that if g: X c, Y is any compactification, 
then there is a unique map b ( X )  -+ Y factor~ng g. 

3. Let o be the set of natural integers and let X be its Stone-Cech compactification. 
Show that the sequence given by the usual ordering of o can have no convergent 
subsequence in X. Conclude that X is not metrizable and not second countable. 
(Note that this sequence does have a convergent subnet since that is always true 
in a compact space.) 

12. Paracompact Spaces 

The notion of "paracompactness" of a space is a type of localization of 
compactness. It is very different, however, from local compactness. Para- 
compact spaces are very close to being metrizable, but the concept of para- 
compactness is sometimes simpler to deal with than that of a metric. In this 
book, most spaces in which we shall be interested are paracornpact. The most 
important property of paracompact spaces is the existence of "partitions of 
unity," see Definition 12.7. 

12.1. Definition. If U and V are open coverings of a set then U is said to 
be a refinement of V if each element of U is a subset of some element of V. 

12.2. Definition. A collection U of subsets of a topological space X is said 
to be locally$nite if each point XEX has a neighborhood N which meets, 
nontrivially, only a finite number of the members of U. 



12.3. Definition. A i-lausdorff space X is said to be ptrracornpuct if every 
open covering of X has an open, locally finite refinement. 

12.4. Proposition. A closed .suh.spuc.e (.fa prrraconzpact spclce is pt7racompuct. 

PROOF. If A is a closed subspace of the paracompact space X, cover A with 
sets open in X .  Throw in the set X - A .  Take a locally finite refinement of 
this open coverlng of X and intersect it with A. This gives a locally finite 
refinement of the original covering of A. 

12.5. Theorem. A paracompact space is normal. 

PROOF. We will first show the paracompact space X to be regular. Thus 
suppose X E  X and C c X is closed with x$C. For each point y EC there are 
disjoint open sets U,, V, with X E U ,  and y~ V,,. Cover X by X - C together 
with the sets V,,. Then there is an open locally finite refinement, say by sets 
U,. Let U = U {U,I U ,  c some V,} and note that this contains C. Since this 
is a locally finite collection, its closure U is the union of the closures of the 
same U,'s. But x is not in any of the 0, and so ~ $ 0 .  Thus U and X - 0 
provide the required separation. 

The same argument, with C playing the role of x and the other closed set 
playing the role of C, shows X to be normal. 

Thus paracompact spaces are close to being metric spaces because all that 
is needed is second countability. Also, it is known that metric spaces are 
paracompact. (This is very hard to prove and we will not attempt it.) However, 
there are paracompact spaces that are not metrizable. There are also examples 
of paracompact spaces having subspaces which are not paracompact, and, 
of course, That cannot happen with metrizable spaces. 

Normality impl~es that a paracompact space has many real valued maps, 
a property that we will now exploit. 

12.6. Definition. Iff  is a real valued map then the support of f is 

support( f )  = closure{xl f ( x )  # 0). 

12.7. Definition. Let { U , ~ ~ G A }  be an open covering of the space X .  Then 
a partition oj urut y subordinate to this covering is a collection of maps 

i1;: X -+ [O, I ] I / J E B )  

such that: 

(1) There 15 a locally finrte open refinement ' , V p I [ j ~ B )  such that 
support(/,,) c Vf1 for all PEH; and 

(2) I,, f,,(x) = I lor each  EX. 

12.8. Theorern. I f  X is pm.<rt ornptrci arid U is fin open c,ooc)rir~g o f  AX then there 
exists a partition c!f unity suhordrtiatt? to CJ. 

PROOF. Without loss of generality, we may assume that the covering 
U = {U, lcr~A)  is locally finite. 

Consider a family F = (g,,: X -+ (0, I ]  AFj ,  where A,  c A, such that if 

W, = (xIgII (x)  > 01, then w,, c U,, and ( W l l I f l ~ A , )  u { U , l a c A  - A,) covers 
X .  Let F be a collection of such families F which is simply ordered by inclu- 
sion and is a maximal such collection; see Theorem B.l8(C). Let G = U F. 
We claim that GEF. Now G = f g d \ / J ~ A c  = U AF for F E F ) .  I f  G$F then there 
is a point X E X  not in any W p  for  PEA^ or in any U, for ~ E A  -A,. Let 
{a,,. . . ,a,) be the finite nonempty set of indices for which X E U , ,  all i. Then 
each cr,~A,. Since F is simply ordered there is an FEF for which @,€AF for 
all i = 1,. . . , n. But then x must be in some W,,, a contradiction. Therefore 
GEF as claimed. 

Next we claim that A, = A. If not then let ~ E A  - AG and put 

Then X = D u U,. Let C = X - D which is closed and inside U,. Since X is 
normal, there exists an open set V with C c V and I/ c U,. By Urysohn's 
Lemma there is a map g,: X -+ [O, 11 which is 1 on C and 0 outside V. Then 
W, 3 C and so X = D u  W,, showing that G u  {g,} is a collection of maps, 
as above, properly containing G. This contradicts the maximality of F, and 
so A, = A as claimed. 

Thus we now have a collection {y , l c r~A}  of maps such that the 
W, = fxlg,(x) > 0 )  cover X and W, c U,. Let g = Cay,, which makes sense 
by the local finiteness, and note that g(x) > 0 for all x. Then put ,fa = g,Jg. 
This fulfills our requirements. 

Note that we proved a little more than was stated in Theorem 12.8. 
Namely, if the original covering is already locally finite then it need not be 
refined as in Definition 12.7. Also note that the sets W, form a covering and 
that W, c U,. Thus, we have: 

12.9. Proposition. I fX is purucon~pact and U,) is a locallyfinite - open coverfng 
of X then there is an open coveritly I.',) such that, Ji7r each a, V, c U,. 

Generally it is difficult to check that a space 1s paracompact by just ustng 
the definition. Also, we would llke to avoid uslng that metric spaces are 
paracompact, since wc have not proved it. However, the following crlterlon 
will apply in most cases of interest to us here. 

12.10. Definition. A space 1s called a-coml~uc~r ~f i t  is the union of countably 
many compact subspaces. 



J o 1. General Topology 

12.11. Theorem. A locally compact, Hausdorflspace is pucacompact -e it is 
the disjoint union uf open a-compact subsets. 

PROOF. => : Using local compactness, cover the space with open sets U ,  
such that u, is compact. Using paracompactness it is easy to see that this 
covering can be replaced by one which is also locally finite, so assume that. 
We shall inductively construct open sets Vi whose closures are compact. We 
start with V, = Ul, for some given p. If Vn has been defined then consider all 
the U ,  which intersect I/,. By compactness of Vn and the local finiteness of 
the cover, this set of U,'s is finite. Let Vn+, be the union of these U,.  Then 
pn+, the union of the closures of this finite set of U,'s and so it is compact. 
Also Vn c Vn+ ,. Put V = U V,. Then V is the union of countably many of 
the UaYs. By local finiteness p is  the union of the closures of these U,'s but 
each of these closures is contained in some Vn c Vn+, c V. Thus V = V is 
clopen and, by construction, is o-compact. The remainder of the proof of 
the implication (*) is accomplished by a Maximality Principle argument 
which will be left to the reader since this implication will not be used in this 
book. 
c: : It is clear that a disjoint union of open paracompact spaces is 

paracompact, and so we may as well assume the space X to be a-compact; 
X = C, u C2 u where the Ci are compact. In sequence, alter the Ci by 
adding to  each C,+ , (and to the following ones at the same time) a finite 
union of compact sets (by local compactness) whose interiors cover C,. In 
this way, we get Ci c int(C,+,) for all i. Define compact sets A, = C,, and 
A, = Ci - int Ci-, for i > 1. (Think of the Ci as concentric disks and the Ai 
as the rings between them.) Note that each A, intersects nontrivially with 
only (at most) Ai-, and A,+ ,. A little more work, using the compactness, 
hence normality, of the A, shows that we can enlarge the Ai slightly to provide 
compact sets B, whose interiors contain the A, and which intersect only with 
the two B, with adjoining indices. Now, given an open covering, consider 
the induced covering of each of the compact sets A,. We can select a finite 
refinement still covering Ai and with none of the covering sets overflowing 
from B,. It is then clear that these finite coverings taken together provide a 
locally finite refinement of the original cover. 

12.12. Theorem. If X is [ocally compact, Hausdorff, and second countable then 
its one-point compaclification X +  is metrizable and X is a-compact and 
parucompact. 

PROOF. Let B be a countable basis for X and let C c X be compact. If x c C  
then x has a compact neighborhood N and there is a member U,cB with 
X E  U ,  c N.  Hence C is covered by a finite union U,, u ..- u UXn of such sets. 
Put V = X - U Or,. Then V u {a) is a neighborhood of XI in X + contained 
in the arbitrary neighborhood X +  - C. These sets V are indexed by finite 
subsets of B and hence are countable in number; see the remark below 
Theorem B.27. This shows that X +  is second countable, and also shows that 
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X is a-compact- By Theorcm 12.1 1, X is paracompact. By Theorem 7.1 1,  
Corollary 10.3 and Theorem 9.10, X +  is metrizable. 

1. Without using Theorem 12.1 1 or the fact that metric spaces are paracompact, 
show that any open subspace of euclidean space is a-compact, and hence para- 
compact by Theorem 12.1 1. 

2. Suppose X is paracompact. For any open subset U of X x [0, co) which contains 
X x (0) show that there is a map f :  X + (0, co) such that (x, y ) ~  U for all y < f(x). 

13. Quotient Spaces 

The notion of a quotient space or identification space is of central importance 
in topology. It gives, for example, a firm foundation for the intuitive idea of 
the operation of "pasting" spaces together. It also provides many other 
techniques of producing new spaces out of old ones. It can also be difficult 
to understand when met for the first time, and the reader is advised to study 
it fully before going further in this book. 

13.1. Definition. Let X be a topological space, Y a set, and f :  X -+ Y an onto 
function. Then we define a topology on Y called the topology induced by f 
or the quotient topology, by specifying a set V c Y to be open of - ' (V)  is 
open in X. Note that this is the largest topology on Y which makes f continuous. 

13.2. Definition. Let X be a topological space and - an equivalence relation 
on X.  Let Y = X I -  be the set of equivalence classes and n:X- -+ Y the 
canonical map taking X E X  to its equivalence class [XIEX/ -. Then Y, with 
the topology induced by n, is called a quotient space of X .  

Quotient spaces often have very non-Hausdorff topologies. For example, 
if X is the real line and x - y t>.x - y is rational, then X /  - is an uncountable 
set but has the trivial topology, as the reader is asked to verify in Problem 6. 
We will mostly be concerned with quotient spaces that are better be- 
haved. 

The reader can verlfy the following fact directly from the definition: 

13.3. Proposition. A quotient space of u quotient space o f X  is u quotient space 
of X .  Thut is, rf X -+ Y -+ Z are two onto functions and Y is given the quotlent 
topology from X ,  und Z is given the quotient topologyfrom Y, then Z has the 
quotient topology from X induced by the composition of the two functions. 

13.4. Definition. A map X -+ Y is called an identification map if it is onto 
and Y has the quotient topology. 
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- 13.5. Proposition. A  surjection f :  X -+ Y is aa ident$catio~z map o (for all 
fur~crions g: Y -+ Z ,  (go f is continuous o g is continuous)). 

PR()oF. The => part is clear from the definitions. For e specialize to the 
case Z = Y as sets, with the identification topology (on Z) and g the identity 
function. Then the composition X -+ Y --% Z is continuous, so the condition 
demands that g be continuous. But g-' is continuous because the composition 
X -+ Z -+ Y isf which is continuous (by the case Z = Y as spaces and g = 1 ,) 
and since Z has the quotient topology. Thus g is a homeomorphism, meaning 
that Y = Z as spaces. 

13.6. Example. The projective plane is often defined as the sphere S2 with 
antipodal points identified. That is, it is given the quotient topology from 
the relation that identifies antipodal points in a sphere. A second description 
of the projective plane one often sees is that it is the unit disk D2  with 
antipodal points on the boundary identified. Regard D2 as the upper 
hemisphere and consider the diagram: 

D2 I s2 
If I, I g  

D2/-  +S2/- 

where the maps f and g are the identifications, i is the inclusion, and k is 
induced (the only function making the diagram commute). If U c S2/ - is 
open then g-'(U) is open so (gi)-'(U) = i-'(9-'(U)) is open. But this is the 
same as (k f ) -  '(U) = f - ' ( k - ' (U) ) .  Thus k-'(U) is open by the definition of 
the quotient topology. That means that k is continuous. But k is also clearly 
one-one and onto. Moreover, D2/ - is compact since D2 is. Also, S2/ - is 
easily seen to be Hausdorff, and so we finally conclude that k is a homeo- 
morphism from Theorem 7.8. Thus, indeed, these two ways of defining the 
projective plane as a topological space are equivalent. This is a typical argu- 
ment involving spaces obtained via identifications. 

An often used special case of quotient spaces is the idea of "collapsing" 
a subspace: 

13.7. Definition. If X is a space and A  c X ,  then X / A  denotes the quotient 
space obtained via the equivalence relation whose equivalence classes are A 
and the single point sets {x), x e X  - A. 

The following is an easy exercise: 

13.8. Proposition. If X is regular and A  is closed then X I A  is Hausdo~J: l f  
X is normal and A is closed, then X/A is normal. 

Figure 1-1. The sphere as quotient space of a disk. 

13.9. Example. Consider the cylinder S" x 1. Define f :S" x 1 -+ Dn+' by 
f (x, t) = tx. This carries the set Sn x (0) to the origin and so ,f factors through 
S" x l/S" x {O). The resulting map g:S" x l/Sn x (0) -+ Dn+'  is clearly 
one-one and onto. Thus it is a homeomorphism by Theorem 7.8. 

13.10. Example. Consider the n-disk Dn. This is clearly homeomorphic to 
the lower n-hemisphere of radius 2 centered at 1 on the "vertical" axis. (See 
Figure 1-1.) We can map this onto the n-sphere S" of radius 1 centered at 
the origin by projection towards the vertical axis. It maps the boundary of 
the disk to the north pole of the sphere. This function is distance decreasing 
and hence continuous. Also consider the quotient space D"/S"' '. One can 
factor the projection of the disk to the sphere through this space. By an 
argument similar to that in Example 13.9 one can show that the resulting 
map Dn/S" - ' + S" is a homeomorphism. 

If the method in Example 13.9 is not available, the following gives a 
criterion for deciding the same sort of question. 

13.11. Definition. If A c X and if - is an equivalence relation on X then 
the saturation of A is (x~X1.x - a  for some aeA). 

13.12. Proposition. If  A c X and - is an equivalence relation on X such that 
every equivalence class intersects A nontrivially, then the induced map 
k: A/ - -+ X /  - is u homeomorphism ifthe saturation of every open (resp. closed) 
set of A  is open (resp. closed) in X. 

PROOF. If f :  A + A/ - and g: X -+ X/ - are the canonical maps, and U is an 
open set in A/ - then g-'(k(U)) is the saturation of f- '(U). Moreover, by 
definition, it is open o k(U) is open in X/ -. Also k is clearly one-one, onto, 
and continuous. E l  

Another common application of the idea of a quotient space is a 
obtained by "attaching": 

13.13. Definition. Let X  and Y be spaces and A c X closed. Let J 

a map. Then we denote by Y u f X ,  the quotient space of the disjoin, 



42 I. General Topology 

X + Y by the equivalence relation - whjch is generated by the relations 
a -  f (a )  for ~ G A .  

(To be more precise about the equivalence relation, for points u, v in 
X + Y, u - v if one of the following is true: ( I )  u = v; ( 2 )  u, V E  A, and f (u) = f (0); 

(3)  u € A  and v =  f ( u ) ~ Y . )  
Note that if Y is a one-point space then Y uf X = X/A .  
The following is an easy verification left to the reader: 

13.14. Proposition. The canonical map Y -+ Y u f X  is an embedding onto a 
closed subspace. The canonical map X - A -+ Y u s X  is an embedding onto an 
open subspace. 

13.15. Definition. If A is a subspace of a space X then a map f :  X -+ A such 
that f (a )  = a for all points a s A ,  is called a retraction, and A is said to be a 
retract of X. 

Special cases of attachments of importance to us are the "mapping 
cylinder" and the "mapping cone." As is usual, the unit interval [O, 1) will 
be denoted by I here. 

13.16. Definition. I f f :  X-, Y is a map then the mapping cylinder off is the 
space M f = Y u f o X x I  where f o : X x ( O } + Y  is fo(x,O)= f (x) .  See 
Figure 1-2. 

Note that X x X x ( 1 )  is embedded as a closed subset of M,.. By an abuse 
of notation, we will regard this as an inclusion X c M y  Also note then that 

there is the factorization off, X c M, Y where r is the retraction of M 
onto Y induced by the projection X x I -+X x ( 0 ) .  

13.17. Definition. If f :  X -, Y is a map then the mapping cone of f is the 
space Cf = M,/(X x (1)). 

Figure 1-2. Mapping cylinder. 
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It is often of interest to know when a function Mf + Z ,  taking a mapping 
cylinder into another space 2, is continuous. This is usually quite easy to 
check by use of the following simple fact. The proof is an easy application 
of the definition of the quotient topology on a mapping cylinder, and is left 
to the reader. 

13.18. Proposition. A function MI.  --+ Z is continuous o the induced functions 
X x I -+ Z and Y -+ Z are both continuous. 

Here is a result we shall need later. 

13.19. Proposition. Iff: X --+ Y is an identijication map and K is a locally 
compact Hausdorffspace then f x 1: X x K -, Y x K is an identification map. 

PROOF. Suppose that g: Y x K -+ W and let h = go(f x 1): X x K -+ W. Then, 
by Proposition 13.5, it suffices to prove that h continuous * g  continuous. 
Let U c W be open and suppose that g(yo, k , )€U.  Let f (xo )  = yo. Then 
h(xo, k,) = g(y,, k0 )€U.  Therefore there is a compact neighborhood N of k, 
such that h(xo x N )  c U .  Put A = ( y e  Y lg(y x N )  c U ) .  Then y 0 c A  and it 
suffices to show that A is open. Thus it suffices to show that f - ' (A) is open. 
Now 

R and so X - f - I ( A )  = x,(h-'(W - U ) n ( X  x N ) )  is closed by Proposition 8.2. 

1. + Iff: X -, A and g: Y -+ B are open identification maps, show that f x g: X x Y -+ 

A x B is also an open identification map. 

2. If X, Y are normal, A c X is closed, and f: A - t  Y is a map, show that Y u,.X is 
normal. 

3. Iff: X -, Y is a map between Hausdorffspaces, show that M ,  and CJ are Hausdorff. 

4. There are four common definitions of the torus T2: 
(1) as R2/Z2, i.e., the plane modulo the equivalence relation (x, y) - (u, w)*x - u 

and y - w are both integers; 
(2) as a square with opposite edges identified (see Figure 1-3); 
(3) as the product S' x S'; and 
(4) as the "anchor ring," the surface of revolution obtained by rotating a circle 

about an axis in its plane and disjoint from it. 
Show that these are all homeomorphic to one another. 

5. The "Klein bottle" K 2  is a square with opposite vertical edges identified in the 
same direction and opposite horizontal edges identified in the opposite direction 
(see Figure 1-3). Consider the space (denoted by P2#P2) resulting from an annulus 
by identifying antipodal points on the outer circle, and also identifying antipodal 
points on the inner circle. Show that K2 zP2#P2 .  



Figure 1-3. The torus (left) and Klein bottle (right). 

6. Consider the real line R, with the equivalence relation x - y o x  - y is rational. 
Show that R/ - has an uncountable number of points, but its topology is the 
trivial one. 

7. Consider the real line R and the integers Z. Let A = R/Z (the identification of the 
subspace Z to a point). Also consider the subspace B of the plane which is the 
union d the circles of radius l/n (n = 1,2,. . .) in the upper half plane all tangent 
to the real line at the origin. Also consider the subspace C of the plane which is 
the union of the circles of radius n (n = 1,2,. . .) in the upper half plane all tangent 
to the real line at the origin. Finally, consider the space D = S1/N where S' is the 
unit circle in the complex numbers and N = {e'"lnI n = 1,2,. . .} u {I). Which of these 
four spaces A, B, C,  D are homeomorphic to which others of them? 

8. Let (X, x,) and (Y, yo) be "pointed spaces," i.e., spaces with distinguished "base" 
points. Define the "one-point union" X v Y to be the quotient space of the 
topological sum X + Y by the equivalence relation identifying xo with yo. Show 
that X v Y x X x { y o }  u{xo} x Y, where the latter is regarded as a subspace of 
X x Y. 

14. Homotopy 

A homotopy is a family of mappings parametrized by the unit interval. This 
notion is of central importance in topology. Here we lay down the basic 
definitions and properties of this concept. 

14.1. Definition. If X and Y are spaces then a homotopy of maps from X to 
Y is a map F: X x I -+ Y, where I = [O,1]. 

TWO maps fo, f ,: X -+ Yare said to be homolopic if there exists a homotopy 
F: X x 1 -+ Y such that F(x, 0) = ,f,(x) and F(x, I )  = j , ( x )  for all XE X. 

The relation " f is homotopic to g" is a n  equivalence relation on the set 
of all maps from X to Y (see Definition 14.11) and is denoted by f 2: g. The 
following is elementary: 

14.2. Proposition. I f f ,  g: X + Y, h: X' -+ X and k: Y -+ Y' then 

f - g  f o h z g o h  and k o f z k o g .  

14.3. Definition. A map f : X +  Y is said to be a homotopy equivalence with 
homotopy inverse g if there is a map g: Y -+ X such that gof  - 1, and f o g  - 1,. 
This relationship is denoted by X - Y. One also says, in this case, that X 
and Y have the same homotopy type. 

This is an equivalence relation between spaces, since, if h: Y -t Z is another 
homotopy equivalence with homotopy inverse k then 

(gk)(hf = g(kh)f - 9 1 y f  = g f  = 1, 

and similarly for the opposite composition. 

14.4. Definition. A space is said to be contractible if it is homotopy equivalent 
to the one-point space. 

14.5. Proposition. A space X is contractible a the identity map 1,: X 4 X is 
homotopic to a map r: X +X whose image is a single point. 

PROOF. Let Y = {x,) = im(r). Then we have the inclusion map i: Y -+ X and 
the retraction r: X -+ Y. Now roi = 1 and ior - 1, by assumption. The 
converse is also easy. a 
14.6. Example. Consider euclidean space X = Rn and the homotopy 
F: X x I + X given by F(x,  t) = tx .  This is a homotopy between f ,  = 1, and 
fo, which is the map taking everything to (0). Consequently, Rn is contractible. 
Note that each f ,  is onto for t > 0 but that, suddenly, f, is far from onto. 
This may challenge the intuition of some readers. 

14.7. Example. Consider the unit sphere Sn-'  in Rn and the punctured 
euclidean space R" - (0). Let i:Sn-' -+ Rn - {O) be the inclusion and 
r: Rn - {O) +S"-' be the central projection r(x) = x/ 11 x I / .  Then r o i  = 1 and 
i o r  2: 1 where the latter homotopy is given by F: (Rn - (0))  x I -+ Rn - {O), 
where F(x, t )  = t x  + (1 - t)x/JI x 1 1 .  Thus S"- ' - Rn - (0). 

These two examples illustrate and suggest the following: 

14.8. Definition. A subspace A of X is called a strong d</i~rmurion reliuct of 



X if there is a homotopy F; X x 1 -+X (called a deformation) such that: 

F(x, 0) = x, 

F(x, 1)6A? 
F(a, t) = a for a €  A and all t ~ l .  

It is just a deformation retract if the last equation is required only for t = 1. 

As in the examples, a deformation retract A of a space X is homotopically 
equivalent to X. 

Is the sphere Sn contractible? Our intuition tells us the answer is "no" 
but, in fact, this is quite difficult to prove. This is one type of question which 
algebraic topology is equipped to answer, and we will answer it, and many 
more such questions, in later pages. 

14.9. Example. I f f :  X 4 Y is a map then the canonical map r: MJ 4 Y is a 
strong deformation-retraction, as the reader can verify (see the end of the 
proof of Theorem 14.18). Hence M/.  - Y. Thus, the mapping cylinder allows 
replacing "up to homotopy" the arbitrary map f by the inclusion X c, Mf. 

14.10. Definition. If A c X then a homotopy F: X x 14 Y is said to be 
relative to A (or re1 A) if F(a,t) is independent of t for aeA. A homotopy 
that is re1 X is said to be a constant homotopy. 

Two homotopies of X into Y can be "concatenated" if the first ends where 
the second begins, by going through the first at twice the normal speed and 
then the second at that speed. We will now study this construction. The 
reader should note the important special case in which X is a single point 
and so the homotopies are simply paths in Y. It might help the reader's 
understanding if he draws pictures, in this case, for all the basic 
homotopies produced in Propositions 14.13, 14.15, and 14.16. 

14.11. Definition. If F: X x 14 Y and G: X x 1 -+ Yare two homotopies such 
that F(x, 1) = G(x, 0) for all x, then define a homotopy F * G: X x 1 -+ Y, which 
is called the concatenation of F and G, by 

(See Figure 1-4.) 

One does not have to combine these homotopies at t = i. We can do it 
at any point and with arbitrary speed: 

14.12. Lemma (Reparametrization Lemma). Let 4, and 4, be maps 
(I, 81)- (I, dl) which are equal on dl. (Note the case where one of these is the 
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Figure 1-4. Concatenation of homotopies. 

identity.) Let F: X x 14 Y be a homotopy and let Gi(x, t) = F(x, cPi(t)) for 
i = 1,2. Then G ,  I: G, re1 X x dl. 

PROOF. Define H: X x I x I -, Y by H(x, t, s) = F(x, s4,(t) + (1 - s)4,(t)). 
Then 

with the last two equations coming from 4,(O) = 4,(0) and &(I) = 4,(1). 
0 

We shall use C to denote a constant homotopy, whichever one makes 
sense in the current context. For example F*C is concatenation with the 
constant homotopy C for which C(x, t) = F(x, I), but use of C*F will imply 
the one for which C(x, t) = F(x, 0). 

14.13. Proposition. We have F*C - F re1 X x 81, and, similarly, C* F - F re1 
x x ar. 

PROOF. This follows from Lemma 14.12 by letting 4,(t) = 2t for t I Q and 
= 1 for t 2 4, and 4,(t) = t in the first case, and 4,(t) = 0 for t I i and = 2t - 1 
for t 2 4 and 4,(t) = t in the second case. 

We define the "inverse" F-'  of a homotopy F to be this homotopy with 
t running backward. Note that this has nothing to do with the inverse of 
the map (which probably does not exist anyway). 

14.14. Definition. If F: X x 1 -+ Y is a homotopy, then we define F- ': X x I -+ 
Y by F - I ( X , ~ ) =  F(X,I - t ) .  

14.15. Proposition. For a homotopy F we have F*F- '  - C re1 X x dl where 
C(x, t) = F(x,O)for all x and t; i.e., C is a constant homotopy. 



PROOF. This follows from Lemma 14.12 by letting gl,(t) - 2t for t 13, 
4,(t) = 2 - 2t for t 2 $, and g12(t) = 0 for all t. 

14.16. Proposition. For any homotopies F, G, Hfor which the concatenations 
F*G and G*H are defined, we have (F*G)*H - F*(G*H)relX x dl. 

PROOF. Again, this is an easy application of the Reparametrization Lemma 
(Lemma 14.12). 

14.17. Proposition. For homotopies F,, F,, GI, and G,, i f F ,  a: F, relX x d l  
and GI -G2relX x d l  then F,*Gl -F,*G,relX x a l .  

PROOF. If H: X x I x I + Y and K: X x I x I + Y are the homotopies giving 
F, - F, and GI II G,, respectively, then it is easy to check that H*K is the 
required homotopy of homotopies. (The reader should fill in the details 
here.) 

Note that all of the discussion of concatenation of homotopies goes 
through with no difficulties for the cases in which all homotopies are 

\@ relative to some subspace A c X or are homotopies of pairs (X, A) -t (Y, B). 
It follows from the stated results that homotopy between maps of pairs 

(X, A) +(Y, B) is an equivalence relation, The set of homotopy classes of these 
maps is commonly denoted by [X, A; Y, B], or just [X; Y] if A = (a. 

We will now prove that the homotopy type of a mapping cylinder or cone 
depends only on the homotopy class of the map. 

i 14.18. Theorem. If fo 2: f, : X + Y then M,, 1. M,, re1 X + Y and C,, a: C,, 
re1 Y + vertex. 

PROOF. The part for the cone follows from that for the mapping cylinder. 
Let F:X x I +  Y be the given homotopy between f o  and f,. Define 
h: M,, + M,, by h(y) = y for YE Y and 

F(x, 2t) for t < $, 
h(x, t) = 

(x,2f-1) for $ s t .  

Note that h(x, $) = F(x, 1) = j ',(x) = (x, 0). To prove continuity, we only have 
to show that the compositions Y --+ M,., and X x I -+ M,, are continuous by 
Proposition 13.18, but this is trivial. 

Define k: M,, -+ M,, in the analogous fashion. Then the composition 
kh: MI,,-+ M,, is the identity on Y and, on the cylinder portion, it is 
F*(F-'  * E )  where E: X x 1 -+ M,., is induced by the identity on X x 1 -+ X x I; 
see Figure 1-5. This is homotopic to the identity re1 X x { I )  + Y. Similarly 
for hk. It remains to check the continuity of this homotopy. We have described 
a homotopy M,,, x I -t M,.,,. For continuity, it is sufficient to know that 
M,,, x l z M r O x I  because then we only have to check continuity of the 

Figure 1-5. Deformation of a mapping cylinder. 

composition (X x I + Y) x I -t M,, x I -+ MI,, and that is trivial. (On Y x I 
it is the constant homotopy and on X x I x I it results from 
F*(F-'*E) - E relX x dl.) That is, it suffices to show that M,, x I has the 
identification topology from the map fo x I. But that is a consequence of 
Proposition 13.19. 

We conclude this section by studying the effect on mapping cones of 
changing the target space by a homotopy equivalence. 

Let f : X +  Y. If 4: Y + Y' is a map then there is the induced map 
F: MI-+ M+Sl-induced from 4 on Y and the identity on X x I. 

14.19. Theorem. If 4: Y - t  Y' i s  a homotopy equivalence then so is 
F: (M,, X) +(M++ X) and hence so is F: Cf -+ C++ 

PROOF. Let $: Y'+ Ybe a homotopy inverse of 4 and let G:M+,,.-+ Mtop, 
be the map induced by $ on Y' and the identity on X x I. The compos~t~on 
GF: M,+ M,,+,, is induced from $04: Y -+ Yand the identity on X x I. Let 
H: Y x I -, Y be a homotopy from 1 to $04; i.e., H(y, 0) = y and H(y, 1) = $glCy). 
By the proof of Theorem 14.18 there is the homotopy equivalence 
h: M,+ M,,+,, re1 X given by h(y) = y and 

H( f (x), 2t) for t I $, h(x, t) = 
(x, 2t - 1) for t 2 3. 

C We claim that h -- GF re1 X. Indeed, the homotopy H can be extended to 

t M, x I + M,,+,,. by putting 

H(f (x),2s + t )  for 2 s + t  I 1, 
H((x, s), t )  = 

(x,(2s+t- l) / ( t+ I)) for 2 s + t 2 1 .  
e 
i 
i Then H((x, s), 0) = h(x, s), H(y, 0) = y, and H((x, s),1) = (x, 4,  MY, I ) = $gl(y), so 
b that H ( - , 0 )  = h and H(.,  1) = GF. ! 
i 
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,We conclude that G F  is a homotopy equivalence, gince h is one. Likewise, 
F'G is a homotopy equivalence, where F': M,oUIo,--+MUIo,,d,o, is defined 
similarly to F. 

If k is a homotopy inverse of GF then GFk ci 1. If k' is a homotopy inverse 
of F'G then KF'G 1.1. Thus G has a homotopy right irlverse R = Fk and 
also a homotopy left inverse L = KF'. That is, LG - 1 - GR.  Then 
R = 1 o R 2: (LG)R = L(GR) 2: Lo1 = L, and so R - L is a homotopy inverse of 
G.  Therefore, G is a homotopy equivalence. Since G and GF are homotopy 
equivalences, so is F. (Explicitly, if 1 is a homotopy inverse of G then 
FkG -- (1G)FkG = f(GFk)G -- IG -- 1 so that kG is a homotopy inverse of F, 
since kGF 2: 1 by the definition of k.) 

1. Let SZ v S1 be the "one-point union" of a 2-sphere and a circle; see Problem 8 of 
Section 13. Let S2 u A denote the union of the unit 2-sphere and the line segment 
joining the north and south poles. Show that these spaces are homotopically 
equivalent. 

2. Show that the union of a 2-sphere and a flat unit 2-cell through the origin is homo- 
topically equivalent to the one-point union of two 2-spheres. 

3. Show that the union of a standard 2-torus with two disks, one spanning a latitudinal 
circle and the other spanning a longitudinal circle of the torus, is homotopically 
equivalent to a 2-sphere. 

4. Show that the projective plane is homeomorphic to the mapping cone of the map 
z c r z 2  of the unit circle in the complex numbers to itself. 

5. Consider the mapping cone of the map f of the unit circle in the complex numbers 
to itself, given by f (z) = z4 for z in the upper semicircle and by f(z) = z2 fo: z in 
the lower semicircle. Show that this space is contractible. 

6. The "dunce cap" space is the quotient of a triangle (and interior) obtained by identi- 
fying all three edges in an inconsistent manner. That is, ifthe vertices of the triangle 
are p, q, r then we identify the line segment (p, q) with (q, r) and with ( p ,  r) in the 
orientation indicated by the order given of the vertices. (See Figure 1-6.) Show that 
the dunce cap is contractible. (Hint: Describe this space as the mapping cone of 
a certain map from S' to itself, and study this map.) 

Figure 1-6. The dunce cap. 
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7. If 4: X': X and f :  X -+ Y are maps, define an induced map F:CJO4-+C,. 
If 4 is a homotopy equ~valence then show that F is a homotopy equivalence. 

8. Show that a retract of a contractible space is contractible. 

9. For any two maps f,g: X -+ S" such that f (x) # -g(x) for all x, show that / - g 

15. Topological Groups 

Topological groups, spaces which are also groups in the algebraic sense, 
form a rich territory for important examples in topology and geometry. Here 
we shall develop the roots of the theory behind them. 

15.1. Definition. A topological group is a Hausdorff topological space G 
together with a group structure on G such that: 

(1) group multiplication (g, h ) ~ g h  of G x G + G is continuous; and 
(2) group inversion g ~ g -  ' of G + G is continuous. 

15.2. Definition. A subgroup H of a topological group G is a subspace which 
is also a subgroup in the algebraic sense. 

15.3. Definition. If G and G' are topological groups then a kornornorphism 
f: G -+ G' is a group homomorphism which is also continuous. 

15.4. Definition. If G is a topological group and geG then left translation 
by g is the map L,: G -, G given by L,(h) = gh. Similarly right translation 
by g is the map R,: G -+ G given by R,(h) = hg". 

15.5. Proposition. In a topological group G we have L,oL, = L,, and 
R,o R,  = Rgh. Moreover, both I,, and R, are homeomorphisms as is conjuga- 
tion by  g ( h ~ ~ h g - ' )  and inversion (h-h- l ) .  

PROOF. The first statement is a trivial computation, and implies that L g _ ,  = 

L;' and similarly for right translation, and it follows that these are homeo- 
morphisms. Conjugation hwghg- '  is the same as R,oL, and so is a 
homeomorphism. Inversion is continuous by assumption and is its own 
inverse, and thus is a homeomorphism. 

In a topological group G, if A, B are subsets then we let A B  = ( a b l a ~ A ,  
b c B )  and A - '  = ( a - ' l a ~ A ) .  

15.6. Definition. A subset A of a topological group is called syrnmetrlc if  
A = A - ' .  

15.7. Proposition. In a topological group G with unity elemc.nr e, rhr symmetric 
neighborhoods of e form a neighborhood basis at e. 



PROOF. If U is any neighborhood of e -then so is U-', and hence so is 
U n U - ', which is symmetric. 

It is an easy exercise using the continuity of multiplication to see the 
following two results: 

15.8. Proposition. If G is a lopological group and geG, and U is any neigh- 
borhood ofg, then there is a symmetric neighborhood Vofe such that Vg V -  ' c 
U. 

15.9. Proposition. If G is a topological group and U is any neighborhood 
of'e and n is any positive integer, then there exists a symmetric neighborhood 
V of e such that Vn c U.  

15.10. Proposition. If H is any subgroup of a topological group G then H 
is also a subgroup of G. If H is a normal subgroup then so is H. 

PROOF. It follows from continuity of inversion and multiplication that 
'fi-' c H and fin c f? so that H is a subgroup. If H is a normal subgroup 
and g€G then continuity also implies that gfig-' c H and the opposite 
inclusion follows by applying this formula to g-l. 

15.11. Proposition. If G is a topological group and H is a closed subgroup 
then the space G/H of left cosets of H in G,  with the topology induced by 
the canonical map IT: G +  G/H, is a Hausdorff space. Moreover, IT is open 
and continuous. 

PROOF. If U c G is open then n-'z(U) = UH = {Uhlhe H is a union of 
open sets and so is open. By definition of the quotlent topology it follows 
that n(U) is open, proving the last statement. To see that G/H is Hausdorff, 
suppose that g, H # g2H (hence representing different points in G/H). This 
is the same as saying that g;'g2#H. Since G-H is an open set containing 
g; 'g,, Proposition 15.8 implies that there is a symmetric open neighborhood 
U of e such that (Ug;'g2U)nH = (a. Thus g;lg2Un UH = fa which is the 
same as g,U ng ,UH = @ which implies in turn that g2UH n g ,  UH = fa. 
This shows that x(g,)€g,UH which are disjoint open sets in G/H. 

15.12. Proposition. If H is a closed normal subgroup oj the topological group 
G then G / H ,  with the quotient topology, is a topological group. 

PK(x)I.. G/fi is Hausdorff by Proposltlon 15.1 1 and it remains to show that 
the group operations are continuous. Consider the following diagram, where 
thc hor~rontal arrows are group multiplications: 

An easy consequence of the fact (Proposition 15.1 1) that n is open is that 
n x 7~ is an identification niap (see Section 13, Problem 1). Taking an open 
set in GIN (the lower right), we must show its inversc image on the lower 
left is open. But that is the same as showing that its inverse image in G x G 
is open. But this inverse image is the same as that via the top and right 
maps, and that is open since those maps are continuous. A similar argument 
gives the continuity of inversion in GIH. 

The most important class of topological groups is that of the so-called 
Lie groups which also carry a differentiable structure. We will discuss differen- 
tiable structures in Chapter 11. Here, we will only discuss some of the important 
"classical Lie groups." 

The set M, of n x n-matrices is just a euclidean space of dimension n2. 
The determinant function M,+ R is continuous since it is just a polynomial 
in the matrix coeffrcients. Thus the inverse image of (0) is a closed set. Its 
complement is the set of nonsingular matrices, and this forms a group under 
multiplication. It is called the "general linear group" and is denoted by 
Gl(n, R). It is an open subset of euclidean n2-space and that is the topology 
it is given. Matrix multiplication is given by polynomials in the coefficients 
and so is continuous. Matrix inversion is a rational function of the coefficients 
by Cramer's rule and so that is continuous. Thus Gl(n,R) is a topological 
group. 

In the same way, the general linear group Gl(n, C) over the complex numbers 
can be seen to be a topological group. 

The special linear group Sl(n, R) is the subgroup of Gl(n, R) consisting of 
matrices of determinant 1, and similarly for Sl(n, C) over the complexes. 

Similarly, the general linear group Gl(n, H) over the quaternions is a topo- 
logical group, although, in this case, the argument is a little harder since quater- 
nionic matrices lack a determinant function. (See Problem 12.) 

The set O(11) of orthogonal (real) matrices forms a subgroup of Gl(n, R) 
and it is a closed subset, since it is defined via continuous relations (AA' = I). 
Since the coefficients of an orthogonal matrix are bounded by 1 in absolute 
value, O(n) is a bounded closed subset of euclidean n2-space, and hence is 
compact by Corollary 8.7. 

Similarly, the set U(n) of unitary matrices (AA* = I) is a compact subgroup 
of Gl(n, C). 

The quaternionic analogue of the orthogonal and unitary groups is called 
the symplectlc group Sp(n). Its elements are quaternionlc matrices A such 
that A A* = I ,  where A* is the quaternionic conjugate transpose of A, conjuga- 
tion meaning reversal of all three imaginary components. This group is a 
compact subgroup of Gl(n, H). 

These three classes of examples are called the "classical Lie groups." 
Notc that thc map Gl(n, R) x Rn -+ Rn is glven by polynomials in the coef- 

ficients of the matrix and the vector, and so is continuous. 
An orthogonal matrix A€O(n), as a transformation of euclidean n-space, 

preserves lengths of vectors, and so it 1s a map of the sphere S" -' to itself 
We can regard O(n - 1 )  as the subgroup o f  O(n) fixing the last coordinate. 



Consider the point (0,0,. . . ,O,l]. This point is left fixed by O ( n  - 1). We can 
map O ( n )  into Sn-' by taking a matrix into where it moves the point 
(0 ,0 , .  . . ,0 ,1) .  That is, we define the map 

f : O ( n ) - + S n - '  by f ( A )  = A(0,0, .  . . ,0,1)'. 

If BtzO(n - 1) then clearly f (AB)  = f (A) .  This means that the mapf  factors 
through the left coset space O(n) /O(n-  1). A short computation will show 

IS one-one onto and continuous. that the induced map O(n) /O(n - l ) - + S " - '  ' 
Since this is a one-one mapping of a compact space onto a Hausdorff 
space it is a homeomorphism by Theorem 7.8. Let us abstract these 
observations. 

15.13. Definition. If G is a topological group and X is space, then an action 
of G on X is a map G x X + X ,  with the image of (g ,x )  being denoted by 
g(x), such that: 

( 1)  (gh)(x)  = g(&) ); and 
(2)  e(x) = x.  

For a point xtzX,  the set G(x)  = (g(x)lgtzG) is called the orbit of x,  and the 
subgroup G ,  = (gtzG]g(x) = x )  is called the isotropy or stability group at x .  
The action is said to be transitive if there is only one orbit, the whole space 
X. The action is said to be eflective if (g(x)  = x for all x )  * g = e, the identity 
element of G. 

Note tfiat, in describing G x X -+ X as a "map," we are assuming it to be 
continuous. The following, then, is the general setting in which our comments 
on O ( n )  acting on S"-' lie. 

15.14. Proposition. If G is a compact topological group acting on the Hausdorff 
space X and G ,  is the isotropy group at x,  then the map 4: GIG, -+ G(x)  given 
by  g G , ~ g ( x )  is a homeomorphism. 

PROOF. If g l (x )  = gZ(x) then g ; ' g , ~ G ,  and so g,G, = g2G,, showing that 
4 is one-one onto G(x) .  It is continuous by the definition of the quotient 
topology on GIG,, and the result then follows from Theorem 7.8. 

Just as with the case of O(n),  U(n )  acts on SZn-  I, and it is transitive because 
one can find a unitary matrix moving any vector of length 1 into any other. 
The isotropy group at (0,0,. . . , O , l )  is U ( n  - I), and so U(n) /U(n - I) % SZn - ' 

Similarly SP(n)/SP(n - 1) z S4"-I .  
More generally, if we let (as is usual) V,., denote the "Stiefel manifold" of 

k-frames in n-space (a k-frame being an orthonormal set of k vectors in 
n-space), then O(n)  acts transitively on V,,, with an isotropy group O ( n  - k), 
and so O(n) /O(n  - k) x V",,. The reader can make analogous observat~ons 
for the unitary and symplectic cases. 
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Some other matrix groups are obtained by restriction to matrices of deter- 
minant 1 :  

SO(n) = { A ~ O ( n ) ( d e t ( A )  = 1 ) = the special orthogonal group, 

SU(n) = ( A ~ U ( n ) l d e t ( A )  = 1 )  = the special unitary group. 

There is no analogue in the symplectic case. 
With appropriate restrictions, these groups also act transitively on spheres 

and we get 

SO(n)/SO(n - 1 )  z Sn - ' for n 2 2, 
SU(n)/SU(n - 1) = S2"- ' for n 2 2. 

Similar results can be obtained for the Stiefel manifolds, as the reader can 
verify. 

1. If G is a topological group and Go is the component containing the identity 
element, then show that Go is a closed normal subgroup of G. 

2. If 4: G -, H is an onto homomorphism of topological groups, show that the kernel 
K of 4 is a closed normal subgroup of G. If, moreover, G is compact, show that 
G/K % H as topological groups. 

3. If gcG, a compact topological group, and A = (gn]n = 0,1,2,. . .), then show that 
A is a subgroup of G. Is this true without compactness of G? 

4. If G is a compact topological group, then show that every neighborhood of e 
contains a neighborhood V which is invariant uzder conjugation (i.e., g Vg- = V 
for all gcG). 

5. Q If G is a topological group and H is a closed subgroup, show that if H and 
G/H are both connected then so is G. 

6. If G is a topological group acting on the space X and if we put 

H = {~EGIVXEX, h(x) = x), 

then show that H is a closed normal subgroup of G. 

7. Q Show that SO(2) = S1, SU(2) = S3, and Sp(1) = Syas  spaces). 

8. + Show that SO(n) is connected. (Hint: Use Problem 5.) Further, show that SO(n) 
is the component of O(n) containing the identity. 

9. + Show that U(n) and SU(n) are both connected and that U(n)/SU(n) = S1. 

10. Show that the center {h~GlVgsG, hg = gh) of a topological group G is closed. 

I I .  Show that real project~ve n-space RP" x O(n + 1 )/(O(n) x O(1)) and  that complex 
projective n-space CP" = U(n + I)/(U(n) x U(1)). 

12. + Show that Gl(n, H) is open in M,(H). 

13. Consider the multiplicative group of all upper diagonal 2 x 2 matrices of deter- 



minant 1. Show that the conclusion of Problem 4 is false for this (noncompact) 
topological group. 

14. Show that a topological group is regular. (Hin t :  Let U ,  V be symmetric open 
neighborhoods of e such that V 2  c U and deduce that Vc U.) 

15. Prove Propositions 15.8 and 15.9. 

16. Convex Bodies 

In topology, we often need to know that certain familiar objects are homeo- 
morphic. For example, we shall have reason to want to know that a disk in 
euclidean space is homeomorphic to a cube, and to a cylinder, and a simplex 
(the analogue of a tetrahedron), and so on. In this section we give a general 
result that provides a unified proof of these special cases and many others. 

16.1. Definition. A convex body in Rn is a closed set C c Rn with the property 
that whenever p , q ~ C  the line segment between p and q is contained in C. 
The boundary of C is a C  = C - int(C). 

16.2. Proposition. If C c Rn is a convex body and O~int(C) then any ray from 
the origin intersects aC in at most one point. 

PROOF. Suppose R is a ray from the origin and p, q ~ R n  C, with neither p 
nor q being the origin. Suppose q is further from the origin than p. Since the 
origin is assumed to lie in int(C) there is a ball B about the origin completely 
contained in C. Then consider the union of all line segments from points in 
B to q (the cone on B subtended from q). The point p is clearly in the interior 
of this cone, and the cone is contained completely in C, since C is convex, 
and so p must be in int(C). 

16.3. Proposition. Let C c Rn be a compact convex body with O~int(C). Then 
the function f :  dC -+ S"-' given by f ( x )  = x/ [I x 11 is a homeomorphism. 

PROOF. Since f is the composition of the inclusion dC c=+ Rn - {O) with the 
radial retraction r:Rn - {O)-+S"-', it is continuous. Proposition 16.2 
implies that f is one-one, and f is obviously onto. By Theorem 7.8, f is a 
homeomorphism. • 

16.4. Theorem. A compact convex body C in Rn with nonempty interior is 
homeomorphic to the closed n-hall, and dC z S"-'. 

PROOF. By translation, we can assume the origin is in the interior of C. Let 
Dn denote the unit dlsk in R" and let f be as in Proposition 16.3. Then the 
function k: Dn -. C given by k(x) = 11 x / j  .f- '(x/ 11 x / I  ) for x # O and k(O) = O 
clearly maps Dn onto C and is continuous everywhere except possibly at the 

origin. However, since C is compact, there is a bound M for {I/ x 11 1 u ~ C j .  - 
Then I] k(x) I1 I M x 11 which implies continuity at the origln. It is also clear 
that k is one-one, and hence it is a homeomorphism by Theorem 7.8. 

17. The Baire Category Theorem 

Often, one is interested in a condition on points of a space that is satisfied 
by an open dense set of points. For example, if p(x,,  . . ., x,) is a polynomial 
function on R" then the condition p(x) # 0 has this property, and a special 
case of that is the determinant function on square matrices. If one has two 
such conditions then the set of points satisfying both conditions is still open 
and dense. The same, then, is true for any finite number of such conditions. 
But what of a countably infinite number of such conditions? Certainly, one 
cannot expect that the set of points satisfying all the conditions is open, but 
the density of this set does survive for a wide class of spaces, as we show in 
this section. This fact has many important consequences in analysis as well as 
in topology. 

17.1. Theorem (Baire Category Theorem). Let X be either a complete metric 
space or a locally compact HausdorfSspace. Then the union of countably many 
nowhere dense subsets of X has empty interior. 

PROOF. Let U be an open subset of X and suppose that Ai c X is nowhere 
dense (i = 0, I , .  . .). Construct a sequence of nonempty open sets V, ,  V,, . . . , 
such that f7,+, c Vi - x i ,  where Vo = U .  (In the complete metric case, this 
can be achieved by taking V,, , = B,(x) for some x€Vi - A, such that 
BZ6(x) c 6 - Xi.) 

If X is locally compact then also construct the Vi so that ql, and hence 
each I/;, is compact. Then the satisfy the finite intersection property and 
SO@#(-) ( ICU-UA, .  

If X is complete metric, then also construct the V, so that diam(Vi) < 2-'. 
Then a sequence of points X,E Vi is Cauchy since, for i < j, dist(x,x,) 5 
diam(V,) < 2-'. Then X,E for all n 2 i and so x = lirn(x,)~ pi for all i. Thus 
X ~ ~ F , C U - U A , .  

In both cases this shows that U $ UA,. Since U is an arbitrary open set, 
we conclude that int(U2,) = (ZI. 0 

The word "category" In the theorem rcfers to the following definition: 

17.2. Definition. A subset S of a space X IS said to be of first category rf ~t 
is the countable union of nowhere dense subsets. Otherwise it is said to he 
of second culegory. A set of second category 1s said to be restdual if  ~ t s  
complement is of first category. 
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Thus Theorem 17.1 can be rephrased: "An open subset of a complete 
metric space, or a locally compact Hausdorff space, is of second category in 
itself." 

It is also worth while to state the contrapositive of Theorem 17.1: 

17.3. Corollary. Let X be either a complete metric space or a locally compact 
Hausdorf space. Then the intersection of any countable family of' dense open 
sets in X (i.e., a residual set) is dense. • 

We close this section with some applications of this result. The first 
application deals with pointwise limits of functions. 

17.4. Corollary. If { f,) is a sequence of continuous functions f,: X -+ Yfrom a 
complete metric space X to a metric space Y and i f f  ( x )  = lim f,(x) exists for 
each x then the set of points of continuity o f f  is residual and hence dense. 

PROOF. For positive integers m, k let 

which is open. Since 

consists of points where f,(x) does not converge, it is empty. It follows that 

which is a countable union of nowhere dense sets. Therefore 

is also a countable union of nowhere dense sets. Thus its complement 

is residual. But yeC means that 

V k  2 1,3m 2 1 336 > 0 3 dist(x, y) < 6 => Vn 2 m, dist( f,(x), f , (x))  S Ilk. 

Hence, for such k, m, 6 and dist(x, y) < 6 we have that dlst( f ( x ) ,  f,(x)) 5 llk 
and al\o that dist( f (y) ,  f,(y)) 5 Ilk. By taking 6 smaller, ~f necessary, we 
can also assure that dist( fm(x ) ,  fm(y)) _< Ilk by the continu~ty off, Therefore 
dlst( f ( x ) ,  f ( y ) )  i 3/k for these choices, showing that f is continuous at y. (We 
harten to po~nt  out that the set of points of discontinurty off, wh~le of first 
category, can well be dense. It is not hard to produce such examples.) 0 
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17.5. Corollary. There ~.xisrs a connected 2-manifold (i.e., a Hausdorfspace 
in whidl each paint has a neighborhood homeomorphic to the plane) with the 
following properties: 

(1)  it has a countable dpr~se set; 
(2) it has an uncouiztable discrete subset, and hence is not second countable; and 
(3) it is not normal, and hence not metrizahle. 

PROOF. We will describe a similar manifold M "with boundary." The desired 
manifold can then be obtained by "doubling" M; i.e., taking two copies of 
M and identifying the~r boundaries. 

First we describe the point set of M. There are two types of points. The 
first type consists of the points in the upper half space of the plane, i.e., 
{ ( x , y ) J y  > 0) .  The second type of point is a ray (but we are describing a 
single point of M) from a point of the x-axis pointing into the upper half space. 

To describe the topology on this set of points, we shall give a neighborhood 
basis at each point. For points in the upper half space, we use the usual 
topology of the plane. For a point corresponding to a ray r from a point x 
on the x-axis, we take, for a basic neighborhood, the set of points in the 
upper half plane in the "wedge" between two rays surrounding r and of 
distance (in the sense of the plane) less than E from (x,O) together with the 
points of the second kind consisting of the rays from (x,O) and lying in the 
mentioned "wedge." (See Figure 1-7.) 

To see that this really is a Zmanifold, consider the map 4 from the upper 
half plane to itself given by 4(x ,  y) = (xly,  y). It is easy to verify that this is a 
homeomorphism on the upper half plane. Moreover, it maps rays from the 
origin to vertical lines. Thus the point of M corresponding to a ray from 
the origin can be thought of as the point on the x-axis attached to the vertical 
corresponding to the ray under 4. Under this correspondence it is evident 
that the topology becomes the ordinary topology of the closed half plane. 
This shows that a neighborhood of any point of M given by a ray from the 
origin, is indeed homeomorphic to an ordinary neighborhood of a boundary 
point in closed half space, a manifold with boundary. Rays from other points 
on the original x-axis can be treated similarly. 

Figure 1-7. Construction of a strange manifold. 



We now verify the claims for this space. The points in the upper half plane 
with rational coordinates clearly give a countable dense set, proving (1). 

Consider, for each x, the point of the second kind corresponding to a 
vertical ray from (x, 0). Let S be the collection of these points. For any one 
of them a "wedge" neighborhood of that point intersects S in that point 
alone. Thus that point is itself an open subset of S. Thus S is discrete, and 
it is in one-one correspondence with the real axis, and so is uncountable. If 
M were second countable then any subspace, such as S, wouId also be second 
countable (just intersect the basis with the subspace), and that is not true 
of S.  

Finally, we must show that M is not normal. In fact, let A be the subset 
of S, above, corresponding to rational x, and B that corresponding to 
irrational x. These are both closed subsets of M and are disjoint. We claim 
that it is impossible to separate them by disjoint open supersets. Suppose 
U c M is an open set containing B and disjoint from A. For a point X E S ,  
and integer n > 0, let Wn(x) be the wedge of angle z/n and radius l/n about 
the vertical ray from x. Then define 

T,= (xEBI W n ( x ) c  U } .  

Then the sets T, together with the singletons ( X G A )  comprise a countable 
collection of sets whose union is A u B ,  the real axis. Since the real line in 
its ordinary topology is complete metric, the closure in R of one of these 
sets must contain an interval. This is not true of the singletons, so it must 
be that !.?, ~ ( a ,  b) for some n and interval. But then for any "rational" 
q ~ ( a ,  b ) n  S it is clear that every neighborhood in M of q must intersect U. 

The manifold just described is, in fact, a differentiable manifold (see 
Chapter TI) except for failure to be second countable. Indeed, it is the strange 
properties of examples like this that lead to the restriction to second countable 
spaces in the definition of a differentiable manifold. 

Note that this manifold is a subspace of a normal space, its one-point 
compactification. Thus, a subspace of a normal space need not be normal. 

17.6. Corollary. In the space R' of continuous functions I -t R in the uniform 
metric, the set offunctions which are nowhere d$ierentinhle is rlensr. Indeed, it 
is residual in R'. 

PROOF. For a positive integer n, consider the set 

We claim that this is open. To see this, note that for a given f G U , ,  and t ~ l ,  
there is an E > 0 and an s # t such that 

S(t) - S(s) 1 -  -- t - s  - - l > n + c .  

Then, f ~ r  some such s = s(t) and E = ~ ( t ) ,  there is an open neighborhood V, 
of t such that s(t)~$v, and such that 

for all t ' ~  V,. The V, cover I so that some finite union Vt ,  u ... u V,, 3 I .  Let 
E = min ~(t,) ,  6 = min dist(s(t,), V,,), and suppose that 11 f - g 11 < €612. Then, 
for any t ~ 1 ,  we have t ~ v , ,  for some i and, for s = s(ti), we have 

f ( t )  - f (4 f (0 - g(t) s(t)  - s(s) g(s) - f 6 )  
' + € < I  r - s  /<I t - s  1 + 1  i - s  ( + /  t - s  1. 

Since J t  - s l 2  G, the first and third terms on the right are each at most 
(~6/2)(1/6) = 42. It follows that 

and hence that geU,. Therefore, U ,  is open as claimed. 
Next we ciaim that each U ,  is dense. To see this, let f eR1 and E > 0 be 

given. Let m be so large that 2/m < E. By uniform continuity off there is 
a k so large that 

Also, take k so large that k > nrn. Let ai = ilk, bi = ai + 1/(3k), ci = a, + 2/(3k), 
and y, = f(a,). Consider the interval [ai,ai+ Define a function g on this 
interval whose graph consists of the three line segments (ai, y i )  to (b,, yi - (l/m)) 
to (c,, pi + (l/m)) to (ai+ ,, y,, ,); see Figure 1-8. These fit together to define g 
on all of I. By construction, 11 f - g 11 5 2/m < E. Let t E [a,, a, + ,I. If g(t) > y, 

Figure 1-8. Creating a nowhere differentiable function. 
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then take s = hi. Otherwise, take s = ci. Then 

Hence ye U, and Il f - g 1) < E, concluding the proof that Un is dense. 
Since R' is a complete metric space (prove it) we conclude that A = U, 

is residual. We claim that any function f € A  is nowhere differentiable. 
Suppose, on the contrary, that f is differentiable at some t ~ l .  Then 
I (  f (s) - f (t))/(s - t)l has a limit as s -+ r and so it is bounded for all s ~ l ,  s # t. 
If n is larger than such a bound then it follows that f $Un, a contradiction. 

1. Below is an outline of a more elegant proof of the fact that U, is open in the proof 
of Corollary 17.6. Justify all statements made here. 
(a) The function R' x I  -t R taking (f, t)t+ f (t) is continuous. 
(b) For A = {(x, x ) lx~l ) ,  the function F: R' x ( I  x I - A)+R taking (j; S, t ) ~  

I (  f (t) - f(s))/(t - s)l is continuous. 
(c) The map tD: R' x ( I  x I - A) -+ R' x ( R  - (0)) taking (f, s, t)w(f; t - s) is closed. 
(d) The projection p: R' x (R - {Oj) -, R' is open. 
(e) U,, = p(RK x ( R  - ( 0 ) )  - OF-'[O, n]) which is open. 

2. Let X be a complete metric space and let RX be the set of continuous functions 
X + R .  Let S c RX be a collection of maps f: X + R  such that { f (x ) l f~S)  is 
bounded for each XEX. Show that there is an open set (a + U c X and a number 
B such that I f(x)l I B for all XEU and f ES. 

3. An upper semicontinuous function of a real variable is a real valued function f 
on R such that f - I ( -  co, r) is open for all real r. Iff: R -+ R is upper semicontinuous, 
show that there is some open interval (a, b) on which f is bounded below. 

4. Show that the set of points of continuity of an upper semicontinuous function is 
residual. 

< 

CHAPTER I1 
Differentiable Manifolds 

We have here, in fact, a passage to the limit of 
unexampled audacity. 

F. KLEIN (in reference to Brook Taylor's 
derivation of his famous theorem) 

1. The Implicit Function Theorem 

In this section we will prove the Implicit Function Theorem and the Inverse 
Function Theorem in sufficient generality for our use. Readers who think 
they already know these theorems, or who are willing to  accept them, can 
skip this section, but they are advised to at least read the statements. This 
section is self-contained. 

A real valued function on an open subset of euclidean space Rn is said to 
be Ck if it has continuous partial derivatives through order k (of all orders if 
k = a). A function from an open subset of Rn to an open subset of Rm is said to 
be Ck if the m coordinate functions are Ck. A function from an open subset 
of Rn to another open subset of R" is said to be a "diffeomorphism" if it is 
C" and has a C" inverse. 

1.1. Theorem (The Mean Value Theorem). Let f :Rn+R be C'. Let x = 
(xl,. . ., x,) and 2 = (2, ,..., 2,). Then 

for some point R on the line segment between x and 2. 

PROOF. Apply the Mean Value Theorem found in any freshman calculus 
book to the function R -+ R defined by t ~ f ( t x  + (1 - t)2) and use the Chain 
Rule: 

where Z = tox + (1 - to)%. 

d f ( t ~  + (1  - t)X) 
- -- --- - - - df .=)~(Lx, + (1  - t)X1) - 1 . ( . -- . 

dt I - ,=, ax, dt 

af 
= --(Z)(X, - 2[), 

ax, 
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1.2. Cordlary. Let f: Rk x R m 4  R be C1, x€Rk, y,j€Rm. Then 

for some jj on the line segment between y and J. 0 

1.3. Theorem (The Banach Contraction Principle). Let X be a complete metric 
space and T: X --+ X a contraction (i.e., for some constant K < 1 we have 
dist(Tx, Ty) I K.dist(x,y) for all x, yeX). Then T has a unique fixed point 
[EX. Moreover, for any XEX, 5 = lirn Ti(x). 

PROOF. Consider a given point X,EX and put x, = Tx,, x, = Tx,, etc. Then, 
with 6 = dist(x,, Tx,) = dist(x,, x,), we have 

dist(x,, x,) l dist(x,, x,) + dist(xl, x,) + --. + dist(x, - ,, x,) 
I dist(x,,x,) + K.dist(xo,xl) + K2-dist(x0,x1) + .-. 
= ~ ( I + K + K ~ + . . . )  

= 6/(1 - K). 

Also, for m 2 n, 

dist(xn, x,) I K.dist(x,- ,, xm- ,) I ~~.d i s t (x , -  ,, xm- ,) 

< ..- < Kn~dist(xo,x,-,)<6Kn/(1 - K) - - 

which tends to 0 as n -t CQ, since K < 1. 
Thus x,, x,, x,, . . . is a Cauchy sequence. Put 5 = lirn (xi). Then we have 

that T l  = lim Txi = lim xi+ = 5. 
If x is another fixed point then 

Since K < 1, this implies that dist(x, 5) = 0 and hence that x = 5. 0 

The following is the basic ingredient going into the Implicit Function 
Theorem and the Inverse Function Theorem: 

1.4. Lemma. Let 5eRn and q eRm be given. Let f: Rn x Rm -t Rm be C1 and put 
f = (f . . , f,). (f need only be defined in a neighborhood of (5, q).) Assume that 
f (r, q) = q and that all the following partial derivatives off vanish at (r, q): 

afi 
-(5, v) = 0, 
8~ j 

where x,,. . . , xn are the coordinates in R" and y,,. . ., ym those in Rm. Then 
there exist numbers a > 0 and b > 0 such that there exists a unique junction 
0: A +  B, where A = (x~R"1 Ilx - []I 5 a)  and B = {ycRmI Ily - tj 11 5 b) ,  such 
.that 4(<) = q and 4(x) = f (x, 4(x)) for all xeA. Moreover, 4 is continuous. 

PROOF. By a transition of coordinates, we may as well assume that 5 = 0, q = 0, 
and f (0,O) = 0. [Precisely, if $(x) = 4(5 + x) - q, r(x, y) = f (x + 5, i+ q) - q 
then 4(x) = f(x, &x)) becomes $(x) = f(x, $(x)) and now the situation is 
centered at the origin.] We now assume this. 

Applying Corollary 1.2 to each coordinate fi off and using the assumption 
that a fi/ayj = 0 at the origin, and hence is small in a neighborhood of 0, we 
can find a > 0 and b > 0 so that for any preassigned constant 0 < K < 1, 

(*I Ilf(x,~)-.f(x,J)II <KIly -jll 

for Ilxll l a ,  Ilyll ~ b ,  and Iljll ~ b .  
Moreover, we can take a to be even smaller so that we also have, for all 

I l  x II a, 

Consider the set F of all functions 4: A -, B with +(O) = 0. Give this the "uniform 
metric": dist(4, $) = sup{ 11 4(x) - $(x) 11 Ixe A) .  This is a complete metric space 
since ((c)~) Ca~chy)*(($~(x)) Cauchy for all x)*(lim 4i(x) exists for all x). 
[Note that if we restrict this to continuous 4, it is still complete, since uniform 
limits preserve continuity.] 

Define T: F+ F by putting (T$)(x) = f (x, +(x)). One must check: (i) 
(T4)(O) = 0; and (ii) (Td)(x)eB for xeA. Now (T&)(O) = f (0, (6(0)) = f (0,O) = 0, 
proving (i). Next we calculate 

proving (ii). 
We claim that T is a contraction. In fact, we compute 

Thus the Banach Principle (Theorem 1.3) states that there is a unique (6: 
A -+ B with 4(0) = 0 and T4 = 4; i.e., f (x, &(x)) = 4(x) for all X E  A.  

It also states that C/J = lim 4, where 4, is arbitrary and 4,+,  = T4i. Put 
+,(x) = 0 for all x. Then (6,(x) =/(x, +,(x)) is continuous, $,(XI = f (x, 4,(x)) 
is continuous, etc. Hence 4 = lim rbi is a uniform limit of continuous functions, 
and so it is continuous. CI 

1.5. Theorem (The Implicit Function Theorem). Let g: R" x Rm -+ Rm be C' 



and let 5 ~ R " , q e R "  be glaen with g(Gq) = 0. (g need only he defined in LZ 

neighborhood of ((,q).) Assume that the dfferential o f the  composition 

Rm 4 R" x Rm 4 Rm, 

Y++(S, y)-CJ(5, Y) ,  

is onto at q. [This is equivcrlent to the statement that the Jacobian determinant 
J(g,; y,) # 0 at (t, q),] Then there are numbers a > 0 and b > 0 such that there 
exists a urzique.function 4: ,4 -+ B (with A, B us in Lemma 1.4), with 4(5) = q, 
such that 

y(x,  * (x ) )  = 0 for all X E  A. 

[That is, 4 "solves" the implicit relation g(x, y) = 0. ] 
Moreover, i f g  is C P  then so is $ (including the case p = a). 

PROOF. The differential referred to is the linear map L: Rm -t Rm given by 

where y = ( y , ,  . . . , y,) and y y )  = (L,(y), . . . , Lm(y)). That is, it is the linear 
map represented by the Jacobian matrix (dg,/ay,) at (t ,q).  

The hypothesis says that L is nonsingular, and hence has a linear inverse 
L- ': Rm -+ Rm. 

Let 

f:Rn x Rm-+Rm 

be defined by 

Then f ( S ,  q) = q - L- ' (0)  = q. Also, computing differentials at q of yt+ f (r,  y) 
gives 

Explicitly, this computation is as follows: Let L = (a,,,) so that aiVj = 
(dgi/8yJ)(<, q)  and let L-' = (biSj) so that C b,,,ak, = dl,,. Then 

Applying Lemma 1.4 to get a, b, and 4 with 4(5) = q and f ( x ,  &x) )  = 4 ( x )  
we see that 

which is equivalent to g(x, * ( X I )  = 0. 

We must now show that 4 is differentiable. Since the Jacobian J(g,; j i )  # 0 
at (E,q), it is nonzero in a neighborhood, say A x B. To show that 4 is 
differentiable at a polnt .XGA we can use the translation trick in the proof 
of Lemma 1.4 to reduce the question to the case x = 0 ,  and we can also take 
5 =q  = 0. With this assumption, which is a minor notational convenience 
only, apply the Mean Value Theorem (Theorem 1.1) to g(x, y), g(0,O) = 0: 

where (p , ,  q,) is some point on the line segment between (0,O) and ( x ,  $(x)). 
Let h'" denote the point (O,O,. . . , h,O,. . . ,0), with the h in the jth place, in Rn. 
Then, putting htj) in place of x in the above equation and dividing by h, we get 

ag. (bk(h(j)) 
0 = -(pi, 4,) + C --I ( p , ,  9,) -. 

axJ k =  I a y ~  h 

For j fixed, i = I , .  . . , m and k = 1,. . ., m these are m linear equations for the 
m unknowns 

4k(h(") 4k(hCi)) - *k(O) 

h h 

and they can be solved since the determinant of the coeflicient matrix is 
J(gi; yk) # 0 in A x B. The solution (Cramer's Rule) has a limit as h -+ 0. Thus 
(a4,/axj)(0) exists and equals this limit. 

We now know that 4 is differentiable (once) in a neighborhood A x B of 
(r ,  q) and thus we can apply standard calculus to  compute the derivative of 
the equations g(x, 4 ( x ) )  = 0 (i.e., each g,(x, 4 ( x ) )  = 0 )  with respect to xj. The 
Chain Rule gives 

Again, these are linear equations (i = 1,. . . , m, and j fixed) with nonzero deter- 
minant near (<, q)  and hence has, by Cramer's Rule, a solution of the form 

where F , ,  is CP-I when y is CP. (Fk,, is just an analytic function of the 8g,/axJ 
and 8g,/ayk which are CP-I.)  

If 4 is C' for r < p, then the right-hand side of this equation is also Cr. 
Thus the left-hand side a+,/dx, is C' and hence the 4, are Cr+ '. By induction, 
the 4, are CP. Consequently, 4 is C h h e n  g is CP, as claimed. 

1.6. Theorem (The Inverse Function Theorem). Let 0: Rm -. Rm he C' wllh 
0(q) = 5 and with differential at q which is nonsingular (i.e., J(B,; y,) # 0 at 





to (Rn, C"'). That is, each point in M has a neighborhood U such that 
( U ,  F,) ,- ( V ,  C,"') for some open V c  Rn. 

In this case a morphism is called a diSferentiable or smootlt map, an isomor- 
phism is called a d$eomorplzism, and members of F(U) are called differentiable 
(real valued) functions. 

We shall now endeavor to show that these two definitions of a smooth 
manifold are, indeed, equivalent. 

(Definition 2.4 = Definition 2.1.) Let (Mn, F) be a given functionally struc- 
tured space satisfying Definition 2.4. Let a "chart" be a map of an open subset 
U c M to an open set V c Rn which is an isomorphism of functional struc- 
tures. The domains of the charts cover M by Definition 2.4. Essentially all 
that needs proving, then, is that the "transition functions" 0 = #I,!-' between 
two charts are C". But 8 is an isomorphism of functional structures. Clearly 
all we need to show, then, is that a morphism 0: W - ,  W' of the C" 
structures on open sets Wand W' in Rn is the same thing as a Cm map on 
such sets. 

By definition, 0 is a morphism o (f e C m  on an open set in W'* f.0 is 
C"). Thus it suffices to show 

0: W - i  W' is Cm - f 00  is C" for all Cm f. 

The implication *is clear. F o r t ,  let f be a coordinate function (projection 
to a coordinate axis in Rn) and decompose 0 into its coordinate functions 

Then f 00 = Oi for f = ith coordinate function. Thus each Bi is C". But that 
is exactly what it means for 8 to be C". 

(Definition 2.1 *Definition 2.4.) Suppose we are given a manifold Mn in 
the sense of charts. We must define F(U) for U open. By (4) of Definition 2.2 
it suffices to do this for U small, and we shall do  so for U the domain of a 
chart. If 6: U -+ U' c Rn is a chart, put 

that is, define F, such that (b is an isomorphism of functional structures. It 
is then easy to verify that this gives a smooth n-manifoid in the sense of 
Definition 2.4. 

2.5. Definition. A map f: M -i N between two smooth manifolds is said to be 
smooth (or differentiuble or C") if, for any charts & on M and I) on N, the 
function $o f .& - '  is smooth where it is defined. (Also see Problem 3.) 

2.6. Definition. An n-manifold together with an atlas such that, for any two 
charts (b, $ in the atlas, the Jacobian of the change of coordinates function 
( b o ~ / - '  has positive determinant at all points in its domain, is called an 
oriented manifold. The particular atlas, maximal with this property, is called 

3. Local Coordinates 7 1 

an orierltarion of the man~fold. An n-manifold having such an atlas is called 
orientable. 

Clearly a connected orientable manifold has exactly two orientations. The 
charts of one have Jacobian determinants that are negative when compared 
with charts from the opposite orientation. An orientation can be chosen on 
a connected orientable manifold by the choice of a compatible chart or 
local coordinates at any one point, which is often the way an orientation is 
specified. 

2.7. Definition. An n-manifold with boundary is as in Definition 2.1 except 
that the target for charts is the half space ((x,, . . . , xn)eRnlx, 10). Its 
boundary is the (n - 1)-manifold consisting of all points mapped to ((x,, . . . , x,) 
eRn(x l  = 0 )  by a chart. 

1. Show that a second countable Hausdo& space X with a functional structure F 
is an n-manifoldoevery point In X has a neighborhood U such that there are 
functions f ,, . . . , f,,€F(U) such that: a real valued function g on U is in F(U) 9 there 
exists a smooth function h(x, , . . . , x,) of n real variables 3 g(p) = h(fl@), . . . , fn(p)) 
for all ~ E U .  

2. Complete the discussion of the two definitions of smooth manifold by showing 
that if one goes from one of the descriptions to the other, as indicated, and then 
back, one ends up with the same structure as at the start. 

3. Show that a map f: M -+ N between smooth manifolds, with functional structures 
FM and F,, is smooth in the sense of Definition 2 5 o it is smooth in the sense of 
Definition 2.4 (i.e., p€F,(U) =>go f €F,(f -'(U))). 

4. Let X be the graph of the real valued function B(x) = 1x1 of a real variable x. Define 
a functional structure on X by taking f c F ( U ) o  f is the restriction to U of a C" 
function on some open set V in the plane with U = V n X .  Show that X with thls 
structure is not diffeomorphic to the real line with usual Cm structure. 

5. Consider the half open real line [0, m). Define a functional structure F, by taking 
f ~ F , ( U ) o f ( x )  = g(xZ) for some C" function g on (xlx E U  or -XEU). Define 
another functional structure F, by taklng f eF,(U)o /is the restriction to U of 
some Cm function on an open subset of R. (Note that U is open in [O, m) but 
not necessarily in R.) Convlnce yourself that it is not unreasonable to believe that 
these structured spaces are equal, and also try to convince yourself that this is not 
a triviality; i.e., try to prove ~ t .  

3. Local Coordinates 

Let Mn be a smooth manifold, let f be a real valued function on M, and let 
x: U -+ U' c Rn be a chart. Let 7 = f o x - '  which is an ordinary real valued 
function f (x,, . . . , x,) of n real variables. Any point p in the domain U of the 

# 



chart has coordinates 

x C ~ )  = (-x , (PI, . . . 3 x,(p)). 

Thus 

By abuse of notation, one often blurs this distinction between f and Sand,  
on the domain of the chart, thinks off as a function of the "local coordinates" 
x l , .  . . , x,. One must realize, however, that this representation of f depends 
on the choice of the chart. In another coordinate system (i.e., chart) this 
representation would change by the change of coordinates from one chart 
to another. 

4. Induced Structures and Examples 

Here we discuss some simple examples of manifolds, mostly with the intention 
of aiding the reader's understanding of the basic definitions. We also discuss 
three methods of creating new manifolds from old ones. 

4.1. Definition. Suppose Fx is a functional structure on the space X and let 
$: X -+ Y be a map. Then the induced functional structure on Y is given by 

FY(U)  = {f: U-+RIf04~Fx(4- ' (U))) .  

For example, if m > n and 4: Rm -+ Rn is the projection then the induced 
structure from Cm on Rm is just Cm on R" as the reader should verify. 

We shall now give a number of examples of well-known manifolds defined 
by both the chart method and the functional structure method. 

4.2. Example. Consider the torus T2 defined as the quotient space of R2 
under the equivalence relation relating points whose coordinates differ by 
integer amounts. Let n:R2 +T2 be the canonical projection. We wish to give 
a smooth structure on T 2  by means of charts. This is quite easy, since for a 
small open disk U c R2 in R2, K maps U homeomorphically to its image U'.  
Thus the inverse of this can be taken to be a chart. If 4 and cf/ are two such 
charts then is just a translation and so it is Cm (in fact, real analytic), 
and so this does define a smooth structure on T2. (See Figure 11-1.) 

Let us now show how to define the structure by means of functional 
structures. This is quite trivial in this example, since we can just take the 
structure induced from the standard one on R2 by the projection n. In this 
case, however, we must show that this induced structure is that of a manifold. 
But this need be done only locally. Let U' be a small open set In TZ whose 
inverse image, as above, is the dlsjoint union of open sets U homeomorphic 
to U' under n. Let j'be a real valued function on U'. If U and Vare two of 
the open sets in R2  mapping homeomorphically to U' then f o x  is C" on U 

Figure 11-1. Differentiable structure on T2. 

if and only if it is on V since the difference is merely a translation U -+ I/, 
which is smooth. Thus we see that the map U -+ U' is an isomorphism of 
functionally structured spaces where U c R2 has the Cm structure. Therefore, 
T2 is indeed locally isomorphic to R2. 

4.3. Example. Consider the sphere S2. As before, we will first give a structure 
via charts. For this let us take the sphere of radius in the upper half space 
tangent to the x-y plane at the origin. Thus the north pole is the point 
(0,0,1) and the south pole is the origin. We map S2 - {(0,0,1)} to the plane 
by "stereographic projection," i.e., we take the line from (0,0,1) to another 
point on the sphere and produce it until it intersects the x-y plane, and the 
chart 4 is the map taking that point on the sphere to that intersection point 
in the plane. (See Figure 11-2.) For a second chart $, we similarly take the 
stereographic projection from the origin to the plane z = 1 followed by the 
translation to the x-y plane. The comparison of these charts is 
$6- ': R2 - (0) + R2 - (0) and is given by XH X/ I( x 11 as the reader can 

Figure 11-2. Stereographic projection. 
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Figure 11-3. Defining a functional structure on a sphere. 

calculate. Since this map is C" on R2 - {0), this does define a smooth 
manifold. 

To define the structure on S2 by means of functional structures we will 
regard the sphere as the unit sphere in R3. Consider the radial projection 
n: R3 - (0) -, S2. We take the structure induced from C" on R3 - (0) by this 
map 7t. 

This is a much simpler description of the structure than that given by 
charts, but the difficulty is in showing that this does define a C" manifold. 
To do this, we consider a portion of the sphere cut out by a small circle and 
the single sheeted open cone through that. (See Figure 11-3.) The induced 
structure on that open "disk" on the sphere simply consists of those functions 
f such that the function, obtained on the open cone by making f constant 
along radii, is C". We must show this to be isomorphic to Cw on some open 
set in R2. To see this, we may as well just consider the case where the disk 
on the sphere is taken around the north pole, since rotations in R3 are C". 
Consider the map of this open cone to an bpen cylinder, given by ( x , y , z ) ~  
(xlp, ylp, p) where p = ,/(x2 + y2 + z2). This map is clearly a diffeomorphism 
of one open set in R3 to another, and it maps the spherical disk to a planar 
disk (in the plane z = I), and takes functions which are constant along radii 
to those independent of the z-coordinate. But a function independent of z 
and C" as a function of x, y,z is simply a Cw-function of x, y. This shows 
the small spherical disk to be isomorphic to the planar disk with the 
Cm-structure, as was desired. 

4.4. Example. Consider the projective plane PZ as the quotient space of a 
sphere by the identification of antipodal points. We can take the functional 
structure on P2 induced by this quotient map from the smooth structure on 
S2. Very much in the same way as with the torus in Example 4.2, one simply 
has to know that the antipodal map is smooth on the sphere, to conclude 
that this does define a smooth structure on P2. But that is trivial. 

4. Induced Structures and bxamples / J  

All gf these examples could have been done in n dimensions with no 
further complications. We now discuss induced structurescof a type opposite 
to that above. Although it can be done more generally for maps X -+ Y, we 
will confine it to the case of inclusions. 

4.5. Definition. Suppose that X is a topological space and that A c X is a 
subspace. Let F be a functional structure on X. We define a functional 
structure FA on A by letting f eF,(Un A)-each point of U n  A has a 
neighborhood Win X 3  f is the restriction to W n A of some function geF(W). 

Considering T2 and S2 to be subspaces of R3 in the usual ways, this gives 
another way to define a smooth structure on these spaces. Of course, one 
would have to show that the structure obtained this way is smooth, but that 
will follow from general results we will give later on. On the other hand, if 
we consider the surface of a cone in R3 then this definition gives a functional 
structure on the cone. However, this is not a smooth structure. The cone is 
homeomorphic, but not diffeomorphic to R2. Thus, functional structures give 
an easy way to describe "singularities" like the vertex of a cone or of a cusp, 
which would be much harder to handle with the chart type of definition. 

Finally, let us define the product differential structure on a product of 
two smooth manifolds. 

4.6. Definition. Let Mm and Nn be smooth manifolds. If (6: U -r Rm is a chart 
for M and @: V+Rn is a chart for N, then take (6 x $: U x V-+Rm+" to be 
a chart for M x N. This defines a smooth structure on M x N called the 
product structure. 

For example, take the circle S1 with a smooth structure, then this gives 
a structure on the tori T 2  =S1 x S1, T3 = S1 x S1 x S1, etc. It is not too 
difficult to show that the smooth manifolds produced this way are diffeo- 
morphic to those described'in Example 4.2. 

Note that the charts described in Definition 4.6 do not satisfy axiom (4) 
(maximality) of Definition 2.1, but this is not necessary, as remarked there, 
since there is a unique maximal atlas containing them. 

Note also that, for a product of manifolds, the projections M x N -+ M 
and M x N + N are smooth. 

PROBLEMS 

I .  Consider the 3-sphere S3 as the set of unit quaternions 

{x + ly + j z  + kwlx2 + Y 2  + z2 + w2 = 1 ) .  

Let d). U -+ R 3  be 4(x + iy + j z  + kw) = ( y ,  z, W ) E R ~  where 

U = (x + iy + j z  + kweS31x >0}. 

Consider 4) as a chart. For each q ~ S 3 ,  define a chart t+kq by ~b,(p) =&q-'p). 
Show that this set of charts is an atlas for a smooth structure on S3. 



2. Let X be a copy of the real-line R and let 4: X -+ R be $(x) = x3. Taking 4 as a 
chart, this defines a smooth structure on X. Prove or disprove the following 
statements: 
(1) X is diffeomorphic to R; 
(2) the identity map X -+ R is a diffeomorphism; 
(3) 4 together with the identity map comprise an atlas; 
(4)on the one-point compactification X +  of X, 4 and $ give an atlas, 

where $(x) = l/x, for x # 0, co, and $(a) = 0. ($ is defined on X +  - { O ) . )  

5. Tangent Vectors and Differentials 

All readers are well acquainted with the notion of tangent vectors to curves 
and surfaces embedded in 3-space. Perhaps, however, many readers are not 
aware that this notion is intrinsic to the curve or surface and has little to 
do with the particular embedding in 3-space. It is important to give the 
notion of a tangent vector an intrinsic setting, not dependent on, or even 
using, an embedding in euclidean space. One way to do this is to associate 
the notion of tangent vectors with that of directional derivatives, or 
derivatives along parametrized curves in the manifold in question. That is 
the approach we take. 

5.1. Definition. Let M be a smooth manifold and y: R -+ M a smooth curve 
with y(0) = p. (y need only be defined in a neighborhood of 0.) Let f :  U + R 
be smooth where U is an open neighborhood of p. Then the directional 
derivative off along y at p is 

The operator D, is called the tangent vector to y at p. For two such curves 
y and y' we regard D, = D,, if they have the same value at p on each such 
function f. 

5.2. Definition. If M is a smooth manifold and peM, T,(M) denotes the 
vector space of all tangent vectors to M at p. (See below for the fact that 
this is a vector space.) 

5.3. Definition. A germ of a smooth real valued function f at peM on a 
smooth manifold M is the equivalence class off under the equivalence reIation 
f l  - fz o f,(x) = ,f2(x) for all x in some neighborhood of p. 

Note that D,(f) is defined on the germ off. Letting D = D,, we note two 
properties of tangent vectors: 

(1) D(a f + bg) = aD(f) + hD(g) where a and b are constant; and 

(2) D(f u) = f W ( g )  + D(S)g(p). 

I 

Figure 11-4. Tangent vectors. 

That is, D is a "derivation" of the algebra of germs of smooth real valued 
functions on M at p. We remark that one can show (in the Cm case only) 
that any derivation is a tangent vector. 

Let us interpret the foregoing in terms of local coordinates. Let x,, . . . , x, 
be local coordinates at p. Then (by abuse of notation) y(t) = (y,(t), . . . , y,(t)) 
where yit) = xdy(t)). Then 

d 
D,(f) = -f(~l(t),. ., ~,(t))l*=o 

dt 

Thus 

where ai = dyi/dt at t = 0. 
Now 

where the t is in the ith place. Therefore the set T,(M) of tangent vectors to 
M at p is a vector space with basis {a/axil i = 1,. . . , n}. This also shows that, 
for tangent vectors X and Y at p and scalars a, ~ E R ,  we have 

5.4. Example. We go through these definitions for the manifold Rn itself. 
Fix a point PER" and an ordinary n-vector v = (v,,.. ., v,). Let 

y,(t) = p t tv = (pl + tv,, . . . , p, + tv;). We then have the tangent vector D,", 



and wish to find its coordinates with respect to the basis (a/axi).Js shown 
above in general, 

Thus 

in the a/axi basis. That is, the correspondence 

Rn++ Tp(Rn), 

v++Dy,, 

is an isomorphism of vector spaces. By abuse of notation, it is often regarded 
as an equality. 

5.5. Definition. If (6: M -+ N is a smooth map between two smooth manifolds 
then we define the differential of (6 at p e M  to be the function 

4*: Tp(M)  -+ T+(,)(N) 

given by #,(Dy) = D6,,. (The differential (6, is also often denoted by d(6.) 

5.6. Proposition. The differential (6, of a smooth map (6: M -t N is well defined 
and linear. I t  satisjes the equation 

((6*D)(s) = D(g0(6). 
Moreover, #,$, = ( #o$ ) , .  

PROOF. Let g: U + R  be a smooth function where U is a neighborhood of 
(6(p). Then 

Therefore (#,D)(g) = D(go(6) which shows that #,D is well defined and 
satisfies the stated formula. 

For tangent vectors X and Y at  EM, we have # , (ax  + b Y ) ( f )  = 
( a x  + b Y ) ( f . 4 )  = a X ( f  04)  + b Y ( f  06) = (a(6,(x) + b(6 , (Y)) ( f )  and so 4, is 
linear. 

Also (4***D)(g) = ($*D)(gO#) = D(g0(60$) = (((60$)*(D))(g) giving the 
last formula. 

Note the following special case in which the smooth map 4 is a curve: 
Let y: R -+ M be a smooth curve. Then 

3. I angent vectors ana  ut i~erenr~ats  

so that 
* 

Let us now interpret the differential in terms of local coordinates. Let 
#: M 4 N be a smooth map and consider local coordinates x , ,  . . . , xm near 
the point p e M  and y,,. . ., yn near the point # ( p ) s N .  Then we can write 

#(XI,.-.,X~)=(#I(X~,...,X~)~...~ # n ( ~ l , . - . , ~ m ) )  

and we wish to find 4,: TP(M)+ T+(,,(N) in terms of the bases a/dxi and 
d/ayj. The linear map 4, is represented, with respect to these bases, by a 
matrix where 

and so 

But the left-hand side of this equation is 

Therefore (6, is represented by the Jacobian matrix 

5.7. Definition. If (6: M -+ N is smooth then: 

(1) if 4, is a monomorphism at all points then # is an immersion; 
(2) if 4, is onto at all points then # is a submersion; 
( 3 )  if # is an immersion and one-one then ( M ,  4) is a submanifold; and 
(4) if ( M ,  4) is a submanifold and 4: M - + # ( M )  is a homeomorphism for 

the relative topology on #(M),  then # is called an embedding, and (6(M) is 
called an embedded submanifold of N .  

In case 4: M 4 N is an embedding (or just an immersion) then we may 
(and often will), without confusion, identify a tangent vector v € T P ( M )  with 
#*(v)E T'$(p,(N). 

Similarly, if M and N are smooth manifolds then so is M x N by taking 
as charts the products of those for the factors. Clearly then T(,+,)(M x N) z 
Tp(M)  x T,(N) and we will often identify them when no confusion can result. 



1. 4 If 4: Rm -, R" is a linear map and we identify Tp(Rk) with Rk by identifying a/dx, 
with the ith standard basis vector, show that 4, becomes 4. 

2. If the curve 4: R -+ R" is an embedding then show that 4,(ri/dr) coincides with 
the classical notion of the tangent vector to the curve 4 under the identification 
of the tangent space to a euclidean space with the euclidean space. 

3. For a smooth function ,f defined on a neighborhood of a point PER", the 
gradient V f = grad f of f is the vector 

For a vector u€Rn show that the directional derivative D,,, denoted by D,,, 
in Example 5.4, satisfies the equation 

the standard inner product of V f with u in Rn 

4. Q If Mm c R" is a smoothly embedded manifold and f is a smooth real valued 
function defined on a neighborhood of p e M m  in R" and which is constant on M, 
show that V f is perpendicular to T,(M) at p. 

6. Sard's Theorem and Regular Values 

In this section we introduce the notion of "regular value" of a smooth map. 
This is a type of "general"position" concept, and is one of the most useful 
tools when dealing with smooth manifolds from the topological viewpoint. 

6.1. Definition. If 4: Mm -, Nn is a smooth map then a point p~ Mm is called 
a critical point of 4 if 4,: T,(M)+ T (,,(N) has rank < n. The image in Nn 
of a critical point is called a criticaf value. A point of Nn which is not a 
critical value is called a regular value (even though it may not be in the image 
of 4). 

Note that this means that a point q€Nn is a regular value provided: 

m 2 n =, &, is onto at all points p~&- ' (q) ,  and 

m < n * q$Image (4). 

Any point not in the image is automatically a regular value. It might seem 
strange to call a point q$$(M) a "regular value" when it is not even a "value," 
but this convention makes the statements and proofs of results concerning 
regular values much simpler than if one were to exclude points not in the 
image from the definition. 

The following is the main result concerning regular values. Its proof 
requires a small amount of measure theory. The proof contains no ideas of 
particular interest to us here and so is relegated to Append~x C. 

6.2. Theorem (Sard's Theorem). If 4: M" -t Rn is a snzootl7 rnup than tile set 
oj'criricctl val~res hus nleusure zero. 

6.3. Corollary (A.B. Brown). lJ'4: Mm-+ Nn is smooth [hen thc sel c$regulur 
vuiues is residuul in Nn. 

PROOF. If C is the critical set of 4 and K c M is compact then 4 ( C n  K) is 
compact and its interior is empty by Theorem 6.2. Therefore + (CnK)  is 
nowhere dense in N. Since M is covered by a countable number of such sets 
K, 4(C) is of first category, and thus its complement is residual. 

Note that, in the case rn = 1 ,  Sard's Theorem shows that there do not 
exist smooth "space filling curves," in distinction to  the nonsmooth case. 

The reader who wishes to examine the proof of Sard's Theorem in 
Appendix C should first read Section 7 because the proof uses some elementary 
items from that section. 

We shall have many applications of Sard's Theorem later on in this book. 
It is one of the central tools of differential topology. For now, we will rest 
content with the following application to a classical result: 

6.4. Corollary (Fundamental Theorem of Algebra). If p(z) is a complex 
polynomial of positive degree then p(z) has a zero. 

PROOF. (This argument is due to Milnor [3]). Let p(x + iy) = u(x, y) + iu(x, y). 
Then p'(z) = (u, + iv,) = - i(uy + ivy) as is seen by differentiating with respect 
to x and y and comparing the answers (and, of course, is very well known 
for all complex analytic functions). Thus the Jacobian J(u, v; x, y) = u: + u: 
is zero if and only if pl(z) = 0. There are only a finite number of points (zeros 
of p') that can satisfy this. Thus, p: R2 -+ R2 has only a finite number of critical 
points. Let F c R2 be the finite set of critical values. 

Letting p(z) = a,zn + a,zn- ' + ... + a,, with a, # 0, the equation 

shows that Ip(z)l+ oo as I z l 4  oo. This means that p can be extended 
continuously to the one-point compactification S2 of R2 and hence that p is 
a proper map. Thus p is a closed mapping by Proposition 11.5 ofchapter I. 

For any cgC, p-'(c) consists of the zeros of the polynomial p(z) - c and 
so it contains at most n points. Let k - k(c) be the number of points in p -  '(c). 
If c is a regular value and p- '(c) = [z, , . . . , z,), then each z, has a neighborhood 
Ui mapping diffeomorphically onto a neighborhood V, c R 2  - F of c. Since 
R2 is HausdorK we can assume the U,  to be disjoint. There is an open 
connected neighborhood V of c ~ n s ~ d e  the open set V, n - . n  V,  - j ( R 2  - 
(U, u .. . u U,)). Then W, = U , n p -  '(V) is taken diffeomorph~cally by p onto 
V. Moreover, p -  ' (V)  = W, u ... u W, (disjoint) since ~ ( z ) E  V* z ~ p - ' ( V ) n  
( U ,  u ... u U,) = W ,  v ... u W,. I t  follows that k(c)  is locally constant on 
the set R 2  - F of regular values. Since R2 - F is connected, k(c) IS constant on 



R2 - F. This constant cannot be zero since that would imply that the image 
of p is F, and hence that p is constant since its image is connected, but p is 
not constant. This shows that the image of p contains (RZ - F)u F = R2, SO 

that p takes on all values including 0. 

The ideas in the last paragraph of the proof of Corollary 6.4 will be of 
importance to us in later parts of this chapter; see Theorem 11.6 and 
Section 16. 

1. For the map 4(x) = xsin(x) of the real line to itself, what are the regular values? 

2. For the map 4(x, y) = x2 - Y2 of the plane to the line, what are the regular values? 

3. For the map $(x,y) = sin(x2 + Y2) of the plane to the line, what are the regular 
values? 

4. Criticize the following "counterexample" of Sard's Theorem: Let MO be the real 
line with the discrete topology. This is a 0-manifold. The canonical map MO - tR  
then has no regular values. 

5. Let y: R + R 2  be a smooth curve in the plane. Let K be the set of all ~ E R  such 
that the circle of radius r about the origin is tangent to the curve y at some point. 
Show that K has empty interior in R. 

6.  If C is a circle embedded smoothly in R4, show that there exists a three-dimensional 
hyperplane H such that the orthogonal projection of C to H is an embedding. 

7. Formulate and prove a "Fundamental Theorem of algebra" for quaternionic 
polynomials. 

7. Local Properties of Immersions and Submersions 

This section is mainly a simple generalization of the Inverse Function 
Theorem from the case of euclidean space to that of general smooth manifolds. 
There is nothing deep about this generalization and it is mainly a matter of 
notation. 

First let us note that if 4: M -+ N is a smooth map and if 4,: T,(M) -+ T&,AN) 
is a monomorphism, then it is a monomorphism at any point of some 
neighborhood of p. Also, if 4, is onto at p then ~t IS onto at any point in 
some neighborhood of p. The reason for this is that these are the cases for 
which 4, has maximum possible rank, and the rank of a matrix (the Jacobian 
in these cases) is the largest size of a square submatrix havlng nonzero 
determinant. But the determinant is a continuous function of its entries, and 
hence of the point p, so it will still be nonzero in some neighborhood of p. 

7.1. Theorem. Let (I: Mm -+ Nn he smooth und cissume that 0,: 7,(Mm)-+ T0,,,,(Nn) 
is u monomorphism (at the purticulur potnt p) .  Then there are churts 4 at p 

a id  $* ar O ( p )  such that thr.f'oiloniny diuyrurn commures: 

where (1' is the stundurrt irlclu.siorl o f  Rm irz Rn: (x,, . . . , X,)H(X.,, . . . , xn,, 0,. . . -0). 
(Accordinglj; in these locul coordinates, d ( M )  is 'flat" in N.) 

PROOF. Take arbitrary charts 4 and $ such that the origin in euclidean space 
corresponds to p and OCp), respectively. Then 8;: Rm = T,(Rm) -t T,(Rn) = Rn 
is a monomorphism. By a change of coordinates (a rotation) we can assume 
that the image of 8:, is Rm c Rn = Rm x Rn-". 

We wish to change coordinates in Rn by a map [: Rn-tRn so that the 
diagram 

commutes, where ~ ( x )  = (x,O). We must take [(x,O) = O'(x) and so the obvious 
candidate for [ is [(x, y) = @(x) + y. With this choice, note that (, takes the 
tangent space of Rm x (0) onto itself by 8'*. Also, it takes the tangent space 
of 10) x Rn-" onto itself by the identity. Consequently [, is an isomorphism. 

By the Inverse Function Theorem (Theorem 1.6), [ is a diffeomorphism 
in the neighborhood of the origin. We claim that if we replace the chart I) 
with [-lo$ (possibly cutting down on the domain) the new charts satisfy 
the conclusion of the theorem. But the new 8' is just I = <-' 00' and ~ ( x )  = (x, 0) 
as desired. 

7.2. Corollary. l f  M c N 1s an embedded submanifold then M hus the induced 
functional structure as a suhspace on N .  

Another way to phrase the corollary is that i f f  is a smooth real valued 
function on M, then it extends locally to a smooth function on a neighborhood 
in N. 

7.3. Theorem. Let 0: Mm -+ N" be smooth and assume /hut O,: T,,(Mn') -+ 7;,,,,,(Nf1) 
is onto (at the particular polnt p). Then there are churts d, at p and $ at O(p) 
such that the following drugrum commutes: 

where 0' is the stunllurd projection Rm onto R n : ( s , .  . . . , .u,)++(x,, . . . , .un). 
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PROOF. Actually, in this proof, we willregard Rm as Rk x Rn and the projection 
in question as the map taking (x, y)€Rm to yeRn. This is of no import. Let 
4 and $ be charts at p and O(p) with 4(p) = 0 = $(O(p)). 

By a rotation of coordinates at peM we can assume that ker(8;) = Rk x (0) 
at 0. We wish to change coordinates in Rm by a map [: Rm -+ Rm so that the 
diagram 

commutes, where n(x, y) = y. Then the second coordinate of ((x, y) must be 
@(x, y), so that the obvious candidate for ( is [(x, y) = (x, @(x, y)). With this 
choice, note that ker(5,) c ker(%',) = Rk x (0) since 8' = no[. But the 

composition Rk z Rk x (0) c-., Rk x Rn i Rk x Rn -+ Rk is the identity, so 
that ker([,) n (Rk x (0)) = (0). Consequently [, is monomorphic, hence 
isomorphic, at 0. Therefore, [ is a diffeomorphism locally at 0. Accordingly 
we can change the chart 4 to lo+. Then the new d' is just IT = 6'0[-' and 
n(x, y) = y as desired. 

7.4. Corollary. Suppose that 0: Mm -+ Nn is a smooth map and that y~ N is a 
regular value of 0. Then 0-'(y) is an embedded submanifold of Mm of dimension 
m - n. 

7.5. Example. Consider the map 8: Rn -+ R given by O(x,, . . . , x,) = EX;. We 
claim that 1 is a regular value. To  see this, let p = (x,, . . . , x,) where C x f  = 1. 
Then some x, is nonzero, say x,  # 0 at p. Then a0/ax, = 2x1 # 0 at p and 
so 8, is onto at p. Hence 0-'(I) = Sn-'  is a submanifold of Rn. 

7.6. Definition, Suppose that N, and N, are embedded submanifolds of M. 
We say that N, intersects N, transversely (symbolically N, 4 N,) if, whenever 
PEN, n N,, we have Tp(N,) + Tp(N2) = Tp(M). (The sum is not direct, just 
the set of sums of vectors, one from each of the two subspaces of T,(M).) 

7.7. Theorem. If  N, i# N, in Mm then N, n N ,  is a submanifold of Mm of 
dinzen.sion dim(N, n N , )  = dim(N ,) + dim(N2) - dim(M). Moreover, locally 
in an appropriate coordinate system, we have that N, = Rn' x (0) and 
N ,  = (0) x Rn2. 

PK(x)F. By tak~ng a chart at p in whlch N ,  IS "flat" (see Theorem 7.1) we can 
find a coordinate neighborhood U of p and a map 4 , :  U -+ Rm-"' having 0 
as a regular value and such that U n N, = 4; '(0). Similarly, perhaps cutting 
down U ,  we can find a map 4,: U -+ Rm-"' with 0 as a regular value and 
such that U n N 2  = 4;'(0). Cons~der Q), x 4,: U -t Rm-"' x Rm-"1 taking x 
to (dl(u),  (/l2(x)). We claim that 0 = (0,O) is a regular value. By c nsidering 

transverse transverse transverse except 
everywhere nowhere at 1 point 

Figure 11-5. Intersection of submanifolds. 

4, x 4, followed by the projections we see easily that 

is given by 

It follows that ker(4, x 4,), = ker(4,,)nker(4,*) = Tp(Nl)n T,,(N,). But the 
dimension of this is dim Tp(Nl) + dim T,(N,) - dim Tp(M) = n, + n, - m. 
Thus dim(im(4, x &,),) = m - (n, + n, - m) = 2m - n, - n, = dim(Rm-"' x 
Rm-",) and hence (4,  x 4,), is onto at p. Thus 0 is a regular value for 4, x 4, 
on U and has (4 ,  x 4,)-'(O) = N, n N ,  (locally), proving the first statement 
of the theorem. 

For the statement about the coordinate system consider the map 

defined by B(x) = (4,(x), $(x), (b,(x)) where $ is the projection to N, n N, in 
a coordinate system on U in which N, n N ,  is flat. 

Now cPi* kills T,(N, n N,) which implies that im(0,) contalns the middle 
factor (of the tangent space of this product of euclidean spaces). By projection 
to the first and third factors (together) we see that im(8,) maps onto 
im(+,* x = Rm-"' x (0) x Rm-"I. It follows that 0, is onto and hence that 
0 is a chart (possibly by further restricting its domain) and it clearly satisfies 
our requirements. 

7.8. Example. Cons~der V=  {(z,, z,, z3)€C3 - (0) Jz: + 2: + Z: = 01. Note 
that 0 is a regular value of (z,, z,, z3)-z? + z: + z: of C3 - ( 0 )  --+ C, SO that 
V is a 4-manifold. Let S  = S5 = {(z,,z2,z3)~C31 Izl I 2  + [z2I2 + /z3I2 = 1 )  
Then we claim that V +S and hence that V n S  is a 3-manifold. 

To see thls, note that we need only show that V  has a tangent vector, at 
any given point (z1,z2,z3)~ V n S ,  which is not tangent to S. For this, consider 
the map 4: R -+ V c  Chiven  by 4(t) = (t2zl. t?z2, t%3) and the map $: C3 - R 
whlch is the norm squared. That is, $(zl,z,,z,) = lz,  l 2  + lz2I2 + I Z , ~ ~ .  Note 
that $*takes vectors tangent to S into 0. Accordingly, it suffices to show that 



the differential of the composition $04 is nonzero at f = I .  But the value of 
this differentia1 on d/dt is 41z,I2 + 61z2I2 -t 6(z,I2 #O,  as desired. 

Thus VnS is a 3-manifold. It is known to be the "lens space" called L(3, l), 
and, unless you already know about lens spaces, it is doubtful you have ever 
seen this 3-manifold before. 

1. Consider the real valued function f(x,  y, z) = ( 2  - (x2  + y2)''2)2 + z2 on R3 - 
{(O,O,z)}. Show that 1 is a regular value off. Identify the manifold M = f -'(I). 

2. Show that the manifold M of Problem 1 is transverse to the surface 

N = ((x,  y, z)cR31x2 + y2 = 4). 

Identify the manifold M n N. 

3. Show that the manifold M of Problem 1 is not transverse to the surface 

N = { ( x , y , z ) ~ R ~ I x ~  + y2 = 1) .  

Is M n N a manifold? 

4. Show that the manifold M of Problem 1 1s not transverse to the plane 

N = { (x ,  y , z ) ~ R ' ] x  = 1). 

Is M n N a manifold? 

5. Generalize Example 7.8 as far as you can. 

8. Vector Fields and Flows 

8.1. Definition. A vector field on a smooth manifold M n  is a function c on 
Mn,  such that ~ ( P ) E T , ( M )  and which is smooth in the following sense: Given 
local coordinates x , ,  . . . , xn near  EM, we can write 

and smoothness of < means that the ui are smooth functions. 

8.2. Definition. A (smooth) flow on a smooth manifold M n  is a smooth map 
6: R x M -+ M such that: 

( I )  6 ( 0 , x ) = x  for all X E M ;  and 
(2) 6(s + t , x )  = O(s,B(t,x)) for all X E M  and s, teR.  

It is easy to check that a flow is the same as what we called an "action" 
of the additive topological group R of real numbers on the manifold M" in 
Definition 15.13 of Chapter I with the addition of smoothness. 

8. Vector ktelds and blows Y 1 

A flow generates a vector field by assigning to a point p the vector <(p) 
which is tangcnt to the curve y ( t )  = O(t,p) at t = 0 .  That is, 

This vector field [ is called the "tangent field" of the flow 0. 
Conversely, given a smooth vector field and a coordinate chart in Mn,  the 

field broken up into its n coordinates is just a set of n functions 

tn(Y 17.. . > Yn), 

where the y,  are the local coordinates. A set of "solution curves" for this field 
are solutions of the first-order system of differential equations 

For the solution going through the point p = ( x , ,  . . . , x,) at time t = 0 ,  the 
existence and uniqueness theorem for first-order differential equations says 
that there is a solution (smooth) in a neighborhood of ( t , p )  in R x Rn. This 
means, in the coordinate free notation, that there is a function 6: U -+ M ,  for 
some neighborhood U of (0) x M in R x M, whose set of trajectories at t = 0 
induces the original vector field t .  By looking at the two functions O(s + t ,  p) 
and B(s, O(t, p))  as functions of s near s = 0 ,  it is not hard to show that they 
give rise to the same set of differential equations. By the uniqueness theorem, 
they must coincide for small s , t .  Thus a vector field induces a "local" flow 
(all properties of a flow except that it is defined on some neighborhood of 
(0) x M and possibly not on all of R x M). However, if M is compact then 
one can see that one gets a "global" flow as in Definit~on 8.2. Since we have 

Flgure 41-6. Vector field and flow 



no great use for Shese facts, we leave it to the reader to fill in the details of 
this discussion. 

8.3. Example. Consider the sphere SZn- c Cn and let z = (z,, . . . , z n ) ~ S 2 "  l .  

Let ((z) = f ,(d/dt) where f (t) = (ei'zl, . . . , ei'zn). Since (d/dt)(ei'z) I, ,  , = iz, we 
see that c(z) = iz. Consequently, this defines a unit vector field on S2"-I. 

It is natural to ask, for a given manifold M, whether or not a vector 
field exists on M which is everywhere nonzero, like the one just pro- 
duced on S2"-'. This is a question which algebraic topology is equipped 
to answer, and it will be taken up again when the needed tools have been 
developed. 

PROBLEMS 

1. On the Zsphere, consider the flow 

O(t, (x, y, z)) = (x, y.cos(t) - z.sin(t), ysin(t) + z.cos(t)). 

Find the vector field on S2 induced by this flow. 

2. Consider the vector field t(x) = x on R. Show that < is the tangent field to a flow, 
and find the flow. (Hint: In classical notation, this vector field corresponds to the 
initial value problem dyldt = y, y(0) = x.) 

3. Show that the vector field [(x) = x2 on R is not the tangent field of any (global) flow. 

4. + If X and Yare vector fields on M then XY makes sense as an operator on 
smooth real valued functions on M. Show that [X, Y ]  =XY- YX is a vector 
field. (This is called the "Lie bracket" of X and Y. Sometimes it is defined with 
the opposite sign.) Also show that X Y itself is not a vector field. 

5. Show that the Klein bottle has an everywhere nonzero vector field. Describe the 
resulting flow. 

9. Tangent Bundles 

For a smooth n-manifold Mn put T(Mn) = U (T,(Mn)Ip~M). This is the set 
of all ordered pairs (p, () where (E Tp(M). There is the projection n: T(M) -, M. 
Let 4: U + U' c Rn be a chart giving the local coordinates x,, . . . , xn near p. 
Then any tangent vector at a point of U is of the form ~ ,a ,d /dx , .  Therefore 
TC- '(U) x U x R" z U' x Rn and a specific map is 

taking v~ T,(M) to (4(.rr(v)), g5,(v)) = (d(p), 4,(v)). We can take this as a chart 
on T(M). (Thought of in terms of local coordinates, this gives the coordinates 
x,, . . . , x,, y , ,  . . ., y, on 71-'(U) where the yi are the coordinates of the vector 
xi y,d/dx,.) If  $: V -, R" IS another chart on M so that 0 = $4- ': $(U n V )  -+ 

@(U n V) is the transition function, then the corresponding transit~on function 

on T(M) is clearly 0 x 0,. This makes T(M) into a smooth 211-manifold,. 
called the "tangent bundle" of M. 

A vector field on M is then just a smooth cross section of this bundle. 
That is, it is a smooth map r: M -, T(M) such that no( = 1,. 

A manifold Mn is called "parallelizable" if there is a diffeomorphism 0: 
T(M) -+ M x Rn such that each Tp(M) is carried linearly isomorphically onto 

x R". (This is called a "bundle isomorphism" of T(M) to the trivial n-plane 
bundle.) Clearly, Mn  is parallelizable o there exist n vector fields on Mn 
which are independent at each point of M". 

An example of a parallelizable manifold is the circle S1, and one way to 
produce the required nonzero vector field is as the tangent field to the flow 
0(t, z) = ei'z. 

A less trivial example is the sphere S3. The required three independent 
vector fields can be obtained by thinking of S3 as the unit quaternions and 
the three fields as the tangent fields of the flows 8(t,q) = (cos(t) + isin(t))q, 
obtaining the other two by replacing i with j and k, respectively. 

The sphere S7 can also be shown to be parallelizable by the same technique 
using the Cayley numbers. It is known, and nontrivial, that no other spheres 
are parallelizable. A proof of part of that is given in Corollary 15.16 of 
Chapter VI. 

PROBLEMS 

1. Show that the n-torus T" = S' x ..- x S1 is parallelizable. 

# 2. Is the Klein bottle parallelizable? (+ Prove your answer.) 

E 3. Show that the spheres4"- l has three vector fields that are everywhere independent. 

4. Show that S" x R is parallelizable for all n. 

5. + If n is odd, show that Sn x Sk is parallehzable for all k 2 1. 

10. Embedding in Euclidean Space 

In this section we prove that every smooth manifold can be smoothly em- 
bedded in an appropriate euclidean space. 

First we establish a smooth version of the previous result, Theorem 12.8 
of Chapter I, on partitions of unity. 

10.1. Theorem. f f  M i.5 a smooth munifold and { U , )  is an open covering then 
there is a partition of unity ( f p }  subordinute to this covering such that the 
functions f p  ure all smooth. 

PROOF. We may as well assume that the original covering is locally fin~te 
and also that each member is contained in the domain oha coordinate chart 

1 
1 
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a n d  has compact closure. By Proposition 12.9 of Chapter I, there is a 
"shrinking" (V,) ,  such that I/, c U ,  for all cr. 

We shall complete the proof in a sequence of lemmas. 

10.2. Lemma. There exists a smooth function B: R -+ R such that B(x) > 0 on 
(-  1 ,  I ) ,  and B(x) = 0.for 1x1 2 1 .  

PROOF. Take B ( ~ )  = e -  l i ( ~ - l ) ~ ~ -  ' I("+ 1)' for 1x1 < 1 and B(x) = 0 otherwise. 

10.3. Lemma. Let ~ E U  c M with U open. Then there is a smooth map 
g: M -+ [0, oo) such that g(p) > 0 and support(g) c U.  (That is, y vanishes on a 
neighborhood of M - U.) 

PROOF. Take local coordinates x, ,  . . . , xn at p and assume that the box 

is contained inside U.  Then let g(x) = B(xl/e).  . . . .B(x,Je). 

10.4. Lemma. Let K  c U c M with K compact and U open. Then there is a 
smooth function g: M -, [O, a) such that g(x) > 0 for all X E K ,  and support(g) 
c U. 

PROOF. For each ~ E K ,  take a function g, satisfying Lemma 10.3. The sets 
{ X E M  Igp(x) > 0)  are open and cover K. Thus a finite number of them cover K.  
Add up the corresponding finite number of g,, and that clearly works for g. 

Now we shall complete the proof of Theorem 10.1. For each index a use 
Lemma 10.4 to get a smooth function g,: M -, R such that g,(p) > 0 if p~ 
and support(g,) c U,. Then put f ,  = g,/Cg,. 

10.5. Proposition. Let U ,  and f, be as in Theorem 10.1. L,ef g,: U ,  + R be 
arbitrury smootlz functions. Then the function g: M -+ R given by g(x) = 

C, fa(x)ga(x) is smooth. 

PROOF. Since fa vanishes on a neighborhood of M - U,, fag, is smooth on 
U s  and vanishes on a neighborhood of its boundary in M. ThusLg, extends 
smoothly, by 0, to all of M. Any point x e M  has a neighborhood on which 
all b a finite number of the fag, vanish and so x, f,g, makes sense and is 
s 00th. 
/ 
dV1 0 

/ 
10.6. 'I'heorem. L,ct M be a smooth manifold and let K c M he clo.sc0 1,et 
g K + R be ,mootlz (in the induced structure; this meuns that q extends loc ully 
at each polnt pgK t o  a smooth function on some nelyhhorhood of p rtz M).  
Then g extends to u smooth function ij: M + R. 

10. knrbcdd~ng in k~icltdean Space 9 1 

PROOF. Cover K by sets Ua which are open in M and such that there is a 
smooth function g, on U ,  coinciding with g on U a n  K .  Throw M - K and 
the zero function into this to get a covering of M. By passing to a refinement 
we can assume that this is locally finite. By Theorem 10.1 there is a smooth 
partition of unity { L} subordinate to this covering. By Proposition 10.5 the 
function y: M -+ R given by g(.x) = C f,(x)ga(x) is smooth. For X E  K we have 
a x )  = C ( f , ( x ) s ( x ) )  = (C fa (x ) ) s (x )  = 1 .s(x) = Y(x). 

10.7. Theorem (Whitney Embedd~ng Theorem). I f M n  is a compact n-manifold 
then there exists a smooth embedding g : Mn + RZn+ I .  

PROOF. We can cover M by a finite number of domains U ,  of charts #,, 
i = 1,2,. . . . , k. We can assume there are sets Vi also covering M such that 

c U i  for each i. There are also smooth functions Ri: M -, R which are 1 on 
Vi and have support in Ui. This follows from Theorem 10.6. Let $i(p) = 
Ai(p)4i(p) for peU,  and 0 otherwise. Then each $, is smooth. Now define 
8: M -+ ( R " ) ~  x R~ by 

19(p) = ($,(PI, . . . 3 $ k ( ~ ) ,  A 1 ( ~ ) ,  . . , l k ( ~ ) )  

and note that 

We claim first that I9 is an immersion. Look at a point peM which must 
be in some V,, say p€VY Since R, = I near p, $ j  coincides with 4, near p. 
Thus $,, = d,, near p, and the latter is monomorphic near p since 4, is a 
chart. Accordingly, 6 ,  is monomorphic at p. . 

Next we claim that I9 is one-one. If O(p) = B(q) then A,(p) = L,(q) for each 
i. Now, pcV, for some i and, for that i, Ai(p) = 1 .  Thus 4,(p) = A,(p)$,(p) = 
Ai(q)$,(q) = $,(q). This means that p  = q since 4, is one-one, being a chart. 

Since M" is compact, 6' is a homeomorphism onto its image, by Theorem 7.8 
of Chapter I Thus 0 is an embedding of Mn into RN, for some large integer 
N, which we w~ll regard as an inclusion. It remains to show that we can cut 
N down to 2n + 1. For this, suppose we can find a vector w € R N  such that 
w is not tangent to Mn at any point, and such that there do not exist points 
x, y e M  with x -y parallel to w Then it is clear that the project~on of M into 
the hyperplane wL is st111 one- one and kills no tangent vector to M. Thus 
it sufices to show such a vector w exists if N > 2n + 1. The argument is one 
of "general position." 

Consider the map a: T ( M n )  - M n - + P N - I  (real projective ( N  - 1)-space), 
taking a tangent vector to a vector in R N  via the embedding and then to its 
equivalence class in projective (N - 1)-space. Also consider the map z: M " x  
~ n - ~ ~ p j v - ~  taking a pair ( w ,  j ) ,  w~th  x # y, to the equivalence class of x--y. 

Both of these are smooth maps. The dimensions of both of the source 
manifolds are 211 which is less than the dimcns~on N - 1 of the target manifold. 
By Sard's Theorem (Corollary 6 3), it follows that the images of both 



maps are of first category, and hence their union is also of first category 
which implies that there must be a vector w sattsfying our demands. 

Actually, Whitney [1] proved that M" can be embedded in R2", but that 
is beyond our present capabilities to show. 

It takes only a little more argument to remove the compactness restriction 
from Theorem 10.7 and we now indicate how to do that. We will not use 
this extension, so the reader can skip it if so desired. 

10.8. Theorem. A smooth manifold Mn can be embedded as a submanifold, and 
closed subset, of R2" +'. 

PROOF. Cover M" by open sets with compact closures and take a smooth 
partition of unity subordinate to a locally finite refinement of this covering. 
The refinement must be countable and so we can index the partition by the 
positive integers (;lili > 0). Let h(x) = CkkLk(x). This is a smooth proper map 
M"+[l, co) c R. Let U i =  h-'(i-:, i+;) and C, = h-'[i-f, i +:I. Then 
U i  is open, Ci is compact, and ISi  c int Ci.  Also, all Cod, are disjoint as are 
the C,,,,. For each i, the proof of Theorem 10.7 shows that there exists a 
smooth map g,: Mn+ R2"+l which is an embedding on Ui  and is 0 outside 
Ci. By composing this with a diffeomorphism from R ~ " + '  to an open ball, 
we can also assume that gi has bounded image. Let f, = Ego,, andf, = Cg,,,, 
and f = (f,, f,, h): Mn-+R2"+' x R2"+' x R and note that im(f) c K x R 
for some compact set K c R2"+l x R2"+l since ,f, and f, have bounded 
images. Then f is proper since h is proper. If f(x) = f(y) then h(x) = h(y) so 
that x and y are in some common Ui .  If i is odd then f, is an embedding on U i  
which implies that x = y; and similarly for i even. Hence f is an embedding 
to a closed subset (by properness). By repeated use of the Sard Theorem 
argument in the proof of Theorem 10.7 there is a projection p of R2"+' x 
R2"+' x R to a (2n + 1)-dimensional hyperplane H which is still a one-one 
immersion on f(M). Moreover, this can be so chosen that the original h 
coordinate axis is not in ker(p). That is, if n: R2"+ x R2"+ R -+ ~ 2 n +  1 ~ 2 n +  1 

is the projection, then ker(n)nker(p) = (01, which implies that n x p is an 
inclusion, hence proper, where (z x p)(x) = ~ ( x )  x p(x). Thus, for C c H 
compact, K x Rnp-'(C) = (n x p)-'(K x C) is compact, whence p is proper 
on f (M) c K x R. Therefore po f is an embedding of Mn as a closed suhspace 
of R2"+l. 

1 1. Tubular Neighborhoods and Approximations 

In this section we will show that any smoothly embedded manifold has a nice 
neighborhood analogous to a tube around a curve in 3-space; see Figure 11-7. 
This is then used to prove that continuous maps can be approximated by 
smooth maps. 

Figure 11-7. Tubular neighborhood. 

11.1. Definition. Let M" be a compact smooth manifold embedded in Rk. 
Then the normal bundle of M" in Rk is 5(M) = {(x, V ) E  M x R k l u l  Tx(M)). 
We let n: E(M) -+ M be the projection K (x,v) = X. 

11.2. Proposition. Each point XEM has a neighborhood U  such that nP'(U) 2 
U x Rk-" with the projection n: n-'(U)-+ U corresponding to the canonical 
projection U x Rk-" + U .  

PROOF. Let 4: V + Rk-" x R" = Rk be a chart making M flat, i.e., U  = V n  M 
corresponds to (0) x R". Let A,, ..., A,-, be the first k-n coordinate 
projections Rk+R. Then the L i o 4  are constant on U .  Thus the vectors 
V(L,o4), at a point of U ,  give a normal frame to U  and provide the splitting 

, see Problems 3 and 4 of Section 5. (These vectors are n-'(U) z U x Rk-"- 
independent since they form the first k - n rows of the Jacobian matrix of 4.) 

11.3. Definition. In the present situation, let 13: E(M) -+ Rk be given by 
O(X, V) = x + U. AISO let E(M,E) = {(x,v)EZ(M)I I /  v I I  < €1. 

11.4. Theorem (Tubular Neighborhood Theorem). Let Mn be a cornpact 
smooth submanifold of Rk. Then there is an E > 0 such that 0: E(M, E )  -+ Rk is 
a diffeomorphism onto the neighborhood (yeRkldist(M, y) < E )  of M" in Rk. 

PROOF. First note that there is a canonical splitting T,,,,,(E(M)) 2 Tx(M) x 
N , ( M )  where Nx(M) is the normal space to Tx(M) in Rk. 

Now let us compute 0, at (x,O)fZ(M). Since 0(x, v )  = x + r; is just a 
translation for x fixed and v variable, 0, is the standard inclusion (identity) 
on N,(M)+ Rk. Also 0, Tx(M)+ Tx(Rk) is just the differentlal of the ~nclusion 
of M c Rk and so this part of 8, is just the standard inclus~on of T,(M) in 
Tx(Rk) = Rk. Thus 

0,: Rk = T,(R~) = T,(M) x Nx(M) -+ Rk 
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is the identity. Therefore 0, is an isomorphism at (x,O) for each .YEM, and 
so 6, is a diffeomorphism on some neighborhood of (.x,O). Consequently, 
0, is an isomorphism at (x, 21) for any w and for / j  t 3 1 /  small. 

By compactness, there is a 6 > 0, such that 0, is an isomorphisn~ at all 
points of E(M, 6). Thus 8: E(M, 6) + R" is a local diffeomorph~sm. We wrsh 
to show that O is one-one on S(M, E) for some 0 < E 16. 

Suppose that 8 is not one-one on S(M, E) for any E > 0. Then there exist 
sequences (xi, v i )  # (y,, r v , )  in S(M) such that 11 L:, 11 -0, JI MI, 11 -+ 0, and 
fl(x,,v,) = O(y, w , ) .  Since M is compact, rnetrizable, there exists a 
subsequence such that (by reindexing) x i+x  and yl-+y. Then N(x,,v,) -+ 

8(x,0) = x and 8(y,, wi) -+B(y,O) = y, so that x = y. But then, for i large, 
both {x,, v,) and (y,, w,) are close to (.x,O). S~nce O is one-one locally near 
(x,O), this is a contradiction, and thus, as claimed, 8 must be one-one on 
some Z(M, E). 

To finish, we must prove the final contention that ~ (S (M,E) )=  
{j'ldist(y, M) < E). The containment c is clear, so suppose that y is such that 
dist(y,M) t c  and let x e M  be such that dist(y,x) is a minimum (and 
hence < E). Then the-vector y-x is a normal vector, at the point x, of length 
< E and so y does lie in O(E(M,e)). Cl 

Note that the map r = x~O-~:O(E(M,E))-M" is a smooth retraction of 
the tubular neighborhood onto Mn. It is also clear that r is homotopic to 
the identity via a smooth homotopy. That is, r is a smooth "deformation 
retraction." Also every point of Mn is a regular value of r. We call r the 
"normal retraction" of the tubular neighborhood onto Mn. 

There are more general versions of the Tubular Neighborhood Theorem. 
Such a theorem can be proved for smooth submanifolds of arbitrary smooth 
manifolds, and not just euclidean space. This is done in much the same way 
using geodesics in some Riemannian structure in the same way as straight 
lines in euclidean space are used in the foregoing proof. A more elementary 
derivation of that is given at the end of this section. Also, compactness can 
be removed as a restriction, with a slight modification of the conclusion (the 
E must be allowed to vary with the point). 

11.5. Corollary. Let Mn be a compact manibld and t 0 nonzero uector field 
on M". Then there is a map f: Mn -+ M" without fixed points, and with f -- 1. 
(t is assumed to be continuous, bur need not be smooth.) 

P K C ~ F .  Embed Mn in some Rk. Then is a field of tangent vkctors to Mn 
and, since Mn is compact, there is a constant c such that the vector field cr  
has all vectors of length less than E for any given E>O. Thus each 
x + ~<,EO(S(M, E)). Define f (x) = r(x + ct,). If f(x) = x then c t ,~N,(M)n 
Tx(M) = (01, so that cx = 0. Therefore, f has no fixed points. The homotopy 
is given by F(x, t) = r(x + tct,). 

11.6. Theorem. Let f :  Rn-+ Mm ho u \rnoorh mup. A\\unle [hut peMm is a 
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regular oalue, let K =f - ' {p), and assurne that K is cornynct. Then tlzere is 
an open neighhorhood N q f K  inside a tubular neighborhood of K, with normal 
retraction r: N -, K, and an open neighborhood E zz Rm of p in M m  such that 
rlze map r x f :  N -+ K x E is a diffeomorphisnt. 

PROOF. Since the critical set off is closed and disjoint from K, there exists 
a tubular neighborhood U of K on which f has no critical points. At a point 
p~ K, the tangent space of Rn at p is the direct sum of the tangent space T, 
of K at p and the normal space N ,  to T, in Rn. The differential r, kills N, and 
is an isomorphism (the identity) on T,. The differential f, kills T, and is an 
isomorphism on N, since it has maximal rank. It follows that (r x I), is an 
isomorphism at p. Therefore we can take U small enough so that (r x f), 
is an isomorphism at each point of U .  Then r x f is an immersion on U. An 
easy compactness argument, similar to that in the proof of Theorem 11.4, 
shows that r x f is one-one on some compact neighborhood C c U of K. 
Then r x f is a homeomorphism on C to its image by Theorem 7.8 of 
Chapter I. Another compzctness argument shows that, for a sufficiently small 
open euclidean neighborhood E of p in M ,  we have that N = f - ' (E)nC c 
int C. (Just consider the sets f - '(E)naC for varying E.) 

For xcK, let fx:r-'(x)nN-+ E denote the restriction off  to the "fiber" 
re l (x)n  N. We claim that each f, is a diffeomorphism onto E. Since r x f has 
no critical points in N and r, kills tangent vectors to r-'(x)n N, it follows 
that fx has no critical points and hence is a diffeomorphism into E. Now 
fx(r-'(x)nN)= f(rW1(x)nCn f -'(E))= f (F1 (x )nC)nE ,  but r- ' (x)nC is 
compact and so this set is closed, as well as open, in E. Consequently, 
f,(r-'(x)nN) = E since E is connected. 

This shows that r x f :  N -2 K x E is onto and that finishes the proof. CI 

Figure 11-8 illustrates the situation of Theorem 11.6. Let us rephrase 
Theorem 11.6 slightly. It says that if p is a regular value whose inverse image 
K is compact then, in a neighborhood of K ,  f has the form of a smooth 
projection K x E-+E. Also note that it does not say that the product 
neighborhood is the entire inverse image j -'(E) but only that they coincide 

Figure 11-8. Regular value and inverse image of its neighborhood 



near K. The projection (x,y)t+x of S1 - {(0,1)} -+ R is a counterexample to, 
that. The compactness assumption on K is necessary as is shown by simple 
examples such as the projection (x, y)-x of ((x, y)ly < I l lxl) -+R. 

This result can be generalized to a smooth map from any manifold and 
not just euclidean space. 

The neighborhood N z K x E of Theorem 11.6 is also called a "tubular 
neighborhood" although it does not quite have the form of a E(K,E). More 
generally, any neighborhood of K with the structure of a vector bundle over 
K (see Section 13) is called a "tubular neighborhood" of K. 

We shall now turn to the question of approximating arbitrary continuous 
maps between smooth manifolds by smooth maps. Note the case B = Qj of 
the following result, which is all that is used in this chapter. The case B # Qj 
is needed for an important application in Chapter IV, the Cellular Approxi- 
mation Theorem (Theorem 11.4 of Chapter IV). 

11.7. Theorem. Let Mn be smooth and A, B c Mn closed subsets. Let f: Mn + Rk 
be continuous on Mn and smooth on A (in the induced structure). Then, given 
E > 0, there exists a map g: Mn -tRk which is smooth on M - B and is such 
that g(a) = f (a) for all ~ E A  u B and such that 1) g(x) - f (x) )I < E for all x€Mn. 
Moreover, f N g re1 A u B via an E-small homotopy. 

PROOF. Let dist be any metric on M; see Theorem 12.12 of Chapter I. For 
XE M, let E(X) = min(~,  dist(x, B)). We remind the reader that "smooth on A" 
just means that near any point aeA, there is a function defined near a on 
M which is smooth there and whose restriction to A coincides with f there. 
Thus, for any x€Mn - B, let Vx c Mn - B be a neighborhood of x in Mn - B 
and let h,: Vx + Rk be such that 

(1) x e  A - B => hx is a smooth local extension off 1 .,,_; and 
(2) x 4- A u B - Vx n A = Qj and y e  Vx * hx(y) = f (x) (constant in y). 

We can also assume that the Vx are so small that 

Let {U,) be a locally finite refinement of {V,} with index assignment 
a ~ x ( a ) ,  and let {A,) be a smooth partition of unity on M - B with 
support(A,) c U,. Note that 1, = 0 on A - B unless x (a )~A - B. 

Put g(y) = C;ldy)h,(,)(y) for yeM - B and g(y) = f(y) for yeB. We claim 
this has the desired properties. 1 

First g, is smooth on M - B by Proposition 10.5. 
Second, suppose Y E A  - B. Then g(y) = C~,(Y)~,(,)(Y) = CAa(y)f O = f (Y), 

since the sum need only range over the a for which x(a)cA - B, as remarked 
above. 

Third, for yeM - B, we calculate (the sums running over the cr for which 
YE U,): 

Also, 

ye U, S- +(a)) J dist(x(a), B) < dist(x(a), y) + dist(y, B) < 
~(x(a))/2 + dist(y, B) * ~(x(a))  < 2 dist(y, B). 

It follows from the displayed inequalities that 11 g(y) - f (y) 11 < 2 distb, B). 
This implies that g is continuous on all of M. 

Finally, the standard homotopy F(x, t) = t f (x) + (1 - t)g(x) gives the desired 
<-small homotopy re1 A u B. 

11.8. Theorem (Smooth Approximation Theorem). Suppose Mm and Nn are 
smooth manijiolds with Nn compact metric. Let A c Mm be closed. Let f :  M m - +  
Nn be a map with f l ,  smooth. Then for any given E > 0, there exists a map 
h: Mm --+ Nn such that: 

(1) h is smooth; 
(2) dist(h(x), f (x)) < E for all X G  Mm; 
(3) hlA = f 1,; and 
(4) h - f by an E-small homotopy (re1 A). 

PROOF. Embed Nn in some Rk. By continuity of the inverse of the embedding 
map of Nn in Rk and the compactness of Nn, hence uniform continuity, we 
can find a 6 > 0 such that 11 p - q 11 < 6 =. dist(p, q) < E. Thus it will suffice to 
use the metric in Rk rather than the one given on Nn. 

Take a 612-tubular neighborhood U of Nn in Rk (using a smaller 6 if 
needed), and let r: U -+ N" be the related normal retraction map. 

Approximate f by a smooth map g: M m + R k  within 612 using Theorem 
1 1.7. Then g(Mm) c U. Let h = rOg. Then: 

(a) h is smooth; 
(b) I I  h(x) - f (x) II  I I I  r(g(x)) - g(x) / I  + I I  g(x) - f(x) I 1  < 6/2 + 612 = 6; 
(c) hl, = rogl, = ro f l A  = f lA; and 
(d) h 2: f re1 A by the homotopy F(x, t) = r(tg(x) + (1 - t) f (x)). 

To see that this homotopy is valid, recall that U = {yeRkly is within 612 of 
Nn). Since (1 g(x) - f(x) 11 < 612 we have that for 0 I t I 1, tg(x) + (1 - t) f ( x ) ~  
U and is within 612 off (x), showing that the given formula for F(x, t) is valid. 
It also shows that the homotopy remains within 6 of f(x). 

11.9. Corollary. Suppose that M m  and N" are smooth manifolds with N" 
compact. Then any continuous f :  Mm -+ Nn is homotopic to a smooth map. Iff 



and g ure smooth and f - g, then f - g by a smootlt hornotopy F: I x M'" c 
R x M m - t N " .  ' 

PROOF. The first part comes directly from the theorem. Thus suppose that 
F: I x M -+ N is a given homotopy between two smooth maps. Extend F to 
R x M -+ N by making it constant on the ends. Then F is smooth on the 
subspace (0,l) x M and so Theorem 11.8 implies that there is a smooth map 
G: R x M -+ N which coincides with F on (0 , l )  x M. 0 

We now apply the foregoing results of this section to derive some well- 
known topological facts. 

11.10. Theorem. If Mm is a smooth m-rnuniji,ld and m < n then any map 
f: M m  -t S" is homotopic to a constant map. 

PROOF. Approximate f by a smooth map g homotopic to it. By Sard's 
Theorem (Corollary 6.3), there must be a point p which is not in the image 
of g. But S" - ( p )  is homeomorphic to R" and so it is contractible. Composing 
g with such a contraction gives a homotopy of g to a constant map. 

11.11. Theorem. A sphere S" is not a retract of the disk Dn+'. 

PROOF. (This proof is due to M. Hirsch.) Suppose f:  Dn+' -+S" is a retraction. 
We can alter f so that it is the composition of a map f:Rn+' -+Sn which 
retracts the disk of radius onto its boundary with one which maps everything 
outside the disk of radius to the sphere S" of radius 1 by radial projection. 
This makes f smooth on a neighborhood of S". Then we can smooth f 
without changing it near Sn, so we may as well assume that f is smooth and 
that it is the radial projection near the boundary S". 

Let zeS" be a regular value of f. Then f - l ( z )  is a 1-manifold with boundary, 
and its boundary is the single point f -'(z)nS" = (zj. But any compact 
1-manifold with boundary is homeomorphic to a disjoint union of circles 
and closed unit intervals, and hence has an even number of boundary points, 
a contradiction showing f cannot exist. 

11.12. Corollary (Brouwer's Fixed Point Theorem). Any map f :  Dn -+ Dn hus 
a.fixed point (i.e., a point s such that f (x) = x). 

PROOF. Iff is such a map and does not have a fixed point then we can define 
a new map r :  Dn-+S"-' by letting r(x) be the point where the ray from the 
point f ( x )  to the point x passes through S"-' in the direction indicated. (See 
Figure 11-9.) This is a retraction of D" onto Sn-' and hence contradicts 
Theorem 1 1.1 1. 

It is not hard to  convince oneself that r is continuous, but ~t is unpleasant 
to write down a formula that exhibits this. Instead, we will produce another 
retraction for which the continuity is evident. Consider the disk D of radlus 
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Figure 11-9. Retraction of disk. 

2 and define a map g: D -+ D as follows: 

It is clear that g has no fixed points since the image of each point is in the 
disk of radius 1 where g and f coincide. 

Then define r: D -+ D by r(x) = 2(x - g(x))/ 11 x - g(x) 1). This is obviously 
continuous, and, if 11 x 11 = 2, then g(x) = 0 whence r(x) = x. 0 

11.13. Corollary. The sphere S" is not contractible. 

PROOF. If S" is contractible then there is a homotopy F: S" x I -+Sn such that 
F(x, 1) = x and F(x,O) = xo for all XES" and for some point xOeSn. This factors 
through the quotient space S" x l/S" x (0)  D"" (by Example 13.9 of 
Chapter I). The resulting map Dn' -+ Dnt l  is a retraction of D"" onto its 
boundary S", contrary to Theorem 1 1.1 1.  0 

Although the Tubular Neighborhood Theorem (Theorem 11.4) is sufficient 
for most of our purposes, it will be convenient to have a version for 
embeddings in arbitrary manifolds, instead of euclidean space. This will be 
used only in Section 15, which is not used elsewhere in this book. 

Let Wbe a compact manifold smoothly embedded in Rn and let N be a 
tubular neighborhood of W with normal retraction r: N -+ W. Let M be a 
compact smooth submanifold of W. Define the "normal bundle" of M in W 

S ( M ,  W )  = { ( x ,  v ) ~ h l =  Rnlv~T,(W) and v I  T,(M)} 

and put 

There is a map 0: E(M, W) -+ R" given by d(x, v )  = x + v. Then, for 6 sufficiently 



2. Use Corollary lj.12 to show that every n x n matrix w ~ t h  posit~ve real 
entries has a positive real eigenvalue. 

Figure 11-10, Normal vector to M in W and normal retraction. 

small, B maps E(M, W, 6) into N. Consider the composition 4 = roe: E(M, W, 
6 )  -+ W. At a point (x,O), the differential of 0 is monomorphic, as seen before, 
and maps to the tangent space of W. Since r, kills only normal vectors, 
4, =(roo), is monomorphic at (x,O) and therefore isomorphic by a check 
of dimensions. As in the proof of Theorem 11.4, there must be an E > 0 such 
that 4: E(M, W, E) -+ W is a diffeomorphism to a neighborhood of M in W. 
(See Figure 11-10.) 

Although we have assumed that W is compact, that restriction is unnecessary 
since all manipulations take place in a compact subset, namely, some compact 
neighborhood of M. We have shown the following generalization of 
Theorem 1 1.4. 

11.14. Theorem (Tubular Neighborhood Theorem). Let M c W c Rn be a 
smooth pair of submanifolds with M compact. With the notation above, there 
is an E > 0 such that the map $:E(M,  W , E ) +  W is a d~eomorphism of the 
"E-normal disk bundle to M in W to a neighborhood V of M in W. 17 

In a similar manner, Theorem 11.6 can be generalized so as to replace R" 
by an arbitrary smooth manifold. 

The compactness assumptions in Theorems 11.4 and 1 1.14 can be removed 
if one allows E to vary with the point. This allows the compactness restrictions 
in Theorem 11.8 and Corollary 11.9 to be dropped as well. We do not need 
these results in that generality. 

1 .  A "probability vector" is a vector in R" whose coordinates are all nonnegative 
and add to I .  A "stochastic matrix" is an n x n matrix whose columns are 
probability vectors. Use Corollary 11.12 to show that every stochastic matrix A 
has a fixed probability vector under the mapping v++Aa. 

In this section we develop some elementary properties of the classical groups. 
This will be used mostly for the study of examples, and so is of minimal 
importance in understanding the remainder of the book. The reader may 
want to review parts of Section 15 of Chapter I. 

12.1. Lemma. Let A = [aivj] be an n x n matrix over the complex numbers. I f  
cis a bound for the coeficients I ai,jl then (nc)' is a bound for the coeficients of A'. 

PROOF. The proof is by an easy induction on k which the reader can supply. 

It follows from Lemma 12.1 that the series of coefficients of 

are absolutely dominated by the convergent Taylor's series of P. Thus this 
series of matrices converges to a matrix called eA. Moreover, the convergence 
is unijorm in any compact subset of the space M, of all n x n matrices, and 
so the coeficients of eA are analytic functions of those of A. That is, the map 
exp: M,--+ M, defined by exp(A) = eA, is analytic. Note that exp(0) = I. 

Let us compute the Jacobian of exp at 0, using the usual coordinates (i.e., 
the matrix coeficients xi,,) in M,. Note that the i, j coordinate of eA is 

+ x,,, + higher degree terms. 

It follows that the Jacobian at OEM, is the n2 x n2 identity matrix. 
By the Inverse Function Theorem, exp is a diffeomorphism on some 

neighborhood of OEM, to some neighborhood of IeGl(n,C). (Recall that 
Gl(n,C) is an open subset of M,.) 

Also note that for any nonsingular n x n matrix B, 

For any AeM,, there is a B€Gl(n, C) such that BAB- ' has super diagonal 
form with the eigenvalues I . , ,  . . . , A, of A on the diagonal. It follows that 
BeA13- ' = exp(BAB- ') is also super diagonal with e"', . . . , e" on the diagonal. 
It follows that 

det(<A) = etrace(A) 

k In particular, det(eA) # 0 for all A, and so the image of the map exp is in 
Gl(n, C). 



12.2. Proposition. If'A and B are n x n matrices that coinmure then eA + B  = e"'. 

PROOF. For A and B fixed, we shall show that the two functions eSA'IB and 
e s ~ e t ~  , of the real variables s and t, are identical. We compute 

On the other hand, an easy computation of partial derivatives in s and t 
shows that the power series expansion of eSAe'" is 

( s  A)' 

j=o J !  

and this is clearly formally equally to the right-hand side of (I). Since eSA+" 

and esAerB are analytic functions of s, t it follows that they are identical. 

12.3. Corollary. For a given n x n matrix A, the map tt-+erA is a homomorphism 
from the additive group of reals into Gl(n, C). 0 

The homomorphism of Corollary 12.3 is called a "one-parameter 
subgroup" of Gl(n, C). Since Gl(n, C )  is an open subset of the euclidean space 
M,, tangent vectors to Gl(n, C )  can be regarded as points in M,. In particular, 
the tangent vector to the curve tr-+etA, at t = 0, is 

Consequently, these tangent vectors to Gl(n, C )  at I fill out the tangent space. 

12.4. Proposition. Let f :  R -+ Gl(n, C) be a one-parameter subgroup. (That  is, f is 
a continuous homomorphism.) Then there is a matrix A E M ,  such that f ( t )  = erA 
for all t e R .  

PROOF. Consider an open E-neighborhood U c M ,  of 0 on which the 
exponential map is one-one onto a neighborhood Vof I in Gl(n, C). Since 
enA = (eA)", for integers n, multiplication by n on U ,  where defined, becomes 
raising to the nth power on V.  It follows that elements in V have unique nth 
roots in V. Let f ,  g: R --+ Gl(n, C)  be one-parameter subgroups with f ( l )  = g(s) 
for some parameter values t and s. Also assume that f ( t ' ) ~ V  for t' in the 
interval between 0 and t ,  and similarly for g and s. Then it follows that 
f ( f lq )  = g(s/y) for all integers q > 0. In turn, this implies that f jtplq) = g(sp/q) 
for all rational numbers plq. By continuity, we deduce that f (rt)  = y(rs) for 
all real r. Thus j ( u )  = g((s/t)u) for all real u. Since the one-parameter groups 
of the form crA fill out a neighborhood of I in Gl(n, C) ,  there is a matrix B 
and parameters 7 and t with j ( l ) =  e'" and fulfilling the condit~ons above 
for y(s) = r'". Consequently, f ( u )  = g(su/t) = e"U1r'B = sUA, for all u, where 
A = (s/t)B. CI 
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All of the matrix groups discussed in Section 15 of Chapter I are evidently 
subgroups of Gi(n, C )  except for the ones defined via quaternions. To see 
this for the latter, note that any quaternionic matrix P can be written as 
p = A + Bj where A, B are complex matrices. Since jB = B;', the matrix 
p;oduct is given by 

( A  + Bj)(C + Dj) = (AC - BD) +(AD i- BC)j. 

For P = A + l l j ,  let 

It  is easy to calculate that 4 is an isomorphism of the algebra of quaternionic 
n x n matrices into that of 2n x 2n complex matrices. Also (P(P*) = 4(P)*, so 
that P is symplectic (i.e., PP* = 1) -  I = 4 ( I )  = +(PP*) = 4(P)4(P)*, which 
holds o +(P) is unitary. 

It is elementary to see that a 2n x 2n complex matrix Q has the form (2) 
e -JQJ- '  = where 

J = ( O  -1 0 I ) .  

If Q is also unitary, then the equation JQJ-' = can be rewritten as 
Q'JQ = J. Thus the symplectic group Sp(n) is isomorphic, via 4, to the 
subgroup of U(2n) consisting of those unitary matrices Q which preserve the 
bilinear form J (i.e., Q'JQ = J). Therefore, we may, and will, consider Sp(n) 
as that subgroup of U(2n). 

12.5. Theorem. For a complex n x n matrix A the following statements hold: 

(1) i f  A is real then eA is real; 
(2) i f  A is skew symmetric (A' = - A )  and real then eAeO(n); 
(3) i f  A is skew Hermitian (A* = - A) then e A ~ U ( n ) ;  
(4) i f  A is skew Hermitian, JA + A'J = 0, and n = 2m then eA = Sp(m); and 
(5 )  i f  A has trace 0 then eA ~ S l ( n ,  C). 

Conoersely, there is a neighborhood of 0 in M, on which the reverse implications 
hold. 

PROOF. The proofs are all similar and quite easy, so we will only give the 
argument for (4). If A* = - A  then (eA)* = eA* = e D A  = (eA)-  which implies 
that eA is unitary. The equation J A  + A'J = 0 is equivalent to JAJ- '  = -A' 
and so i t  implies that J e A j - '  = e J A J - '  = e-A' = (e-A)'  = ( (eA) ' ) - ' .  For A skew 
Hermitian, and hence eQnitary, this equals the complex conjugate of eA, 
implying that eA €Sp(rn). 

For the converse, restrict attention to matrices A in a neighborhood of 0 
taken by the exponential homeomorphically onto a neighborhood of I. We 
can assume this neighborhood to be a "ball," and hence invariant under 
complex conjugation, negation, conjugation by J ,  and transposition. Then 



if e" 1s unitary, we have that e-A = (eA)- = (rA)* = eA*. Since the exponential 
is one- one on a neighborhood of 0 containing both A* and -A, we conclude 
that A* = -A. If eA is symplectic then we also have that exp(JAJ-I)= 
Jexp(A)J-' is the complex conjugate of eA. But that is exp(j). It follows 
that J A J - I  = A =  -A', which is equivalent to J A  + A'J  = 0. 

12.6. Definition. A Lie group is a topological group G which also has the 
structure of a smooth manifold for which the group operations (product and 
inverse) are smooth maps. 

We remark that it can be shown, fairly easily, that a Lie group carries a 
unique structure as a real analytic manifold for which the group operations 
are real analytic. It is also known (Hilbert's "fifth problem" proved by 
A. Gleason, D. Montgomery, and L. Zippin; see Montgomery-Zippin [I]), 
that a topological group which is locally euclidean (i.e., a topological 
manifold) carries a unique structure as a Lie group. We shall need neither 
of these facts. 

12.7. Corollary. Let G c Gl(n, C) be one of the groups Gl(n, C), Gl(n, R), Si(n, C), 
Sl(n, R), U(n), SU(n), O(n), SO(n), or Sp(m), where n = 2m in the latter case. 
Then there is a vector subspace TG of M, such that exp: M, -+ Gl(n, C) maps 
a neighborhood of 0 in TG homeomorphically onto a neighborhood of I in G. 
Also, G is a closed embedded submanifold ofGl(n, C) and is a Lie group with this 
structure. 

PROOF. We already have the first statement. The exponential map can be 
regarded as the inverse of a chart at I in Gl(n, C), and so the first statement 
means that G coincides with a plane in this chart near I. By left translation, 
one sees that this holds at any point of G. The group operations are smooth 
because they are in the big group. (The restriction of a smooth map to  a 
submanifold is smooth.) 

Corollary 12.7 is a special case of a general statement about closed 
subgroups of Lie groups. We will state and prove this for the special case 
of closed subgroups of Gl(n,C). This is not so special a case, but we won't 
go into that. Since all the groups of interest to us here (those listed in 
Corollary 12.7) are themselves closed subgroups of Gl(n, C), the following 
development applies to them as to Gl(n, C). Indeed, the whole development 
can be done starting with a Lie Group instead of Cl(n, C). Since our applica- 
tions will only concern closed subgroups of Cl(n, C), and are merely examples, 
we chose this approach to get at the desired items as cheaply as possible. 

12.8. Theorem. Let G he a closed subgroup o/'Gl(n, C). Then G is un embedded 
.submanifold ofCl(n, C) und is a Lie group with this slructure. 

PROW. Consider M, as a real 4n2-dimensional vector space. Let A , ,  . . . , 

AkeM, be linearly independent and such that etAxgG for all t, and assume 
that k is maximal with these properties. Let V be the span of A , ,  . . . , A, and 
let W be a complementary subspace of V in M,. Consider the map 4: M, --+ 

Gl(n, C) defined by 

where BE W. By looking at the differential of 4 restricted to these k axes and 
on W, one sees that 4, is the identity. Therefore 4 is a diffeomorphism on 
any sufficiently small neighborhood of 0 in M, to a neighborhood of I in 
Gl(n, C). If the right-hand side of (*) is in G then eBeG since the other factors 
are. If we can show that the image under exp of a sufficiently small 
neighborhood of 0 in W contains no elements of G, other than I, then it 
follows that a local inverse of 4 gives a chart on Gl(n,C) at I with G cor- 
responding to a vector subspace. The group operations on G are smooth 
near I since they are in Gl(n, C). Smoothness elsewhere follows from an easy 
argument using left and right translations. 

(This latter is a general fact about Lie groups: one need only have differen- 
tiability near the identity, and it follows elsewhere. The proof is more difficult 
in general than in this special case, much more in case of disconnected groups.) 
Consequently, the proof will be finished when we establish the following 
lemma. 

12.9. Lemma. Let S c Rm be a closed nonempty subset. Suppose that .YES - 
nseS for all integers n. If 0 is not isolated in S then S contains a line through 
the origin. 

PROOF. For each integer n > 0 let x, # 0 be a point in B,,,(O)nS. Then there 
is an integer k, 2. n such that k,x,~K, where K = (veRmI 1 I 11 vll < 2). Let 
y, = k,x,, so that y,eK. Since K is compact, there is a subsequence {yn,) of 
(y,) converging to some point yeK. Since the subsequence has all the 
properties of the original sequence, we may as well assume that (y,) itself 
converges to y. Let t # 0 be a real number. Then there is an integer r such 
that 

Also (r/k,)y, = (r/k,)knxn = rx ,~S .  We conclude that 

But this approaches 0 as n -+ co and so rx, -+ ty. Since r x , ~ S  and S is closed, 
we have t y ~ S  for all real t. 



v w  11. Diirerentiable Manifolds 

Although we now know that any closed subgroup G of Gl(n,C) is a Lie 
group, we do not have the full force of Corollary 12.7 for it, in that we do 

D-dm,(ja not know that G coincides near I with the image under the exponential of a 
linear subspace of M,. (The proof of Theorem 12.8 gives G in terms of what is 
known as "canonical coordinates of the second kind" while Corollary 12.7 
corresponds to "canonical coordinates of the first kind." The first kind are 
natural, while the second kind are not.) If we knew that G has a neighborhood qbw of I that is Swept out by one-parameter groups then it would follow from 
the uniqueness (Proposition 12.4) of one-parameter subgroups that the 
exponential map takes a neighborhood of0 in the tangent space of G, thinking 
of M ,  as the tangent space of Gl(n, C), diffeomorphically onto a neighborhood 
of I in G, i.e., that Corollary 12.7 holds for any closed subgroup G of Gl(n, C). 
For completeness we will indicate the proof of this, but we really don't need 
it, since we will be concerned only with subgroups that are products of the 
classical groups, and this fact is immediate (using Corollary 12.7) for those. 

12.10. Theorem. If G is a Lie group and X is a tangent vector to G at the 
identity eeG, then there is a one-parameter subgroup f: R -+ G whose tangent 
vector at 0 is taken to X by the differential f,. 

PROOF. For any ~ E G  there is the left translation L,: G +  G defined by 
L,(h) = gh. This is a diffeomorphism and so the differential of it at e takes 
X to a tangent vector at g. This gives a tangent vector field on G. By the 
existence and uniqueness theorem for first-order ordinary differential equations 
this has, locally at e s G ,  a unique solution curve f :  R -+ G with f (0) = e. 
Suppose that f (t) = g for some t near 0. Then L, takes e to g and takes the 
vector field into itself, and hence takes solution curves to solution curves. This 
implies that, for s near 0, f (t + s) = L,( f (s)) = g- f (s) = f (t) f (s). Thus f is a 
homomorphism locally at 0. (Of course, it is only defined near 0 at the 
moment.) An easy argument, that we leave to the reader, shows that f can 
be extended, uniquely, to a global homomorphism R -+ G. By construction, its 
tangent vector at 0 is the original vector X. 

13. Fiber Bundles 0 
I "  

h@ O j 4 k  kh The theory of fiber bundles, which we have already alluded to and which 
will be studied in this section, is very well developed. We make no attempt 
here to go into it deeply, being satisfied to introduce the relevant notions 
and to discuss some of the examples that will be of use to us later in the book. 

13.1. Definition. Let X, 5, and F be Hausdorff spaces and p: X -+ B a map. 
Then p is called a bundle projection with ,fiber F, if each point of B has a 
neighborhood U such that there is a homeomorphism 4: U x F-+p- ' (U)  
such that p(4(b,y)) = b for all bgU and yeF. That is, on p-'(U), p 
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corresponds to projection U x F -+ U .  Such a map 4 is called a trivialization 
of the bundle over U.  

13.2. Definition. Let K be a topological group acting effectively on the 
Hausdorffspace F as a group of homeomorphisms. Let X and B be Hausdorff 
spaces. By afiber bundle over the base space B with total space X,fiber F ,  and 
structure group K, we mean a bundle projection p: X -+ B together with a 
collection @ of trivializations 4: U x F -+p-'(U), of p over U, called charts 
over U, such that: 

(1) each point of B has a neighborhood over which there is a chart in 
(2) if 4: U x F -+ p-' (U) is in @ and V c U then the restriction of 4 to V x F 

is in (3; 
(3) if 4, J/E@ are charts over U then there is a map 8: U+K such that 

*<u,Y) = 4<u,@tu)CY)); and 
(4) the set @ is maximal among collections satisfying (I), (2), and (3). 

The bundle is called smooth if all these spaces are manifolds and all maps 
involved are smooth. 

Let us investigate the meaning of condition (3) of Definition 13.2. Given 
charts 4 and $ over U, 4-'$: U x F -+ U x F is a homeomorphism commut- 
ing with the projections to U. Thus we can write 

where 

p : U x F - + F  

is the composition p,o$-'J/ with the projection p,: U x F -+ F, and hence is 
continuous. Then 8: U -+ K is given by 

group = Z2 11 F  fiber'^ = 1 

Figure 11-1 1. A fiber bundle. 



Therefore 8 is completely-determined by the charts 4 and I), and it is only- 
a matter of its continuity, and that it takes values in the structure group K, 
that is of concern in condition (3). 

In most cases of interest, the continuity of 0 comes free (see Section 2 of 
Chapter VIII). We shall show that this is the case for "vector bundles" which 
we now define. 

13.3. Definition. A vector bundle is a fiber bundle in which the fiber is a 
euclidean space and the structure group is the general linear group of this 
euclidean space or some subgroup of that group. 

A vector bundle is usually denoted by a Greek letter such as 5 and its 
total space by E(l)  and base space by B(5). Its fiber projection is denoted by 
n,: or just by n. The following definition, given only for vector bundles, has 
a fairly obvious generalization to general fiber bundles, but we need it only 
for vector bundles. 

13.4. Definition. If 5 and q are vector bundles then a bundle map l -+ q is a 
map g: E(5) -+ E(q) carryingeach fiber of 5 onto some fiber of q isomorphically. 
(In particular, the fibers have the same dimension and there is an induced 
map B(l) -+  B(q).) A bundle map g is a bundle isomorphism or a bundle 
equivalence if it is a homeomorphism. 

13.5. Proposition. For a vector bundle, condition (3) in Definition 13.2 can be 
replaced by the weaker requirement that each B(u): R" -r Rn be linear. That is, 
a vector bundle can be defined as a bundle projection p: X -+ B with fiber Rn 
such that the changes of coordinates are linear in thefiber. 

PROOF. Let I = 4- '+: U x R" -+ U x Rn be the change of coordinates between 
any two charts 4 and I) over U .  The function p: U x Rn-+Rn given by 
Ju(u, y ) = ( u, p(u,  y ) ) is continuous, as remarked before, and 8 is given by 
8(u)(y) = p(u ,  y ) .  Let e j  be the jth standard basis vector in Rn and let 
pi: Rn -r R be the ith coordinate projection. Then the composition 

is continuous and is given by 

But 8(u)(ej) is just the jth column of O ( u ) ~ G l ( n )  and p,(O(u)(e,)) is the i, j 
element of O(u). That is, 

where ~ ~ , ~ ( u )  = p,(O(u)(ej)) = p i ( p ( u ,  e,)) is continuous. Hence 0 is con- 
tlnuous. Ll 

Note that ~f we only have the map 2: U x Rn-r U x Rn in the proof of 
proposition 13.5 (commuting with the projection to U and an isomorphism 
on each fiber), then p is continuous and hence O is continuous. If we let 
@(u) = (O(u))-I then 8' is also continuous. This implies that the corresponding 
pt and 1' are also continuous. But A'= 2-' and so 2 must, in fact, be a 
homeomorphism, and a diffeomorphism in the smooth case. This gives the 
following consequence. 

13.6. Corollary. I f  t and q are vector bundles over B and f: E(t)--+ E(q) is a 
bundle map inducing the identity on B then f is a bundle isomorphism. 

13.7. Definition. A disk bundle, or sphere bundle, is a fiber bundle in which 
the fiber is a metric disk or sphere in euclidean space and the structure group 
is the orthogonal group of that space, or a subgroup of that Zroup. 

A disk or sphere bundle gives rise to a vector bundle with the orthogonal 
group as structure group just by replacing the fibers Dn or S"-' by Rn and 
using the same change of coordinate functions 6. Such a vector bundle is 
sometimes called a "euclidean bundle." Conversely, every vector bundle over 
a paracompact base space can be given the structure of a euclidean bundle, 
meaning that an atlas of charts can be selected for which the changes of 
coordinates are orthogonal in each fiber. (In Steenrod's terminology, one 
says that the structure group can be "reduced" to O(n).) One can see this as 
follows: the changes of coordinates being orthogonal in each fiber just means 
that they preserve the quadratic form Cxf on fibers. That means that there 
exists a map q: E([)-+ R which is a positive-definite quadratic form on each 
fiber since, given such a map q, the Gram-Schmidt construction produces 
an orthonormai framing on the fibers of a coordinate chart and this is equi- 
valent to giving a chart for which the quadratic form is the standard one, 
CX; on each fiber. Thus it sufices to produce such a q: E( t ) -+  R. For any 
point XEB, one can use any chart to produce such a function q locally about 
x in B. One can then multiply it by a function f :  B -, [0, co) which is nonzero 
at x and vanishes outside the domain of the chart. This gives a q,: E(c) -+ [0, co) 
which is a positive semidefinite form on each fiber and is positive definite 
over a neighborhood of x. Since a positive linear combination of positive 
definite forms is positive definite, a partition of unity argument then finishes 
the construction. If the base space is a smooth manifold and t is a smooth 
vector bundle (smooth 8) then one usually wants the quadratic form q to 
be smooth, and that can be guaranteed by using a smooth partition of 
unity. 

In the case of the tangent bundle of a smooth manifold, such a smooth 
quadratic form is called a "Rlemann~an metric" on M. 

For another example, suppose Mm is a smooth manifold and that Nn IS 

a submanifold. The tangent bundle of M is a vector bundle over M. I t \  
restriction 10 N is a vector bundle, or "m-plane bundle" over N. For this 
bundle over N the structure group can be taken to be (is said to be "reducible" 



to) the subgroup K of Gl(m, R) consisting of matrices of the form 

where A is n x  n. This is because the tangent space of M  at a point of N has 
a well-defined subspace, the tangent space of N, and we can restrict our atten- 
tion to charts preserving this subspace. The matrices A form the transforma- 
tions of the subspace (i.e., give the transitions for the tangent space of N). 
This embeds the tangent bundle of N in that of M ,  restricted to N.  One 
can also form a bundle of the quotients of the tangent spaces to M at points 
of N by this subbundle, the tangent bundle of N. One gets a vector bundle 
in which the transition functions are given by the matrices denoted by C 
above. This vector bundle is called the "normal bundle" of N in M .  

For another example, one that will be of use to us in providing examples 
of later results in algebraic topology, consider a Lie group G and closed 
subgroup H.  Let us assume that G is a closed subgroup of Gl(n,C). (This 
assumption is not needed for the truth of what we say beiow, but is imposed 
so as to be able to use facts we have previously proved under such an assump- 
tion. All our examples will satisfy this.) Then we claim that the canonical 
map G-+ G/H is a bundle projection with fiber H. Recall that from Corol- 
lary 12.7 and the discussion above Theorem 12.10, that the exponential map 
M, -+ Gl(n, C) takes a linear subspace TG of M ,  smoothly into G and is a 
diffeomorphism on a neighborhood of 0 in TG to a neighborhood of the 
identity ~ E G .  We do not care about the remainder of the exponential map 
and can forget about Gl(n, C) now. Similarly, a linear subspace TH c TG is 
taken into H by exp, again a diffeomorphism near 0. Let V be a linear 
subspace of TG complementary to TH and consider the map 4: V x  H -+G 
defined by ql(v, h) = exp(v)h. Recalling that the differential of exp at 0 is the 
identity, we see that the differential 4, of ql at (0, e)  is the identity on V x  (0) c 
V x  TH = TG. It is also the identity on (0) x  TH since 4(O, h) = h. Thus ql, = 1 
at (0, e)  and it follows that 4 is a diffeomorphism near ( 0 , e ) ~  V  x H to a 
neighborhood U of e in G. We claim that 4 is an embedding on B x  H where 
B c Vis a ball about the origin such that exp(B)' c U .  Note that translation 
by elements of H shows that the differential 4, is an isomorphism at any 
point of B x  H. Consequently, i t  suffices to show that ql is one-one on B x H. 
Suppose that $(h, h) = ql(b', h') where h, ~ ' G B .  This equation is ebh = eb'h', i.e., 
e-b'eb = h'h-l. But this is in exp (~ ) ' n  H = (e). Thus, eb = eb', whence h = b', 
and h = h'. 

Clearly, ql induces a commutative diagram 

defining $. Obviously t+b maps onto a neighborhood of eH in G/H.  If $(v)  = 
$(vl) then &(v, e) = &(v', e)h for some ~ E H .  But ql(vl, e)h = 4(v ' ,  h), and so this 
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can happen only for v = v'_and h = e. Thus $ is one-one. If we take 3 to be a_ 
closed ball then IC/ is a one-one map from a compact space to a Hausdorff 
space and so is a homeomorphism to its image. This provides a trivialization 
of the map G -, G/H over a neighborhood of e H .  Trivializations near other 
points are obtained simply by left translation in G and G/H.  We leave the 
rest of the easy verification that this is a bundle to the reader. Note that it 
also follows that G / H  is a smooth manifold with the structure induced by 
the projection G -+ G/H,  and that left translation G x  G/H -+ G/H is a smooth 
action; see Definition 15.1 3 of Chapter I. 

PROBLEMS 

1. Finish the proof at the end of this section that G -+ G/H is a bundle. Also show 
that this is a fiber bundle with structure group N(H)/H where N ( H )  is the normalizer 
of H in G. 

2. Q Suppose that G is a Lie group, and assume it is a closed subgroup of Gl(n, C). 
Assume that K c  H c G are closed subgroups. Show that the canonical map 
G/K -r G/H is a fiber bundle with fiber H / K .  

3. Show that the Klein bottle is a fiber bundle over St with fiber St and structure 
group Z, acting by a reflection on St c R2. 

4. 4 A fiber bundle p: X -+ B is a "principal bundle" if its fiber is its structure group 
K acting on itself by right translation. Show that K acts naturally on X (on the 
left) with orbit space X/K x B. If p has a continuous cross section then show that 
it is a trivial bundle. 

14. Induced Bundles and Whitney Sums -@ 

This section will be used only in Section 15 and in Section 17 of 
Chapter VI. 

If p: X -+ B is a fiber bundle with fiber F and if B' c B, then the restriction 
of p to p-'(B')+ B' is also a fiber bundle. One can generalize this to 
arbitrary maps f :  A 4 B instead of inclusions as follows. 

The "induced bundle" p': f * X  -+ A, induced from p by f, is given by 
the "pullback" 

and pi is given by pf(u,x)  =a .  With f ' :  f * ( X ) +  X given byfr(u,x) = x, the 
diagram 



commutes. To see that p' is a bundle projection, let 4: U x F + p - ' ( U )  be a 
chart over the open set U c X and define 

This works since pd (f (v), y ) = f ( U ) E  U and f p' ( v, 4 ( f  (v), y ) ) = f (v). The 
inverse of 4' is 

for p(x) = f (a)€ U ,  and where p,: U x F -+ F is the projection onto F. To see 
this, let p,: U x F -+ U be the projection onto U and compute 

and with f (a) = p(x), 

4 ' n ( a , x i  = 4 ' ( a , p F 4 - ' ( x ) )  

= ( a 9 c b ( f ( a ) , ~ F 4 - 1 ( x ) ) )  

= ~ ( P ( x ) , P F ~ - ' ( ~ ) ) )  

= ( ~ , ~ ( P u ~ - ' ( x ) , P F ~ - ~ ( x ) ) )  

= ( a 9 4 # - l ( x ) )  
= ( a ,  x ) .  

This shows that p' is a bundle projection with fiber F. If # and t,b are two 
charts over U for p : X - t B  and $ ( u , y )  = $(u,B(u)(y))  as in (3) of 
Definition 13.2, then we see that 

where O'= 00 f :  f - ' (U) - ,  K .  Therefore 8' is continuous and satisfies ( 3 )  of 
Definition 13.2 for p'. Consequently, p' is a fiber bundle with fiber F and 
structure group K. 

I t  is clear that if A' c A and B' c B are subspaces such that f (A ' )  c B', then 
the part off * ( X )  over A' and the part X' of X over B' provide a pullback 
d~agram; i.e., the part off * ( X )  over A' is equivalent to ( f  l,.)*(X'). Applying 
t h ~ s  to the case of a single point a€ A and its image b = f (a)€ B gives the 

subdiagram 

Thusf*(F)= { ( a , x ) ~ ( a )  x Flp(x) = f ( a ) )  = { a )  x F and this maps to F in 
the obvious manner. 

Now we shall specialize, for the remainder of this section, to vector 
bundles. As remarked before, one commonly denotes the total space of a 
vector bundle i; by E(i;). 

14.1. Theorem. Suppose < is a vector bundle over A and q is a vector bundle 
over B and let f :  A+ B. If 4: E(c)+ E(q) is a bundle map over f then t is 
isomorphic to f *q. 

PROOF. Let g: E(<) -+ E( f *q) = 1 <a, x ) E A x E(q) 1 f (a) = n,(x)) be given by 
g(u) = (nt;(v), 4(u)).  Then g maps the fiber of l over ~ E A  to that off *(q) over a 
by the linear isomorphism vc-t(a, 4(v)) .  By Corollary 13.6 this implies that 
g is a bundle equivalence. 

If e l  and 5 ,  are vector bundles with projections n,:  E(r , ) -+  B ,  and 
n,: E((,)+B, and with fibers R"' and Rn2, then n, x 7t2:E(<,) x E((,)+ 
B ,  x B,, with the obvious charts, is a vector bundle with fiber Rnl+"'. In the 
special case for which B,  = B = B,, the diagonal map B -+ B x B then induces 
a bundle from n ,  x n,, This vector bundle over B with fiber R"' ""' is denoted 
by <, @I r ,  and is called the "Whitney sum" of l ,  and <,. 

For example, if Mm is a smoothly embedded submanifold of R"then one 
has its tangent bundle r and its normal bundle v. The fiber of the Whitney 
sum r @ v is just Rn. Since tangent vectors to Mm can be regarded as vectors 
in Rn and similarly for normal vectors, there are maps E(7) -+ Rn and E(v) -+ Rn. 
This induces a map E(r@ v)+ Rn, by addition of vectors, which is an 
isomorphism on each fiber. This is a bundle map if Rn is thought of as the 
total space of a vector bundle over a point. Therefore E(T@v) is induced 
from the trivial bundle over a point and hence is itself a trivial bundle. Thus, 
in a sense, v is an additive inverse to r. That the tangent bundle has an 
additive inverse in this sense is not a special property of the tangent bundle, 
as we now show. 

14.2. Theorem. I f  < 17 (I srnooth vector bundle over the smooth manifold M m  
then there c.xrstc (1 vector hunrlle q over M m  such that i s  rromorphic to 
a trivlal ucc tor buticle over M m .  

PK(x)I.. We can, and will, regard M m  as the zero section of E ( t ) .  One can 
embed sorne ne~ghborhood U c E ( [ )  of M m  in some Rn. I f  r ,  and v, are the 
tangent and normal bundles of U then z,@ v ,  is a trivial bundle over U as 
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seen above. Consider a vector in < at xeM. This defines a ray in the fiber of 
E(r) over x. The differential of the embedding U -+Rn takes the tangent vector 
to this ray into a tangent vector to U at x that does not lie in the tangent 
space of M at x. Therefore, it projects nontrivially to the normal space to 
Tx(M) in Tx(U), regarding both as subspaces of Rn. This induces an 
isomorphism of with the normal bundle 2 to M in U. But 1 0 v u l M  x v M  
and so 1 0  v, I,@ zM z vM Q z, which is a trivial bundle. This shows that 
5 z 2 has an additive inverse, namely, v, 1, @ zM. 0 

Remark. The condition in Theorem 14.2, that the base space is a smooth 
manifold, can be weakened considerably. Indeed, if the base space is any 
space that can be embedded in euclidean space, then it can be shown that 
the bundle extends over some neighborhood and can be assumed smooth 
there. Then the idea of the proof of Theorem 14.2 applies. On the other hand, 
the canonical line bundle over P" (essentially the projection R" - 10) -+ Pm) 
does not have an inverse. (This follows from the results presented in Section 17 
of Chapter VL) 

15. Transversality a 
Transversality is a central idea in diffeirential topology which allows "general 
position" arguments. Here we prove some basic facts about it and attempt 
to indicate its importance via some simple examples. This section will not 
be used elsewhere in this book except for the isolated result Theorem 11.16 
of Chapter VI. 

The following is a generalization of the definition of transversality given 
in Definition 7.6: 

15.1. Definition. Let M, X, Y be smooth manifolds and let f :X-+ M and 
g: Y -+ M be smooth maps with g an embedding. Then f is said to be transverse 
to g (denoted by f 4 g )  if, whenever f(x) = g(y), the images of the differentials 
f*: Tx(X) -+ T/,,)(M) and g*: T,(Y) -+ T,(,,(M) = T/,,,(M) span T/(X)(M). 

15.2. Theorem. In the situation of DeJnition 15.1, f -'( f (X)n g(Y)) is an 
embedded submanifold of X of dimension dim(X) + dim(Y) - d~m(M). 

PROOF. Let p~ f (X)n  g(Y) and take local coordinates on the open set U c M 
about p for which g(Y) is flat; i.e., U % Rn x Rk with g(Y) corresponding to 
Rn x (0) .  Let q: U z Rn x Rk -+ Rk be the projection. Then q o  f: f -'(U)-+Rk 
has 0 as a regular value and so (q.1)-'(0) = j - '(f(X)ng(Y))n,f- '(U) is an 
embedded submanifold of X of codimension k = dirn(M) - d~m(Y). 

The elegant proof of the following result is due to Kosinski [I]. 
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15.3. Theorem. Let 4' he a sniooth vector bundle over the stnooth n~anijiA(f Y. 
Let x he a smooth manifold and f :  X -r E ( < )  a smooth'map. Then there is a 
smooth cross section s: Y -+ E ( 0 ,  as close to the zero section as desired, such 
that f +s. 

PROOF. By Theorem 14.2 there is a (smooth) vector bundle y over Y such 
that I] is trivial. Consider the commutative diagram 

defining f '. A trivialization of < Q I] provides a diffeomorphism 4:  Y x Rn 
E(< Q q). Let p: E(< @ q )  -+ Rn be the resulting projection. Let zeRn be a regular 
value of the composition po f': E( f *(< Q q)) -+ E(< Q I]) + R". By definition of 
a regular value, the differential p , o  f ', maps the tangent space at any point 
VEE( f *(t Q I])) with p f '(v) = z onto that of Rn at z. This implies that the 
image off', must span the complement of the tangent space to Yx {z) at 
< fl(v),z> and that simply means that f' is transverse to the section 
sf: Y -, E(< 0 I]), given, in terms of the trivialization, by sl(y) = (y, 2 ) .  Define 
the section s: Y -+E(5) by s(y) = ns'Q; i.e., so that the following diagram 
commutes: 

SI 
E(f *(5 Q I ] ) )  -L E(5 @ rl)  -, Y 

We claim that f 4s .  To see this, let XEX, ycY be such that f(x) = s(y). 
Then n(sl(y)) = s(y) = f (x). By the definition of the induced bundle, the point 
(x, sr(y)) E E( f *(r O y)) has f '  (x, sl(y)) = s'Cy). Since f '4 s', the images of the 
differentials f', at (x,s'(y)) and s: at y span the tangent space to E ( 5 O q )  
at f'(x,sr(y)) = sf(y). Since n is a submersion, this must also hold for the 
images of the differentials f, at x and s, at y to the tangent space of E(5) at 
f(x) = s(y), but that just means that f 4s .  

For the remainder of this section we will consider submanifolds of some 
fixed manifold W. We will state the results in general, but will use the 
Tubular Neighborhood Theorems (Theorems 1 1.4 and 1 1.14) which we have 
proved only in case W = Rn or Wa compact submanifold of Rn. To simplify 
notation in proofs, the case W= Rn will be assumed, but there is no real 
difficulty in extending the proofs to the general case. 

15.4. Corollary. Let M and N be compact smooth tnanfilds. L r t j .  M -+ W he 
smooth and let yo: N 4 W he u smooth embedding where W 1s some smooth 
munlfi)ld. Then there is an arbitrarily small homotopy of q ,  to a stnooth 



embedding g,: N -+ Wsuch rhrrr f +g1. Indeed, the homoropy can be rcrken to 
be smooth and such that each g,: N -+ Wis an embedding; i t . ,  it is nn "isotopy." 
M  and N can be manifnlds with houndary provided the botrndaries do not meet. 

PROOF. Let v be the normal bundle of g,(N) in Wand let g: E(v) c-, W be a 
tubular neighborhood. Then M' = f -'(E(v)) is an open submanifold of M 
and Theorem 15.3 applies to f 1 ,.: M' -+ E(v). 

We need to have a version of Corollary 15.4 in which the map f is the 
one to be deformed. This requires the following fact. 

15.5. Lemma. Let N be a compact smoothly embedded submanifold of W. Let 
T be a tubular neighborhood of N as constructed in Theorems 11.4 or 11.14. 
If s: N -+ int T is a section (i.e., pos = 1 where p: T -+ N is the normal retraction) 
then there is a homeomorphism h: T-+ T which preserves fibers, is the identity 
on LJT, and carries s to the zero section N. I j s  is smooth then h is smooth on 
int T. Moreover, h is homotopic to the identity through such homeomorphisms. 

PROOF. AS stated before, we will do the proof in the case W = Rn which is 
notationally, but not conceptually, easier. Let us first remark that a more 
advanced proof can show that there is such a map h which is smooth on a T  
as well; i.e., such that the extension to Rn -+ Rn by the identity is smooth. See 
Kosinski [I]. (It can be seen that the h we produce here is C1 but not C2. 
It is possible to amplify the present proof to produce such a smooth h.) 

For our proof, recall that Twas constructed as the image of 

( ( x , v ) ~ N  x RnIuIT,(N) and IIvII 5 6 )  

under the map (x,v)~--+x+v~R". The section s can be viewed as a map 
XHS(X)ER~ where s(x) l T,(N) and jj s(x) 1) < E for all x. Let 4: [0, m) -+ LO,€) 
be a diffeomorphism which is the identity near 0, and note that d4/dt -+0 
as t -+ co. If B is the open €-ball about 0 in Rn then the map 8: B -+ Rn given 
by O(v) = 4 - '( 11 v 11 )v/ 11 v 11 for v # 0 and O(0) = 0, is a diffeomorphism. Then 
the map h: int T -+ int T given by 

is the required map. The reason that it extends cont~nuously to iiT is as 
follows. Note that 11 O(s(x)) / I  is bounded. As 11 11 I /  -,c we have that j j  O(u) / I  -+ co. 
Since O(v) and O(v) - O(s(x)) are of bounded distance apart ~t follows that the 
distance between v = 8- '@v) and 8- '(O(z.) - O(s(x))) approaches 0, basically 
because d$/dt + 0. 

Note that the idea of h is that one uses a nice diffeon~orphisrn 0 of B to 
Rn, then translat~on in Rn to move the sectlon s to the rero 5ectlon and then 
the inverse of O to bring this back to B Trom Rn. 

The reason that h carries T into ~tself preserving fibers 1s that 0 carries 
all vector subspaces of Rn into themselves, and, In particular, carries the 
orthogonal complement of T,(N) into itself. 

The statement that h 2. 1 is obvious from the construction. 

15.6. Corollary. Let M be a compact smooth manifold. Let f,: M -, W he smooth 
and let N c W be a smooth compact subman@ld. Thenf;) -- f,  where f ,  6 N. 
Moreover, the homotopy can be taken to be constant outside f i l ( T )  for a 
given tubular neighborhood Tof N in W 

PROOF. Theorem 15.3 provides a section s of some tubular neighborhood of 
N such that fo+s(N). Composing f, with h of Lemma 15.5 (extended by the 
identity) gives the desired f,. This f,, as constructed, is not smooth at the 
boundary of the tubular neighborhood, but can then be smoothly approxi- 
mated without changing it near the intersection with N where f ,  is already 
smooth. C1 

Although we have only dealt with manifolds without boundary, it is clear 
that everything goes through for manifolds with boundary as long as the 
maps do not take any boundary point of one manifold to the image of the 
other manifold. It is not too hard to weaken that to the case in which 
transversality already exists near the boundaries. Even that restriction can 
be dropped, in which case one should also demand that the approximating 
maps be transverse when restricted to either boundary. 

15.7. Corollary. Let M m  be any compact manifold smoothly embedded in Rn 
(or 9). Then any map f: Sk -+ Rn - Mm can-be extended tof: Dk+  -+ R" - M m  
provided k < n - m -  1. 

PROOF. By a small homotopy (see Theorem 1 1.7) we can smooth f and then 
we can extend it to a smooth map f,: Dk+ '  -+ Rn. By Corollary 15.6, fo 2: fl 

re1 Sk, with flct\Mm. But, in these dimensions ( k f  1 + m  <n), this imblies 
that f , (Dk+l)n  Mm = QI so that f,: Dk+l  -+Rn - Mm as required. 

As an example, this shows that iff: S1 -+ R4 is a smooth embedding, then 
R4 - f (S1) is "simply connected," i.e., that any map S1 -, R4 - j(S1) IS homo- 
topic to a constant map. This is not true for nonsmooth embeddlngs In 
general; see Rushing [I]. 

As another example, consider embeddingsf: S" -+ R"+k+ ' and y.Sk--iRn+k+l 
whose images are disjoint One can extend f to f , :  D"" -+ R""" ', and, by 
a homotopy re1 S", one can assume that f ,  + y Then j ,(D"+ ')n y(Sk) IS a 
0-man~fold; a fin~te set of polnts where these maps are transverse Let K = 
f ,  ' ( f l (~"+ ' )n s (Sk) ) ,  agaln a 0-manifold by Theorem 15 2 At any po~nt  
XE K, the dlfferentlal of j ,  induces an (n + I)-frame at f l (x)  and that of y 
Induces a k-frame at the same polnt. Puttlng these together in t h~s  order 
glves an (n + k + I)-frame whlch may or may not be consistent w~th the 
standard (n + k + [)-frame of Rnik ' I .  Assign a plus 51gn to x ~f so and a 
mlnus sign if not Then the sum of these signs over all such polntr x glves 
an Integer called the "llnklng number" L( f ,g )  off  dnd g 7 o ree that t h~s  1s 



Figure 11-12. About linking numbers. 

independent of the choice of the approximation f,, let fo:Dn+' +Rn+k+' 
be another such approximation. Then there is a homotopy F: Dn+' x I -+ 
Rn+k+' re1 S" x I from f, to f ,. It can be assumed that F is constant near 
the two ends, and so it is transverse to g there. Then F can be approximated 
by some F,:Dn+' x l -+Rn+k+'  that coincides with F on a neighborhood 
of Sn x 1 u D n +  ' x d l  and such that F ,  +g. Then F;'(F,(Dn+ x I)ng(Sk)) 
is a 1-manifold in Dn+' x I not meeting S k  I and which is transverse to 
the boundary. See Figure 11-12. This 1-manifold describes cancellations and 
creations of pairs of points of opposite sign in its intersections with Dn+ ' x (0) 
and Dn+' x ( I ) ,  which implies the invariance of the linking number. The 
reader might find it edifying to try to convince himself that YLg) differs 
from L(g,f) only by a sign depending on n and k. There are several other 
methods of defining Yf, g). 

For our last example, let Mm be a compact smooth manifold without 
boundary and let 4:  Mm-+Rn be smooth, for some n I m. Let xqb(Mm) be 
a regular value (assuming not all of Mm is critical). Then we claim that 
Km-" = 4-  '(x) is an (m - n)-manifold which bounds an (m - n + 1)-manifold 
V c Mm. To see this, let r c R" be a ray from x of length b where b > diam 
4(Mm) and let y be its other end. Then the open segment (x, y) has a tubular 
neighborhood (x, y )  x Rn-' for which the rays are the constant cross-sections. 
By Theorem 15.3, 4 is transverse to one i f  these rays, say s. The required 
~ m - n +  1 is just 4 - '(s). 

16. Thorn-Pontryagin Theory 0 

In this section we will investigate pointed homotopy clasgs of maps 
f: Wk -+ Sn. The term "pointed" means that we fix a base point in each space 
and consider only maps and homotopies taking the base point to the base 
point. This set of homotopy classes is called the (n  -+ k)th "homotopy group" 

of S" and is denoted by n,, ,(Sn). The group structure on this set will be defined 
below, and in more detail in the next chapter. 

By composing a pointed mapt':S"+k-+S" with the end of a deformation 
of Sn collapsing a disk about the base point to the base point, we see that, 
up to homotopy, we can assume that f takes a neighborhood of the base 
point of Sn+k to the base point of S", and similarly with homotopies of such 
maps. 

Then by removing the base point from S"+k we can study, instead, maps 
and homotopies Rn+k -+ S" which are constant to the base point outside some 
compact subset of Rn+k.  By the Smooth Approximation Theorem we can 
also restrict attention to smooth maps Rn+k -+ Sn and smooth homotopies. 

For convenience in notation we shall consider Sn to be the one-point 
compactification R; = Rnv {a) of euclidean space. Use will be made of 
some constructions on Sn which are not smooth at a, but this will have no 
affect on our arguments. For example, a translation of R" extends to R: and 
is smooth except at co. 

Suppose given a smooth map f :  Rn+k-+R: as above. Then there is a 
regular value PER". By following f by a translation in Rn (which is, of course, 
homotopic to the identity as a map of R; to itself) we can assume that p is 
the origin OGR". By Theorem 11.6 there is a disk En about 0 in Rn and an 
embedding Mk x En-+Rn+k onto an open neighborhood N of Mk and whose 
inverse N --+ M~ x En is r x f where r: N -t M~ is the normal retraction. By 
another homotopy off it can and will be assumed that En is the open unit 
disk in Rn about the origin. In this section, we will refer to such an embedding 
g: Mk x En-+ Rn+k, Mk compact, as a "fattened k-manifold." 

Now we can follow f by a smooth deformation of R; starting at the 
identity and ending with a map 8: R", RR", which takes En diffeomorphically 
onto Rn and everything else to co. For example, the homotopy 

xM1 - 11 x 112t2)'12 for I J  x I1 < lit, 
@(x, t )  = 

for ( 1  x 11 2 l/t. 

does thls. With this map, O(x) = x/(l - 11 x lj2)112 for ljx 11 < 1. Then the 
composit~on 80 j -- f can be described as the map taking N = Mk x En -+ E" 
by the projection followed by the diffeomorphism En 5 Rn (the restriction 
of 0) and tak~ng everything else to YJ. (See Figure 11-13.) 

Therefore every fattened k-manifold y: Mk x En -+ R" t k  gives rise to a map 
4,: + R"+f t h~s  form,and every map Rn" -+ R"+, as above, is homotopic 
to a map arising this way 

Now suppose we are given two fattened k-manifolds y,,: Mk, x En--, R n f k  
and 4 , :  M i  x En -+ R"+k and that the associated maps are homotop~c: 
4q,, = (bB, via the homotopy I;: Rn'k x I -+ R;. 

By composing F with a map Rni x I - + I t n t k  x 1 of the form I x I) where 
$41) = 0 for t near O and I)([) = 1 for t near 1 ,  we can assume that I; is a 



Figure 11-13, Thorn-Pontryagin construction. 

constant homotopy near the two ends. Also, of course, F can be assumed to 
be smooth away from F -'(a). 

Let q e R n  be a regular value of F and put vk+' = F-'((q)). Then there 
is an open disk Dn about q and an embedding vk + ' x Dn --+ R~~ x I onto a 
neighborhood Wof Vand whose inverse is r x F: W-+ Vk+'  x D", r being the 
normal retraction. Also, in Rn + ' x [0 ,  €1, for some E > 0 ,  this fattened V k +  ' 
has the form of the composition 

and similarly at the other end. The first inclusion can be replaced by an 
isotopy (a level preserving embedding ~ k ,  x Dn x [O,E] -+ Mkg x Rn x [O, €1) 
which first translates Dn to the origin, then expands it to the unit disk En 
and then expands it to map onto Rn (essentially the map 0 above with a 
modification of the parametrization to make it constant near the ends). At the 
end of this we get the diffeomorphism Mk, x Dn --% Mk, x Rn 5 Mk, x En. 
We can use the inverse of this to reparametrize the entire fattened Vk+'  to 
give a fattened manifold G: Vk+'  x En-+R"+k x I which coincides with go 
near R n + k  x (0) and with g ,  near R n + k  x (1). This is called a "cobordism" 
of fattened manifolds in Rn+k;  see Figure 11-14. Since cobordism is taken to 
be constant near the ends, it is an equivalence relation between fattened 
k-manifolds in Rn + k .  

1 

Figure 11-14. A cobordism. 

Conversely, such a cobordism of fattened manifolds determines a homo- 
topy between the maps Rn+k -+ R: associated with the ends of the cobordism. 
Thus we have set up a one--one correspondence between pointed homotopy 
classes of maps S"+'+Sn and cobordism classes of fattened k-manifolds 
M k  x En -+ Rn+k.  This is close to what we want, but not quite. 

A fattened manifold M k  x En -+ R"+k (or Vk' x En --+ R n + k  x I) determines 
a field of normal (meaning here, independent of the tangent space) n-frames 
on M~ by taking the differentials at points x e M k  c R n + k  of the coordinate 
axes in (x) x En. (An 11-frame is a set of n independent vectors. We do not 
assume that they are orthogonal, and they are not in this construction.) 
Thus we have a "framed manifold" Mk c R"k. Similarly, the fattened V k t  ' 
gives a field of normal 11-frames to V k + '  c R n + k  x I ,  and this is a "framed 
cobordism." 

Conversely, given a (compact) framed manifold M k  c Rn+k,  we can 
construct a fattening of M k  as follows. Let <,, . . . , <, be the vector fields in 
R"+k defined on M k  and forming an independent set of n normal vectors at 
each point of M k .  Then define the map t: M k  x Rn--+ R n + k  by 

At any point of M k ,  the differential of t is clearly onto and so, by an argument 
similar to the proof of Theorem 11.4, there is an E > 0  such that t maps 
M k  x B,(O) diffeomorphically onto a neighborhood of M k  in R n + k .  By compos- 
ing with a diffeomorphism En--+B,(0) which is the identity near 0, we 
get a fattening M k  x En-+R"+k of M k  in our sense, and its differential gives 
back the original n-frame on M k .  

We have almost proved that there is a one-one correspondence between 
nn+,(S") and framed cobordism classes of framed k-manifolds M k  in Rn+k.  
What remains to prove is that if we start with a fattening, pass to the induced 
framing, and then, by the above construction, to a fattening, we get a fattening 
which is cobordant to the original one. We shall prove this formally later, 
in Lemma 16.3. 

The group structure on X , + ~ ( S " )  is defined as follows. Use a base point 
which is in the equator of S"+k. If we collapse the equator to a point, we get 
amap  y : S " i k - + S n + k  v W k .  If we have pointed maps f, g : S n + k + S "  then we 
can put f on the first factor of S"+ v S"+k and g  on the second to get a map 
Sn+k v S " + ~ - + S " .  Composing this with y then gives a new map S"+k+Sn 
calledj*y. If we use [If] to denote the homotopy class off then we define 
[f] + [ g ]  to be [ f *g]. That this is a group structure will be proved in the 
next chapter. Looking at the inverse image of a regular value (assuming f 
and g are smooth) it is clear that the corresponding operation on framed 
cobordism classes of framed k-man~folds in R n + k  is as follows. Given two 
framed k-manifolds M k  and N k ,  translate M k  in Rntk  until it lies in the lower 
half space (with respect to the last coordinate, although that does not really 
matter), and translate Nk to the upper half space. Then M k  and N k  together 
form a framed k-manifold In R"'k, wh~ch we will denote here by M k * ~ k .  If  
[ i M k ]  denotes the framed cohord~sm class of hIk then let [ M ~ ]  + [ N ~ ]  = 



[ M ~ * N ~ ] .  It is not hard to see that this latter operation does provide the 
structure of an abelian group. The identity element is the cobordism class 
of the empty nlanifold and the inverse is the class of the mirror image of a 
framed k-manifold. 

Thus, subject to proving the mentioned lemma, we have shown: 

16.1. Theorem (Thom-Pontryagin). The above construction gives an isomor- 
phism of n, +,(S") with the group of framed cobordism cEasses oJframed k-mani- 
.folds in Rn+k. 

As mentioned, we still must prove Lemma 16.3. By a diffeomorphism of 
Rn with E" which is the identity near the origin, or at least has the identity as 
differential there, we may replace En by Rn in the definition of "fattening." 
We need the following definition: 

16.2. Definition. Let 4 ,  $:Mk x Rn-+Rnfk be two fattenings of the same 
manifold M ~ ,  i.e., 4(x, 0) = I/I(X, 0) for all x. Then an isotopy between them is an 
embedding O: M~ x Rn x 1 -+Rn+k x I such that O(X, y, ~ ) G R " + ~  x (t), 
O(x,O, t )  is constant in t, and O(x, y,O) = ($(x, y),O), and O(x,y, 1) = 

($(x, Y), 1). 

Often an isotopy is denoted by f?,(x, y): Mk x Rn--+Rn+k where 

An isotopy can be assumed to be constant near the ends, i.e., 6, is constant 
for t near 0 and near 1. Then it is clear that isotopy is an equivalence relation 
and that it implies cobordism of fattenings. Thus the following lemma suffices 
to complete the proof of Theorem 16.1. 

16.3. Lemma. If 4, $: Mk x Rn -+ Rn+k are two fattenings of the same compact 
manijold Mk and ifthey induce the same framing of Mk then they are isotopic. 

PROOF. We can shrink the normal disk, keeping a neighborhood of 0 fixed, 
to make the images of the normal disks as small as we please, and this 
constitutes an isotopy that does not change the assumptions in the lemma. 
Thus it is clear that we may assume that the image of 4 is contained in the 
image of (I/. Then $-'q5 is defined. Therefore we can define Q,(x,y) = 
$(r-'$-'$(x,ru)) and we must investigate this as t approaches 0. For 
simplicity, we can regard Mk as an embedded submanifold of Rn+k. 

Let p~ Mk and let x,, . . . , xk be local coordinates on an open neighborhood 
U of p in M ~ .  Let y ,,.. ., y, be coordinates in Rn. Then x , , .  . . ,x,, y , ,  . . ., yn 
can be taken as local coordinates in Rn+k using $: U x Rn-t  Rn+k as a chart. 
Thus $ is the identity in these coordinates. We can represent 4 in these 
coordinates by 
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where 

R(x,~)=(A,(.x,y),..., Ak(x,y))~Rk, 

P(x, Y) = (PI(X, Y), . . . , P,(x, Y))E R". 

Since 4(.x,O) = (.u,O) we have that L(x,O) = x and p(x,O) = 0. Therefore 

which is defined for sufficiently small r # 0. 
Now A(x, ty) is defined and smooth in x, y, t even at t = 0. Since ~ ( x ,  0) = 0, 

we can express 

via Taylor's Theorem, where the bi,j,k are smooth and where 

a,,Ax) = (aPi/aYj)(x, 0). 

By the assumption that 4 induces the same frame as does $, we have that 
ai,,(x) = hi,> Therefore 

which is defined and smooth in x, y, t even at t = G. Also, putting t = 0 gives 
O,(x, y) = (x, y). This means that the end t = 0 of the isotopy f?,(x, y) is $(x, y). 
The end t = 1 is d,(x, y) = 4(x, y). 0 

We will now look at the special case k = 0 of maps Sn-+S". By Theorem 16.1 
zn(Sn) is isomorphic to the group of framed cobordism classes of framed 
0-manifolds in Rn. A (compact) 0-manifold is just a finite set of points. The 
framing at each point can be assumed orthonormal by the Gram-Schmidt 
process, which provides a "homotopy" of the frame, which is a framed 
cobordism. Also a frame can be rotated so that its first vector agrees with 
that of Rn, and then a rotation in the orthogonal complement of the first 
vector can move the second to agree with the second standard basis vector 
of Rn, if n > 2. (This is just a matter of knowing that the special orthogonal 
group SO(n) IS connected and transitive on the sphere Sn- '  i f  n > 1. See 
Problem 8 of Section 15 of Chapter I.) One can continue this until one gets 
to the last vector. That finishes it since SO(1) is not trans~tive on the 0-sphere. 
But that leaves all vectors but the last in the standard position and the last 
is either standard or in the opposite direction from the nth standard vector. 
One can distinguish these cases simply by the sign of the determ~nant of the 
matrix made up of column vectors equal to the original frame, expressed in the 
standard basis. Thus, we can replace the frame by the sign f 1, and 
still have the correspondence. Moreover, one can cancel two opposite slgns 
by a cobordism that is an arc between two such points at the end t = 0, and 
empty at the end t = 1. Other points stay constant during the cobordism. 
Thus, addlng up the signs gives an integer, and thls Integer 1s a complete 



invariant for n,,(S"). This integer is known as the "degree" of the rnapj: S" -+ Sn 
whose homotopy class is in question. Thus we have: 

16.4. Corollary (Hopf). There is on isontorphism n,,(Sn) =. Z which tukrs u 
hornotopy cluss [ f]  to the degree of,f. 

16.5. Corollary (Hopf). A nlup f : Sn -+ Sn of degree 0 is lzonzotopic to a 
coizstunt. 

The degree of such a smooth map is, by the discussion, determined by 
taking a regular value peSn and adding up the signs of the Jacobians off  
at the (finite number of) points in f -'(p). 

The method of Pontryagin and Thom was originally intended as an 
approach to the computation of homotopy groups of spheres. The groups 
nn+ ,(Sn) work out fairly easily since they correspond to framed 1-manifolds 
and 1-manifolds are well known. The groups ~C,+~(S")  also work by this 
method since 2-manifolds are well understood. Even in that case, however, 
the derivation of n,+,(Sn) is quite difficult. Indeed. Pontryagin originally 
announced that nn+,(Sn) is trivial; apparently because of a missed framing 
on the torus. He corrected this shortly thereafter. With great difticulty, the 
method has been pushed through to compute n,+,(Sn). For higher codimen- 
sions, the difficulties become overwhelming. In the meantime, other, algebraic, 
methods were found for the computation of n,+,(S") and many computations 
have been done, but the complete problem is yet to be cracked. But these 
results on homotopy groups can be used, through the Thom-Pontryagin 
construction, to yield information about manifolds, a method that has proved 
to be highly productive. 

Although we have restricted our attention in the d~scussion to maps from 
Rn+k to S", the only place we used that the maps are from R n f k  was in the 
definition of the group structure in ~c,+~(S"). We mainly made that assump- 
tion in order to simplify the argument and aid the reader's intuition. (Also 
it is by far the most important case.) There is 110 difficulty in generalizing the 
results to apply to maps from any compact manifold to Sn. The upshot 
of that generalization is the followi~lg: 

16.6. Theorem. I f  is u compucf ~mooth mcrnlfold, then the Thom- 
Ponlrvugln construction gioes (1 one-one correcpor~d~nce belween the set 
[Mn+k; St'] Of humotopy clusses (?fm~ip.s M"+k +S" und tho set of smoozh framed 
c.ohordism classes of smooth, (ornpuc*~, normully frumrd A-suhmunifold~ of Mn+ k .  

0 

Iteturnrng to smoolh maps f . S " + k  +S", note that there IS an obvious 
" \ L I S ~ C ~ S I O ~ "  of f to a map Sf S"' + ' + Sn ' ' Induced from f x I :  S"' x I -+ 

S" x I by passlng to the quol~ent \paces Sn ' k '  ' of N"'" I and S"' ' of Sn x 1 
ldent~fy~ng the ends of thc cylinders to polnts T h ~ s  is not smooth at the 
poles, but has a regular value on Llte equator and 50 ~t can be smoothed 
i~l thout  c l~ang~ng  that reguinl ~ a l u e  

s In the v~ewpoint of the Thom- Pontryagln construct~on, i t  1s clear that 
the corresponding operation (at least up to sign) is glven by considering a 
given framed k-manifold in R"+k as lying in Rn+, x (0) c R n + k + t  and 
adding the new coordinate vector to the frame at each point. Then this 
defines a homomorphism 

We claim that S is an isomorphism for n > k + 1 and is surjective for n = k + 1. 
We will prove this in several steps. 

First, note that a given framing can be altered by an isotopy of frames 
(producing a framed cobordism that is a constant cobordism on the manifold 
itself) so that the new framing is orthonormal and orthogonal to the manifold. 
To do that, first project to the normal space. This can be filled in with an 
isotopy via the standard tv + (1 - t)w method. Then use the Gram-Schmidt 
process to orthogonalize. This also fills in with an isotopy. 

Second, for Mk c Rn+k+  l ,  n > k, there is a unit vector v not tangent to M 
anywhere and not a secant of M; see the proof of the Embedding Theorem 
(Theorem 10.7). We can rotate Rn+k+l  (giving a cobordism) movlng v to the 
last basis vector, and so we can assume that v is this basis vector e = en+,+ ,. 
If pw(x,(p), . . . , xn+ ,+ ,(p)) represents the original embedding of M~ in 
~ n + k +  1 , then the map 4: Mk x I-+Rn+k+l x 1 given by 4(p, t )  = (xi(p), . . . , 
X,+~(P), t ~ , + ~ +  l(p), t) defines a cobordism of M~ to Nk c R " + ~  x 10) c RnCk+ l ,  

not yet framed. 
To see that 4 does carry the framing along, note that at each parameter 

value t, the manifold p++4(p,t) has a tangent space at each p which has an 
angle < n/2 with the original tangent space of M at p and hence has trivial 
intersection with the original normal space. Thus the original framing is still 
a framing of the displaced manifold, even though not orthogonal to it. 

Therefore, we may assume that Mk c Rn+k x (0) c Rn+k+l  (if 17 > k) and 
has an orthono;mal framing. Now consider the frame at each point. Referring 
the vector e = e n + , + ,  to this frame at a given point x e M  gives a point 
O(x)eS". Since n > k, the smooth map 8 :  Mk-+S" must miss a point. By 
rotating the framing by an orthogonal transformation constant on M 
(another cobordism) we can assume that - v$image(O), where t; = v,+ , is the 
last vector in the glven frame (v,,. . . , v n +  ,). 

Now we claim that we can change the framing via a homotopy so that 
the last vector v = on+, of the frame becomes e. This is done by rotating the 
frame through the 2-plane spanned by e and v moving tl to e This rotation 
can be describcd as follows: Let w be the unit vecfor half way between e and 
r.; i.e. n1 = (e + c)/ /I e + o 11. This makes sense since - 1)  is never e. Then the 
rotatton In question is R,,: R" +' -+ Rn+ ' given by R,,(u) = T,(T,(u)) where T ,  
is the rcflcctlon In the line Rw; whence TJu) = 2(u, w ) w  - u. The homotopy 
1\ given by the family R,, of rotatiorls where 



Consequently, we can assume that the framing has r as its last vector, but 
that just means that the new framed k-manifold is in the image of the 
suspension S: n,,, -+ z , + ~ +  l(Sn+'); n > k. For a framed cobordism I/:+' c 
Rn+k+l  x I, a similar argument shows that it can be changed into a cobordism 
v k +  1 ~ n + k  x (0) x I c R n C k + '  x I with the last frame vector e, provided 
that n > k + 1. This shows that S is an isomorphism for n > k + 1. Thus we 
have proved: 

16.7. Theorem (Freudenthal). For n 2 1 ,  the suspension homomorpl~ism 

is an isomorphism for n > k + 1 and an epimorphism for n = k -t 1. 

Note that this implies that S: n,(S')-+n2(S2) is onto and that 
7c2(S2) -+ n3(S3) -+ ,.- are all isomorphisms. Thus an alternative to the proof 
of Corollary 16.4 is to compute n l ( S 1 ) ~ Z  (done by other means in 
Chapter 111), and to show that n2(S2) is infinite (an easy application of 
Homology Theory in Chapter IV), and to then use Theorem 16.7 to conclude 
that a11 these groups are Z. 

In Chapter VII we will show that n3(S2) % Z and n,(S3) % Z,. Thus it will 
follow from Theorem 16.7 that n,+ ,(Sn) z Z2 for all n 2 3. It is easy to 
"explain" (without proof) these facts from the point of view of Thom- 
Pontryagin. An element of nn+,(Sn) is represented by a framed 1-manifold 
M1 in Rn+'. It is not hard to see that one can join the components of M 
via a framed cobord~sm and similarly one can unknot M. That is, every 
element of nn+ is represented by a framed standardly embedded circle 
M = S1 in Rn". The trivial element is represented by a "trivial" framing: 
embed D 2  in R2 x 1 meeting R2 x { l )  transversely in S1 = aD2; then this 
can be framed and shows that the normal framing of the standard S1 c R2 
is frame cobordant to 121 (i.e., n2(S1) = 0; similar arguments show n,(S1) = 0 
for all k > 1). Suspending this adds another normal vector to S1 in R3, giving 
a "trjvial" framed S' In R3. NOW, given any smooth map 4 :  S' +S0(2) % S1, 
one can produce a new framing of S1 by rotating the given frame at XES' 
by +(.x)~S0(2). It is clear that all framings come this way. A homotopy of 
maps S1 x I 4 S 0 ( 2 )  g~ves a cobordism (actually an isotopy) of framings. 
The honiotopy classes of maps S'  -+S0(2)=S1 are g~ven by n l (S1 )z  Z, 
by Corollary 16.4, and each of these classes produces, by the frame change 
construction, an element of n3(S2), and it turns out that these elements are 
all distinct, which explains why n3(S2) z Z. For framlngs of S '  in R4, one 
would operate on a trivial normal framing by the maps S1 -+S0(3) .  In 
Chapter f 1 1  we w~ll show that there is exactly one nontrlvlal (up to homotopy) 
map S1 +S0(3) and 1131s "explains" why n,(S3) zz Z,. The same fact holds 
for S1 -, SO(n) for all t l 2  3, "explaining," without uslng Theorem 16.7, why 
n, + ,(S") z %, for all n > 3. 

CHAPTER I 1 1  
Fundamental Group 

Finally, let me propose still urzother kind of 
geonzetry, which, in a sense, is obtained by the 

most cur<ful sfting process oj'ull, and which, 
therefore, includes the fewest theorems. This 

is analysis situs. . . . 

With t h ~ s  chapter we begin the study of algebraic topology. The central idea 
behind algebraic topology is to associate an algebraic situation to a 
topological situation, and to study the simpler resulting algebraic setup. For 
example, to each topological space X there cou!d be associated a group 
G(X),  such that homeomorphlc (indeed, usually homotopically equivalent) 
spaces glve rise to isomorphic groups. Usually, also, to a map of spaces one 
associates a homomorphism of the groups attached to those spaces, such that 
compositions of maps yield compos~t~ons of homomorphisms of groups. Then 
anything one can say about the algebraic situation, gives information about 
the topological one. For example, if we have two spaces whose associated 
groups are not isomorphic, then we can conclude that the spaces cannot be 
homeomorphlc. 

Many readers will recognxe that what we are talking about here is what 
is known as a "functor" from the category of topological spaces and maps 
to the category of groups and homomorphisms. Indeed, the whole idea of 
functors arose out of the field of algebraic topology. 

In t h ~ s  chapter we shall study the first and simplest realltation of thls 
idea, the fundamental group (or Poincari group) of a space. Thls IS a 5peclal 
case of so-called homotopy groups, and we shall first define the latter and 
then specialize, In the rest of the chapter, to the fundamental group, or "first 
homotopy group." 

To define a group, one must define an operation of "multlpl~cat~on " The 
reader may recall that we already had such a situation In the first chapter, 
namely, the concatenation F * G of two homotopies. However. t h ~ s  operzitlon 
is only defined when the second homotopy starts where the prev~ous one 
ends. Rut we can restrlct attention to homotopies that all start and end w~th 



the same map, and the simplest such map to take is a constant map to a 
point. Also, one needs certain identities in the definition of a group, such as 
the associativity of multiplication. But concatenations of homotopies only 
satisfy the weaker law that F * ( G * H ) = ( F * G ) * H .  This suggests that the 
objects making up the group should not be homotopies, but equivalence 
classes of homotopies under some type of equivalence that would make 
homotopic homotopies equivalent to one another. That is exactly what we 
are going to do. 

First let us recall the notations from Section 14 of Chapter I. If X and Y 
are spaces, then [X; Y] denotes the set of homotopy classes of maps X -+ Y. 
If A c X and B c Ythen [X, A; Y, B] denotes the set of homotopy classes of 
maps X -+ Y carrying A into B (denoted by (X, A)-+(Y, 3)) such that, 
moreover, A goes into B during the entire homotopy. 

To make a group then, we can select a point yo€ Y and consider the set 

Here, indeed, one does get a group from the operation of concatenation of 
homotopies. However, it is technically better to also choose a "base point" 
X ~ E X  and consider the set 

(Of course, a1 = {0,1}.) For the moment let us set A = {x,} x I u X x 31. 
Then note that maps X x I-+ Y which carry A into { y o )  are in one-one 
correspondence with maps of the quotient space (X x I)/A-+ Y which take 
the point (A) into fy,}. Thus we define the space 

SX = (X x IMA = (X x I)/((xo} x I u X  x aI) with base point {A}. 

This is called the "reduced suspension" of X. 
A space with a base point is often referred to as a "pointed space." We 

will mostly work in the category of these pointed spaces and pointed maps 
(maps taking base point to base point). Let us denote the set of homotopy 
classes of pointed maps of a pointed space X to a pointed space Y, with 
homotopies preserving the base points, by [X; Y],. (We use this notation for 
stress here. In most of the book we will drop the asterisk sufix, depending 
on the context to make clear what is intended.) 

Thus [SX; Y], is in a canonical one-one correspondence with [X x I, A; 
Y>{YO)I. 

If f, g: SX -+ Y are pointed maps, then they induce homotopies f', g': 
X x I -+ Y by means of composition with the quotient map X x I + SX. Then 

f 1 * g ' :  X x I -+ Y is defined and factors through SX. The resulting pointed 
map SX -+ Y will be denoted by f * y  with little danger of confusion. Note 
that, geometr~cally, f *g is obtained by putting f on the bottom and g on 
the top of the one-point union SX v SX and composing the resulting map 
SX v SX -+ Y w~th  the map SX -+ SX v SX obtained by collapsing the middle 
(parameter value i) copy of X in SX to the base point. (See Figure 111-1.) 

Figure 111-1. The product of two map classes SX -+ Y. 

For any map f :(SX, {A})+(Y, {yo}) we denote its homotopy class in 
[SX; Y], by [f]. For two such maps f and g we define 

Cfl.Csl= Cf*sl- 

Of course, we must check that [f,] = [f2] and [g,] =[g2] imply that 
[ fl *gl] = [f2*g2], but this follows from Proposition 14.17 of Chapter I. 

Let c,,: X -+ Y be the constant map to the point yo. Then, from the laws 
of homotopies developed in Propositions 14.13, 14.15 and 14.16 of Chapter I, 
we see easily that: 

(associativity) [ f].([g].[h]) = ([ f].[g]).[h] from 1-14.16, 

(unity element) [c,,]. [f 1 = [f 1 = [f 1.  [cyol from 1-14.13, 

(inverse) Cf l.Cf -'I = Ccyol from I- 14.15. 

(Recall that f -' stands here for the "inverse" homotopy with time running 
the opposite way to that in f, and not to an inverse function.) 

Thus, under this operation, the set [SX; Y], of pointed homotopy classes 
of pointed maps SX -t Y, becomes a group. 

Figure 111-1 illustrates the group operation. Note that the line segment 
from the "north pole" in the left-hand side of the illustration to the point xo 
and on to the "south pole" is, in SX, really identified to a point. For the 
picture it is easier not to try to depict this. One can consider the picture as 
defining a map on the "unreduced suspension" (the union along X of two 
cones), which is constant on this line segment. Such a map factors through 
the reduced suspension, and vice versa, so such illustrations should not lead 
to problems. 

The most important special case of the foregoing is that of suspensions 
of spheres. To fix the ~deas, let So denote the O-sphere {O,1} with base point 
(0 ) .  Pick any base polnt in the other spheres, say the north pole. We shall 
use an asterisk "*" to denote base points in general. 

1.1. Proposition. The reduced suspension gives SF?-' z S". 
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ssn-1 ' 
IS compact Hausdorff, if follows that i t  is homeomorphic to the 

one-poinl compactification of R". But the latter is just S". 0 

Because of this fact, we can, and will for the purposes of this chapter, define 
the (pointed) 11-sphere S" to be the n-fold reduced suspension of the two-point 
set So. Then we have the equality Sn = SSn-I. 

Thus, as a special case of the foregoing discussion, the set [Sn; Y], is a 
group for 11 > 0. This is the "nth homotopy group," and it is denoted by 

n . (Y>~o)=[~~ ;Yl* .  1 
If we wish to indicate a homotopy group without specifying the "n" we will 
just write n,(Y, yo), or sometimes just n,(Y), the base point being understood. 

Of course, the elements of z,(Y) are homotopy classes (re1 base point) of 
maps Sn+  Y The group operation is easily seen directly. Given maps /, 
g: Sn + Y,  put them together to give a map of S" v Sn + Y, and then compose 
with the map Sn-+Sn v S" which just collapses the equator (containing the 
base point) of S" to a point. (The reader may well argue here that this dexrip- 
tion is too vague. For example, on which of the two parts of Sn v Sn do you 
put f ?  As a matter of fact, however, we will see later that this only matters 
when n = 1. Also, it is of little consequence just how one defines Sn in the 
first place. Of course, a t  the present time, we cannot justify these statements, 
and when proving things we will have to stick to our definition.) 

If you think about our definition of n,(Y) for a moment, especially the 
description of Sn as a repeated suspension of So, you will note that each 
suspension supplies a parameter in [O, l] and, in fact, the space Sn as 
constructed is actually a quotient space of the cube In obtained by collapsing 
the boundary of the cube to a point (which becomes the base point). Maps 
Sn+  Y preserving base points, are in one-one correspondence with maps 
In+ Ywhich take dl" to the base point of Y This is a more traditional way 
of defining nn(Y). This group then becomes the set of homotopy classes of 
maps (In7 dln) + ( Y ,  (yo)). In that context, the group operation is the one 
coming from the definition: 

for 

for 

We will see later that using the last coordinate to do the concatenation of 
f and g is completely immaterial, and one gets the exact same group operation 
in nn(Y) by using any other coordinate for the concatenation. 

Homotopy groups are very important but they are also very difficult to 
compute. The most important cases are the groups n,(Sk). Many of these 
have been computed, but not all of them. Their study has long been, and 
continues to be, a very Important toplc in algebraic topology. 

Before returning to the general discussio~~, let us indlcate some of the 
known facts about these groups. Some of these things will be proved later 

1. Ho~notopy Groups I3 I 

in this book. The groups n,(Sn) are known to be infinite cyclic and are 
p e r a t e d  by the homotopy class of the identity map S L S " ,  a fact that is 
probably no surprise. Indeed, this was proved in Corollary 16.4 of Chapter 11. 

The group n,(Sk) is trivial for n < k. In fact, this follows from Theorem 1 1.10 
of chapter 11. 

The group n.(S1) is trivial for n > 1. We will prove this later in this chapter - - .  
The group n3(S2) is infinite cyclic. This may well come as a surprise. 

Consider S3 as the unit sphere in C2. Then (u,v)t-+uu-' defines a map 
S3 -+ C+ % S2 and this represents a generator of n3(S2). This map, incidentally, 
is called the "Hopf map" and there are several other ways to define it. 

The group nn+ ,(S") is the group Z, of two elements for n > 2. Going back 
to maps S3+S2, note that one may "suspend" such maps to get maps 
S4 -+ S3,. . . , Sn+ + Sn- (They are obtained from the maps f x 1: X x I 4  
Y x I ,  for any f : X -+ Y by passing to the quotient spaces defining the reduced 
suspensions.) Starting with the Hopf map described in the last paragraph, 
these suspensions turn out to yield the generators of all the groups nn+l(S") 
for n > 2. 

The group n,+,(Sn) 1s the group Z, of two elements for n 2 2. The group 
n4(S2) is generated by the composition of the Hopf map S3 + S h i t h  its 
suspension S4 + S3, and the higher groups are generated by the suspensions 
of this. 

The group nn+ ,(Sn) z Z,, for n 2 5; also n,(SZ) % Z,, n6(S3) % Z1,, and 
n7(S4) NN Z O  ZI2. 

As might be guessed from some of the stated facts about homotopy groups 
of spheres, it turns out that X , + ~ ( S ~ )  is independent of n for n sufficiently 
large. This is known as "stability." Those who have read Section 16 of 
C h a ~ t e r  11 have already seen a proof of this in Theorem 16.7 of Chapter 11. 

L o u g h  peeks into-the futire. Let us resume our general discussion of 
the groups [SX; Y],. Let (X,x,) be a fixed pointed space, and consider 
maps 

4:(Y, Y , ) - - + ( ~  WO). 

If f:(SX, *)+(Y, yo) is any map then $0 f:(SX,*)-+(W, w,). Also, i f f  2. 

grel(*), then 40 f - 4.g rel(*) so that 4 induces a function 

by $#[f] = [40 f]. It IS clear (see Figure 111-2) that @o(f *g) =(Oo f)*(+og) 
whence 4#(clfl) = 4#(cc)b#(fi), i.e., 4# is a homomorphism of groups. 

If 4:  (Y, yo) +(W, w,) and $: (W, w,) +(Z, 2,) then it is clear that 

+#04#  = ($04)# and Identity# = Identity, 

so that [SX, *; .;] is a functor. 
Also, if 4 E $: (Y, yo) 4 (Z, zo) then 4.1 - $ 0  f'which implies that $# = )#. 

Let us rewrite these observations in terms of the special case of homotopy 
groups, If 4 :  ( y yo) -+ ( W, w,) and ): (W,  w,) - ( Z ,  1,) then there are the 



Figure 111-2. Functoriality of the product 

homomorphisms 

4#:nn(Y, YO)+ %(W, wo) and *#:n"(W, w,)-+n,(Z, zo), 

and we have ($04)# = $#o##. Also, if 4 - $:(X,x,) -+(Y, yo) then 4# = +#. 

2. The Fundamental Group 

We shall now specialize to the case of nl(X,xO), the "fundamental" or 
"Poincare" group. Via the quotient map (I, dl) -+(S1, *) we had the one-one 
correspondence between maps (I, 81) -+ (X, xo) and maps (S', *) -+ (X, x,). Thus 
the fundamental group nl(X, x,) can be considered as [I, dl; X, xo], i.e., as 
the set of homotopy classes of closed paths, or "loops," in X at the base 
point x,. For loops j; g in X at x,, f * g  is the loop obtained by going along 
f and then along g. (This is, of course, a special case of the treatment of 
homotopies. A loop is just a homotopy of maps from a point {*I to the 
space X beginning and ending at the map (*) + {x,).) 

Therefore, for each pointed space (X,x,) there is a group nl(X,xO), and 
for each map 4: (X, x,) -+ (Y, yo) there is an induced homomorph~sm 
##: nl(X,x0)+ zl(Y, yo) such that ($04)# = 49#0##, and Identity# = Identity. 
Finally, if q5 - 9: (X, x,) +(Y ,  yo) then 4# = $#. Moreover, it is clear that 
n1((x0), x,) = 1, the trivial group. 

An arcwise connected space X with nl(X,xo) = 1 is called "simply 
connected." Presently, we will show that this does not depend on the cholce 
of x ~ E X .  

As a consequence of this formalism, let us derive an application. Suppose 
that X is contractible in the strong sense that there exists a homotopy 
a: I x (X, xo) + (X, x,) of pointed spaces with #(x, 0) = x and d)(x, 1) = x, for 
all xcX. The assumption that this is a homotopy of pointed spaces means 
that cb(x,,, t )  = xo for all t c[O, 11. Letting c denote the constant map X -, X 
with L . ( X ) = X ( ~  for all XEX, we have Identity - c .  Thus Identlty#=c# on 
n,(X, x,). But Identity# = Identity, and c = i o k  where i :  {x,) + X is thi  
inclusion and k: X -+(x,) is the unique map of X into the one point space 

{x,) Thus - 
Identity = Identity# = C# = i#ok#. 

But the right-hand side 1s a composltton through the group nl((xo),xo) 
which is trivial. The only way this can happen is if nl(X,xo) = 1, the trivial 
group. (One can give an easier direct proof of this, but we wished to illustrate 
it as a consequence of the functoriality of the fundamental group.) 

Of course, this is not of any use unless we know of spaces X for which 
the fundamental group nl(X,xO) is nontrivial. We will find many such spaces, 
but for the present let us give a proof that this is the case for the circle. We 
will compute nl(S1) later, but for now, we will just show it nontrivial using 
only methods from the simpler parts of Chapter 11. 

2.1. Proposition. The circle S1 is not simply connected. 

PROOF. Consider the identity map f: S1 +S1 as a loop in S1. Thus [ f]~n,(S',p) 
for some p ~ S 1 .  If [ f] = 1, the unity element of n,(S1, p), then f - c (pointed) 
where c: S1 -+ S1 is the constant map to the base point p. But such a homotopy 
is adeformation of S1 to a point and implies that S1 is contractible, contrary to 
Corollary 11.1 3 of Chapter 11. 

On the other hand, we have: 

2.2. Theorem. The sphere S" is simply connected for n 2 2. 

PROOF. This almost follows from Theorem 11.10 of Chapter 11, but to be a 
correct proof, we have to make sure that the homotopy resulting from the 
proof of Theorem 11.10 of Chapter I1 can be taken to preserve the base point. 
(Later we will show that this is not really necessary.) But the map of the 
base point to Sn is smooth, and so the smooth approximations used in 
Theorem 11.10 of Chapter I1 can be taken to not move the base point. 

These are important facts, so we will give alternative proofs. We 
also do  this for the reason of illustrating some other approaches to things 
of this sort. For Proposition 2.1, consider S' as the unit circle in the plane 
and suppose that we have a homotopy F: S1 x 1 + S' with F(x, 0) = (1,O) and 
F(x, 1) = x for all xeS1. We can assume this to be a smooth map, since it 
is already smooth on the ends. Composing this with the quotient map 1 -. S1 
gives a homotopy G: I x 1 +S1 with 

G(s, 0) = (1, O), 
G(s, 1 )  = (cos (2ns), sin (2ns)), 

Break G into its components G(s, t) = (x(s, t), y(s, t)) and consider the 
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differenlial do = d(arctanCy/x)) = (xdy - ydx)/(x2 + y2). Then consider the 
line integral 

It is easy to calculate that f(0) = 0 and f(1) = 2n. If you look at the 
approximating Riemann sums for this integral, you will see that they are 
just sums of (signed) angles between successive points (xi, y,). Any partial sum 
is the angle from the x-axis to the present point (xi, y,). Of course, the angle 
is determined only up to a multiple of 2n. Since the start and end of each of the 
parametrized (by s) curves are the same, the approximating Riemann sums 
must all be multiplies of 271.. It follows that the line integral f(t) = $d6' is itself 
a multiple of 27c for any t. But f(t) is continuous in t and a continuous 
function taking values in a discrete set must be constant. This contradiction 
shows that the homotopy cannot exist. Some readers may be unsure of the 
rigor of this proof, and they are urged to fill in the details. This argument 
was one of the precursors to algebraic topology and one of the things we 
will be doing momentarily is to detail this type of argument, although with 
different terminology. 

Here is another proof of Theorem 2.2: Cover Sn with open hemispheres. Let 
fi I + Sn be any loop and consider the covering of I by the inverse images under 
f of the hemispheres. By the Lebesque Lemma (Lemma 9.1 1 of Chapter I), 
there is an integer n such that any interval [a, b] of length I l/n is taken by 
f into an open hemisphere. Now we will define a homotopy off  re1 d l .  It 
will be defined as a homotopy of the restriction of f to each interval 
[i/n,(i + l)/n] rel(i/n, (i + l)/n). For s in this interval, let g(s) be any 
parametrization of the line segment in Rn+' from f (i/n) to f(i + l)/n), and 
note that this does not go through the origin since the end points are in a 
common open hemisphere. Then let 

Combining these homotopies then gives a homotopy from f to a loop made 
up of a finite number of great circle arcs. Such a loop cannot fill up S" (prove 
it) and so there is a point p€Sn left over. Thus [f] is in the image of the 
homomorphism n,(Sn - (p))+n,(Sn). But S" - {p) is contractible without 
moving the base point, so its fundamental group is trivial, and [f] must be 
the trivial class 1. (Where did we use that n > 1 in this argument?) 

In the things we have done in this section, so far, we had to pay attention 
to the base point, making sure it did not move during homotopies. This was 
particularly irksome in the proof that a contractible space has a trivial 
fundamental group, since we had to assume a stronger type of contractibility, 
one that does not move the base point. An example of a contractible space 
that does not satisfy this condition is the "comb space" Comb of Figure 111-3. * 

Any contraction of Comb must move the point x,. On the other hand, 

Figure 111-3. The comb space {0} x 1 u l  x ( ( 0 )  u {llnln = 1,2,3,.  . . 1). 

there is a contraction that does not move the point x,. Thus we know 
that z,(Comb, x,) = 1 but nothing we have said tells us anything about 
n,(Comb, x,) It can be shown directly that the latter group is trivial, and 
the reader is encouraged to try to do so. 

We now try to rectify this fault by studying change of base point. We will 
restrict attention at this time to the fundamental group, but a similar 
treatment can be given for homotopy groups n,(X), in general, and the reader 
is urged to attempt to give generalizations of the things we do here for the 
fundamental group. Given a space X, let p: I + X be a path from p(0) = x, 
to p(1) = x,. Then we define a function 

That this is well defined (i.e., depends only on the homotopy class of f )  
is clear. 

This is a homomorphism since (p* f * P - ' ) * ( ~ * ~ * ~ - ~ )  = p*f*(p-l *P)* 
g*p-l "p* f *g*P-l.  

Also it is clear that: 

(1) heoh, = h,*,; 
(2) p z q re1 81 S- h, = h,; and 
(3) hCx = 1 where c, is the constant path at x. 

Also, using ( I )  to (3) we get 

(4) h,oh,-, = 1. 

Moreover, if p is a loop then hp[f] =[PI[ f l [ p I 1 .  Thus we have: 

2.3. Theorem. For a path pirom x, to x, in a space X, we have the isomorphism 

h,: nl(X,xl) 5 n I ( x ,  x,) 

with inverse h,- L. If p is a loop representing u = [p], then h, 1s the inner 



automorphism 

Thus, x , ( X ,  x,) only depends, up to isomorphism, on the path component 
of xo. It must be noted, however, that the isomorphism is not natural, in that 
it depends on the homotopy class of a path between the two base points. The 
degree of nonnaturality is only up to inner automorphism, however. Thus, for 
example, if the fundamental group &abelian then the isomorphism connecting 
different base points is natural. , 

Because of these facts, we sometiines use n,(X)  to represent the funda- 
mental group, where the base point taken is immaterial if X is arcwise 
connected. 

Now we take up the study of homotopies of loops which can move the base 
point, which we shall call "free homotopies." To be more precise, suppose 
p: I -, X is a path as above. Suppose we have a homotopy F: I x I -+ X such 
that 

F(0, s)  = F(1, s)  = ~ ( 4 ,  
F(t, 0 )  = fo(t), 

F(t, 1) = f dl). 

Then we say that f ,  is "freely homotopic" to f ,  along p, and we denote this 
relationship by f ,  c p  f ,. 

I 

I 2.4. Proposition. In  the above situation, f ,  - ,f, - h p [ f  = Cfol. 

PROOF. The proof is accomplished by study of the diagrams in FigureIII-4. 
These are pictures of homotopies I x I -t X .  In that figure, the cross hatching 
represents lines along which the maps are constant. The unhatched portion is 
to be filled in here. The left-hand diagram represents the proof of the =.part of 
the proposition. The unhatched portion can be filled in since f o  ,fl. The 
entire map is then a homotopy showing that hp[ f ,] = [ fo]. The right-hand 

Figure 111-4. Basic free homotopy constructions. 

diagram represents the proof o f e .  There, the unhatched portion can be 
filled in since h p [ f  = [ fo] .  The entire map shows that fo - ,.f,. cl 

Now we remove the restriction from the proof that contractible spaces 
have trivial fundamental group. Indeed, we prove a much stronger fact, that 
homotopically equivalent, arcwise connected spaces have isomorphic funda- 
mental groups. 

2.5. Theorem. If X and Y are arcwise connected spaces and 4: X -+ Y is a 
homotopy equivalence then 4#: a l ( X ,  xo) -+ nl(Y,  4 ( x o ) )  is an isomorphism. 

PROOF. Let yo = q!~(x,). The only problem with proving this is that we can- 
not assume that there is a homotopy inverse which takes yo to x,, and we 
cannot assume that homotopies preserve the base points. Let $: Y 4 X  
be a homotopy inverse to q5 and put x1 = $(yo). Then we have the homo- 
morphisms 

whose composition is ($04)#. By assumption $04 - 1. During the homotopy 
the images of the point x ,  sweep out some path, say p, from x ,  to x,. 
Composing on the right with a loop f gives $040 f z P f .  Putting 
cc = [ f ] ~ n , ( X , x ~ ) ,  we have ($.&)#(a) = hp(cc) for a11 cc~n,(X,x,). Thus ($04)# 
is an isomorphism, and it follows that &# is a monomorphism and I)# is 
onto. Applying the same discussion but starting with $ shows that I)# is also 
a monomorphism. Thus $# is an isomorphism. Therefore 4# = $ # ' o ( $ o ~ ) #  

is an isomorphism as claimed. 

2.6. Theorem. Let X and Y be spaces with base points xo and yo and let 
iX: X c, X x Y and iY: Y 4 X x Y be the inclusions iX(x)  = (x ,  yo) and 
iY(y) = (xo, y). Let jX and jY be the projections of X x Y onto X and Y, 
respectively. Then the m a p  

given by i$.i;(cc x p) = i;(a)iL(fl), is an isomorphism with inverse 

P ~ o o ~ . G i v e n a l o o p f : S ~ - + X  x Y,let fx=jxofandfy=jYof.Consider the 
map J, x 1,: S t  x S1 -+X x Y given by f x  x fy(s,  t )  = ( f x ( s ) ,  fu( t ) ) .  Also let 
a([)  = (t,O), B(t) = (0, t), and b(t) = (t ,  t )  as maps S' -t S 1  x S'. Clearly 
a*p - 6 - /?*cr, which can be seen by thinking of 6 as the diagonal of the 
unit square and a,/? as adjacent sides. Thus 



"' 138 111. Fundamental Group 

Computing each of these terms at  t shows that ( f x  x f,)oa = i x o  f x  and 
(fx x f Y ) o 8  = iYol;. Thus-f =(iXo fx)*(iYo f,) whichshows that ii.if;is onto. 

If f:S1-+X and g :S1-+ Y are loops, then it is easy to see that 
jxo((ixo f)*(iyog)) = f *cxo = f and jyo((ixo f)*(iyog)) =c,*g -g from 
which it follows that ji x jf;(i$[f]if;[g])= [f] x [g]. This means that 
( j i  x jf;)o(ii.i$ = 1. Therefore i$.ii is one-one onto and j; x j i  is its inverse. 
Since j i  x j i  is a homomorphism, it is an isomorphism and hence so is 
i i .  '3;. 

We end this section with a simple criterion for the triviality of an element 
of the fundamental group, which is quite convenient at times. 

2.7. Proposition. Let f: S1 4 X. Then [ f] = 1 enl(X) o f extends to D2. 

PROOF. If [f] = 1 EZ,(X) then there is a homotopy S1 x I -+X starting with 
f and ending with the constant map to the base point. We can think of this 
homotopy as a map from the annulus between the circles of radius 1 and 3 
to X, which is f on the outer circle and constant to the base point 04 the 
inner circle. But that extends, by a constant map, over the disk of radius 4, 
giving the desired extension off to D2. 

Conversely, suppose there is an extension of f  to F: D2 + X .  Compose 
this with the map G: I x I + D2 given by G(s, t )  = (tcos (2x4, tsin (2ns)). This 
is a free homotopy along the path p(t) = F(G(0,l - t ))  from f to a constant 
loop c. Therefore, in the notation above, [f] = h,[c] = h,(l) = 1. 

1. Let G be a topological group with unity element e. For loops f, g:(S1,*)-+(G,e) 
define a loop f .g(t)= f(t)g(t) by the pointwise product in G. Show that 
f*g=  f e g  rel*. 

2. Let G be a topological group with unity element e. Show that n,(G,'e) is 
abelian. (Hint: Usq Problem 1 and the idea of Problem 1 to show that 
f .s=g*f.) 

3. If K 2  is Klein bottle, show that z,(K2) is generated by two elements, say a and P 
obtained from the "longitudinal" and *latitudinal" loops. Also show that there is 
the relation (with proper assignment of cr and /3) aha- ' = p-  I .  (You are not asked 
to show that this is the "only" relation, but, in fact, it is.) (Hint: Use the fact that 
a smooth loop must miss a point.) 

3. Covering Spaces 

The spaces we shall consider in this section will all be Hausdorff, arcwise 
connected, and locally arcwise connected. 
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Note that, in such spaces, every point has a neighborhood basis consisting 
of arcwise connected sets. In turn, this implies that the arc components of 
any open subset of such a space are themselves open. 

3.1. Definition. A map p: X + Y is called a covering map (and X is called a 
covering space of Y) if X and Yare Hausdorff, arcwise connected, and locally 
arcwise connected, and if each point y~ Yhas an arcwise connected neighbor- 
hood U such that p-'(U) is a nonempty disjoint union of sets U, (which are 
the arc components of p-'(U)) on which pi,= is a homeomorphism U, 5 U .  
Such sets U will be called elementary, or evenly covered. 

Note that a covering map must be onto, because that is part of "homeo- 
morphism." Also, it is not enough for a map to be a local homeomorphism 
(meaning each point of X has a neighborhood mapping homeomorphically 
onto a neighborhood of the image point). Consider the map p:(O, 2) +S1 
defined by p(t) = (cos (27tt), sin(2nt)). That is a local homeomorphism, but for 
any small neighborhood U of 1&', some component of p-'(U) does not 
map onto U .  

It is clear that the number of points in the inverse image of a point, under 
a covering map, is locally constant, and hence constant since the base space 
is connected. This number is called the "number of sheets" of the covering. 
Covering maps with two sheets are often called "double coverings" or "two 
fold" coverings. 

Here are some examples of covering maps. Throughout the examples, we 
will consider S1 to be the unit circle in the complex numbers C. 

(1) The map R 4 S 1  iaking twe2"" is a covering map with infinitely many 
sheets. 

(2) The map S' 4S1 taking z ~ z "  for a fixed positive integer n, is a covering 
with n sheets. 

(3) The canonical map S2 + P2, the real projective plane, is a double covering. 

Figure 111-5. A threefold covering space. 



(4) Consider the equivalence relation on the plane R2 which is genqrated by 
the equivalences (x ,  y) - (x ,  y + 1) and (x ,  y) - (x + 1 ,  - y). The canonical 
map R2 -+ R 2 / -  is a covering with infinitely many sheets. (The quotient 
space is the Klein bottle.) 

(5) Figure 111-5 shows an interesting covering of the "figure eight" space, 
with three sheets. We shall have reason to refer back to this example 
later. It would be wise to try out results and proofs on this example. 

(6) Let p(z) be a complex polynomial considered as a map C-+ C, and let F 
be the set of critical values of p(z). Then the induced map C - p-'(F) -+ 
C - F is a covering map, as follows from the proof of Corollary 6.4 of 
Chapter 11, and has deg(p(z)) sheets. 

3.2. Lemma. Let W be an arbitrary space and let (U,) be an open covering 
of W x I. Then for any point W E  W there is a neighborhood N of w in Wand 
a positive integer n such that N x [i/n, (i  + l)/n] c U, for some a, for each 
O I i < n .  

PROOF. We can cover {w} x I by a refinement of (U,) of the form N, x V,, 
N ,  x V2,. . . , N ,  x Vk by compactness of I and the definition of the product 
topology. The Lebesque Lemma (Lemma 9.1 1 of Chapter I) implies that there 
is an n > 0 such that each [iln, (i  + l ) /n]  is contained in one of the Vj. Just 
take this n and N = r) N,. 

3.3. Theorem (The Path Lifting Property). Let p:X+ Y be a covering map 
and let f : I  -t Y be a path. Let xo€X  be such that p(x,) =40). Then there 
exists a unique path g: I -+ X such that pOg = f and g(0) = x,. This can be 
summarized by saying that the following commutative diagram can be completed 
uniquely: 

PROOF. By the Lebesque Lemma (Lemma 9.1 1 of Chapter I), there is an n 
such that each f[i/n,(i + l)/n] lies in an elementary set. By the local 
homeomorphisms over elementary sets we can lift by induction on i. (At each 
stage of the induction, the lift is already defined at the left-hand end point, 
leading to the uniqueness since it singles out the component above the 
elementary set which must be used.) 

3.4. Theorem (The Covering Homotopy Theorem). Let W be u locally 
connected space und let p:  X -+ Y he a covering map. Let F :  W x I -+ Y h i  u 
homotopy und let J : W x {O) -+X he a lifting of the restriction of F to W x (0). 
Then there 1s u unlque homotopy G :  W x 1 -+ X muking thejollowiny diugrurn 

commute: 

Moreover, i f  F is a homotopy re1 W'for  some W' c W, then so is G. 

PROOF. Define G on each (wj  x I by Theorem 3.3. This is unique. For 
continuity, let W E  W. By Lemma 3.2 we can find a connected neighborhood 
N of w in Wand integer n so that each F(N x [i/n,(i + l ) /n] )  is in some 
elementary set U,. Assuming that G is continuous on N x {i/n) we see that 
G(N x {iln)),  being connected, must be contained in a single component, say 
Vof p-'(U,). But then on N x [i/n,(i + l)/n],  the lift G must be F composed 
with the inverse of the homeomorphism pi,: V+Ui (again using 
connectivity). But that means G is continuous on all of N x [i/n,(i + 1)/11]. 
A finite induction then shows that G is continuous on each N x I, and hence 
everywhere. The last statement follows from the construction of G. 

The condition that W be locally connected, in Theorem 3.4, can be 
dropped. The proof is only slightly more difficult. The r e~de r  might try 
proving that. 

3.5. Corollary. Let p:X -+ Y be a covering map. Let f ,  and f ,  be paths in Y 
withf, 1. f ,  re1 81. ~ e t f ,  andf l  be liftings o f f ,  and f ,  such thatfo(0) = f,(0). 
 hen ?,(I) = f , ( l )  and?, - 7, re1 dl. • 

3.6. Corollary. Let p: X -+ Ybe a covering map. Let f :(I, d l )  +(Y, yo) be a loop. 
I f f  is homotopic to a constant loop re1 a1 then any lift o f f  to a path is a loop 
and is homotopic to a constant loop re1 d l .  

3.7. Corollary. Let p:  X -+ Y be a covering map and p(x,) = yo. Then 

is a monomorphism whose image consists o f  the classes of loops at yo in Y 
which lift to loops at x, in X. 

3.8. Corollary. Let p: X -+ Y he a covering map and p(x,) = yo. I f f  is a loop 
in Y ut yo which lijis to a loop in X at x,  then any loop homotopic tofrel dl 
also 18s to a loop in X at x,. That is, lifting to a loop is a property of the 
class [. f ' ] .  

3.9. Corollary. If a Huusdorfj; arcwise connected, and locally arcwise connected 
spuce Y has a nontriuiul covering spuce then n ,  ( Y, yo) # I .  



at yo in Y. Since [ f on * f = S#Cn * q]  ~im(f#) c im(p#), f O R  * f oq lifts to 
loop in X at x,. The reverse of the portion of this lift corresponding to 
then is a lift p' of A', and ~ ' ( 1 )  = p(1), as required. 

Next, we have to show that g is continuous. This is where the conditi 
that W be locally arcwise connected comes in. Let W E  W and put y = f ( 
Let U c Y be an elementary neighborhood of y, and let V be an arcw 
connected neighborhood of w such that f (V) c U. For any point W'E 

can construct a path from w, to w' by concatenating a given path I 
w, to w with a path a in V from w to w'. Since f ( V )  is contained in a 
elementary set, the lift off  oa is simply f oa composed with the inverse of 
taking U to that component ofp- ' ( U )  containing g(w). This same component 
is used for all W'EV and it follows that g is continuous at w. 

The converse is immediate from f# = p#og#. 

To see that, in this theorem, the hypothesis that W be locally arcwise" 
connected cannot be dropped, consider the example illustrated in Figure 
111-6. The map f there is a quotient map that collapses the "sin(l/x)" part 
of W to a point. Take the point, to which this set is collapsed, as 1 on the 
circle and let it be the base point. Take 0 as the base point in R. If the lift 
g off  is constructed as in the proof of Theorem 4.1 (which is forced by 
continuity of path lifting), then the straight part of the "sin(l/x)" set maps 
to 0 under g and the wiggly part maps to 1 under g, so that g is seen to be 
discontinuous. 

4.2. Corollary. Let W be simply connected, arcwise colznected, and locally 
arcwise connected, and let p: ( X ,  x,) -+(Y ,  yo) be a covering map. Let f :  (W, w,) -+ 

(Y, yo) be any map. Then a lift g o f f  always exists taking w, to any given point 
in p-'(yo). The Iiji g is unique if the image of w, is spec$ed. 

43. Corollary. The homotopy group n,,(S1) is trivial for n > 1.  That is, any 
map Sn -+S1 is homotopically trivial for n > 1. 

Figure 111-6. D~scontinuous lifting. 

PROOF. Any given map f:S"-+S1 lifts to g:Sn--+R by Corollary 4.2. But q 
is homotopically trivial since R is contractible, and so f = p O g  is also 
homotopically trivial. 

4.4. Lemma. Let Wbe  connected. Let p: X -+ Y be a covering map and f :  W-+ Y 
a map. Let g ,  and g ,  be maps W - + X  both of which are lijiings o f f .  If 
g l ( ~ )  = g2(w) for some point W E  Wthen g, = g,. 

PROOF. Let W E  W be such that g,(w) = g,(w) = x, say. Let U be an open 
elementary neighborhood of f(w) in Y for the covering map p. Let V be the 
component of p-'(U) containing x. Then A = g ; ' ( V ) n g ;  ' (v) is an open 
set in Wand for a€ A we have g,(a) = g,(a) since the homeomorphism p: V -+ U 
maps them both to f(a). This shows that the set {w~W(g , (w)=g , (w) }  is 
open. But this set is also closed since it is the inverse image of the diagonal 
under the map g, x g,: W -+ X x X, and the diagonal is closed by Problem 5 
in Section 8 of Chapter I, since X is Hausdorff. Since W is connected, this 
set is either empty or all of W. cl 

4.5. Corollary. Let pi: Wi -+ Y, i = 1,2, be covering maps such that Wl  is simply 
connected, and let wi€Wi and y g Y  be such that pi(wi)= y. Then there is a 
unique map g: W ,  -+ W2 such that g(w,) = w2 and pZ0g = p,. Moreover, g is a 
covering map. 

PROOF. This follows directly from Lemma 4.4 except for the addendum that 
g is a covering map. The latter is a simple exercise in the definition of covering 
maps and is left to the reader. 

4.6. Corollary. Let p,: Wi -+ Y, i = 1,2, be covering maps such that W ,  and W2 
are both simply connnected. i'fwie Wi are such that p,(w,) = p2(w2) then there 
is a unique map g: W ,  -, W,  such that pZ0g = p1 and g(w,) = w,. Moreover, g 
is a homeomorphism. 0 

PROOF. Use Corollary 4.5 to produce g and to also produce a map k: W2 -, W ,  
going the other direction. Then kog: W l  -+ W1 covers the identity map and 
equals the identity map at w,. By Lemma 4.4, it equals the identity 
everywhere. Similarly, with g o k ,  so k = g- ' .  cl 

In the situation of Corollary 4.6, g is called an "equivalence" of covering 
spaces. Thus all simply connected covering spaces of a given space are 
equivalent. Such covering spaces are also called "universal" covering spaces. 
They do not always exist, but they do exist under a mild restriction, as we 
shall see presently. 

1. Show that x,(Pm) is tr~vial  for I < n < m 



PROOF. Take two points x,, x,  cp-'(y,) and let f be a path between them. 
 hen po f is a loop in Yat yo which does not lift to <loop in X at x,. By 
Corollary 3.7, it follows that [po f]cnl(Y; yo) is not in the image from 7t,(X, x,) 
and hence it is a nontrivial element. 0 

As a consequence of Corollary 3.9 we now know several spaces having 
nontrivial fundamental groups: the circle, the Klein bottle, and the projective 
plane. Later, we will completely calculate these fundamental groups. We shall 
start with the most important one, the circle. 

Consider the exponential map p: R -+ S1 defined by p(t) = eZZi' which is a 
covering map. Let f: I -+ S' be any loop at 1 cS1. ~ e t  3 1 -+ R be a lifting off 
such that y(0) = 0. Then J(1)cp-'((1)) = 2. Let n = f(1). By Corollary 3.5, 
n depends only on the homotopy class [f]~z,(S') .  This integer n is called 
the "degree" off, and we write n = deg( f). 

3.10. Theorem. deg: nl(S1) -+ Z is an isomorphism. 

PROOF. First, we show that deg is a homomorphism. Given loops f, g, and 
liftings I i j ,  both starting at OER we have f(1) = deg(f) = n, sgy, and g"(1) = 
deg(g) = m. Define ij'(t) = g(t) + n. Then ij'(0) = n = f(l) ,  and so f *g"' is defined, 
covers f *g  andf"*ij'(l) = g l ( l )  = ij(1) + n = m + n = deg( f )  + deg(g), as claimed. 

Second, deg is onto since a path from 0 to n in R maps to a loop in S1 
which has degree n by definition. 

Third, we show that deg is a monomorphism by showing its kernel is 
zero. Suppose f :  I -+S1 has degree 0. Then, for a lifting f of f we have 
J(1) = 0 = y(0) so thatf"is a loop and represents an element [~ ]EZ , (R ,  0) = 1, 
since R is contractible. Thus [ f ]  = p#[f] = p#(l) = 1. 

3.11. Proposition. The map z-zn of S' -+S1 has degree n. El 

3.12. Corollary (Fundamental Theorem of Algebra). If p(z) is a complex 
polynomial of degree n > 0 then p(z) has a zero. 

PROOF. We may assume that p(z) = zn + a,zn- ' + ... + a,, n > 0. Assuming p 
has no zeros, consider the homotopy F: S1 x I -+S1 defined by 

Since 

I.' is defined and continuous even at t = O .  We have F(z,O)=zn and 
F(z ,  1 )  = p(O)/lp(O)l. Therefore the map zt-+z" of S' + S 1  1s freely homo- 
topic to a constant map contrary to Proposition 2.4, Theorem 3.10,- and 
Proposition 3.1 1.  0 

1. Referring to example (5), find at least two more coverings of the figure eight space 
with three sheets. Find at least three different double coverings of the figure e~ght 
space. Are there any others'? 

2. Show that the fundamental group of the projective plane is the unique group Z, 
of two elements. 

3. Compute the fundamental group of an n-dimensional torus (a product of n circles). 

4. Use the covering of the figure eight in example (5) to show that the fundamental 
group of the figure eight is not abelian. (Hint: Consider liftings of loops representing 
a/3 and /?a, for appropriate classes a and P.) 

5. Show that, for maps S' -+S1, the notion of "degree" in this section coincides with 
that defined above Corollary 16.4 of Chapter 11. 

4. The Lifting Theorem 
The "lifting problem" in topology is to decide when one can "lift" a map 
f: W + Y to a map g: W -+ X, where p: X -+ Y is given. That is, under what 
conditions can one complete the following diagram (making it commutative): 

One might also add conditions such as having a lifting already given on some 
subspace. 

This is an important problem in topology, since many topological 
questions can be phrased in terms of finding such liftings. 

If one adds the condition that base points x,, yo, and w, are given and 
must correspond under the mappings, and if p is a covering map, then we 
can answer this question now. 

4.1. Theorem (The Lifting Theorem). Assume that p: X -, Y is a covering 
mapping with p(x,) = yo. Assume that W is arcwise connected and locully 
arcwise connected and that f: W -+ Y is a given map with f (w,) = yo. Then u 
map g: (W, wo)+(X, x,) such that pOg = f existsof#n,(W, w,) c p#n,(X,xo). 
Moreover, g is unique. 

PROOF. First let us define the function g. Given W E  W, let A: I -, W be a path 
from w, to w. Then S o A  is a path in Y. Lift this to a path p:(I,O)-+(X,x,) 
and put g(w) = ~ ( 1 ) .  Then p(,.q(w) = p(p(1)) = f (;l(l)) = f (w). 

To see that y is well defined, suppose 1' is another path in W from w, to 
w and put q =(A'- ' .  Then ,l*q is a loop at w, in W, so , f , ~ l * S ( q  is a loop 
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2. Show that any map of the projective plane to the circle is homotopic'to a constant 
map. 

3. Complete the proof of Corollary 4.5. 

5. The Action of n, on the Fiber 

The next few sections are devoted to  the classification of all covering spaces 
of a given space. It should be clear from our previous results that this is 
closely associated with the study of the fundamental groups of the spaces 
involved. In this section we define and study an action of the fundamental 
group of the base space of a covering map, on the "fiber," the set of points 
mapping to the base point in the base space. This will play an important 
role in the study of the classification problem. 

Throughout this section let p: X -+ Y be a given covering space. Also let 
yo€ Y be a fixed base point. To simplify notation, we define 

J = n , ( x y o )  and F=p- ' ( yo ) .  

The discrete set F is called the "fiber" of p. We are going to describe an 
action of the group J on F as a group of permutations. For convenience the 
group will act on the right of the set. This action is called the "monodromy" 
action. 

Let X E F  and ~ E J .  Represent a by a loop $1 + I Lift f to get a path g 
in W with g(0) = x. Then define 

By Corollary 3.5, this does not depend on the choice o f f  and so it is a 
well-defined function 

F x J - F .  

Now we shall derive some properties of this function. 

(1) x.1  = x .  
(2)  (x-a).).p = x.(ap).  

These say that J acts as a group of permutations of F. (1) is clear. To 
prove (2), lift a loop representing a to a path f starting at x. This goes 
from x to xsa. Then lift a loop representing P to a path g starting at x . a .  
This goes from x . a  to ( x . a ) . p .  But thenfig is a lift of a loop representing 
a p  and starts at x and hence ends at x.(a,8), proving (2). 

(3) This is a transitive action. That is, given x , x , ~ F ,  3 a ~ J 3 x  = x O . a .  
To see this, merely choose a path in X from x,  to x. This projects to a 
loop f in Y. Then a = [ f ] works. 

(4)  Put J,, = ( a €  J 1 xo .a  = x,)  (called the "isotropy subgroup" of Jl at xo).  
Then J , ,=im(p~:n, (X,xO)+-n,(Y,yo)=J) .  
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To see this, note that c r ~ J , o ( a  =Iff and f lifts to a loop at x o ) o a ~  
im p# (as shown earlier in Corollary 3.7). 

( 5 )  The map 4:  J,,\ J -+ F taking the right coset J,,a to x,.(J,,,a) = xo .a  is 
a bijection. 
This is a simple computation left to the reader. 

Summarizing this, we now have: 

5.1. Theorem. Let p: X -+ Y be a covering with p(xo) = yo, Then there is a 
one-one correspondence between the set p#n,(X, xo)\n,(l: yo)  of right cosets, 
and the fiber p-'(yo). 

Note that p#n,(X, x,) z n , (X ,  xo) since p# is a monomorphism by 
Corollary 3.7. 

5.2. Corollary. The number of sheets of a covering map equals the index of 

P # Z ~ ( X ,  X O )  in n ,  (Y, Y O ) .  

5.3. Corollary. If p: X -t Y is a covering with X simply connected, then the 
number of sheets equals the order of n l  ( Y, yo). 

For example, since Sn is simply connected for n > 1 and Sn is a double 
covering of the real projective n-space Pn, it follows that n , ( P n )  z Z2. 

1. Show that any map of the projective plane to itself which is nontrivial on the 
fundamental group can be lifted to a map T: S 2  -+ S2 such that T ( -  x )  = - T ( x )  
for all x € S 2 .  

2. Show that a map J:S1-+S1 of degree 1 is homotopic to the identity. (Hint: If 
n:R1 -+S1 is the exponential map, consider the lift of Jon to a map R ' - + R 1 . )  

6. Deck Transformations 

In this section, a covering map p: X -, Y will be fixed once and for all. Also 
the notation from Section 5 will continue to be used here. 

6.1. Definition. Let p: X - t  Y be a covering map. A homeomorphism D: X +  X 
which covers the identity map on Y (i.e., poD = p) is called a deck trans- 
formution or autornorphisrn of the covering. 

If  D is a deck transformation, then D-' is also. Also, the composition of 
two deck transformations of the same coverlng is a deck transformation. 
Thus the deck transformations form a group A = A(p) under composition. 



Note that, by Lemma 4.4, if DEA and D(x) = x for some x t X  ihen D-= 1 .  

6.2. Proposition. If D t  A, atn,(Y, yo), and x ~ p - ' ( ~ , )  then (Dx).a = D(x.a). 

PROOF. Let f be a loop at yo representing a and lift f to a path g starting 
at x. Then y(1) = x - a  by definition. Look at the path Dog. It is a lift off and 
starts at Dx. Thus it ends at (Dx).a by definition of the latter. But it ends at 
D of the end of g, i.e., at D(x-a). 0 

Recall that the "normalizer" of a subgroup H of a group G is 

6.3. Theorem. Let X,EX be such that p(xo) = yo and let x~p-"yo). Then the 
following statements are equivalent: 

PROOF. By Theorem 4.1 a map D covering the identity and taking the point 
x, to x existsop~n,(X,x,) c p#n,(X,x). Similarly, a map D' exists cover- 
ing the identity and taking x to x ,o the  opposite inclusion holds. If both 
exist then DoD' covers the identity and has a point in common with the 
identity map, so DoD'= 1 by Lemma 4.4. This proves the equivalence 
(1)-(3). 

Now compute 

Thus 

Next we prove (2) => (3): If x = xo.a and a€N(J,,) then J, = J,,, , = 

a -  ' J,,a = J,,, as claimed. 
For (3) a (2), Suppose J,, = J, and x = x,.a. (Note that such an a exists 

since J is transitive on F.) Then J,, = J, = J,,., = cc-'J,,a wh~ch shows that 
N(JX,). 0 

From (2)0(1)  of Theorem 6.3, and the last part of its proof, we get: 

6.4. Corollary. The subgroup p#n,(X, x,) is normal in nl( Y, y,)*A is (simply) 
transitive on p -  '(y,,). 

6.5. Corollary. Ifx ranges over p- '(yo) and xo is one such point then p#n,(X, x) 
ranges over all conjugcztes c?fp#x,(X, x,). 

PROOF. This is really a consequence of the proof of Theorem 6.3, namely, it 
is contained in the formula J,,., = a-'J,,a derived there. 

6.6. Definition. A covering map p is said to be regular if A is transitive on 
the fiber p-'(yo), i.e., if p#n,(X, x,) is normal in n,(Y, yo). 

The examples (1) through (4) of Section 3 are all regular. Example (5) is 
not regular since it is obvious that A is not transitive. (Indeed, A is clearly 
the trivial group in that example.) 

6.7. Definition. Define a function O: N(J,,) -+ A by @(a) = D, where D, is 
that unique deck transformation such that D,(x,) = xo.a. 

6.8. Theorem (Classification of Deck Transformations). The map 0: N(J,,) + 

A is an epimorphism with kernel J,,. Consequently, 

PROOF. First compute DBDJxo) = DB(xo-a) = (Dg(xo)).a = (x,,fl).a = x,.(/?a) = 
Dga(x0). Thus DgD, = DBa7 i.e., O is a homomorphism. 

Next note that if DEA then there is an @EN(J,,) such that Dx, = x,-a = 

Da(x0) Therefore D = D,, which shows that O is onto. 
Finally we compute the kernel of O: D, = 1 o xo-a = x, (since D,(x,) = 

xO.a) o ~EJ,, ,  as claimed. 

6.9. Corollary. If the covering map p: X -+ Y is regular, then 

6.10. Corollary. If p: X -+ Y is a covering map with X simply connected then 

We will now discuss some examples. The covering R-+Si has, as deck 
transformations, the translations of R by integer amounts. Thus n,(S1) zz 
A % Z, as we already know. 

Similarly, the covering of the torus by the plane has the translations by 
integer amounts, in both coordinates, as deck transformations, so that the 
fundamental group of the torus S1 x S1 is Z@Z,  as also follows from 
Theorem 2.6. 

Any double coverlng by a simply connected space has exactly two deck 
transformations, the identity and one "switching the sheets." Thus the funda- 
mental group of the base space must be Z,. For example, nl(P") = Z, for 
n 2 2 .  
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Figure 111-7. A sixfold covering of the figure8. 

Note the covering illustrated in Figure 111-7. The arcs labeled a, on the 
left, map to the one in the figure eight at the right with the indicated 
orientation. Similarly for the ones marked P. It is easy to see, by looking at 
the figure on the left, that the deck transformation group A is a,, the 
permutation group on three letters. If we alter the covering map by reversing 
the arrows a on the inner circle only, then the deck transformation group 
becomes Z, x Z, z Z,. In both cases the covering is regular since A is 
transitive on the fiber (the six vertices on the left). 

1. If p : X  -t Yis a covering map with X simply connected then n,(Y) acts on the fiber 
F in two ways: 
(1) by deck transformations via the isomorphism O of Definition 6.7; and 
(2) by the monodromy action. 
Show that these actions coincideon,(Y) is abelian. 

7. Properly Discontinuous Actions 

Recall, from Section 15.13 of Chapter I, that an "action" of a group G on a 
space X is a map G x X -t X ,  where the image of (g ,x)  will be denoted by 
gx, such that (gh)x = g(hx) and ex  = x. In this section G will have the discrete 
topology, which we mean to imply by calling it a "group" rather than a 
"topological group." 

For XEX, the "orbit" of s is the set G(x)  = { g x l g ~ G ) .  It is easy to see that 
two orblts are either dlsjoint or  identical. Thus they partition the space X. 
The set of all orbits is denoted by X/G, with the quotient topology from the 
map X -+X/G taking x to G(x), and is called the "orbit space." Note that 
the canon~cal map p: X + X/G is open since, for U c X open and U* ~ t s  

image in X/G ,  then 

which is a union of open sets and hence is open. 

7.1. Definition. An action of a group G on a space X is said to be properly 
discontinuous if each point X E X  has a neighborhood U such that 
g u n  U # @-g = e, the identity element of G. 

For example, if p:X  + Y is a covering map, then the group A of deck 
transformations acts properly discontinuously. Moreover, if p is regular then 
X/A zs K 

7.2. Proposition. If G acts properly discontinuously on the arcwise connected 
and locally arcwise connected Hausdorfspace X then p: X -+ X / G  is a regular 
covering map with deck transformation group A = G. 

PROOF. Let U c X be an arcwise connected open set as in Definition 7.1 
and put U* = p(U) which is open as remarked above. Since U -t U* is 
continuous, U* is arcwise connected. Also, the sets gU are the components of 
pW1(U*). The maps gU 4 U* are continuous, open, one-one and onto, and 
hence are homeomorphisms. Thus p is a covering map. Eletnents of G are 
deck transformations and act transitively on a fiber. There are no other 
deck transformations by Lemma 4.4. 

7.3. Corollary. If X is simply connected and focally arcwise connected and G 
acts properly discontinuously on X ,  then n , (X/G)  z G. 

7.4. Example (Lens Spaces). Consider SZn-  ' c Cn as (z = (z,, . . . , zn)lII z 11 = 1). 
Let E = eZRilp be a primitive pth root of unity and let q,,. . .,qn be integers 
relatively prime to p. Consider Z, = ( 1 ,  E ,  eZ,. . . , E,- l )  and let it act on SZn-  
by E(z~, . . . , z,) = ( E ~ ~ Z ~ ,  . . . , eqnzn). This is properly discontinuous, as is any 
action by a finite group such that gx = x - g  = e (and which the reader should 
check). The orbit space 1s denoted by L( p; q ,  , . . . , q,) and is called a "lens 
space." By Corollary 7 3, the fundamental group of any of these spaces 
is Z,. For the classical case tz = 2, L(p;  1,q) is commonly denoted by 
L( P, 9). 

7.5. Example (Kleln Bottle). Conslder the group of transformations of the 
plane generated by .a and /,', where r(x,  y) = ( x  + 1 ,  y) and B(x, y)  = ( 1  - x, y + I )  
A close ~nspection of thts actton should convlnce the reader that the orbit 
space R2/G IS the Kleln bottle The group IS the group abstractly defined a5 
generated b) element5 s/ an f l  and havlng the slngle relation 11' ' x p  = cx 
(Thls IS easlly checked geometrically ) T h ~ s  group is nonabellan, ha5 '1 normal 



infinite cyciic subgroup (generated by a)  with a qu-otient group also infinite 
cyclic generated by the image of P. By Corollary 7.3, this group is the 
fundamental group of the Klein bottle. 

7.6. Example (Figure Eight). Let G be the free group on two letters a and P. 
Define a graph X = Graph(G,a,b) as follows: The vertices of X are the 
elements of G, so they are reduced words in a and P. The edges are of two 
types (g,ga) and (g,gB). (Note then that there are exactly four edges abutting 
the vertex g, namely, (g, ga), (g, gp), (ga- ', g), and (gp-',g).) The group element 
heG acts on X by taking an edge (g,gcc) to (hg, hga) and (g ,g j )  to (hg, hgb). 
That is, it is the obvious action on X induced by left tl'anslation on G, the 
vertex set. It is clear that this action is properly discontinuous and that X/G 
is the figure eight space, whose two loops are the images of edges (g, ga) for one 
loop and (g,gp) for the other loop. 

(The precise description of the space X is as (G x V)/ - where V is the 
graph with the three vertices e,a, and b and two edges (e,a) and (e,b) 
and where - is the equivalence relation generated by g x a - ga x e and 
g x  b - g p x e . )  

We claim that this space X is simply connected. It suffices to show that 
any finite connected subgraph is contractible (since the image of a loop is 
in a finite connected subgraph). The proof will be done via the following two 
lemmas. 

7.7. Lemma. A finite connected graph with no cycles (a finite "tree") is 
contractible. 

PROOF. Such a graph must have a vertex which is on only one edge (or the 
graph is a single vertex). If the graph obtained by deleting that vertex and 
edge (but not the other vertex of this edge) is contractible then clearly the 
original graph is contractible. Thus the result follows by induction on the 
number of vertices. (We remark that this lemma is true without the word 
"finite." The reader might attempt to prove this.) 

7.8. Lemma. The graph X of Example 7.6 has no cycles. 

PROOF. Start constructing a cycle beginning at the vert'ex g. The vertices one 
visits have to be of the form g, ga, gab, gab2,. . . That is, it is g followed by a 
growing reduced word in a, P. Thus, upon return to the vertex g the vertex 
we stop at is gw where w is a reduced word. Thus g = gw, so w = 1. But w 
is a reduced word, and in a free group no nontrivial reduced word equals I .  

Thus, finally, we see that the fundamental group of the figure eight IS the 
free group on two generators. The reader can prove slmllar results for more 
than two circles attached at a common point. We slmply state the final result: 

7.9. Theorem. l f  X i.s  he one-point union c$n circles then z,(X) is ajree group 
on n generators. 0 

Theorem 7.9 holds for infinite n provided the correct topology IS used on 
the union. (It should be a CW-complex, see Chapter IV.) 

We shall go on to find the fundamental group of any finite connected 
graph in the following sequence of lemmas. 

7.10. Lemma. Afinite connected graph G contains a maximal tree. Any such 
tree T c G contains all the vertices of G. 

PROOF. The existence of T is obvious. If it does not contain all vertices of G 
then there must be an edge of G one of whose vertices is in Tand the other 
not. But then addition of this edge to T still makes a tree, contradicting 
maximality. 

7.11. Definition. If G is a finite connected graph with Vvertices and E edges 
then its Euler characteristic x(G) is defined to be the integer V - E. 

7.12. Lemma. If T is aJinite tree then x ( T )  = 1. If T is a maximal tree in the 
finite connected graph G then x(G) = 1 - n, where n is the number of edges of 
G not in T. 

PROOF. The first statement is an easy induction on the number of edges using 
the fact that a tree that is more than a single vertex has an edge with a vertex 
on no other edge. Removing such an edge leaves a tree with one less ebge 
and one less vertex. The second statement is even more trivial. 0 

7.13. Lemma. If G is afinite connected graph then G is homotopy equivalent 
to the one-point union of n circles where n = 1 - x(G). 

PROOF. The graph G is obtained from one of its maximal trees T by attaching 
edges. Each of these attachments is just the mapping cone of a map of {O, 1)  
to the pair of vertices of that edge. Since the vertices are in T and T is 
contractible by Lemma 7.7, this mapping cone is homotopy equivalent to 
the mapping cone of the map of (0,l) to a single vertex (any vertex), by 
Theorem 14.18 of Chapter I. By Theorem 14.19 of Chapter I, this argument 
can be repeated for subsequent attachments and so G is homotopy equ~valent 
to Twith 11 circles attached to any vertex. Since Tis contractible this space 
is homotopy equivalent to the subspace consisting of the n circles jolned at 
a vertex by Theorem 14.19 of Chapter I again. r] 

The following theorem is a direct consequence of the foregoing results: 

7.14. Theorem. if G is a finlte connected graph then n , ( G )  is ufrce  group o n  

1 -- x(G) yenrrutors. n 
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1. Q Suppose that G is a finite group acting on the Hausdorff space X in such a 
way that g(s) = s, for some xeX,-g = r ,  the identlty element of G. (Such an action 
is called "free.") Then show that G acts property discontinuously. 

2. If G # ( P )  acts properly discontinuously on R, show that G = Z. 

3. Find an example of a free, but not properly discontinuous, action of some infinite 
group on some space. 

4. + Either prove or find a counterexample to the following statement: 
If p: X -+ Y is a covering map and if g): X 4 X is a map such that peg) = p, then g) 
is a deck transformation. 

8. Classification of Covering Spaces 

Recall that two covering spaces X and X' of a given space Yare called 
equivalent if there is a homeomorphism X -+ X' covering the identity on Y 
There is also a stronger form of equivalence, tNat one for which one specifies 
base points, which, of course, must correspond under the mappings. 

8.1. Theorem. Let Y be arcwise connected and locally arcwise connected, and 
suppose that Y has a simply connected covering space h h e n  the equivalence 
classes of covering spaces of Ywith base points mapping to yo€ Y, are in one-one 
correspondence with subgroups of n,(Y, yo). Equivalence classes without base 
points are in one-one correspondence with conjugacy classes of such subgroups. 
The correspondence is given by X c t p # ~ , ( X )  where p:X -t Y is the covering 
map. 

PROOF. The second statement follows from the first and Corollary 6.5, so we 
shall restrict our attention to the first. We are to show the function taking 
a covering map, with base point, p:(X,x,)+(Y,y,), into the subgroup 
p#nl(X,  xo) of n l (Y ,  yo) is a one-one correspondence. This function is one-one 
by the Lifting Theorem (Theorem 4.1). To see that it is onto, suppose that 
H c n,(Y,y,) = J is an arbitrary subgroup. Since ? is simply connected, 
Theorem 6.8 gives the isomorphism O: J -+ A, where @(a) = D,. Under this 
map, the subgroup H goes to a subgroup A,, c A. Put X = VA,, which maps 
to Y canomcally. Let xo  be the image of the base polnt j, of ?. We wish to 
identlfy p#n,(X,x,). Let f be a loop In X at x,. Lift~ng l h ~ s  to "Yt y", gives 
the same path as a lifting of the projection of f to a loop at y,, in Y. Thus 
the lift ends at the point D,(j,), where x ~ n , ( Y ,  y o )  IS the homotopy class of 
the projcctlon off to I: But for f to be a loop in X = we must have 
that p ,  and D,( j , )  are in the same orblt of A,,. This IS  true l f  and only if  
D,EA,,, and this holds if and only if U E H  But r i ?  an arbitrary elem'ent of 
p#7t1(X, xo). Thus H = p#n,(X,x,). 0 

8. Classification of Coverlng Spaces 155 

8.2. Corollary. l f  G is a .free group on n genc~raior~~anrl H is a suhgrorrp of' 
index p in G [hen H is a.fr-re group on pn - p + 1 gcJnerutors. 

PR(x)F. From Theorem 7.9 we know that G is the fundamental group of the 
bouquet Y of n circles. By Theorem 8.1 and Corollary 5.2, H is isomorphic 
to the fundamental group of a p-fold covering X of Y. Then x ( X )  = px(Y) = 
p(l - n). By Theorem 7.14, H is a free group on 1 - x ( X )  = 1 - p(l - n) = 
pn - p + 1 generators. 

Now we turn our attention to  the question: "When does an arcwise 
connected and locally arcwise connected Hausdorff space X have a simply 
connected covering space?" A necessary condition is readily at hand: If a 
loop is in an evenly covered subspace of X then the loop lifts to the covering 
space, and if that is simply connected, the loop must be homotopically trivial 
in the covering space. The homotopy can be composed with the map to X 
and so the original loop must be homotopically trivial in X. That is, "small" 
loops in X must be homotopically trivial in X. This leads to: 

8.3. Definition. A space X is said to be semilocally I-connected or locally 
relatively simply connected if each point  EX has a neighborhood U such 
that all loops in U are homotopically trivial in X (i.e., for any U E U ,  the 
homomorphism n,(U, u) -t n,(X, u) is trivial). 

It turns out that this condition is also sufficient, as we now show. 

8.4. Theorem. If Y is arcwise co~nected and locally arcwise connected, then 
Y has a sitnply connected covering s p a c e o  Y is locally relatively simply 
connected. 

PROOF. Only the -= part is left to  be proved. We must construct the simply 
connected covering space ?. Choose a base point yo€ Y once and for all 
and let 

- 
Y =  { [ f ]  reldll f is a path in Ywith f(0)  = yo} 

and let p: "Y Y be p ( [ f ] )  = f (1) .  We are going to topologize ?and show 
that p is then the desired covering map. 

Let B = f U c YI U is open, arcwise connnected, and relatively simply 
connected} and note that this is a basis for the topology of Y. I f  ~ ( I ) E U E B  
let 

U l f ,  = .( [ q ] ~ p - ' ( U ) l g  I. f * a  re1 31, for some path rx in U). 

which 1s a subset of ?. (See Figure 111-8.) 
We shall now prove a succession of properties of these definitions, 

culminating in the proof of the theorem. In the discussion, all homotopies 



Figure 111-8. The set Ucf , .  

of paths starting at yo will be assumed, to simplify notation, to be re1 d l  
unless otherwise indicated. 

To prove this, let [ h l ~ U [ , ] .  Then h -g*& for some path /? in U. Since 
g rz f * a  we conclude that h - ( f  *a)*P rz f *(a*P) showing that [h]eULII .  
Thus UIgl c ULn. But g 2: f *a*g*a-' -- f *a*a-' 2:f, so [ ~ ] E U , ~ ~ .  Con- 
sequently, U I f l  c Ubl, proving the claim. 

(2) p maps U I f l  one-one onto U .  

That this is onto is clear since U and Yare arcwise connected. To show 
that it is one-one, let [g],  [ g l ] t U t f l ,  which we now know is the same as UIg, 
and Utgt,. Suppose that g(1) = g'(1). Since [ g 1 ] ~ U C g j  we have that g' 2. g * a  for 
some loop a in U.  But then a is homotopically trivial in Y since U is relatively 
simply connected in Y. Thus g' 21 g * a  z g*constant - g. Therefore [g'] = [g], 
showing the map in question to be one-one. 

This is obvious. 

(4) The UtJ1 for U E B  and f ( l ) ~ U ,  form a basis for a topology on ?. 

Suppose [ f ] ~ U [ , ] n  = U,,, n qfl. Let W c U n Vbe in B with f ( 1 ) ~  W. 
Then [ f ] ~  WIsl  c U,,, n V[n yielding the claim. 

(5)  p is open and continuous. 

We have p(U[,]) = U by (2), and these sets form bases, so it follows that p 
is open. Also, p f l ( U )  = U (UISll  f ~ p - ' ( U ) )  which is open for U E B ,  so p is 
continuous. 

This is because p is one-one, continuous, and open. 
Now we have shown that p satisfies all the requirements to be a covering 

map except for showing that the space "Ys arcwise connected. To do this, 
we need the next claim. 

(7) Let F: I x I -+ Y be a homotopy with F(0,t) = yo. Put j ; (s) = F(s, t )  which 

Figure 111-9. Proof of item (7). 

is a path starting at yo. ~ e t  f ( t )  = [ f,] t y. Then f is a path in covering 

the path f,(l) = F(1, t )  in Y. 

The only thing that needs proving here is that 7 is continuous. Let t o € I .  
We shall prove continuity at t,. Let U E B  be a neighborhood of f,,(l). For 
t near to,  f , ( l ) ~ U .  Thus 

7(t) = [ f f l  c U,ftO] for t near t o  

because the portion of F ( - ,  t) for t in a small interval near to is a homotopy 
rel(0) between .fro and f ,  with the right end of the homotopy describing a 
path a in U ,  i.e., f ,  z f , ,*a;  see Figure 111-9. Since UIf to l  maps homeo- 
morphically to U it follows that y(t) is continuous at to because it maps to 
the continuous function F(1,t) in U ,  for t near to. 

(8) k i s  arcwise connected. (Hence p is a covering map.) 

For [ f ] ~  ?, put F(s, t )  = f (st). By (7) this yields a path in "Yrom 9, = [l,,] 
to the arbitrary point [ f ] E  

(9) "Ys simply connected. 

Let a ~ n , ( Y ,  yo) and let f be a loop in Y representing cl. Let F(s, t )  = f(st)  
and let f,(s) = F(s, t). Then we have the path 7, where 7 ( t )  = [ f , ] .  This path 
covers f since p(7( t ) )  = p[ f,] = f l ( l )  = f ( t ) .  

Now f(0) = [ f o ]  = jo. Also, by definition. jo.a = f(1) = [ f , ]  = [ f ] .  
If jo.cr = jo then 

so that c* = 1 in n,(Y, yo). By (4) of Section 5, we conclude that 

Since p~ is a monomorphism by Corollary 3.7, Pmust be simply connected. 
n 



1. Describe all covering spaces of the projective plane, up to equivalence. 

2. Describe all covering spaces of the 2-torus, up to equivalence. 

3. Describe all covering spaces of the Klein bottle, up to equivalence. 

4. Find all covering spaces with three sheets of the figure eight. What are the 
implications for the fundamental group of the figure eight? 

5. If X is a topological group which, as a space, has a universal covering space 2 
then show how to define a group structure on 2 making it into a topological 
group such that the projection X -t X is a homomorphism. Also show that this 
is essentially unique. 

6. If Y satisfies the hypotheses of Theorem 8.1, show that the equivalence classes, 
ignoring base points, of k-fold covering spaces of Yare in one-one correspondence 
with the equivalence classes of representations of a l (Y)  as a transitive permutation 
group of {1,2,. . . , k )  modulo the equivalence relation induced by renumbering; 
i.e., modulo inner automorphisms of the symmetric group on k letters. Also inter- 
pret the correspondence geometrically. 

7. The connected sum M of T 2  and PZ has fundamental group {a, b, claba-'b-'c2 = 1 ) .  
Find the number of regular 3-fold covering spaces of M up to equivalence. 

9. The Seifert-Van Kampen Theorem 0 
In this optional section we shall prove a powerful result about the funda- 
mental group of a union of two spaces. First, we provide some needed 
group-theoretic background material on free products of groups. 

Let (G,lacS) be a disjoint collection of groups. Then the "free product" 
of these groups is denoted by G = * { G , ~ ~ ( E S )  (or by G I  * G 2 * - .  -, etc.). It is 
defined to be the set of "reduced words" 

W = X 1 X 2 ' - ' X "  

where each xi is in some G,, no xi = 1 and adjacent x,  are in different G,'s. 
These are multiplied by juxtaposition and then reduction (after juxtaposition, 
the last xi in the first word may be in the same group as the first x, in the 
second word, and they must be combined; this combination may cancel those 
x's out, etc.). The unity element is the empty word which we just denote by 1.  
The proof that this does, in fact, define a group is messy but straightforward 
and intuitive, so we shall omit it. 

There are the canonical monomorphisms i,: G, -+ G whose images 
generate G. 

9.1. Proposition. The jiee product G = * {G,lcr~S) is characterized by the 
"universal property" that 1fH is any group and $,: G, -, H are homomorphisms 
then there is a unique homomorphism f :  G -+ H such thatfoi, = $I, for all XES. 
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PROOF. For a reduced word w 7 x, x, we must have f ( w )  = f (x ,) . . ..f(x,) = 
$,,(x,)... $a,(~,) and this serves as the definition off. An easy induction on 
the length of the word proves f to be a homomorphism. 

The "free group" on one generator x is F ,  = {. . . , x2,  x- ', 1 ,  x, x Z ,  . . .). The 
"free group" on a set S is Fs = * (F,IXGS) and S generates it, since Fs is the 
group of words in S. The reader may supply the proof to: 

9.2. Proposition. Thefree group Fs on a set S satisfies the ''universal property" 
that if H is any group and g: S + H is any function then there is a unique 
homomorphism f: F ,  -+ H such that f 1, = g. 

Suppose we are given groups G,, G,, and A and homomorphisms 4 , :  A -+ 

G I  and 14~: A -+ G,. Then we define the "free product with amalgamation" 
Gl*,G, as (G,*G,)/N where N is the normal subgroup generated by the 
words 4,(a) bz(a)-' for ~ E A .  Otherwise stated, this consists of the words in 
G I  and G ,  with the relations b1(a) = 4,(a). There is the commutative diagram: 

The notation G,*,G,  leaves something to the imagination since it does not 
indicate the homomorphisms b1 and 42 explicitly, and they are, of course, 
important to the construction. 

9.3. Proposition. The free product with amalgamation satisfies the universa! 
property that a commutative diagram 

G. 

induces a unique homomorphism G 1  *AG2 -+ N through which the homo- 
morphisms from GI, G,, and A to H factor. 

PROOF. There is a unique extension to a homomorphism G I  *G2 4 H .  Words 
of the form 4,(a)  cbz(a)-' are in the kernel, and so it factors through GI *, G2. 

n 

9.4. Theorem (Seifert-Van Kampen). Let X = U u V with U ,  V, and U n  V 
all open, nonempty, and arcwise connected. Let the base point of ail these be 
some point X ~ E  U n V. Then the canonical maps of the fundamental groups of 
U ,  V, and U n V into that of X induce an isomorphism O: n,(U)* x,conv, 71,(V) 
-% zl(x). 
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PROOF. The homomorphism O is defined and it is a matter of showing it 
to be one-one and onto. To show it is onto, let f  be a loop in X (at the 
base point in U n V). By the Lebesque Lemma (Lemma 9.1 1 of Chapter I) 
there is an integer n such that f  takes each subinterval [i/n,(i + l)/n] into 
either U or V. If one of these is in U and the next one is in V ,  or vice versa, 
then the common point must map to U n V. Insert into the path at that point 
a path through U n  V running to the base point and then back again. This 
does not change the homotopy class off. When that is done at all the division 
points iln where it is appropriate, we then have a path that can be broken 
up into parts that are loops in U or in V. Thus the images in n,(X) from 
nl(U) and nl(V) generate the whole fundamental group, proving that O is 
onto. 

Now we will prove that O is one-one. Suppose we have a word w = 
C ( , P ~ C ( ~ . . .  where cr,~n,(U) and Pi~nl (V) .  Let ai be represented by the loop 
fi in U and pi by the loop gi in V. Suppose that this word is in the kernel 
of O. That means that there is a homotopy F: I  x I + X  with F(s,O) = 
fl *gl * f2*  .-., F(s, 1) = x,, F(0, t) = X, and F(1, t) = x,. By the Lebesque 
Lemma (Lemma 9.1 1 of Chapter I), there is an integer n so that any square 
ol'side lln is mapped by F into either U or I/. We can assume that n is a 
multiple of the number of letters in the word w so that each of the loops f, 
and g, consists of an integral number of paths on intervals of length lln. 
What we must do is to show that the word w, thought of as an element of 
nl(U)*nl(V), can be altered by the amalgamation relations (passing an 
element of n l ( U n  V) from one element in the word to the next), so as to end 
up with the trivial word. The procedure will be, after some preliminaries, to 
show that one can thus pass from the word represented by F(s,i/n) to that 
represented by F(s,(i + l)/n). First, however, by a homotopy not changing 
the word w illegally, we can assume that F is constant along the horizontal 
(s direction) on a neighborhood of the verticals (iln} x I. Then it can be 
made constant vertically in the neighborhood of the horizontals I  x {iln}. It 
is then constant in the neighborhood of each grid point (iln, jln). Then one 
can use paths in U, I/, or U n V, with preference to the latter, to replace the 
constant disks by functions of the radius making the radii into paths to the 

Figure 111-10. Used in the proof of Theorem 9.4. 

base point so that the-grid points all map to the base point x,,. Now we will 
indicate the passage from one horizontal to the next by means of a typical 

indicated in Figure 111-10. In that figure f and h represent loops in 
U and should be thought of as giving elements in nl(U) of the word along 
the horizontal. Similarly, y, g', I ,  and I' represent loops in V. Now we give 
the manipulation of the bottom word to the top one, taking place in 
nl(U)*,,~,,v,~l(V). Subscripts show what group the indicated homotopy 
class is meant to be in: 

Cf luCslvC~'lv= ChkluCk-'~mIvCm- 'l ' lv 
= [hk]"[k- llI'Iv (multiplication in nl(V)) 

=~~~1uCk1u)Ck- '~~1"  

= C ~ l u ( ~ k l ~ C k - ~ ~ ~ l v )  (by amalgamation 
of [k]~n,(Un V)) 

= [hl u[il'l v (multiplication in n,(V)). 

Thus we have passed from the bottom word to the top word in Figure 111-10. 
In such a way, we change the original word to the word along the top of F. 
But the latter is the trivial word, so we have shown that the original word 
w represents 1 in the amalgamated product. These remarks should make it 
clear how to complete a formal proof and the details of that will be left to 
the reader. 

9.5. Corollary. If X = U u  Vwith U, I/, and U n Vopen and arcwise connected 
and with U n V # and simply connected, then n,(X) % n,(U)*n,(V). 

For example, the figure eight is the union of two circles with whiskers 
(making them open sets) and with contractible intersection. Thus its funda- 
mental group is the free product of Z with itself, i.e., it is the free group on 
two letters (as we know by different means). Similarly, we can add another 
circle making a three-petaled rose, and it follows that its fundamental group 
is the free group on three letters, etc. 

9.6. Corollary. Suppose X = U u Vwifh U, V ,  and U n V# @ open and urcwise 
connected, and with Vsimply connected. Then n,(X) = nl(U)/N where N is the 
normal subgroup of nl(U) yeneruted by the image of n1(U n V). 

For example, consider Figure 111-1 I ,  whlch illustrates the Klein bottle K2.  
If we remove a small disk from the center of the square, the result contracts 
onto the "boundary," which, under the equivalences, is the figure elght. One 
gets the Klein bottle back from this by pasting on a slightly larger (open) 
disk, which is contractible. The fundamental group of the Intersection (an 
annulus) is Z generated by the obvious circle. This circle deform\ to the 
figure eight and represents the word aha-'b there. Then it follows from 
Corollary 9.6 that nl(K2) is {u,hlahu-'h = 1 ) .  This agrees wi th  our earlier 
calculation uslng a universal covering space. 
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Figure 111-11. The Klein bottle and a disk in it. 

1. The surface H, obtained from the sphere S2 by attaching n handles is 
homeomorphic to the space obtained from a 4n-gon by identifications on the 
boundary according to the word a,b,a;  ' b ;  'a2b,a;'b; ' ... a,ban-'bn-'. Similarly, 
the surface Hb obtained from the projective plane by attaching n handles is 
homeomorphic to the space obtained from a (4n + 2)-gon by identifications on the 
boundary according to the above word with c2 added. See Figure 111-12. Calculate 
the fundamental groups of these surfaces. Also calculate the abelianized 
fundamental groups a l / [ n l , n l ] .  From the latter, show that none of these surfaces 
are homeomorphic to any of the others. (H, is called the surface of "genus" n.) 

2. Consider the space which is obtained from a disjoint union of countably many 
circles by identifying one point from each of them to a common base point (an 
infinite petaled rose). Show that the fundamental group of this is the free group 
on a countable set of letters. (The topology is the quotient topology with respect 
to the indicated identifications and is important to the validity of the result.) 
(Hint: Use the known result for a finite rose to a deduce this result directly, 
instead of trying to cite a theorem.) 

3. Consider an annulus. Identify antipodal points oq the outer circle. Also identify 
antipodal points on the inner circle. Calculate the fundamental group of this 

Fig'ure 111-12. Projective plane with two handles. 
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surface,Can this surface be homeomorphic to one of those in Problem I? If not, 
prove it. If so, which one? 

4. Let HI be the surface resulting from the Klein bottle by attaching n handles, 
n 2 0. It is known that tbe H: together with the H ,  and HL of Problem 1 form 
a complete list without repetitions of compact surfaces up to homeomorphism. 
Let C,,n 2 1, be the surface obtained from S2 by removing n disjoint open disks 
and identifying antipodal points on each remaining boundary circle, giving what 
are called "crosscaps." It is known that the H ,  and the C, form a complete list, 
without repetition, of all compact surfaces up to homeomorphism. Granting this, 
C ,  must be- homeomorphic to some H; or H i .  Determine this correspondence. 

5. Let X be the union of the unit sphere in 3-space with the straight line segment 
from the north pole to the south pole. Find n,(X). 

6. Let X be the union of the unit sphere in 3-space with the unit disk in the x-y 
plane. Find xl (X) .  

7. Let X be the quotient space of D2 obtained by identifying points on the boundary 
that are 120" apart. Find n,(X). 

8. Let X be the quotient space of an annulus obtained by identifying antipodal 
points on the outer circle, and identifying points on the inner circle which are 
120" apart. Find nl(X). 

9. Let P2 = Ul u ... u U ,  where each Ui is homeomorphic to the plane. Put 
V ,=U,u . . . uU, fo r  l<i<n.Showthat there isani<nsuchthat  U , n V , - I  is 
disconnected or empty. 

10. Let X = D2 x S1 u , S 1  x D2 where f : S 1  x S' - ,S1 x S1 is the map induced by 
the linear map R2 --t R2 given by the matrix 

Compute n , ( X )  in terms of the integers a, b,c,d.  

11. + Consider S! = S1 x D 2 u D 2  x S1.  The intersection of these sets is the torus 
S1 x S1. The "torus knot" K , , ,  p and q relatively prime, is the curve px = qy in 
R2 projected to this torus and considered as a closed curve in S3. Show that 

Figure 111-13. Cloverleaf knot as the torus knot K,,, .  



n,(S" KK, = {a, DlaPfiq = 1). The knot-K,., is also known as the "cloverleaf 
kn~t."~Show that theL;group n,(S3 - K2,J of the knot" is nonabelian by exh~bittng 
an ep~morphism of it to the dihedral group of order 6 (the symmetry group of 
a regular mangle), from which it follows that K,,, IS really knotted. (It can be 
shown that the K,,, all have distinct groups, except, of course, that K,, = K,,F) 
See Figure 111-13. 

12. Construct a compact 4-manifold whose fundamental group is the free group on 
k generators, k = l ,2, 3,.  . . . 

13. + If G is finitely presented (i.e., a group defined by a finite number of generators 
and relations) then show how to construct a compact 4-manifold M with 
n , (M)  - G. 

10. Remarks on SO(3) 0 
The special orthogonal group SO(3) in three variables is homeomorphic to 
real projective 3-space P3. One way to see this is to consider the action of 
S3 z Sp(1) on itself by conjugation. This action is linear and preserves norm 
and so is an action by orthogonal transformations. It leaves the real axis 
fixed and so operates on its perpendicular complement, the span of i, j, and 
k. Thus it defines a homomorphism Sp(l)-tS0(3). It is easy to check that 
the kernel of this map is (1 1). It can be seen that this map is onto (an easy 
proof is given in Section 8 of Chapter VII, relying on some results pre- 
sented in Chapter IV), and it follows that SO(3) z Sp(l)/( & 1) z P3. Therefore 
n,(S0(3)) z Z2. 

Consider the semicircle 

{cos(t) + isin(t)~Sp(l)jO I t I n}. 

This maps to a loop in SO(3) and so this projection represents the nontrivial 
element of n,(S0(3)). When it acts by conjugation on the quaternions we 
see that it fixes the complex plane and so acts only on the j-k-plane. For 
z = jx + ky we have 

= (cos(t) + isin(t))(jx + ky)(cos(i) - isin(t)) 

= j[(cos2(t) - sin2(t))x - 2sin(t)cos(t)y] 

+ k[2sin(t)cos(t)x + (cos2(r) - sin2(t))~]  

= j[cos(2t)x - sin(2t)yJ + kCsin(2t)x + cos(2t) y], 

which means that cos(t) + isin(t) acts on the j-k-plane as a rotat~on through 
2r. This means that the nontrivial element of n,(S0(3)) is given by the path 
of rotations about a given axis going from the rotation of angle 0 to that 
of angle 2n. Let us take the axis to be the z-axis and let r ( t )  be the 
counterclockwl\e rotation in the x-y-plane through the angle 2nr, so that r 
is a loop in SO(3) representing the nontrivial class of n,(S0(3)). Thls group 

is the cycllc group of order 2, so we have that the loop r*r is homotopic to 
the constant loop at e ~ S o ( 3 ) .  This loop 2 r r * r  is the loop whose value i ( r )  
is the rotation of angle 4nr. 

The fact that I is homotopically trivial means that there is a homotopy 

with 

F(s ,1) = 20) = rotation by 4ns, 

~ o i s i d e r  the map cD: R3 x I -+R3 given by 

F(p - 1, l  - t ) - x  for 1 I p 1 2, 
s X otherwise, 

where p is the distance from x to the center. Thus 

q x , o ) = a ( p -  1) for 1 1 p  1 2 ,  

@(x,O) = x for p 5 1 or p 2 2, 

@(x, 1) = x for all x. 

Think of the parameter t as time and, for given t, think of #-, I) :  R3 -+ R3 as 
representing a contortion of space. At time t = 0, the contortion is given by 
the rotation of the sphere of radius p through the angle 4n(p - 1). At time 
t = 1, there is no longer any contortion. For p < 1 and p 2 2, there is no 
contortion at any time. This can be illustrated by the following thought 
experiment. Suppose we have a steel ball of radius 1. Suppose it is placed 
in the center of a cavity of radius 2 in a block of steel. In the region between, 
put some very flexible, but not liquid, Jello attached firmly to both ball and 
block. Now rotate the ball about some axis until it has made two full rotations. 
During this rotation, the Jello must move, but we suppose it does not break. 
At the end, the ball is in its original position, but the Jello is all wound 
around. Now clamp the ball'so it cannot move and give the block a kick. 
The Jello will move through the region between the stable ball and stable 
block, and it will totally untangle itself. (This action is what is described by 
the map @(x, t) where t is representing time. The wound up position is @(x, 0) 
and the unwound position is @(x, 1) = x.) 

One can actually carry out such an experiment with some mlnor changes. 
Take some strings and attach one end of them to some small object. Attach 
the other ends to some fixed objects in the room, say some chairs and tables 
and chandeliers. Do this carefully so that the strings are not tangled. Then 
rotate the small object one complete turn. Then try to untangle the str~ng 
keep~ng the object stationary You will not be able to do that. Rut rotate the 
object one more time in the same direction. You would think this would just 
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Figure 111-14. Two full rotations are homotopic to the identity. 
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tangle the strings more thoroughly, but, in fact, you can now untangle them, 
while holding stationary the small object to which they are attached. 

The photographs in Figure 111-14 show another illustration of this pheno- 
menon. In them a hand holding a cup is rotated about the vertical axis 
two complete turns, with palm up at all times, and at the end the arm has 
untwisted itself. 

This phenomenon has been used in mechanical devices. It has also been 
cited by Dirac to explain why a rotating body can have an angular momentum 
of half a quantum, but of-no other fraction. 



Figure IV-2. Standard 2-simplex and its faces. 

Note that the ith face referred to  here is the face opposite vertex number 
i. Figure IV-2 indicates the standard 2-simplex and its faces. Note that the 
faces in the figure are not oriented consistently. That is something that will 
have to be dealt with. 

We have that FP(ej) = ej for j < i, and Ff(ej) = ej+, for j 2 i. It is easy to 
see that 

j > i  + Fjpf1oFp=[e0 ,..., & ,..., S j  ,..., epl; 
j s i  F ? + ' o F P =  , [ e o , . a + , ~ j , - - - ~ ~ i + l ~ - - . > e p ] .  

1.4. Definition. If X is a topological space then a singular p-simplex of X is 
a map a,: A, -+ X. The singular p-chain group A,(X) is the free abelian group 
based on the singular p-simplices. 

Thus a p-chain (for short) in X is a formal finite sum c =C,n,a of 
p-simplices o with integer coefficients n,. Or you can consider this a sum 
over all singular p-simplices with all but a finite number of the coefficients 
zero. 

1.5. Definition. If a: A, -+ X is a singular p-simplex, then the ith face of a is 
di)= aoFP. The boundary of o is a,o =Cf=o( -  I)'a(", a (p - 1)-chain. If 
c = C, n,a is a p-chain, then we put a,c = d,(X, n,a) = C, n,apo. That is, 8, is 
extended to A,(X) so as to be a homomorphism 

1.6. Lemma. The composition a,a,+, = 0. 

PROOF. This is a simple calculation as follows: 

But, if we replace i + 1 by i, the second sum becomes the negative of the 
first, so this comes out zero as claimed. 

For convenience we put A,(X) = 0 for p < 0, and 8, = 0 for p 0. Thus 
' 

the composition 

a,+, 
~ , + l ( x ~ - ~ ~ ( ~ ) ~ ~ , - , ( x ~  

is always zero. Chains in the kernel of a, are called "p-cycles," and those in 
the image of a,+, are called "p-boundaries." That is, 

p-cycles = ker 8, = Zp(X), 

p-boundaries = im a, + , = B,(X). 

1.7. Defmition. The pth singular homology group of a space X is 

H,(X) = Z,(X)IB,(X) = (ker a,)/(im a, + 1). 

As said before, a p-chain c is called a "cycle" if ac = 0. Two chains c, and 
c, are said to be "homologous" if c, - c, = ad for some (p  + 1)-chain d, and 
this is indicated by c, - c,. The equivalence class of a cycle c under the relation 
of homology is denoted by [c] EH,(X). 

Homology groups are obviously invariant under homeomorphism. In fact, 
even the chain groups are invariant, but they are too large to be useful 
invariants. 

Clearly the chain group A,(X) is the direct sum of the chain groups of 
the arc components of X. The boundary operator a preserves this and so 
H,(X) = @H,(x,), where the X, are the arc components of X. Accordingly, 
if suffices to study arcwise connected spaces. 

Let us compute the homology groups of a one-point space *. This is not 
a complete triviality since there is a singular simplex in each dimension p 2 0. 
A p-simplex a has p + 1 faces, all of which are the unique (p - 1)-simplex. 
But they have alternatiflg signs in a,o starting with +. Thus a,o = 0 when 
p is odd, and 8, is an isomorphism A, -+Ap-, when p is even, p # 0. It follows 
that H,(*) = 0 for p # 0 and H,(*) z Z and is generated by the homology 
class of the unique 0-simplex a of *. One of the problems with the definition 
of singular homology is that the one-point space is about the only space for 
which the homology groups can be computed directly out of the definition. 
Rest assured, however, that we shall develop tools which will make computa- 
tion usually fairly easy, at least for simple spaces. 

For a space X, the sequence of groups A,(X) and homomorphisms 
8: A,(X) + A, - , ( X )  is called the "singular chain complex" of X. 



CHAPTER I V  
Homology Theory 

Others [topological invariants] were discovered 
by Poincark. They are all tied up with his 

homology theory which is perhaps the most 
profound and far reaching creation in all topology. 

S. LEFSCHETZ 

1. Homology Groups 

One necessary annoyance when dealing with the fundamental group is 
keeping the base point under control. Let us discuss another approach that 
does not require base points, but which leads necessarily to something other 
than the fundamental group. 

Instead of loops, consider paths I -+ X and "sums" of paths in a formal 
sense. The sums of paths are called chains, more precisely I-chains. We are 
mostly interested in "closed" chains, defined as follows: If a is a path then 
put do = cr(1) - a(O), a formal sum of signed points. Then for a chain c = 20, 
let ac = zdo,. A "closed" chain IS a chain c with dc = 0. A closed chain is 
more commonly called a "cycle." The left part of Figure IV-I shows a 1-cycle. 
Instead of using homotopies to  identify different cycles, we use the relation 
arising from regarding the boundary of a triangle to be trivial. (The boundary 
consists of three paths oriented consistently.) The right side of Figure IV-1 
indicates the sum of the boundaries of several triangles and, allowing for 
cancellations of paths ~denticai except for having the opposite orientation, 
the boundary is the lnd~cated inner cycle c ,  minus the outer cycle c,, ~f both of 
those are orlented in the clockwise direction. Accordingly, c ,  - c, is regarded 
as zero, I.e., c ,  and c,  glve the same equivalence class. The equivalence 
relation here, resulting from making boundaries zero, 1s called "homology." 

Note that ~f the paths In these chains are joined to make loops then the 
loops are homotopic In this example. It is important to understand that this 
need not be the case In general. For example, if the torus is divided Into 
triangles ( I (  IS "triangulated") and ~f the intertor of one of the triangles is 
rcmoved. then its boundary (a cham of three pathj) 15 s ~ l l  homologically 
tr~vlal slnce ~t bounds the sum of all the rematning triangle, orlentcd 
cons~stently, on the torus. However, regarded as a loop, ~t 1s not homotopically 
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Figure IV- I .  Examples of chains. 

trivial. Thus the relation of homology is weaker than that of homotopy. This 
has the disadvantage that it yields an invariant of spaces which is less sharp 
than that of homotopy, but the advantage, as we shall see, that it gives 
invariants which are easier to compute and work with. 

The foregoing was somewhat vague. We shall soon give a more precise 
description of homology. Historically, the first method of introducing 
homology was to  restrict attention to spaces having a "triangulation." Then 
the invariants (homology groups) one gets must be shown to be independent 
of the triangulation, a difficult matter. Also, one is restricted to dealing with 
spaces with such a structure. There are two ways of generalizing this to 
general topological spaces: One way of generalizing is to discard the idea of 
physical triangles, edges, etc., and substitute maps of a standard triangle into 
the space. This leads to what is known as "singular !lomology" and it is the 
approach we will take. The other way to generalize is to  approximate the 
space, in some sense, with tr~angulated spaces. This leads to what is known 
as ''Cech homology." 

We now embark on the deta~icd description of "singular homology." 

1.1. Definition. Let R" have the standard basis e,, e , ,  . . . . Then the standard 
p-simplex is A, = (x = Cf=, il,e,l C ili = 1 , O  I li i 1 ). The 1, are called hary- 
centric coordinates. 

1.2. Definition. Given po~nts v , , . .  . , I) ,  in RN, let [v,, .. ., v,] denote the map 
A , - + R N  taking C,i",e, -+C,il,o,. T h ~ s  is called an afJine singular n-sitnp1c.x. 

Note that the image of [v,, . . . , u,] is the convex span of the ui. The ui are 
not assumed to be independent, so this convex object may be degenerate. 
For example, thc image of [e, ,  e l ,  e,, e,] is a triangle instead ofa tetrahedron. 

The notation of putting a hat over one of a group of similar symbols, 
indicates that that one is omitted. Thus [ r , , .  ..,Ci,. .., r,] denotes the affine 
singular ( p  - 1)-simplex obtained by dropping the ith vertex (counting from 
0). Note that thc image of this is in  A,. 

1.3. Definition. Thc dffine s~ngular simplex [o,, ,$,. , c , ]  A, 1 -+A, 15 

called the ~ t h  fcrt cJ rnup dnd 15 denoted by f y. 





Figure IV-2. Standard 2-simplex and its faces. 

Note that the ith face referred to here is the face opposite vertex number 
i. Figure IV-2 indicates the standard 2-simplex and its faces. Note that the 
faces in the figure are not oriented consistently. That is something that will 
have to be dealt with. 

We have that F4(ej) = ej for j c i, and FP(ej) = ej+, for j 2 i. It is easy to 
see that 

j > i  - F;+'oF:=[e0 ,..., Gi ,..., 2j ,... , epl; 
j < i s- F?+'oFP = [e,,. .., t?j ,..., ,..., e,]. 

1.4. Definition. If X is a topological space then a singular p-simplex of X is 
a map a,: A, -t X. The singular p-chain group A,(X) is the free abeiian group 
based on the singular p-simplices. 

Thus a p-chain (for short) in X is a formal finite sum c = C,n,o of 
p-simplices a with integer coefficients n,. Or you can consider this a sum 
over all singular p-simplices with all but a finite number of the coefficients 
zero. 

1.5. Definition. If a: A, -+ X is a singular p-simplex, then the ith face of a is 
a(') = a0 F4. The boundary of a is a,o = ZIP=,( - l)'a(", a (p - 1)-chain. If 
c = C, n,a is a p-chain, then we put a,c = ap(x, n,a) = C, n,dpo. That is, a, is 
extended to A,(X) so as to be a homomorphism 

a,: A,(x) -+ A, -, ( X I .  

1.6. Lemma. The composition a,a,+ , = 0. 

PROOF. This is a simple calculation as follows: 

But, if we replace i + 1 by i, the second sum becomes the negative of the 
first, so this comes out zero as claimed. 

For convenience we put A,(X) = 0 for p c 0, and a, = 0 for p 50. Thus 
" 

the composition 

is always zero. Chains in the kernel of a, are called "p-cycles," and those in 
the image of a,+, are called "p-boundaries." That is, 

p-cycles = ker 8, = Z,(X), 

P-boundaries = im a, + , = B,(X). 

1.7. Definition. The pth singular homology group of a space X is 

H,(X) = Z,(X)/B,(X) = (ker a,)/(im a, + 1). 

As said before, a p-chain c is called a "cycle" if ac = 0. Two chains c ,  and 
c, are said to be "homologous" if c, - c, = ad for some (p + 1)-chain d, and 
this is indicated by c, - c,. The equivalence class of a cycle c under the relation 
of homology is denoted by fc'j~H,(X). 

Homology groups are obviously invariant under homeomorphism. In fact, 
even the chain groups are invariant, but they are too large to be useful 
invariants. 

Clearly the chain group A,(X) is the direct sum of the chain groups of 
the arc components of X. The boundary operator a preserves this and so 
H,(X) = @H,(X,), where the X ,  are the arc components of X. Accordingly, 
if suffices to study arcwise connected spaces. 

Let us compute the homology groups of a one-point space *. This is not 
a complete triviality since there is a singular simplex in each dimension p 2 0. 
A p-simplex rr has p + 1 faces, all of which are the unique (p - 1)-simplex. 
But they have alternatifig signs in a,a starting with +. Thus 8,a = 0 when 
p is odd, and 8, is an isomorphism Ap+Ap-, when p is even, p # 0. It follows 
that Hp(*) = 0 for p # 0 and Ho(*) x Z and is generated by the homology 
class of the unique 0-simplex a of *. One of the problems with the definition 
of singular homology is that the one-point space is about the only space for 
which the homology groups can be computed directly out of the definition. 
Rest assured, however, that we shall develop tools which will make computa- 
tion usually fairly easy, at least for simple spaces. 

For a space X, the sequence of groups A,(X) and homomorphisms 
3: A,(X) -+A, -, (X) is called the "singular chain complex" of X. 



Figure 111-14. Two full rotations are homotopic to the identity. 

tangle the strings more thoroughly, but, in fact, you can now untangle them, , 
while holding stationary the small object to which they are attached. 

The photographs in Figure 111-14 show another illustration of this pheno- 
menon. In them a hand holding a cup is rotated about the vertical axis 
two complete turns, with palm up at all times, and at the end the arm has 
untwisted itself. 

This phenomenon has been used in mechanical devices. It has also been 
cited by Dirac to explain why a rotating body can have an angular momentum 
of half a quantum, but of-no other fraction. 



If H , ( X )  is finitely generated then its rank is called the ith "Betti number" 
of X. 

2. The Zeroth Homology Group 

In this section we shall calculate H,(X)  for any space X. A 0-simplex o in 
X is a map from A, to X .  But A, is a single point, so a 0-simplex In X  is 
essentially the same thing as a point in X. By agreement, a, = 0. 

Thus a 0-chain can be regarded as a formal sum c = C,n,x over points 
X E X ,  where n, = 0 except for a finite number of x. A 0-chain is automatically 
a 0-cycle. 

Let us define, for c = C,n,x,  ~ ( c )  = z , n , ~ Z .  Then E: A,(X) -+Z is a 
homomorphism. 

If a is a singular 1-simplex then an is the difference of two points. Thus 
E(&) = 0. Since E is a homomorphism and any 1-chain is a sum of 1-simplices, 
it follows that €(ad) = 0 for any 1-chain d. 

It follows that E induces a homomorphism 

Both E and E ,  are called the "augmentation." 

2.1. Theorem. If X # (2/ is arcwise connected, then 6,: H,(X)  -+ Z is an 
isomorphism. 

PROOF. That E ,  is onto is clear. Choose a point x ~ E X .  For any X G X ,  let A, 
be a path from x ,  to x. This is, of course, a 1-simplex with 82, = x - x,. 
Suppose c = C,n,x is a 0-chain with E*[c] = ~ ( c )  = C, n, = 0, i.e., CE ker E. 

Then c - aC,n,A, = c - C,n,dA, = C,n,x - C,n,(x - x,) = (C,n,)x,  = 0. 
Therefore c = ax, n,A,, so that [c]] = 0. 

2.2. Corollary. If X is arcwise connected then H,(X)  z Z and is generated by  
[ x ]  for any X E X .  

2.3. Corollary. H,(X)  is canonically isomorphic to the free arieliun group based 
on the arc components of X .  

3. The First Hornology Group 

We now give ourselves the task of "finding" the first homology group H , ( X )  
of any space, something a good deal more difficult than for N o .  As should 
be suspected, the answer is In terms of the fundamental group of the space, 
and provides a definite link between the present subject of hon~ology and 
our previous discussion of homotopy. 
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It suffices, of course, to treat the case in which X is arcwise connected. 
As in the last section, we pick a point X ~ E X  once and for all. For any point 
x ~ X ,  we again let 1, denote some path from x, to x. We shall take A,, to 
be the constant path. 

Let it, be the abelianized fundamental group of X at x,. That is, 
5 ,  = n , ( X , x , ) / [ n , , n , ] ,  where the denominator stands for the normal 
subgroup generated by the commutators of elements in z l ( X ,  x,). Recall that 
this has the universal property that any homomorphism from z l ( X ,  x,) to any 
abelian group can be factored through i t , .  

Since we shall be dealing with both homotopy classes and homology 
classes in this section, we remind the reader that [ f ]  stands for a homotopy 
class, while [C f ]] stands for a homology class. Also recall that f - g  stands 
for "f is homotopic to g," while f - g stands for " f  is homologous to g." 

3.1. Lemma. I f f  and g are paths in X such that f (1) = g(0) then the 1-chain 
f * g  - f - g  is a boundary. 

PROOF. On the standard 2-complex A, put f on the edge (e,, e l )  and g on 
the edge ( e l ,  e,). Then define a singular 2-simplex o: A, --+ X to be constant 
on the lines perpendicular to the edge (e,,e,).  This results in the path f * g  
being on the edge (e,, e,). Therefore 80 = g - ( f  * g )  + f as claimed. 0 

Note that this lemma implies that one can replace the 1-simplex f * g  by 
the 1-chain f + g modulo boundaries. 

3.2. Lemma. I f f  is a path in X then f + f - ' is a boundary. Also the constant 
path is a boundary. 

PROOF. The boundary of a constant Zsimplex is a constant 1-simplex since 
two of the faces cancel. If we put f on the edge (e , ,e , )  and then define a 
2-simplex a: A, -+ X by making it constant on lines parallel to the edge (e,, e,), 
then the edge ( e l ,  e ,)  carries f - and we have that do = f + f -' - constant. 
Since the constant edge is a boundary, so is f + f -' .  

3.3. Lemma. Iff and g are paths then f - g re1 d l  =. f - g. 

PROOF. If F: I x I --t X is a homotopy from f to g then, since the edge {O] x 1 
maps to a single point, F factors through the map I x 1 4 6 ,  which collapses 
that edge to the vertex e,. This provides a singular simplex o which is f on 
the edge ( e , , e , )  and y on (e, ,e ,)  and is constant on ( e , , e , ) .  Then 
da = f - g + constant. Since the constant edge is a boundary, so is f - g. 

Now iff:  I + X is a loop then f ,  as a 1-chain, is a cycle. Thus, by Lemma 
3.3, we have a well-defined function 

4: x l  ( X ,  x,) -+ H ,(XI, 



.taking [ f ]  to [ f 1. We claim that this is a homomorphism. To see this, let f 
and g be loops and note that 4(Cf l [ g l )  = 4Cf*g l=  i l . f * . ~ D  = f f  B + 1[971, by 
Lemma 3.1, as claimed. 

Consequently, 4 induces a homomorphism 

3.4. Theorem (Hurewicz). The homomorphism 4, is an isomorphism if X is 
arcwise connected. 

PROOF. First, we will define the function that will be the inverse of 4,. Let 
f eA , (X )  be a path. Then put f = Af(,,*f *A/(:)  which is a loop at xO. Define 
$( f )  = [ f ]E?,(x). This extends to a homomorphism 

(Note that this is defined since we are going into fi,(X) instead of nl(X).) 
We will need two further lemmas before completing the proof of Theorem 3.4. 

3.5. Lemma. The map $ takes the group B,(X) of 1-boundaries into 1 EE,(X). 

PROOF. Let a: A, + X be a 2-simplex. Put a(ei) = yi and f = a"), g = a") and 
h = (a('))- '. Then 

=*(g-h- '+  f ) = * ( f  + g - h - ' )  

= * ( f  )*(g)*(h - l )  - 

= [71[81c( (h- 'Y) -~ l  
= [ f*d*( (h- 'y ) - ' ]  

= [nyo*f*ny;l*ny, *g*ny;l*(;iyo*h-l * ; ik l ) -  

= *Ay, * g * ~ y ; l * ~ y , * h * ~ ; l l  

= [Ay,* f *g* h*Ayil] = [constant] = 1 ,  

since f *g*h 2: constant. (See Figure IV-3.) 

Thus I) induces the homomorphism II/,: Hl  ( X )  -+ E l  ( X ) .  Iff is a loop then 
II/,4,[f]=$,[f]=[;ixo*f*A;']=[f] since was chosen to be a 
constant path. 

Thus we have shown that $,@, = 1, and it remains to show that the 
opposite composition is also 1. 

The assignment X H I ,  takes 0-simplices into 1-s~mplices and thus extends 
to a homomorphism A: Ao(X)+ A l ( X )  by LZnxx = i (Cxn,x)  = C,n,i.,. 

3.6. Lemma. lf'a is a 1-simplex in X then the cluss cl,,$(o) is represented by 

Figure IV-3. Inverse of the Hurewicz homomorphism. 

the cycle a + I,(,, - A,,, = a - ;la, Also, ijc is a 1-chain then 4,gl/(c) = [c - Ad,]. 
If c is a 1-cycle then @,*(c) = [c]. 

PROOF. We compute 

4**(a) = 4, CA,(o)*a * A,(:)] 

= I[A,(O, *c*A;:,n 

= [rA,(O) + a + 2,(:,4 
= IIAo(0) + a - Aa(l)II 

by Lemmas 3.1 and 3.2. The last two statements follow immediately. 

If c is a 1-cycle, then, by Lemma 3.6, 4,$, [c] = [cJ,  finishing the proof 
of Theorem 3.4. Cl 

Using Theorem 3.4, we can now calculate H , ( X )  for a large number of 
spaces. Here are a few such results: 

3.7. Corollary. The following isomorphisms hold, where P" is real projective 
n-space, and T" is the n-dimensional torus (the product of n circles): 

H l (S1 )  z Z ,  

1 H l ( S n ) z O  for n > l ,  
H l ( P " ) z Z 2  for n 2 2 ,  

H1(T")=Z", 

H,(Kleinbottle)z Z @ Z 2 ,  

Hl(Fiyure eight) Z @ Z.  . 
4. Functorial Properties 

Suppose that f: X -+ Y is a map. For any singular p-simplex a: A, -+ X in X ,  
the composition j 'oa:Ap+ Y is a singular p-simplex in Y .  This extends 
uniquely to a homomorphism: 



4.1. Proposition. For a map f :  X -+ Y ,  the induced homomorphism f,: A,(X) -+ 
A,(Y) is a "chain map." That is, fAoa = 80 f,. 

PROOF. We compute 

fA(ao) = fA c ( - l)io(i)  
( i  > 

This shows that fAoa = 80 fA on generators, and thus these homomorphisms 
must also be identical on the entire group A,(X). 

4.2. Corollary. A map f :  X -+ Y induces homomorphisms f,: Hp(X)  -, Hp(Y)  
defined by f,[cl) = I[ f,(c)]. Moreover 

and 

That is, H ,  is a "jiinctor." 

PROOF. If c€Ap(X)  is a cycle then so is fA(c), since afA(c) = fA(ac) = fA(0) = 0. 
If c - c' then c' = c + ad for some chain deAP+ ,(X) and so f,(c') = f,(c + ad) = 
fA(c) + fA(ad) = fA(c) + a fA(d). This shows that fA(c') - fA(c) so that [f,(c')] = 

[fA(c)].  Thus f* is defined. The two equations follow immediately from the 
definition. 

4.3. Corollary. I f f :  X --+ Y is a homeomorphism then f,: Hp (X)  -+ H,(Y) is an 
isomorphism. 17 

1. + I f  X is arcwise connected and /: X -+ X is any map, show that J,: HdX) -+ H,(X) 
is the identity. 
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2. (> If ,f: X + Y is a map and f(xo) yo then show that the diagram 
fu 

~1(X,xo) - XI(Y,YO) 

commutes, where 4, and 4, are the Hurewicz homomorphisms. 

3. If f: X -+ Y is a covering map then f#: nI  (X, xO) -+ a t  (Y, yo) is a monomorphism 
by covering space theory. Is it true that f,: H,(X)-+ H,(Y)  is a monomorphism? 
Give either a proof or a counterexample. 

5. Homological Algebra 
For a space X we defined the "singular chain complex" (A,(X), a) of X. From 
that point, the definition of the homology groups Hp(X)  and some simple 
properties were derived completely algebraically. Such "chain complexes" 
can, and will, occur in other contexts. Accordingly, it is very useful to abstract 
the algebraic part of 'the process, in order to apply it to future situations. 
We will begin that in this section. At the end of the section are some 
applications to singular homology. 

5.1. Definition. A graded group is a collection of abelian groups Ci indexed 
by the integers. 

5.2. Definition. A chain complex is a graded group (C,}  together with a 
sequence of homomorphisms a: Ci -+ Ci - , such that 8': Ci 4 Ci - , is zero. The 
operator a is called a boundary operator or differential. 

Our only example, so far, is the singular chain complex Ci = Ai(X) for 
i 2 0 ,  and Ci=Ofor i<0. 

53.  Definition. If C ,  = ({Ci} ,a)  is a chain complex, then we define its 
homology to be the graded group 

ker a: Ci --+ Ci- Hi(C,) = 
]ma: c ~ + ~  -+ci 

Thus H i ( X )  = H,(A,(X)) .  

5.4. Definition. If A, and B,  are chain complexes then a chain map f :  A, -+ B, 
is a coliection of homomorphisms f :  A, --+ B, such that f Q a = d o  f .  

In other words, a chain map is a "ladder" of homomorphisms which 
commutes: 



A chain map , f :  A ,  -+ B,  induces a homomorphism of graded groups 
f,: H,(A,) -, H,(B,) byf,[an = [ f  (a)] ,  such that(f  ~ g ) ,  = .f,'g, and 1, = 1.  

5.5. Definition. A sequence of groups A -2 B L C  is called exact if 
im (i)  = ker ( j). 

Exact sequences are common and fundamental in algebraic topology, 

Note that an exact sequence of the form 0 -+A -B -L C-+O means that 
i is an isomorphism of A onto a subgroup of B and j induces an isomorphism 
of B/i(A) onto C. Also note that to say that k: A +  B is an isomorphism 

k 
(onto), is the same as to say that 0 -t A - B -+ 0 is exact. 

5.6. Theorem. A "short" exact sequence 0 -+A, --!-+ B,  A C ,  -+ 0 of chain 
complexes and chain maps induces a "long" exact sequence 

where a,[c] = [i-'odoj-'(c)l] and is called the "connecting homomorphism". 

PROOF. The arguments in this proof are of a type called "diagram chasing" 
consisting, in this case, of carrying elements around in the diagram 

4. 4 + 
O-+A,-l  --!-+B,-~ ~ C , - ~ - + O .  

We will see this one through in detail, but later such arguments will be 
abbreviated, since they are almost always straightforward to one with 
previous experience. We begin by checking that the definition given for d ,  
really does define a unique homomorphism H,(C,) -+ H,- ,(A,). Suppose 
given C E C ~  such that dc = 0. Since j is onto there is a ~ E B ,  with c = j(b). 
Then j(db) = a( j (b ) )  = d(c) = 0. By exactness there is a unique element ~ E A , - ,  
such that i(u) = db. Then i(aa) = d(i(a)) = dab = 0. Thus da = 0 since i is a 
monomorphism. Therefore [a]  E H ,  - ,(A,) is defined. As indicated a ,  [cj  is 
defined to be [a].  

We must show that this does not depend on the choices of b and of c 
within its homology class. First suppose c = j(br), so that j(h - h') = 0. Then 
b - h' = i(a,) for some u,EA,. Thus ah - db' = d(i(ao)) = i(du,). But the 
left-hand side of t h ~ s  equation is dh - ah' = i(a) - i(u') = i(a - a'). It follows 
that a - a' = 2ao and so a - a' as desired. 

We now cons~der the effect of changing c within its homology class. Let 
c' = c + dc". Then we can set c = j(b) and c" = j(h"). Let h' = h + clh". We 

calculate j(bl) = j(h) + l((7h") = L' + iic" = I". But ah' = (3h + ddh" = (7b and so 
Fb and 6bt, bemg equal, back to the same thing under i- '. 

One also must show that (?, is a homomorphism. But for two classes c 
and c', we can trace the definition back for both and, at any stage, the 
addition of the elements going into the definition work for the sum c + c', 
which proves this contention. 

Finally, we must show that the indicated "long" sequence is exact. First, 
we show it is of "order two" (i.e., the composition of adjoining homo- 
morphisms is zero). There are three cases. First, j,i, = ( jo i ) ,  = 0 ,  = 0. 

Second, consider d, j,[b], where ab = 0. By definition of a,, this is obtained 
by taking b, then applying d to it, giving db =0 ,  and pulling this hack 
(to 0 )  to A*. 

Third, consider i,d,. This is the result of taking an element of C,, pulling 
it back to B,, taking a of it, pulling thar back to A ,  (this being the d, part) 
and then pushing this out to B, again. But this element of B, is, by 
construction, d of something, which has homology class 0, as claimed. 

Now we must show that an element in the kernel of one of the maps 
i,, j,, or a, is in the image of the preceding one. Again the proof of this has 
three cases. 

First, we show the exactness at H,(B,). Suppose that j,fb] = 0. This 
means that j(b) = ac for some CEC,. Let ~ ' E B ,  be such that j (b') = c. Then 

j(b - db') = j(b) - j(dbl) = dc - a( j(br)) = ac - dc = 0 

This shows that we could have taken the representative b of its homology 
class to be such that j(b) = 0. For this choice, then, b = i(a) for some a e A ,  
(and da = O  since it maps, by the monomorphism i, into db =O). Thus 
[b] = i,[a] as claimed. 

Second, for the exactness at H,(A,), suppose that i,[al] = 0. Then i(a) = db 
for some bgB,. Then put c = j(b). We have dc = dj(h) = j(db) = j(i(a)) = 0. 
Thus c represents a homology class, and by construction of a,, d,[c] = [a]. 

Third, for the exactness at H,(C,), suppose that d,[c] = 0. Then for an 
element ~ E B ,  for which j(h) = c, there is an U E A *  such that i(a) = db, by the 
construction of a,, and u must be a boundary since it represents d,[c] = 0. 
Thus let a = da'. Then (%(a') = i(daf) = i(a) = db. Accordingly, d(b - i(al)) = 0 
and j(b - ;(a')) = c - 0 = c. Therefore j,[h - i(al)] = [c] as required. 

f A short exact sequence 0 -+ A -!+ B i, C -+ 0 is said to "split" if there 
exists an idempotent ( $ l=  (I,) endomorphism 4: B -+ B whose kernel or  image 
equals im(i)  = ker(j). Then I - (I, is also idernpotent and ker(l - 43) = {hlh = 

&h)} = {blh = 4 ( h 1 ) )  = im(cl)), since, i f  h = d)(h1) ,  then &(h) = d)l(h') = &h') = h. 
Also B = ker(q5)O im(&) given by h = ( I  - &)(h) + (I,(h). If ker(4) = im(i) 
(otherwise use 1 - (1) instead) then we have { O )  = im(+)n ker(4)  = im((1))n 
ker(j) so that j: irn(dt)-+ C' is injec~ive. BUI j: im(d))-+ C is also surjective since 
j :  B -+ C is surjective and kills thc summand kcr(ct,) = kcr(j) cornplcmcntary 
to im(4). Therefore U = kcr(rl,)@irn($) = im(i)@im(4) z im(i)@C via I @ J .  



Conversely, if im(i) is a direct summand-of B then the projection 4: B - +  im(i) 
is a splitting. 

If o~A-LB-Lc-+o  is exact and if s:B-+A satisfies s o i =  I ,  then 
4 = ios is idempotent and im(4) = im(i) so that the sequence splits. 
Conversely, a splitting provides such a left inverse s of i. 

If O-+A- ! -+B- -&C-+O is exact and if t:C-+B satisfies jo t=  1, then 
4 = to j is idempotent and ker(4) = ker(j) = im(i) so that the sequence splits. 
Conversely, a splitting provides such a right inverse t of j. 

Therefore, to specify a splitting, either of the maps s or t, as above, will 
do. Both are called "splitting maps." 

If 0 -+ A --!-+ B A C -+ 0 is exact and if C is free abelian, then the sequence 
splits since a splitting t: C -+ B can be defined by just specifying its value on 
a basis element to be any preimage under j. 

Similar remarks also hold in the noncommutative case as the reader should 
show. 

5.7. Example. Let A c X be a pair of spaces. Clearly Ai(A) is a subgroup of 
A,(X) and the inclusion is a chain map. Let Ai(X, A) = Ai(X)/Ai(A). Then 

is an exact sequence of chain complexes and chain maps. We define the 
"relative homology" of (X, A) to be 

Then we have an induced "exact homology sequence of the pair (X, A)": 

Note that the group Ap(X, A) = A,(X)/A,(A) is free abelian since it can be 
seen to be isomorphic to the free group generated by the singular p-simplices 
of X whose images are not completely in A. This gives a splitting 
A,(X, A)-+A,(X). It is important to realize, however, that this splitting is 
not a chain map (why not?) and so it does not induce a map in homology. 

5.8. Example (Homology with Coefficients). Let G be an abelian group. Then 
the tensor product A,(X) Q G is a chain complex with the differential d @ 1. 

[Those not familiar with tensor products can regard A,@ G as the group 
of finite formal sums C,g,rr with g,eG. All the properties of the tensor product 
we will use here are easily verified for t h ~ s  definition. Tensor products are 
discussed in detail in Section 6 of Chapter V, and are not really needed until 
then.] 

5. ~omolog~ca l  Algebra 

We define homology groups with coefficients in G by 

For A c X, the sequence 

(1 )  O+A,(A)QG-,A,(X)OG+A,(X, A)@G-+o 

is exact because of the splitting map A,(X, A) + A,(X). Define 

Then (1) induces the long exact sequence 

If 0 -+ G' -+ G -+ G" -+ 0 is an exact sequence of abelian groups then 

O-+A,(X)@G'+A,(X)@G-+A,(X)QG"-+O 

is exact, since A,(X) is free abelian. Consequently, there is the long exact 
sequence 

..-+H,(X;G')+H,(X,G)-+ H,(X;G")-+H ,-,( X;G')-+... 

and similarly for the relative groups H,(X,A;.). The connecting 
homomorphism H,(X; G") -+ H,- ,(X; G') is sometimes called the "Bockstein" 
homomorphism in this case, although that appellation is usually reserved 
for the special cases of the coeficient sequences 0- Z -+ Z -+ Z, -+0 and 
o-+zp-+zp2-+Zp-,0. 

Especially note the case of coefficients in a field F. In this case all the 
groups such as H,(X, A; F) are vector spaces over F. More generally, if R is 
a commutative ring, then H,(X, A; R) is an R-module. 

5.9. Example (Reduced Homology). Consider the chain complex C, where 
Ci = Ai(X) for i 2 0, C- , = Z, and Ci = 0 for i < - I ,  and where the differential 
C, -+ C -  , is the augmentation c: A,(X) -+ Z. The homology of this complex 
is called the "reduced homology" of X and is denoted by 2 , (~ ) .  This differs 
from H,(X) only in degree zero where t?,(~f can easily be seen to be the 
kernel of the map H,(X)+ H,(point) induced by the map of X to the one- 
point space. (For X = @ it also differs in degree - 1 since fi-,(@) = Z. 
However, one usually does not talk of reduced homology in this case.) 

The following algebraic lemma is useful throughout algebraic topology: 

5.10. Lemma (The 5-Lemma). If the following diugrum I S  commututive und 
has exact rows, and i f f , ,  f2, f,, and f ,  ure i.somorphi.sms then j, 1 s  ulso an 



isomorphism: 

PROOF. This is a fairly straightforward diagram chase. First suppose 
a,~ker(f,). Then a, maps into ker(f4) =0, so that a, comes from some 
a,tzA, by exactness. If we push a, to b,tzB, then that goes to 0 in B, and 
thus comes from some b1eBl, and in turn that can be lifted to a,tzA,. But 
a, maps to a,, since the images of these in B, are equal. But then a, maps 
to a, and so the latter is 0 by exactness. This shows that f, is a monomorphism. 

Now, forgetting the above notation, let b3eB3. Map this to b,€B, and 
pull it up to a4€A,. This must map to 0 in A, since it goes to 0 in B,. By 
exactness, there is an a3€A3 mapping to a,. If we map this to B, and subtract 
it from the original b, we conclude that this goes to 0 in B,. Accordingly, 
we may as well assume that the original b, maps to 0 in B,, and hence comes 
from some b,eB,. Pulling this up to A ,  and pushing it into A, gives us an 
element that maps to b,, showing that f ,  is onto. D 

5.11. Definition. A space X is said to be acyclic if E?,(x) = 0. 

Note that @ is not acyclic since 3- ,(@) # 0. 

I .  Multiplication by the prime p: Z -+ Z fits in a short exact sequence 

Use this to derive the natural split exact sequence 

(The splitting is not natural.) 

2. 4 The proof of the 5-lemma did not really use the full strength of the assumptions. 
Find the minimal assumptions on the homomorphisms f,, f,, f,, and J5 needed to 
prove that f, is a monomorphism (resp., onto). Give examples showing that further 
weakening of the assumptions on these maps is not possible. 

3. If # A c X and A is acyclic then show that H,(X, A) z G,(x). 

6. Axioms for Homology 

We shall now temporarily abandon singular homology in order to present 
the Eilenberg-Steenrod -Milnor axioms for homology. Then we shall derive 

consequences and applications directly out of the axioms. Only later will we 
return to singular homology and show that it satisfies the axioms. This 
illogical approach is used in order to get as quickly as possibie to some of 
the main applications of homology theory. It is useful, also, to force ourselves 
to derive some of the main consequences of homology in the "right way" 
instead of making ad hoc arguments with singular chains. 

The axioms are not presented in their most general form, as we prefer to 
state them for the full category of topological spaces and maps. 

6.1. Definition. A homology theory (on the category of all pairs of topological 
spaces and continuous maps) is a functor H assigning to each pair (X, A) of 
spaces, a graded (abelian) group (H,(X, A)), and to each map f: (X, A) -, ( Y, B), 
homomorphisms f,: H,(X, A) -+ Hp(Y, B), together with a natural transfoxma- 
tion of functors a,: H,(X, A) -, H,- ,(A), called the connecting homomorphism 
(where we use H,(A) to denote H,(A, D), etc.), such that the following five 
axioms are satisfied: 

(1) (Homotopy axiom.) 

f =g:(X,A)+(Y,B) => f,=g,:H,(X,A)+H,(Y,B). 

(2) (Exactness axiom.) For the inclusions i: A r X and j: X c, (X, A) the 
sequence 

a* I* ... A H,(A) 2 H,(x) 2 H,(x, A)  - H,- 1 ( ~ )  -. . . 

is exact. 
(3) (Excision axiom.) Given the pair (X, A) and an open set U c X such that 
0 c int(A) then the inclusion k: (X - U ,  A - U) c+ (X, A )  induces an 
isomorphism 

k,: H,(X - U ,  A - U) 2 H,(x, A). 

(4) (Dimension axiom.) For a one-point space P, Hi(P) = 0 for all i # 0. 
(5) (Additivity axiom.) For a topological sum X = f a  X, the homomorphism 

@(i,)*: @Hn(Xa) -+ H"(X) 

is an isomorphism, where i,: X, c X is the inclusion. 

The statement that a, is a "natural transformation" means that for any 
map f :  (X, A)  -, (Y, B), the diagram 

is commutative. The statement that f l  is a functor means that for maps 
f : ( X ,  A)+(Y, B) and y:(Y,B)+(Z,C) we have (y , I ) ,  = g, )I,, and also 
1, = 1,  where 1 stands for any identi~y mapping. 



6.2, Definition. For a homology theory, H,(P) = G is called the coeificient 
group of the theory, where P is a one-point space. 

Note that singular theory H,(A,(.)) has coeflicients Z and H,(A,(.)O G) 
has coefficient group G. 

Singular homology clearly satisfies the additivity axiom. 
It should be noted that there are important "homology theories" that do 

not satisfy all of these axioms. ("Cech homology" does not satisfy the exactness 
axiom, and "bordism" and "K-theories" do not satisfy the dimension axiom.) 

So far, we have proved that singular homology is a functor with the 
natural transformation 8, that satisfies the exactness, dimension, and 
additivity axioms. Later, we shall prove the more difficult homotopy and 
excision axioms.   or now, we will assume we have a theory that does satisfy 
all these axioms and shall derive many consequences from this assumption. 

6.3. Proposition. 

(X,A)-(Y,B) H,(X,A)%H,(Y,B). 

PROOF. Iff: (X, A) -+ (Y, B) is a homotopy equivalence with homotopy inverse 
g then go f -- I,, ,,,, so that g,o f, = 1, = 1. Similarly, f,og, = 1. Thus 
f,: H,(X, A) -+ H,(Y, B) is an isomorphism with inverse g,. 

The following shows that the additivity axiom is needed only for infinite 
disjoint unions. (However, the axiom has implications for spaces which are 
not disjoint unions.) 

6.4. Proposition. If i,: X c, X + Y and i,: Y c.+ X + Y are the inclusions, 
where X + Y is the topological sum of X and Y, then i,* @ iya: H,(X) @ H,(Y) -+ 

H,(X + Y) is an isomorphism for any homology theory satisfying axioms 
( 1)-(4). 

PROOF. Consider the exact homology sequence for the pair (X + Y, X): 

The inclusion map k:(Y, (ZI) c , ( X  + Y, X) is an excision map (with U = X) 
and so there is the isomorphism k,: H,(Y) ~ H , ( X  + Y, X). But k = j o i , .  

Accordingly, i,*o k; ' is a splitting of the long exact sequence, as claimed. 

Reduced homology was previously defined for singular homology, but it 
is easy to define it from the axioms as follows: Assume that X # @ and let 
c : X + P  be the unique map to a one-point space P. This Induces 
E , :  H,(X)-+ H * ( P )  For any mapi: P-t X we have e r r  = I so that c, I S  onto. 
We define G,(x) = ker(t.,). That is, the reduced homology group is defined 
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by exactness of the sequence 

0 -t Q,(x) -+ H,(X) 2 H,(P) -+ 0. 

The group on the right is, of course, the coefficient group G. This sequence 
splits via i,, but this splitting is not natural, as it depends on the inclusion 
i chosen. Accordingly, 

H,(X) % I?,(x) @ G (not natural). 

We set %(X) = Hp(X) for p # 0. We also set H,(x, A) = H,(X, A) if A # @. 
Then the map (X, A) - t (P,  P) induces the commutative diagram: 

A diagram chase shows the reduced homology sequence is exact. The 
following result is immediate from Proposition 6.3 and the definition of 
reduced homology. 

6.5. Theorem. I f X  is contractible then I?,(x) = 0. 
" 0 

Note that this is just a convenient way of saying that H,(X) = 0 for p # 0 
and H,(X) = G. 

Let us denote by D v h e  closed upper hemisphere of the sphere Sn. 

6.6. Theorem. For n 2 0, we have 

PROOF. The labels (Sn),(Dn), and (R,) stand for these statements which will all 
be proved by a recursive procedure. First we shall prove (R,). This follows 
from the excision and dimension axioms giving H,(SO, D(:) =: H,(P) z G for 
i = 0, and 0 otherwise. 

Next we shall show that (Rn)o(S,,). This follows from the exact homology 
sequence of the inclus~on map Dn, -+ 9: 



Sin~ilarly, (D,) o (R,,) follows from - 

where U is a small disk neighborhood of the north pole of Sn, and the first 
isomorphism is by the excision axiom and the second by the homotopy 
axiom. 

Next, the exact sequence of the pair (Dn,S"-') in its reduced form is 

The two groups on the ends are zero since Dn is contractible, and so the 
middle map is an isomorphism, proving (D,) a (S, - ,). 

Finally, having proved (R,) and the following implications, all claims are 
proved: 

(Do)--(Ro)-(S,)*(D,) *(Rl)*(SI)*(D2)* 0 

6.7. Corollary. The sphere Sn-' is  not a retract of the disk Dn. 

PROOF. (This was proved by smooth manifold methods in Theorem 11.11 
of Chapter 11, but we now give a totally independent, and very simple, proof 
via homology.) If r: Dn -+Sn- ' is a retraction map, and i: Sn-  ' -+ Dn is the 
inclusion, then roi = 1. Thus the composition 

factors the identity map 1 = r,oi,: G-t  G through the middle group which 
is 0. This implies that the coefficient group G is zero. Consequently, any 
homology theory with nonzero coefficients, such as the integers, gives a 
contradiction. CI 

The Brouwer Fixed Point Theorem (Theorem 11.12 of Chapter II), 
follows from this by the same simple geometric argument given in 
Chapter 11. 

The reader should note the form of the proof of Corollary 6.7. The 
geometric assumption that there is a retraction can be stated in terms of 
maps and their compositions (the identity map of the sphere to itself factors 
through the disk). This statement translates, by applying the homology 
functor, to an analogous statement about groups and homomorphisms and 
their compositions. Since the resulting statement about groups is obviously 
false, the original one about spaces must also be false. This type of argument 
IS typical of applications of homology theory. 

6.8. Definition. If 1': Sn -+ Sn is a map, we let deg( f )  be that integer such that 
f*((z) = (deg( f))a for all ael?,(S"; Z) zz Z. 

The following is a triviality: 

". i 
6.9. Proposition. I ff ,  g: S" -+ S" then deg(f og) = deg( f )  deg(,q). u 

t 

6.10. Proposition. For S" c Rn+ ' with coordinates x,, . . . , x,, let f :  Sn -+ S' be 
given by f (x,, x,, . . . ,x,) = ( - x,,x,,. . . , x,), the reversal ofthefirst coordinate 
only. Then deg(f) = - 1. 

PROOF. First we prove the case n = 0. The zero sphere So is just two points, 
say So = {x, y), where x = 1 and y = - 1 on the real axis. Note that f 
interchanges x and y. By Proposition 6.4, the inclusions induce the isomor- 
phism 

Ho({xf )O H0(( Y ) )  L H ~ ( S O )  

and f ,  becomes, on the direct sum, the interchange (a, b)t-+(b, a), where we 
identify the homology of all one point spaces via the unique maps between 
them. The map So -t P, to a one-point space, is, in homology, (a, b ) ~ a  + b. 
Hence, under this isomorphism with the direct sum, fi0(s0) becomes 
{(a, - a)eH,(P)@ Ho(P) x Ho(SO)}. Thus, in this representation, f, takes 
(a, - a) to ( - a, a) = - (a, - a). Accordingly, f has degree - 1 in this case as 
claimed. 

Suppose we know the result on Sk for k < n. Let D: = ((x,, . . . , x,)eS"I 
xn 2 0) and D 1  = {(x,, . .. , xn)~SnIx,  1 0 ) .  Note that these are preserved by 
f .  Consider the commutative diagram 

En(,y) 2 H,(s",D;) 2 ~ ~ ( ~ 1 . s ' -  5 fi,_ l ( ~ n - l )  

if* If* If* p*= - 1  
$,(q 22 H,(s: D: ) 5 H,(D1, Sn- ') -% f in - , (sn-  '1 

in which the horizontal isomorphisms are from the proof of Theorem 6.6. 
This shows that all of the vertical maps f ,  are multiplication by - 1. The 
one on the left establishes the induction. 

The map f in Proposition 6.10 is topologically no different from the map 
reversing any other single coordinate. So all these maps have degree - 1. 
On S" c Rn+ ' there are n + 1 coordinates. If we compose all these n + 1 maps, 
we get the antipodal map, and so that composition must have degree (- 1)"". 
Therefore we have proved: 

6.11. Corollary. The antipodal map - 1:S" -+S" hus degree (- 1)"' '. 

6.12. Corollary. For n even, the antipodal mup on S" is not homotopic to the 
identity map. U 

6.13. Corollary. If n is even and f: S" -+ S" is any map then there is a point 
xeSn such that f (x)=  k x .  

PROOF. Suppose not. That is, suppose there is a map ,f: S n 4 S "  such that 
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f ( x )  is never 2 x. Define two homotopies F and G as follows: - 

Now, F(x, 0 )  = x, F(x, 1) = f (x) ,  G(x, 0 )  = f (x) ,  and G(x, 1) = - x. Conse- 
quently, F*G is a homotopy between the identity and the antipodal map 
on S", contrary to Corollary 6.12. a 
6.14. Corollary. The sphere Sn, for n even, does not have an everywhere nonzero 
(continuous) tangent vector 3eld. 

PROOF. If 5, is a tangent vector at xeSn which is nonzero and continuous, 
we can divide by its length (as a vector in R"") to get one of length one 
everywhere. Consequently, putting f (x) = tX/ 1 Tx 11 gives a map Sn -+ S" for 
which f ( x )  is never + x (since it is I x ) .  This contradicts Corollary 6.13. 

It follows, for example, that at any given time there is a point on the 
surface of the earth where the wind velocity is zero. 

Note that an odd-dimensional sphere S2"-' does have a nonzero vector 
field, the field assigning to (x,, . . . ,x2,)€R2", the vector (x,, - x,,x,, - x,, . . . , 
X Z ~ ,  - X 2 n  - 1). 

We end this section by proving a stronger form of the exactness axiom, 
namely, exactness for a triple (X, A, B). 

6.15. Theorem. If B c A c X and we let a,: Hi(X, A) -+ Hi- ,(A, B) be the 
composition of 8, : HJX, A)  -+ Hi - ,(A) with the map Hi  - ,(A) -+ H ,  - ,(A, B) 
induced by inclusion, then the following sequence is exact, where the maps other 
than 8, come from inclusions: 

J* '+ . .-  H ~ ( A , B ) ~ H ~ ~ X , B ) ~ ~ - ~ H ~ ( X , A ) ~ H ~ - , ( A , B ) -  . . .  

PROOF. There is the following commutative diagram: 

This is called a "braid" diagram. (This kind of diagram is due to Wall [ I ]  
and Kervaire.) There are four braids and three of them are exact (the exact 
sequences for the pairs (X, A), (X, B), and ( A ,  B)). The fourth is the sequence 
of the triple (X, A, B) which we wish to prove exact. This sequence is easily 
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seen from the commutativity to be of order two except for the composition - 

But this composition factors through Hi(A, A)  = 0 (see Problem 5), so the 
entire sequence is of order two. The theorem now follows from the following 
completely algebraic fact. 

6.16. Lemma (Wall). Consider the following commutative braid diagram: 

If all the (3) braids except the one with single subscripts are exact and the 
fourth is of order two, then thefourth one is also exact. 

PROOF. The proof is by a diagram chase. For simplicity in doing the chase 
we shall introduce some special notation for it. Elements of, for example, G',,, 
will be denoted by a;,,, b;,,, etc. To  indicate that an element a,eG, comes 
from an element b,,,, not yet defined, we just write 3b,,, -+a,. To indicate 
that an element ~ , E G ,  goes to ~, , ,EG,, ,  we just write a ,  -+ b,.,, and if b,,, 
has not yet been defined, this does so. The notation a2-+03 means that the 
element a,eG, goes to 0 in G,: Now we begin the chase. In following the 
arguments the reader will find it helpful to diagram the elements and relations 
as they arise. 

First we prove exactness at G ,  for the composition G,  4 G, -+ G,. Thus 
suppose a,  -0,. Then if a, -+a,,,, a,,, -+O';,, by commutativity. By exactness, 
3a1 -+a,,,. Let a,  +b,. Then a,  -+a,,, and b,  +a,,, imply a, - b, 401 , , .  
Thus 3aZs3 -+ a, - b,. Since a, -+ b, we have b, -0,. Thus a, - b, -+O,, and 
so a,,, -+O,. Therefore 3a,,, -+a,.,. Let a,,, + b,. Since a,,, -+a2,, -+a, - b, 
and a,,, -+ b, it follows from commutativity that b,  -+a2 - b,. But a,  -+ b,, 
so a,  + b ,  -+ b, + (a,  - b,) = a,, as desired. 

Next we prove exactness at G,. Thus let a,  -+O;. Define a,  -,a';,,. Then 
a1;,,-+O';, SO that 3al,,-+a';,,. Since a3-+a;,340';,3 we have a,,,-+O'~,,. 
Consequently, 3a2 -+a,,,. Let a,  -+ b,. Then a,  - b3 -+O';,,. Thus 3a2*, -+ 

a, - b,. Let a,,, -+ c,. Then a, + c ,  -+ b, + (a,  - b,) = a,  as claimed. 
Finally we prove exactness at G I .  Thus suppose a ,  -+ 0,. Then a ,  -* O I q 2  

so 3a1,,-+a1. Let a,,,-+a,,,. Then a2,3-+02 so that 3a;,,-+a2,,. Let 
a;,,-+b,,,. Then note b1,3+01. Then we have a,,, - b,,,-+02,3 so 
~a~-+a~,,-bl,~.Nowal,~-bl,~~al-0~=al,sothata~~a~,asclaimed. 



1. + Define the "unreduced suspension" CX of a space X to be the quotient space 
of I x X obtained by identifying {0) x X and (1) x X to points. (This is the union 
of two cones on X.) For any homology theory (satisfying the axioms) show that 
there is a natural isomorphism ~~,(x)&E?,+,(cx). Here "natural" means 
that for a map j': X -+ Y, and its suspension C f :  C X -+ CY, the following diagram 
commutes: 

fii(x) --% fii+ l(z X) 

1'. I.,)* 
f i , ( ~ )  % E7, + ,(C Y). 

2. If f :  S" -+S" is a map without fixed points, show that deg(f) = (- 1)"" 

3. 0 Let X be a Hausdorff space and let X , E X  be a point having a closed 
neighborhood N in X, of which {x,) is a strong deformation retract. Let Y be a 
Hausdorff space and let yo€ Y. Define X v Y = X x { y o }  u {x , )  x Y, the "one-point 
union" of X and Y. Show that the inclusion maps induce isomorphisms 

fi,(x) @ f i , ( ~ )  5 G,(x v Y), for any homology theory, whose inverse is induced 
by the projections of X v Y to X and Y. 

4. If n is even, show that any map f :  Pn -+ Pn (real projective n-space) has a fixed 
point. (Hint: Use Corollary 6.13.) 

5. 9 Prove from the axioms that Hi(@) = 0 for all i, and that H,(X, X) = 0 for all i 
and all spaces X. 

7. Cornputation of Degrees 

In the next few sections it will be important for us to be able to compute 
the degree of a map S" -, Sn. We will- give a method for doing that in this 
section for any homology theory satisfying the axioms. (Degree was defined 
in Definition 6.8.) 

In this section, and in the remainder of the book, the coefficient group 
for homology is assumed to be Z if not otherwise indicated. 

7.1. Proposition. Let A be a nonsingular n x n matrix. As a map Rn+ Rn it 
can be extended, by adding the point at infinity, to a map Sn 4 Sn, and as such 
it has degree equal to the sign of the determinant I Al .  

PK(H)F. Since A is a homeomorphism it does extend to the one-point 
compactification. Clearly, if the statement on degree holds for matrices A 
and B then i t  holds for AB. Consequently, it suffices to prove it for the 
elementary matrices. The elementary matrix which is dlagonal with one term 
on the diagonal different from 1 (and from 0) is homotopic, as a map, through 
such matrices to the identity matrix or to the matrix differing from the 

identity by the sign of one of the diagonal entries. These cases are taken care 
of by Proposition 6.10. The elementary matrix differing from the identity by 
having one off-diagonal entry is homotopic to the identity, taking care of 
that case. The remaining case of an elementary matrix obtained by interchange 
oftwo rows of the identity is topologically a reflection through a codimension- 
one hyperplane, so this is also taken care of by Proposition 6.10. 

7.2. Proposition. Suppose that f :  S" -, Sn is differentiable and that the north 
pole p is a regular value such that f -'(p) is exactly one point q. Then deg(f) 
is the sign of the Jacobian determinant at q, computed from coordinate systems 
at p and q that differ by a rotation of S" i.e., operation by an element of 
SO(n + 1). 

PROOF. By a rotation (and using that SO(n + 1) is arcwise connected) we 
may as well assume that q = p. Using Proposition 7.1 we can compose f 
with a (one-point compactified) linear map so that the differential at p of 
the new map is the identity. Thus we can assume that to be the case for f, 
and our task becomes to show that the new f has degree one. By Taylor's 
Theorem, we can write f (x) = x + g(x) in some local coordinates x = (x,, . . . , xn) 
about p, where, for some E > 0, 11 g(x) 11 < 3 11 f (x) 11 for 0 < 11 x 11 1 26. Define 
F:Sn x I + S "  by 

for 2~ I (1 x 11, 
Il x ll /r)g(x) for E 1 11 x 11 < 2 ~ ,  

for Il x ll I E, 

and put f,(x) = F(x, 1). Then f ,  is the identity near p and maps no other 
point to p because of the stipulation that 1 g(x) II < 311 f (x) ll for II x I[ 5 26. 

Then there is an open disk about p so small that if D is the complementary 
disk in S" then f,(D) c D and f ,  is the identity on dD. Such a map on a disk 
is homotopic to the identity re1 the boundary. (Considering D as Dn, the 
homotopy G(x, t) = tx + (1 - t) f ,(x) does this.) This homotopy extends to 
give a homotopy off,  to the identity, and so deg( f )  = deg( f,)  = deg(ls.) = I .  

7.3. Proposition. Let X = S: v ... v SL be the one-point union of k copies oj' 
the n-sphere, for n > 0. Then the homomorphism Hn(S;) @ ... @ Hn(SL) -t H,(X) 
induced by the inclusion maps, is an isomorphism whose inverse is induced by 
the projections X -+ S: (obtained by collapsing all the other spheres to the base 
point). 

PROOF. This follows from Problem 3 of Section 6 by an induction on k. 

To state our next, and main, result, we first need some notation and a 
description of the situation we will be concerned with. Let Y be a space with 
a base point v,,. Let E ,, . . . , E, be disjoint open sets in S" each homeomorphic 
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Figure IV-4. Setup for Theorem 7.4. 

to Rn, n > 0. Let f :Sn+ Y be a map which takes S" - U E, to yo. Then f 
factors through the space S"/(Sn - U E,) - S;V -- .  v S; where S; = 
Sn/(Sn - E,): 

Let i j : q  cis; v .-. v S; be thejth inclusion and let pj:Si  v -.. v S ; + S p e  
the jth projection. Then Proposition 7.3 implies that xj i j*pj*  = 1 on 
Hn(S; v - - -  v S;). Let gj = pjOg:Sn-+S;, and let h j  = hoij:S;+ Y, and put 
f j  = hjog,:Sn-+ Y. See Figure IV-4. Note that f ,  is just the map which is f 
on E, and maps the complement of E j  to the base point yo. 

7.4. Theorem. In the above situation we have f ,  = Z:=, f,*: Hn(Sn) + Hn(Y). 

PROOF. For B E  Hn(Sn) we have g,(cc) = ,i,*pj*g, (a) = x j  ij*g,*(cr) and so 
f*(') = = X jh*ij*g,. (a) = X jhj.g,.(a) = Z jL*(o). 

7.5. Corollary. Let f :  Sn +Sn be d@erentiable and let p tSn  be a regular value. 
Let f - = (q l , .  . . , qk). Let dl = i I be the "local degree" o f f  at qi, computed 
as the sign of the Jacobian at qi using a coordinate system at qi which is a 
rotation of the coordinate system at p. Let d = deg(f). Then d = C:=, d,. (More 
generally, f need only be smooth on f - ' (U) for  some neighborhood U of p.) 

PROOF. By definition of regular value there is a disk D about p such that 
. f - ' ( ~ )  is a union of disjoint disks about the q, which map diffeomorphically 
to D. We can follow f by the end of a deformation which stretches D so 
that its interior maps diffeomorphically onto the complement of the antipode 
of p and the rest of S" goes to this antipode. This composition has the same 
degree as f and it fails under the situation of Theorem 7.4. The result then 
follows from Theorem 7.4 and Proposition 7.2. 

0 
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7.6. Corollary. The degree of a map-f : S" -+ S" is independent of'rhe homology 
tlleory (integer coefficients) used to dgfine it. 

7.7. Example. Consider the circle S 1  as the unit circle in the complex plane 
and let 4,:s' +S1  be 4,(z) = zk. This is differentiable and all points are 

lar values. The inverse image of a point is k equally spaced points around 
d the local degree at each of them is clearly 1. Consequently, deg(4,) = k. 

One can give another argument for this directly from Theorem 7.4: Divide 
S1 into k equal arcs, which are the El of Theorem 7.4. Let f = 4,. The map 
fl just takes one of these arcs and wraps it around S1,  in the same direction, 
and maps the complement to a point. It is clear that f i  is homotopic to the 
identity. Accordingly, deg( f l )= 1 and it follows from Theorem 7.4 that 
deg(4,) = C i deg( f i )  = k. 

7.8. Example. We shall calculate H,(P'), where P2 is the projective plane, 
even though this computation will follow easily from things we shall develop 
later. Consider P = P2 as the attachment of D2 to S 1  by a map f : ~ '  -is1 
which is 4, of Example7.7. Let D denote the disk of radius in D2 and 
let C be its boundary. Let S = S', the circle the disk is being attached to. 
Let U = P - ( p )  where p is the center of D2. Note that S is a deformation 
retract of U ,  so that these have the same homology. Consider the exact 
sequence of the pair (P,  U): 

By excision and a homotopy H,(P, U )  - Hi(P - S, U - S )  zz Hl(D, C )  which, 
by Theorem 6.6, is Z for i = 2 and is 0 otherwise. Thus H,(U) + H,(P) is an 
isomorphism if k # 1,2. Since U is homotopy equivalent to S' it follows that 
H,(P) = Z for k = 0 and is 0 for k > 2. It remains to compute H ,(P) and H2(P). 

The pair (D, C )  maps to the pair (P,  U) by inclusion. Since this is an excision 
and H2(U)  = 0, H,(P, U )  = 0, Hl(D) = 0 for i = 1,2, there is the following 
commutative diagram with exact rows: 

- 
Thus the map H2(P, U )  4 H,(U) is essentially the same as H ,(C) -+ H,(U) 2 
H,(S),  and this is induced by the inclusion C c, U followed by the retraction 
of U onto S. But this map is just 4,  and so has degree 2. Thus the sequence 

2 
looks like 0-t H 2 ( P ) - +  Z -. Z -+ l-I,(P) 4 0 .  Accordingly, H2(P) = O and 
N , ( P )  z 2,. 

Note that we could have deduced that H l ( P ) z  Z 2  for singular theory 
from the connection between ~t and nl(P), and then the rest follows from the 
exact sequence of (P, U) alone. However, the argument we gave is the type 
of Idea we are going to generall~e. 
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7.9. Corollary (Fundamental Theorem of Algebra). If p(z) is a roinplex poly. 
nornial of positive degree then p(z) has a zero. 

PROOF. There was another proof in Corollary 6.4 of Chapter 11 and we shall 
use parts of that proof here. The function p can be extended to S2 -+S2 and 
there are only a finite number of points which are not regular values. Since 
the image of p is connected and p is not constant, there must be a point in 
the image which is a regular value. But the Jacobian (which was computed 
to be u: + u:) is always positive. Thus the local degree at a point mapping 
into a regular value must be 1. Therefore the degree of p:S2 +S2 is strictly 
positive by Corollary 7.5. Hence p is not homotopic to a constant map and 
so its image cannot miss a point. 

0 

1. Give another proof of Example 7.7 for singular homology using the fact that A 
is a k-fold covering map, and using the relationship between nl(S1) and H1(S1). 

2. Consider the surface S of a tetrahedron. Number its vertices in any order and 
number the three vertices of a triangle 1, 2, 3. Let S' be the triangle with the sides 
collapsed to a point. Note that both S and S' are homeomorphic to S2. Define a 
map S-S' by taking a triangle T in S and mapping its vertices to the points I, 
2, 3 of the triangle in the order of the numbering of the vertices of 7: Extend that 
to an afine map of T to the triangle and then collapse to get a map to S'. Find 
the degree of this map up to sign. Do the same for all regular triangulated polyhedra. 
Does the answer depend on the numbering? 

3. If Xk = S1 u,, D2, where 4, is the map of Example 7.7, compute H,(Xk). 

A CW-complex is a space made up of ''cells" attached in a nice way. The 
"C" in "CW" stands for "closure finite'' and the " W  stands for "weak 
topology." It is possible to define these spaces intrinsically, but we prefer to 
do it by describing the process by which they are constructed. For the most 
part, we will be concerned only with "finite" complexes, meaning complexes 
having a finite number of cells, but we shall give the definition in general 
and we will make use of infinite complexes in parts of Chapter VII. 

Let K'O) be a discrete set of points. These points are the 0-cells. 
If K"-" has been defined, let (fJa.i.) be a collection of maps faa:S"-l- 

K ( " - ' )  where ri ranges over some indexing set. Let Y be the disjoint union 
of copies D: of D", one for each o, let 3 be the corresponding union of the 
boundar~es St ' of these dlsks, and put together the maps fd ,  to produce a 
map f :  5 -t K t " -  'I. Then define 

K ( " ) = K ( " - ~ ) ~  Y 
f .  

The map /i, is called the "attaching map" for the cell o. 

Figure IV-5. A two-dimensional CW-complex. 

If K(") has been defined for all integers n Z  0, let K = UK"' with the 
"weak* topology that specifies that a set is open o its intersection with each 
K(") is open in K("). (It follows that a set is dosed 9- its intersection with 
each Kcnj is closed.) 

For each o let f,: D: -+ K be the canonical map given by the attaching of 
the cell 0. This map is called the "characteristic map" of the cell o. Let K ,  
be the image of fa. This is a compact subset of K which will be called a 
"closed cell." (Note, however, that this is generally not homeomorphic to Dn 
since there are identifications on the boundary.) Denote by U ,  the image in 
K of the open disk D", S:-l. This is homeomorphic to the interior of the 
standard n-disk (i.e., to Rn). We shall refer to U ,  as an "open cell," but 
remember that this is usually not an open subset of K .  It is open in K("). See 
Figure IV-5. 

It is clear that the topology of each K'"), and hence of K itself, is 
characterized by the statement that a subset is open (closed) o its inverse 
image under each f, is open (closed) o its intersection with each K ,  is open 
(closed) in K a  where the topology of the latter is the topology of the quotient 
of D" by the identifications made by the attaching map fa,. 

Also note that a function g: K -+ X ,  for any space X, is continuous if and 
only if each g o  f,: D", X is continuous. 

By a ''subcomple~" we mean a union of some of the closed cells which is 
itself a CW-complex with the same attaching maps. (Thus if the cell o is in 
the subcomplex then K ,  is contained in the subcomplex, as well as all the 
open cells it touches.) It is clear that an intersection of any collection of 

, subcomplexes of K is a subcomplex of K .  Consequently, there is usually a 
minimal subcomplex satisfying any given condition. 

The subcomplex K(") of K is called the "n-skeleton" of K .  

8.1. Proposition. 1 j K  i r  u C W-romplex then the following scucrments all hold: 

(I) $A c K has no two potnts in the same open cell, then A is closed and discrete; 



(2) ifC c K is compact then C is contqined in a.finite union of open cells; and 
(3) each cell of K is contained in afinite subcomplex of K.  

PROOF. First, we will show that (1) => (2). If C c K is a compact set then let 
A c C be a set of points, one from each open cell touching C. By (1) A is 
closed, hence compact, and discrete. Hence A is finite. But that means C is 
contained in a finite union of open cells as claimed. 

Second, we will prove (2) =(3). In fact, for a cell a, we will only use (2) 
for the set C which is the image of the attaching map fa, and the images of 
attaching maps of smaller-dimensional cells. Statement (2) implies that K ,  
is contained in a finite union of open cells, and by construction all of these 
are of smaller dimension except for U ,  itself. By the same token each of these 
lower-dimensional closed cells is contained in a finite union of open cells of 
even smaller dimension (except for the cell itself), and so on. This reasoning 
obviously must come to an end with 0-cells in a finite number of steps, and, 
at that stage, the union of the cells produced is a finite subcomplex. 

Third, we will prove (3)=>(1). Consider the intersection of A with a closed 
cell. By (3) this is contained in a finite subcomplex. Since A has at most one 
point in common with any open cell this intersection must be finite, and 
hence closed. For any point XGA, the set A - fx)  satisfies the hypothesis for 
A, and so it must also be closed. Hence (x) is open in A, so A is discrete. 

Finally, we put all this together. Statement (1) clearly holds for K'O). 
Suppose we know (1) for the n-skeleton K'"'. Then we also have (2) for K'"). 
In turn, we get (3) for K'"). But the proof of (2)*(3) for a particular k-cell 
only used (2) for subsets of K'&- '). Thus we actually have (3) for K'""). Thus 
we also have (1) for K'""). Consequently, we have all three statements for 
K'"' for all n. But any cell is in some K'"), and so we know (3) for K itself, 
and this implies (1) then (2) for K .  

8.2. Theorem. If K is a C W-complex then any compact subset of K is contained 
in a finite subcomplex. 

PROOF. Let C c K be compact. By (2) of Proposition 8.1, C is contained in 
a union of a finite number of open cells. By (3) of Proposition 8.1, each of 
these is contained in a finite subcomplex. The union of this finite number of 
finite subcomplexes is a finite subcomplex which contains C. 0 

Note that it follows that the attaching map f;, for any cell a is an 
attachment onto a finite subcomplex. Part (3) of Proposition 8.1 is the origin 
of the term "closure finite." The notion of a CW-complex is due to J.H.C. 
Whitehead [2]. 

Here are some examples of finite CW-complexes. 

8.3. Example. The n-sphere is a CW-complex with one 0-cell and one n-cell, 
where, of course, the only attaching map is the unique map 9-' -+point. 
There are no cells at all in other dimensions. 

8.4. Example. Another CW-structure on the nsphere is obtained by starting 
with two 0-cells, making K(O) %So. To this, attach two 1-cells attached by 
homeomorphisms So -+ K"'. This makes K"' % S'. Then attach two 2-cells 
(the north and south hemispheres) again by homeomorphisms S1 -, K"). This 
gives K(') z S2. The pattern is now clear. This complex has exactly two cells 
in each dimension from 0 to n. 

8.5. Example. In Example 8.4, we can take the two cells in dimension i ,  for 
each i. to be 

and 
D; = {(x I , .  . . , X i +  1,O,. . . ,O)€Snl~i+ 1 2 0) 

Then the antipodal map interchanges D', and Df.  If we identify these two 
i-cells by the antipodal map for each i = 0,. . . , n then we get a CW-complex 
structure on P", the real projective n-space. (See Example 8.9 for the complex 
analogue giving another ,. approach to the definition of this structure.) 

8.6. Example. The 2-sphere has a CW-structure given by its dissection as a 
dodecahedron. This has twenty 0-cells, thirty 1-cells, and twelve 2-cells. 

8.7. Example. The torus T2 can- be considered as the space resulting from 
a square by identifying opposite sides. Under this identification all four vertices 
of the square are identified. Thus one can consider this as a CW-complex 
with one 0-cell, two 1-cells, each corresponding to one of the two pairs of 
identified sides, and one 2-cell. The attaching maps for the 1-cells are unique 
since the 0-skeleton is a single point. The 1-skeleton K(" is a figure eight. If 
the two loops of the figure eight are named a and P then the attaching map 
of the 2-cell is given by the word crpcr-'P-'. 

8.8. Example. The Klein bottle is similar to the torus. The only difference 
from Example 8.7 is that the attaching of the 2-cell is by the word aja-'/?. 

8.9. Example. Consider complex projective n-space CP". Let ( z o : z l : . . - z , )  
denote the homogeneous coordinates of a point in CPn. Let f :  DZn -t CPn 
begiven by f(z, ,  , . . , Z ~ ~ , ) = ( Z ~ : ~ ~ ~ : Z ~ ~ ~ : ( ~  -Ci<nlz~1)112).ThenftakesaDn 
into the points with z, = 0, i.e., into CPn-'.  Iff, denotes the restriction of 
f to S2"-' then f factors through C P " - ' U ~ , D ~ ~ .  The resulting map 
CP"-' u J , D Z n - - +  CPn is easily seen to be one-one and onto. Since it is from 
a compact space to a Hausdorff space i t  is a homeomorphism by Theorem 7.8 
of Chapter I. Therefore, this gives a structure as a CW-complex on CPn with 
exactly one i-cell in each even dimension 0 2 i 5 2n. There are no odd 
dimensional cells. 

We conclude this section by showing that a covering space of a CW-complex 
has a canonical structure as a CW-complex. This is rather a triviality, but 



perhaps it is useful to illustrate a direct argument concerning the weak 
topology. Let p: X -f Y be a covering map and assume that Y is a CW-complex 
with characteristic maps fa: Dn-+ Y. Since Dn is simply connected, each fa 
lifts to maps f ; :  Dn -+ X which are unique upon specification of the image of 
any point. Take the collection of all such liftings of all fa to define a cell 
structure on X. 

8.10. Theorem. With the above notation, the covering space X of the CW- 
complex Y is a C W-complex with the f;  as its characteristic maps. 

PROOF. The only thing that really needs proving is that X bas the weak 
topology. That is, we must show that a set A c X is open 9 each f ; ' ( ~ )  
is open in the disk which is the domain off;. The implication * is trivial 
since f;  is continuous. Thus we must show that if A c X has each f , l ( ~ )  
open, then A is open. If U ranges over all components of pV'(V) where V 
ranges over all connected evenly covered open sets in Y, then A = U ( A n  U )  
and f ,  ' ( A n  U )  = f ,  ' ( ~ ) n  f ;  ' (U) .  This shows that it suffices to consider 
the case in which A c U for some such U .  

We claim that 

f a - ' ( ~ ( A ) )  = U { f i 1 ( A ) I f ;  a lift of fa).  

Indeed, if X E  fa-'(p(A)) then f,(x) = p(a) for some ~ E A  and there exists a 
lifting f; of fa such that f;(x) = a. Thus X E  f;'(a) c f i 1 ( A ) .  Conversely, if 
X E  f ;  ' ( A )  then f;(x) = a€  A and so f,(x) = (po fo;)(x) = p(a )~p(A) ,  giving that 
X E  f ;  '@(A)) ,  as claimed. 

Therefore, if f ;  ' ( A )  is open for all d, then the union above is open and 
so f a - ' ( p ( ~ ) )  is open for all a. Since Y has the weak topology by definition, 
p(A) is open. But A c U and p: U - + p ( U )  = V is a homeomorphism by the 
assumption that U is a component of p- ' (V)  for the evenly covered open 
set K Therefore, A is open in U and hence in X. 

1. Fill in the details of Example 8.9. 

2. 0 Give the analogue of Example 8.9 for quaternionic projective spaces. 

3. Let X be the union in R" of infinitely many copies of the circle which all go 
through the origin, but are otherwise disjoint Show that X does not have the 
structure of a CW-complex. 

9. Conventions for CW-Complexes 

For the purposes of computing the homology of CW-complexes in the 
following sections we need some notational conventions. For technical 
reasons we will consider characteristic maps as being defined on the cubes 
I" rather than on D" 

, . - - - - - -. . . - . 

For spaces X, Y with base points (pointed spaces), and using * to denote 
all base points, the one-point union X v Y is the disjoint union X + Y with 
base points identified. The "smash product" is X A Y = X x Y/ (X  x (*) u 
(*) x Y) = X x Y / X  v Y. If X and Y are compact then X A Yis the one-point 
compactification of(X - {*)) x (Y - {*I). Thus, for example, SP A S4 w SP+¶. 

Let I = [O, l ]  with base point { O } .  Let I" = I x ... x I (n times). Thus I' = I. 
Let S1  = I 1 / a I 1  = I / ( O ,  11, a pointed space. Let y l : I 1  -+S1 be the quotient 
map. Let S p = S 1  A ...  AS^ ( p  times) and y p : I P = I  x ..- x I - f S 1  A -.. AS' 
= SP be y p  = y ,  A . .. A y,, and note that this factors through I A ... A I. Note 
that y p  collapses a I P  to the base point and is a homeomorphism on the 
interior. ( a I P  c I P  is the set of points with some coordinate 0 or 1 . )  Also note 
that 

y P + 4 = y P  A y q : I P + 4 = I P  x IQ-+SP A s4=sp+4. 

The reason for using In rather than Dn is that we have I P + ¶  = I P  x 14 not 
just homeomorphic. This will be very convenient when considering product 
complexes. Note that, with these conventions aIP is hom.eomorphic to SP-' 
but not equal to it. 

Now let H ,  be a homology theory satisfying the axioms. We will assume 
it to have integer coefficients, but this is not really necessary. It could have 
any coefficient group G but statements about "generators" would have to 
be replaced with statements about "given isomorphisms with G." 

Let I0 be a singleton, so that Ho(IO) % Z, the coefficients of the theory, 
and take, once and for all, a generator [I0] €H,(IO). This element [I0] is often 
called a "fundamental class," or an "orientation." 

Take yo:  10-+SO = {0,1) to be the map to (I), ( 0 )  being the base point * 
of So. (For any space X, X / a  should be regarded as the disjoint union of 
X and a base point. Thus yo:  1' -+So is the collapse I 0  -+ 10/aIO z So, where 
the homeomorphism is the unique pointed map. Note that dIO = 0.) 

Now we shall orient IP, SP, and a I P  (which, here, is not SP- ') inductively 
as follows. If I P  has been oriented by choice of a generator [ I P ] ~ H p ( I p ,  aIP) 
then orient SP by taking [ S P ] ~ H p ( S P ,  *) to correspond to [Ip] under the 
isomorphism 

yp*:  Hp(IP, aIP) - Hp(Sp, *). 

That is, take [SP] = yp,[IP]. That yp* is an isomorphism follows from the fact 
that, up to a homeomorphism, y p  is the collapsing map y in the diagram 

where h is a homotopy equivalence (stretching D: to cover Sp) and the 
inclusion induces an isomorphism in homology by the excision and homotopy 
axioms (see Theorem 6.6). 

Now we orient aIP": Consider the map 1 A y , : l p + l  = I 1  x I p - , I '   AS^. 
This restricts to dIP" = ( d l 1 )  x I p u I 1  x (iiIP)-+iil' x S P u I  x ~ - , ~ R _ S _ P _ ~ ~ ~  -- ----------- Sv (The latter e q u w % X e  canonical homeomorphism X +So A X 
4 
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- taking x to (I}  A x, for any space X.) This is a map which collapses all but 
the face ( I }  x I P c  I' x IP to the base point and is essentially yp on this face. 
Clearly it is a homotopy equivalence. (Indeed, it is homotopic to a 
homeomorphism.) This map 1 A y,: dIP+' 4 SP then induces an isomorphism 

and we take [aIP+l]~Hp(dIP+l,*) to go into [SP]. 
Finally, we orient IP+ ' via the isomorphism 

a,: H,+ ,(IP+ l, a l p +  l) A H ~ ( ~ I P +  l, *), 

choosing, of course, [IP+'] to go into [dIP+']. This completes the inductive 
definitions. 

Now, suppose given a CW-complex K. For each n-cell o of K we choose, 
once and for all, a characteristic map 

f,: I" -+ K("). 

Its restriction to aIn is the "attaching map" 

fa,: aIn -, K(" - ". 
Consider K'")/K'"-" (for n = 0 this is KO + I*)) as a pointed space. It is the 
one-point union 

K(")/K("- ') x V Sn (one copy for each n-cell a). 

There is a "projection9' to the ath summand Sn and the composition 

collapses dIn to the base point and is otherwise a homeomorphism, We are 
free to change this by a self-homeomorphism of S" and thus, without loss of 
generality, this composition can be assumed to be the given collapse y,. 

With this assumption, the ath projection K'") -+ Kt")/K("-''-9 will be 
denoted by p,. Thus p,: K'")-+Sn is that unique map such that 

and 

p, fa. = constant map to base point, for n-cells a' # 6. 

10. Cellular Homology 

We will now show how to compute the homology of a CW-complex using 
only information about the degrees of certain maps arising from the attaching 
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maps. Throughout this section let K k a CW-complex and A a subcomplex. 
Let K(") denote the union of the n-skeleton of K with the entire space A. 

Let +,In be the disjoint union of n-disks over the n-cells a of K not in 
A. The characteristic maps f ,  fit together to give a map f :  -k ,In -+ K(") which 

1 takes + ,aIn -+ K("-'). Additivity gives 
I 

I 
1 which is a free abelian group on the n-cells of K not in A. 

10.1. Lemma. The map @,fa,: @, Hn(In, dln) -, H,(K("), K'"- ") is an isomor- 
phism. Also Hi(K("), K("- l ) )  = 0 for i # n. 

PROOF. This is equivalent to the map f,: H,( + ,(In, din)) -+ H,(Ktn), K("- ') ) 
being an isomorphism. In turn, this follows from the diagram: 

I I = 
(h'omotopy axiom and +&td--;i*\ 5-lemma) '.? 4 e 

H,( + (I", In - {OJ)) ---+ H,(Kfn), K'"' - Uf,(O)) 1. I z (exnsron) 

H,( + (int In, int In - (0))) ;H,(K(") - K("-l), K(n)-- K(n- 1) - u f ,(o))- 

The isomorphism on the bottom holds because the map of spaces is a 
homeomorphism. 

By the naturality of the homology sequence of a pair we get the following 
result. 

10.2. Corollary. The following diagram commutes: 

We have seen that H,(K("), K("-')) is a free abelian group on the n-cells 
of K not in A, and that Hi(K("), K("-I)) = 0 for i # n. The exact homology 
sequence of (K'"), K("- ')) then implies that Ni(Kt"- I)) -+ H,(KCn)) is onto for 
i # n, is one -one for i # n - 1, and thus is an isomorphism for i # n, n - 1. 
By induction on n with i fixed we conclude that 

Hi(Ktn)) = 0 for n < i (and for i < 0), 



and we have the exact sequence - 

Consider the following diagram with exact row and column, defining 8,. , 
by commutativity: 

0 
1 

% + l  H,+ , ( ~ ( n +  1)) In+ I .  H (K(U+~) ,  K(")) -, H,(K(")) L H,(K("+ l))-+o 
n +  1 

Accordingly,~,+,=j,~a,+l.Since~,~,+l =jn-ldnjnan+l = j n - l ~ O ~ d n + l = O ,  
this gives a boundary operator P. Note that 

kerPn+l = keran+l = imjn+ , .  

Hence 

ker fin = ker a, = im j,, 

im Pn+ =jn(im a,+ 

and j, is a monomorphism on H,(K(")). Consequently, j, induces isomorphisms 

H,(K(")) ker P, 

U U 
ima,+, L i r n P , , + ,  

and hence induces 

H,(K("+ I ) )  sz coker a, + , --% ker Pn/im Pn + 

But 

since H,(K('), K"-')) = 0 for i > n, and by the exact sequences. Thus, if 
dim(K) < co, we get 

-2; H,(K, A) ;;. Hn(K(" ' I ) )  % ker /3,/irn {Hn + ,. 
%-b%.-h~--- 

For arbitrary K, and for singular homology this also follows from the fact 
that any singular chain has compact ~mage and hence is inside some finite 
subcomplex. It is proved in general from the axioms in Appendix A but the 
case of finite-dimensional cell complexes 1s all we really need here. 

The above facts then show that H , ( K ,  A) can be computed from the chain 
complex whose nth term is H,(K("), K("- ") and whose boundary operator 
is B. We now look more closely at this chain complex. 

Let C,(K, A) be the free abelian group based on the n-cells of K not in 
A. Define the homomorphisms 

where 4,: H,(S", *) + Z is the unique homomorphism such that 4,[S"] = 1. 
Note that Y has already been shown to be an isomorphism. We claim that 
clj is its inverse. To show this, it suffices to show that @oY = 1. Thus start 
with some n-cell o, i.e., a basis element of C,(K, A). The composition in 
question is then @(Y(o)) = @( fa*[17)  = 1, $,(p,, f,*[I"])z. Using that 
p, fa = y, for z = o and is constant otherwise, we see that this is 

as claimed. 
These explicit maps allow us to "compute" the homology as follows: We 

define, of course, the boundary operator a on CJK, A) by commutativity of 
a n + ,  

C, + 1(K, A) C,(K, A) 

I - I - 
H " + l  ( p +  I), ~ ( n ) )  !z+ Hn(K(n)) il, H/K(~), ~ ( n -  1) 

I 
) 

T 
where the verticals are the isomorphisms given above. 

For a generator a ~ c , + , ( K ,  A) (an n + 1 cell) we trace this diagram as 
follows (where the [ t : a ] ~ Z  are the coefficients that make the diagram 
commutative): 
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Looking at our-previous description of the right-hand vertica1,map we 
conclude that the "incidence number" [t: a] is 

by the definition of degree and the choice of the generators [dIn+']~Hn(aIn+ I )  

and [Sn]~Hn(Sn). Consequently, we have shown: 

10.3. Theorem. HJK, A) is isomorphic to the homology of the chain complex 
CJK, A), where the boundary operator a: Cn + ,(K, A) -, C,(K, A)  is given by 

where 

The boundary operator d: C,(K, A) 4 Co(K, A) is the least important one 
to understand since the singular homology in this area is easy t o  understand. 
(We already computed it in Sections 2 and 3.) However, it is perhaps the 
most difficult for the student to understand from the point of view of the 
present section. Thus we will work that out here. Suppose that x and y are 
0-cells in K and that a is a 1-cell attached by the map fa,: (0,l)  = aI1 -+ {x, y) 
c K(O) taking 0 to x and 1 to y. We wish to compute aa = Ly: a] y + [x: alx, 
where [x: a] = degb, fa,) and [y: a] = deg(py fa,). The projections p, and 
p, are both compositions of the form (disregarding 0-cells other than x 
and Y) 

and the only difference is that p, takes x to 1 and y to 0, while p, does the 
opposite. Thus pxfaa takes 1 to 0 and 0 to 1, while pYfaa is the identity on 
So = (0,l) .  Therefore [x: a] = deg(p, faa) = - 1 (the reader may wish to verify 
the details of this) and [y: a] = deg(p, f<,,) = 1. Hence, we can now compute 
i3a = [y: a]y $ [x: a]x = y - x. (If either x or y is in A, just discard it.) 

We shall now illustrate these results by doing some simple examples. 

10.4. Example. Consider the real projective plane K = P2 as a CW-complex 
with exactly one 0-cell x, one I-cell a, and one 2-cell a. There is only one 
way to attach the 1-cell to the 0-cell, and it makes K"' into a circle. The 
2-cell is attached to this by the map that is the quotient map of identifying 
antipodal points on S1. The chain complex C,(K) is 
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... -+0+Z-+Z+Z--+O-. .... 

For the 1-cell a we have that au = x - x = 0, by the remarks above. For the 
2-cell o, the attaching map is just the map that can be thought of as z-z2 
of the unit complex numbers. This is the map pafdu up to a difference of 

ientation (which only affects the sign of the incidence number [a: a]). By 
mple 7.7 this map has degree 2. Our neglect of "orientation" here means 
we cannot depend on the sign, but anyway, [a: a] = .+_ 2. Accordingly, 

the chain complex looks like 

+ 2  0 - .  -+o-tz +z ---+z-+o-, a - .  

so that H,(P2) = 0, H,(P2) x Z,, and H,(P2) x Z. 

10.5. Example. Consider the torus K = T2 as the space arising from the unit 
square by identifying opposite sides. The obvious structure as a CW-complex 
is to let the corners be the unique 0-cell x, the edges of the square giving 
two 1-cells a, b and the interior giving the single 2-cell 0. Thus Co(T2) z Z, 
generated by x, Cl(T2) % Z@Z, generated by a and b, and C2(T2)xZ,  
generated by o. By the above remarks aa = 0 and db = 0. The attaching map 
for a is the loop in the figure eight (formed by a and b) running around a 
then b then a- '  then b-I. The composition pafa, is this map followed by 
mapping the a part of the figure eight around the circle by degree + 1, and 
the b part to the base point. This is just the loop a*constant*a-'*constant 
-constant. Hence it has degree 0, and similarly for pb fa,. Consequently, 
[a: o] = 0 and [b: o] = 0 so that a = 0 in degree 2, and thus in all degrees. 
Therefore H,(T2) x C,(T2) % 2, Z @ Z, Z in degrees 0, 1, 2, respectively. 

10.6. Example. The Klein bottle K2 can be constructed similarly to the torus 
but with the "b" edges identified with a flip. Thus the attaching map, up to 
orientation of cells, would be the loop a*b*a-l  *b. In this case the 
composition pb fad becomes the loop, in S1, constant * b * constant * b which 
has degree + 2. Thus the boundary map computation will give .[b: a] = -t 2, 
where the sign depends on how one defines the attaching maps in detail. 
Thus do = la: a]a + [b: o]h = Oa + 2b = _+ 2h. It then follows that H2(K2) = 0, 
H,(K2) x Z 63 Z2, and Ho(K2) % Z. 

10.7. Example. We will define a space Las a quotient space of D3 as follows. 
The only identifications will be on the boundary S'. Let relatively prime 
integers p > 1 and q be given. Identify a point on the closed upper hemisphere 
of S2 with the point on the lower hemisphere obtained by rotating clockwise 
about the vertical axls through an angle of 27cq/p and then reflecting through 
the equator. Then a point in the open upper hemisphere IS identified to 
exactly one other point which is In the open lower hemisphere. However, a 
point on the equator is identified with all points on the equator makrng an 



angle with it of any multiple of 2zqlp. Since q is prime to p, this implies that 
points on the equator 27cnlp apart are identified for all n = 1, 2,. . . , p - 1. We 
take the class of some point on the equator to define the unique 0-cell x of 
L. The equivalents .of this point divide the equator into p intervals of angle 
2x/p all equivalent to one another. Take such a (clockwise) interval to define 
the unique 1-cell a of L. The upper hemisphere is then taken to define the 
unique 2-cell b of L and D3 itself is taken t o  define the unique 3-cell c of L. 
Then aa = x - x = 0 and db =pa  (or -pa with the opposite choice of 
orientation). It is clear that ac is either + (b - b) = 0 or + (b + h) = + 2b. But 
+ 2b is not a cycle and so we must have ac = 0. Consequently, H,(L) z 2, 
H,(L) FZ ZP, H,(L) = 0 and H3(L) FZ Z. This space can be seen to be the lens 
space L(p,q); see Example 7.4 of Chapter 111. Indeed, this is the classic 
description of the lens space (except for our use of a simple CW-decomposition 
instead of a much more complicated simplicia1 decomposition). 

1. Give a CW-structure on the 3-torus T3 and use it to compute the homology. 

2. Consider the space X which is the union of the unit sphere S2 in R3 and the line 
segment between the north and south poles. Give it a CW-structure and compute 
its homology. 

3. Show that the space X in Problem 2 is homotopy equivalent to the one-point 
union S2 v S1 of a 2-sphere and a circ1e:Use this to give an easier computation 
of H,(X). 

4. Compute the homology of the real projective 3-space. (Hint: Try to use informa- 
tion you already have from the computation for projective 2-space.) 

5. The "dunce cap" space is the space resulting from a triangle (a, b, c) and its interior 
by identifying the three edges by (a, b) - (b,  c)  - (a, c). Compute its homology using 
the induced CW-structure. 

6. Compute the homology of the space obtained from a circle by attaching a 2-cell 
by a map of degree 2, and another 2-cell by a map of degree 3. Generalize. 

7. 0 Show that 

Z forieven,0<;<2n, 
H,(CPn) z 

0 otherwise. 

8. .$ Show that 

Z for i divisible by 4,0 < i 5 412, 
N,(QP") % 

0 otherwise. 

9 Let K be the quot~ent space of the cube {(x,y,z)llxl<I, Iyl<I, I z l ~ l )  by 
the ~dentlficatlons (x, y, I )  - (- y,x, - l), (x, l,z) -(I, - I ,  - x), and (1 ,  y, z) - 
( -  I ,  - z, y), i e ,  by ~dent~fylng each face w~th the oppor~te face by a counter 
clockw~re rotatlon through 90". Compute N, (K ,%)  dnd I f , ( K , % , )  

10 1 x 1  X result from lI3 by identifying points on S2 taken into one another by the 

180" rotation about the vertical axls. G~ve X the structure of a CW-complex and 
compute ~ t s  h;mology. 

11. Let C be the c~rcle on the torus T2 which is the image, under the covering map 
R2 +T2, of the l~ne px = q y .  Let X = TZ/c, the quotient space obtained by 
identifying C to a point. Compute H,(X). 

12. For a CW-complex, show that C, [o: r][z: a] = 0 for all (n + 1)-cells a and 
(n - 1)-cells w, and with T ranging over all n-cells. 

11. Cellular Maps 

In the previous section we showed how to compute H,(K)  for a CW-complex 
K .  In this section we show how to compute f,: H,(K)+ H,(L) for a map 
f :  K  -+ L between CW-complexes. We shall use that K x I has the structure 
of a CW-complex, where I is regarded as the 3-cell complex {I, (01, (1)). The 
cell structure of K x I is obvious (if not, see Section 12). That the product 
topology coincides with the CW-topology is easy to see; a proof is given in 
Theorem 12.3, not requiring the reading of the rest of Section 12. 

11.1. Definition. A map f :  K - +  L between CW-complexes is said to be 
cellular iff (K'")) c L'") for all n. 

11.2. Lemma. Let K be a CW-complex. Then any map (6: D" -+ K  such that 
(6(Sn-') c K("-') is homotopic relSn-', to a map into K'"'. The same is true 
for D" replaced by a quotient space resulting from Dn by some identiJications 
on the boundary. (Accordingly, (K, K'"') is "n-connected.") 

PROOF. Since any compact subset of K is contained in a finite subcomplex, 
it suffices to show that if (X, Y) is a pair of spaces with X = Y udIm,  where 
4: aIm -+ Y, for some m > n, and i f f :  (Dn, Sn-') + ( X ,  Y) then f is homotopic, 
re1 Sn-l, to a map into Y. Let U = X - Y z Rm and put M" = j - ' ( U )  which 
is an open set in R". Let E # @ be an open set with Ec U compact. Put 
B = M - f - '(E) which is a closed subset of M. By the smooth approxlmation 
Theorem (Theorem 11.7 of Chapter II), there is a map y: M -+ U which equals 
f on B, is smooth on M - B, and IS homotopic to f re1 B. Since g = f on 
B, and since B u  f -'(Y) is a nelghborhood of f -'(Y), g extends to a n d p  
g:Dn-+X by tak~ngg(x)= f ( .u ) forx~D"-  M = f -'(Y). Lewe_LreguAa_r  { f c t ~ ~ - ~ t P ~ w  
value of gJ  

---> *-'M 
Slnce m > n, this just means that p$y(M - B). But * > - L $ ~ :  

pefg(B) = J ( B ) ,  and so p$g(Dn) However, X - ( p )  deforms to Y and so there 
is a homotopy relSM-I of g, and hence off ,  to a map into Y 

For the case of a map from a space Q which is D" with some ~dcntificat~ons 
on the boundary, just apply what we now have to the composition 
0 "  -+Q -+ K. Since the result~ng homotopy is re1 S" -', it factors through Q x I 
and the ~nduccd funct~on Q x I -+ K is continuous because Q x I har the 
quotlent topology by Propos~~ion 13.19 of Chapter I. 
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11.3. Corollary. If K is a C W-complex then any map Dn x (0) US"- ' x I -+ K 
suclz that f(Sn-' x { l ) )  c  extends to a map D" x 1 -+ K taking Dn x {I) 
into K'"'. This also holds for maps from Q x 1 where Q is a quotient space of 
Dn resulting from ident@cations on Sn-' .  

PROOF. This follows from Lemma 11.2 and the evident fact that the pair 
(Dn x I ,Dn x (0) usn-' x I) is homeomorphic to the pair (D" x I, D" x (0)); 
see Figure VII-6 on p. 45 1. 0 

11.4. Theorem (Cellular Approximation Theorem). Let K and Y be CW- 
complexes and L c K a subcomplex. Suppose 4: K -+ Y is a map such that 41L 
is cellular. Then 4 is homotopic, re1 L, to a cellular map (I/: K -+ Y. 

PROOF. Extend 4u(40nL): K x (0) u L x I -+ Y by induction over the 
skeletons of K - L using Corollary 11.3. Continuity of the result is a 
consequence of having the weak topology on K x I. 0 

11.5. Corollary. If 4, $: K -+ Y are cellular maps which are homotopic, then 
they are homotopic via a cellular homotopy K x I -, Y.  Also, if the original 
homotopy is already cellular on L x I ,  for some subcomplex L of K ,  then the 
new homotopy can be taken to be identical to the old one on L x I .  

PROOF. Just apply Theorem 11.4 to ( K  x I, K x d I u  L x I). C] 

In the remainder of this section, we shall show, for a cellular map g: 
(K, A) -+ (L, B) of pairs of CW-complexes, how to compute the induced map 
g*: H,(K, A)-+ Hi(L,B) in homology. As in the previous section, we shall 
simplify the notation by letting K'") denote the union of the n-skeleton of K 
with all of A and similarly for (L, B). 

Since g is cellular, it induces the commutative diagram: 

Thus g,: C,(K,  A )  -r C J L ,  B), induced by this diagram, is a chain map. 
(Although the notation g, for an induced chain map is derived from the 
notation for the singular chain complex, we use i t  to denote any chain map 
induced from a map. This should not cause confusion since cellular chain 
maps and singular cha~n maps are never used at the same time in this book.) 

We have shown that there is the following commutative diagram with 
exact rows: 

A 

0 -+ im a n + ,  -+ Hn(Ktn)) 5 H , ( K ,  A )  -+o 

where the dotted arrow is the resulting isomorphism with which we are 
concerned. (Recall that Hn(K("+", A) z Hn(K, A).) There is the same diagram 
for (L,B)  and its obvious naturality shows that g, induces a map from the 
diagram for K to that for L. Accordingly, the following diagram commutes: 

.I L 
kerfif s* ker B: 

+ ------------ . 
im B,K, im Pf+ I 

The bottom of this diagram is simply the map y,: H,(C,(K, A))+ H,(C,(L, B)) 
induced by the chain map 8,: C,(K, A) -+ C,(L, B). This shows that 
g*: Hn(K, A) -+ Hn(L, B) can be "computed" from the chain map g,: C,(K,  A) 
-+ C,(L, B). It remains to get a formula for this chain map. 

Consider the following commutative diagram, where the barred maps are 
uniquely defined by commutativity, and g,,s is defined to be the composition 
along the bottom. (Here a denotes an n-cell of K - A, .r an n-cell of L - B, 
and g: K -+ L is cellular.) 

$1.0 

By the discussion above, the diagram 
YA 

Cn(K, A) - Cn(L, B) 

I - I 
commutes (which is the definition of the chain map y, on the top). For an 
n-cell a of K - A ,  we can then compute g,(o) by going down, right, and up 
in this diagram as follows: 



the sums ranging over n-cells s of L - B. We have shown: 

11.6. Theorem. If  g: K -+ L is cellular, and A c K is a subcomplex of K, and 
B, one of L, such that g(A) c B, then the induced chain map g,: C,(K, A)-+ 
C,(L, B) is given by 

We have now shown how to compute the homology groups of CW- 
complexes and the induced homomorphisms in homology from cellular 
maps. Also, the computations depend only on the degrees of maps of spheres 
associated to the attaching maps. These degrees can be found from smooth 
approximations and signs of determinants of certain Jacobian matrices. None 
of this data for the computations depends at all on the particular homology 
theory used. Thus we have a sort of uniqueness theorem for homology theories 
satisfying the axioms as far as their values on CW-complexes is concerned. 
This is not quite a proper u*iqueness theorem since we should also show 
how to compute the "boundary" operator a,: Hn(K,A)+ H , -  , (A)  from the 
same sort of data. This can be done by similar arguments as for the rest, 
but we don't need it and so leave it as an exercise for the interested reader. 

It is worthwhile noting here that although we have this uniqueness result, 
we still do not have a corresponding existence theorem. That is, we do not 
know yet that there is any homology theory that does satisfy the axioms. In 
later sections we shall remedy this and show that singular theory does satisfy 
the two axioms (excision and homotopy) that we have not already verified. 
Only at that point will the applications we have already given be fullyjustified. 

1 Cons:der the torus T2 as the quot~ent  space of R 2  by ~ d e n t ~ f y ~ n g  punts, both of 
whose c o o r d ~ n ~ t e \  d~ffer by Integers In R 2  also cons~der the l ~ n e  segment from 
(0,O) to (2,3) In the torus t h ~ s  gets embedded as a errcle C Compute, w ~ t h  the 
methods of t h ~ s  sect~on, the map H ,(C) + H , ( T ~ )  ~nduced by the ~nc lu \~on  C c, r2 

2. Consider the unit sphere S2 in )-space. Attach two handles (connected sum with 

two tori) away from the z-ax~s in such a way that the 180" rotation about the 
z-axis takes one into the ocher. Call this space X. Define a quotient space Y of 

I this by Identifying points that are symmetric w ~ t h  respect to  the z-axis. (Note that 
Y is homeomorphic t o  the torus.) Compute the homology of these spaces and the 

I 

map n,: H,-(X)-+ H,(Y) induced by the quot~ent  map n: X -+ Y. 

3. + Let L be a subcomplex of the CW-complex K .  
(a) If L is contractible, show that L is a retract of K. 
(b) If L and K are both contractible, show that f, is a deformation retract of K. 
(Hint: Construct the retractions by induction over skeletons.) 

4. Show that the fundamental group of a finite CW-complex is finitely generated. 

5. Show that a connected finite CW-complex has the homotopy type of a CW-complex 
with a single 0-cell. 

12. Products of CW-Complexes 

Let K and L be CW-complexes and K x L the product CW-complex. This 
need not have the product topology unless one of K and L is Iocally finite, 
but it is the case L = I (a complex with cells (01, {I) ,  and [0, 11) in which 
we are mainly interested. The attaching maps for K x L will be described in 
a moment, and that is how this space is defined. (The fact that the topology 
may not be the product topology is of very little significance, since it can be 
shown that the singular homology and homotopy groups are the same, in a 
strong sense; see Problem 5.) 

Since P x I4 = IP+¶ and SP A Sq = SP+¶ by our conventions, we can define, 
for a p-cell o of K and a q-cell z of L, the p + q-cell a x z of K x L having 
characteristic map 

Also 

extends to (K  x L)'P+q) = U { K " )  x L"'ji t j = p + q). If xcIP and y61q then 

Thus, p, ., = p, A p, extended trivially to (K X ' L ) ( ~ +  y). 

We wish to compute the boundary operator of the chain complex 
C,(K x  L) which is the free abelian group on the cells a x z, in terms of those 
on C,(K) and C,(L). 

First, let a be a p-cell of K ,  T a ( p  - 1)-cell of K and p a q-cell of L. To 
find x p) we need to know, in particular, the value ofthe incidence number 



i v . r~orriorogy I neory 

For (x ,  y)edIP+4 = dlP x I q u  IP x aIq, w, have 

If one looks at this, one sees that it is the composition (1, denoting the 
identity on IP or SP) 

1 AY P r  h l  
IP a ~ q ~ a ~ p  I ~ = ~ ( I P  I~)---L~+~IP A sq2-5~~-1 A sq=sp+q- l  

where the first map is a restriction of 1, A y,: IP x Iq -+ IP A Sq. 

12.1. Lemma. [z x p: a x p] = [z: a]. 

PROOF. By the above remarks, we need to show that 

In general, for a map g: dIP+SP-' we will show that the composition 

1 AYq g ~ l  
~ ( I P x I ~ ) ~ - - - - , ~ I P A s ~ ~ s P - ~  ~sq=sp+q-l 

has the same degree as does g. That is, deg(g A lqolp A y,) = degg. 
Recall from Problem 1 of Section 6 that there is a natural "suspension" - 

isomorphism fik(x) A H , +  ,(C X). Also, for pointed X, there is a canonical 
map E X 4  X A S1 collapsing the arc between the poles through the base 
point. For most X this is a homotopy equivalence, and that is true when 

X z Sk. (We only need that Hk+ ,(C X) A Hk + ,(X A S1) when X z Sk and 
that is an easy consequence of Theorem 7.4 by comparing both spaces to 
the sphere obtained by collapsing the complement of a nice disk away from the 
"base point arc.") Therefore, the composition E,(x) -+ gk+ ,(X A S1), of these 
two maps, is a natural homomorphism which is an isomorphism when X z Sk. 
Iterating this q times and using that Sq = S1 A ... A S1, q times, gives the 
natural homomorphism 4: I?,(x)-+~,+,(x A Sq) which is an isomorphism 
for X = Sk. (Incidentally, a general condition on X for 4 to be an isomorphism 
is that X be "well-pointed"; see Theorem 1.9 of Chapter VTI.) Thus there is 
the commutative diagram 

for uny g. 
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Define E = + 1 by $[SP-'] = (E[S~+~- ' ] .  By definition, g,[aIP] = 

(deg g)[SP- 'I. Hence 

In the special case where g is 1, A y,- ,: dlP -+SP-I, our orientation conven- 
tions specify that deg(1, A y,- ,) = 1. Substituting 1, A y,-I for g in the above 
equation gives 

(1, A 7,- , A 1,),4[a1~1= E[SP+~- 11. 

For general g then, these two equations show that 

(The degrees make sense only after orienting aIP A Sq, but the equation is 
not affected by that choice.) Composing this with 1, A y,, and noting that 
(1, A ye-, A lq)o(l, A y,) = 1, A yP+,-, in the diagram 

we conclude that 

deg(g A 1,. 1, A Y,) = deg(g).deg((l, A Y,- 1 A 1,)0(1, A Y,)) 

= deg(g).deg(l, A Y, + , - 1) = deg(g), 

where the last equation is by our orientation conventions. 

12.2. Theorem. For a product of two CW-complexes with our orientation 
conventions, the boundary operators satisfy the equation 

PROOF. It is clear, by remarks similar to those above, that [a x 4: a x p] = 
$ [4: p] where the sign t 1 depends only on the dimensions of a and p. For 
a 0-cell a, it is clear that the sign is + 1. Direct arguments can determine 
this sign, as in the proof of Lemma 12.1. But this is difficult and the following 
approach is much easier. 

Let E,,, = + 1 be the sign defined by the equation 

X 4: a x PI = cp,,C4: PI 

where o is a p-cell of K, p is a q-cell of L, and 4 is a ( q  - 1)-cell of L. We 
have that = I for all q. We compute 



But we know that a2 = 0, and so 

For this to always hold (for all K and L) we clearly must have E , ,  = - E,- ,,. 
Since E ~ , ,  = 1, we conclude that E,, = (- 1)l. El 

For the sake of completeness, we now prove the fact, about the topology 
of a product complex, alluded to at the beginning of this section. 

12.3. Theorem. If K and L are CW-complexes and if L is locally finite then 
the weak topology coincides with the product topology on K x L. 

PROOF. For each n-cell a of K ,  let D, be a copy of In and consider the 
characteristic map f, as defined on D,, and'similarly for cells r of L. Then, 
for the product topology on K x  L, there is the map 

where + denotes disjoint union over all cells a of K and z of L. It suffices 
to show that this map is an identification since that is exactly what the weak 
topology on K x  L is. We can factor this as the composition 

+ D , x D , - + + D , x L + K x L .  

The first map is an identification by Proposition 13.19 of Chapter I since 
+Do is locally compact. The second map is an identification since L is 
locally compact (which follows easily from local finiteness). Therefore the 
composition is an identification by Proposition 13.3 of Chapter I. 

1. Compute H,(SP x Sg). 

2. Compute Hi(P2 x P2). 

3. Compute the homology of the product of a Klein bottle and a real projective plane. 

4. Let X = S'u,D2 and Y = S 1  u,D2 where f :  S'-+S1 has degree p and g: S1+S' 
has degree q. Compute H,(X x Y). 

5. Let K and L be CW-complexes. Let K x L denote the product space with the 
product topology and let K 0 L denote K x L with the CW topology. Show that 
the canonical function 4: K 0 L-r K x L is continuous. Also show that tf X 1s 
compact then a functton j : X -r K 0 L is continuous o 41, /: X 4 K x 1, IS 

continuous. Conclude that 4,: I-I,(K 0 L) + H,(K x L) (singular homology) and 
##. n,(K 0 L) -+ n,(K x L) are ~somorphisms. 

13. Euler's Formula 

Let us recall, without prhof, the Fundamental Theorem of Abelian Groups. 
A finitely generated free abelian group A is isomorphic to Zr for some r. 
Suppose that B c A is a subgroup. Then there exists a basis a,, . . .,a, of A 
and nonzero integers n, ln,l ..-In, (each dividing the next) with s I r such that 
n,al,. . . , n,a, is a basis for B. In particular, B is free abelian of rank s and 

(1) A/B z Z,, O-. .  @ Z n S @ r - "  

The integer r - s 2 0 is called the rank of AIB. Note that it is the dimension 
of the rational vector space (A/B)QQ where Q is the rationals. 

Thus any finitely generated abelian group has the form of (1) and if 
0 -+ B -. A -. C -+ 0 is an exact sequence of finitely generated abelian groups 
then rank(A) = rank(B) + rank(C). 

13.1. Definition. A space X is said to be offinite type if HLX) is finitely 
generated for each i. It is of boundedfinite type if Hi(X) is also zero for all 
but a finite number of i. 

13.2 Definition. If X is a space of bounded finite type then its Euler 
characteristic is 

x(X) = 1 (- 1)' rank Hi(X). 
i 

Note then that x(X) is a topological invariant of X. 

13.3. Theorem (Euler-Poincare). Let X be a finite C W-complex and let ai 
be the number of i-cells in X. Then x ( X )  is defined and 

PROOF. Note that a, = rank C,(X). Let 2, c C, = C,(X) be the group of 
i-cycles, B, = dC,+,, the group of i-boundaries, and Hi = H,(C,(X)) z H,(X). 
Thus Hi = ZJB,. 

The exact sequence 

shows that 

rank(Ci) = rank(Z,) + rank(B,- ,). 

Similarly the exact sequence 0 4 B, 4 Zi  -+ Hi -+ 0 shows that 

rank(Zi) = rank (B,)  + rank(H,). 
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-Adding the last two equations with signs (- 1)' gives 

= (- l)i(rank(Ci) - rank(B,- ,)). 
i 

The terms in B, cancel, leaving x(X) = Gi (- 1)' rank(H,) = Xi (- 1)' rank(Ci) 
= x i ( -  lyae 0 

13.4. Corollary (Euler). For any CW-complex structure on the Zsphere with 
F 2-cells, E 1-cells and V 0-cells, we have F - E + V = 2. 

13.5. Proposition. I f X  -+ Y is a covering map with k sheets (kfinite) and Y is 
afinite C W-complex then X is also a C W-complex and x(X) = kx(Y). 

PROOF. Since the characteristic maps Di-+ Y are maps from a simply 
connected space, they lift to X in exactly k ways. This gives the structure of 
a CW-complex on X with the number of i-cells exactly k times that number 
for X (Also see Theorem 8.10.) Thus the alternating sum of these for X is k 
times the same thing for Y. 

13.6. Corollary. If S2" -+ Y i s  a covering map and Y is C W then the number 
of sheets is either 1 or 2. 

13.7. Corollary. The Euler characteristic of real projective 2n-space PZn is 1. 

13.8. Corollary. Iff: P2" -+ Y is a covering map and Y is a C W-complex then 
f is a homeomorphism. C] 

The hypothesis that Y is a CW-complex in Corollaries 13.6 and 13.8 can 
be dropped, but we do  not now have the machinery to prove that. 

1. Use the knowledge of the covering spaces of the torus, but do not use the knowledge 
of its homology groups, to show that its Euler characteristic is zero. 

2. If X is a finite CW-complex of dimension two, and if X is simply connected 
then show that x(X) determines H,(X) completely. What are the possible values 
for x(X) in this situation? 

3. Let 
m % 

A(t) = aiti and B(r) = bit' 
i = O  r = O  

14. Homology of Real Projective Space L I  I 

be formaJ power series. Define a relation A(t) >> B(t)  to mean that there is a formal 
power series 

CO 

C(t) = 1 citi 
i = O  

with all ci 2 0 such that 

A(t) - B(t) = (1 + t)C(t). 

(a) Show that A(t) >> B(t) is equivalent to the "Morse inequalities": 

a2 - a ,  +ao  ... 2 b2 - b,  + bo, 

(b) If C, is a chain complex of finite type over a field A with C, = 0 for i < 0, let 
C(t) = xi rank(C,)ti and H(t) = 2, rank(Hi(C,))ti. Show that C(t) >> H(t). 

(c) Derive the Euler-Poincark formula from (b). 

4. If X and Y are finite CW-complexes, show that x(X x Y) = x(X)x(Y). 

14. Homology of Real Projective Space 

Construct a CW-complex structure on S" with exactly two cells in each 
dimension i, 0 I i I n, by letting the i-cells be two hemispheres of Si c S" for 
each i. For k < n denote the two k-cells by ok and To,. We can take the 
characteristic map of the latter to be 

f~~~ = Tofor 

where T: Sn -t Sn is the antipodal map. Note that p,, f,, = p, f, since both 
are equal to yk. Also note that the first of these equals pT,Tf,. Since the 
equation p, f, = y, characterizes the projection p, we conclude that 

Now the composition pa,_, faUk:Sk-'-+Sk-' collapses a hemisphere to a 
point and is otherwise a homeomorphism. This is clearly homotopic to a 
homeomorphism and thus has degree $_ 1. (This also follows directly from 
Proposition 7.2 or Corollary 7.5.) 

We can choose the characteristic maps f,, inductively so that 

We also have that deg(p,,,_ ,jag,) = + 1. Thus 

[ak-,:ak] = 1 

 TO^-^:^^] = & 1. 



We will determine the correct sign in a moment. It follows that 

Now 
P T ~ ~  - I f ~ ~ a k  = P T ~ ~  - Tfaqk = Pak- lfiibk 

has degree 1. Similarly 

Pok- l f ~ ~ O k  = Pak- I Tfdok = h a k -  Ifiiak 

has the same degree as the sign in ( 1 ) .  Thus 

where the sign is the same as in ( 1 ) .  From ( 1 )  and (2)  we see that T :  C ,  -+ C ,  
is a chain map. 

Now ao, = a ,  f To , ,  but the sign here must be "-" in order for H, to 
come out correctly. Thus dol  = o, - T o ,  = ( 1  - T)a , .  

Similarly, 817, = (1 + T ) a , .  But we calculate 

o = aao2 = ( 1  + T ) a o ,  = ( 1  rt_ T ) ( I  - T)a , .  

If the sign here is "-" then the result is 0 = 2(1 - T)a , ,  which is false. Thus 
the sign must be "+." Similar arguments establish that these signs must 
alternate in order that aa = 0 on all the a,. Thus 

do,  = ( 1  +(-  l ) k T ) o k - l .  

Now the mapn: Sn-+Pn induces a cell structure on P" with a single cell z, 
for each k < n and with characteristic mapf,, = no fa, = nTf,, = n fTak. 

Thus the map n: Sn -+ Pn induces the chain map n,: Ck(Sn) + Ck(P0) taking 
both a, and T a ,  to t,. Therefore 

which is 0 if k is odd and 2 t k - ,  if k is even. Thus we can compute the 
homology groups of P" from this, with the final result: 

Z for i = 0, 

n even =. Hi(P") = Z ,  for i odd, 0 < i < n, 
0 otherwise, 

Z for i = O,n, 

n odd - Hi(Pn) = Z, for i odd, 0 < i < n, 
0 otherwise. 

1 Use the formulas developed In t h ~ s  sectlon for the CW-structure on S" to reder~ve 
thc degree of the ant~podal  map 

2. + 12et { I  = e 2 n i 1 P .  The map (z,,. . . ,z,)c-t(/~z,, . . . ,pz,) is a map of period p on the 

sphere S2"- '. It delines a properly discontinuous action of Z, on S2"-' and so 
gives a p-fold covering S2"-' -+ L of its orbit space L (which is a special case of 
what is called a "lens space"). Compute the homology groups of L. 

15. Singular Homology 

We now return to the study of the singular complex of a space. The reader 
may wish to review the definitions and elementary properties given in 
Section 1. 

First we shall give some further material on homological algebra. 

15.1. Definition. Let 4 and $ be chain maps A ,  -+ B, between chain com- 
plexes. Then we say that they are chain homotopic, 4 2. $ in symbols, if there 
exists a sequence of homomorphisms D: Ai -+ Bi+ , such that aD + Dd = 4 - 11/. 

15.2. Proposition. If 4 - $ : A , - + B ,  then 4 ,=$ , :H, (A, ) -+H,(B, ) .  

PROOF. If aa = 0 then 4 ,  [ [a ]  - +,[a]  = [[$(a) - $(a) ]  = [[(all + Da)a] = 
[do(.)] = 0. 

15.3. Proposition. Chain hornotopy is an equivalence relation. 

PROOF. I f $ - $ = a D + D d a n d  $ - q = d D f + D ' a  then 4 - q = d ( D + D J ) +  
(D + u)a. CI 

15.4. Definition. A chain map 4: A ,  -* B, is called a chain equivalence if there 
is a chain map $: B ,  + A ,  such that 4$ N 1,. and $4 - 1A, .  

Note that tn the situation of Definition 15.4, the induced maps satisfy 
4,$, = 1 on H,(B,) and @,$, = 1 on H,(A,), and so 4 ,  and $, are both 
isomorphisms which are inverses of one another. Clearly the relation of chain 
equivalence is an equivalence relation on chain complexes. 

The following theorem is basic to singular homology theory. Remember 
that we do not yet know that singular theory satisfies the axioms. 

15.5. Theorem. If' X i s  contractible then H i ( X )  = 0 for all i # 0. 

PROOF. Let F: X x I -+ X with F(x,  0) = x and F(x,  1 )  = x, for all x c X  and 
for some base point X , E X  Define Do: An + X ,  for each singular simplex 
G: An- -+ X of X, by 

where C;; = I and 2 = C; ii = 1 - A,. (See Figure IV-6.)  This is called the 
"cone construction." 
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Figure IV-6. A chain homotopy. 

Since D has been defined on a basis of the free abelian group A , - , ( X )  it 
extends uniquely to a homomorphism D: An- , ( X )  -+ A,(X). 

To compute the ith face of the singular simplex Da for i > 0 just put I i  = 0 
or eliminate the terms, and you get 

( D ~ ) " '  = D(*" - 1 1. 
Clearly also 

(Day" = a .  

Let us compute d(Da). For n > 1 we find 
n n - 1  

a(Da) = (Do)"' - 1 ( - 1)'- '(DO)"' = (Do)(Of - ( - l ) jD(a '~ ) )  = a - D(aa). 
i = l  j = O  

For n = 1 (i.e., a a 0-simplex) we have 

d(Da) = a - o, where a,: A, -+ ( x , ) ,  

and D(ao) = 0 by definition. Thus dD + Da = 1 - E where E :  A , (X)  -+ A , ( X )  is 
given by E = 0 for i z 0 and E(C n,a) = (C n,)aO for i = 0 and where a, is the 
0-simplex at x,. That is, 6 is the "augmentation." Thus, in homology 
1 = 1, = E* which is 0 in nonzero dimensions. D 

16. The Cross Product 

We would like to define a bilinear map (for each p, q 2 0) 

X : A,(X) x A, (Y)  -+ A,+,(X x Y) .  

The image of ( u , b )  will be denoted by a x b. The geometric idea here is 
easy to describe. If a is a singular p-simplex in X and 7 is a singular q-simplex 
in Y then ( a ,  7 )  is a map from the prism A,  x Aq to X x Y. Thus if we 
somehow subdivide the prism into simplices we can regard that map as 
defining a ( p  + q)-chain in X x Y. This is essentially what wc do, except that 
the process of subdivision is replaced by an algebraic analogue that is easier 
to implement. 

[ 16. The Cross Product 22 1 

I 
I First let us establish some notation. If X E X  then we will use x to also 

stand for the singular 0-simplex taking the vertex e,  into x. That is, x(e,) = x.  
For a:  A,+ Y we let x x a be the singular q-simplex of X x Y taking 
w ~ ( x , o ( w ) )  and similarly, for ~ G Y  and t : A , +  X ,  we let t x y denote 
the singular p-simplex of X x Y taking wt-r(z(w),y). This defines x on 
Ao(X)  x A,(Y) and on A,(X) x A,(Y). 

16.1. Theorem. There exist bilinear maps X : A,(X) x A J Y )  -+ A,+,(X x Y )  
such that: 

( 1 )  for XE X ,  ye Y ,  a: A, 4 Y, and t: A, + X ,  x x a and z x y are as described 
above; 

(2) (naturality) if f :X-+X'  and g : Y - + Y 1  and if (f,g): X x Y - + X i x  Y' 
denotes the product map, then 

( 3 )  (boundaiy formula) a(a x b)  = da x b + ( - l)degaa x ab. 

PROOF. Note that (3) holds when either p or  q is zero. The method of proof 
here goes by the name of "acyclic models." One can give a general form of 
it allowing the plugging in of specific situations like the present one. We much 
prefer, however, to just use it as a method, as that gives one a better idea of 
just what is going on. 

Let I,: A, 4 A, be the identity map thought of as a singular p-simplex of 
the space A,. 

Let p > 0 and q > 0 be given and assume that X has been defined for 
smaller p + q satisfying ( I ) ,  (21, and (3) .  The idea is this: first try to define 
I ,  x I ,  (on the "models"). To do that, write down what its boundary would 
have to be by (3). Then compute the boundary of that to see that it is a 
cycle. Since the space A, x A, is contractible, and hence "acyclic," this cycle 
must be a boundary. What it is a boundary of is then taken to be I ,  x I,. 
Next we define a x in general by applying (2) to the maps a: A,+ X and 
t : A , +  Y. We now carry this plan out. 

If I ,  x I ,  were defined then, by (31, its boundary would be 

in A,+,-  ,(A, x A,). We compute the boundary of the right-hand side 

Thus the rhs is a ( p  + q - 1)-cycle in A, x A,. Since this space is contractible 
and p + q > 1,  its homology is zero by Theorem 15.5. Thus the rhs IS a 
boundary of some chain. Choose any such chain to be I ,  x I ,  

Now, if a :  A, -+ X and 7 :  A, -+ Y are arbitrary singular s~mplices then, 
regarding them also as maps which then induce homomorphisms of chain 
groups, we have a = a,(l,) and 7 = ~ ~ ( 1 , ) .  As before, let ( 0 , ~ ) :  A, x A,-+ 



X x Y denote the product map. By (2) we must define a x z F a,(r,) x z,(t,) = 
( a ,  z ) , (~ ,  x I,). Then it is clear that (2) holds in general in these dimensions. 

To verify property (3) we compute 

a(a x 5)  = a ( ( 0 , ~  x 1,)) 

= ( 0 ,  t. > ~ ( a ( l p  x 1 , ) )  

= ( 0 ,  z ),(al, x 1,  + ( - i )P lp  X a lq)  
= ~ ' ~ ( a l , )  x z&(lq) + ( - l ) P a ~ ( l p )  x T A ( ~ z , )  

= aa~(1,) x Z A ( ~ ~ ) +  ( - l ) P a ~ ( l p )  x aza(lq) 
=aa  x T+(- 1 ) p o  x a ~ .  

This extends to all chains by bilinearity. El 

16.2. Definition. If ( X ,  A) and ( Y ,  B) are pairs of spaces then (X, A) x ( Y ,  B)  
denotes the pair (X x Y ,  X x BU A x Y).  

16.3. Proposition. The cross product A,(X) x Aq(Y) -+ Ap+,(X x 2) induces a 
bilinear map X : H,(X, A) x H,( Y,  B)  -r H,+,((X, A)  x ( Y, B))  defined by 
[a] x [b] = [a x b]. 

PROOF. If aeAp(X)  with ~ ~ E A , - , ( A )  (i.e., if a represents a cycle of (X, A)) 
and beA,(Y) with ab€Aq- ,(B) then 

a(a x b)=da x h + ( -  1),a x ~ ~ E A , + , - , ( ( A  x Y ) u ( X  x B)) 

so that a x b does represent a cycle of (X, A) x ( Y ,  B). We must show that it 
does not depend on the choices of representatives a and b of the (relative) 
homology classes. This is clear if they are changed by adding chains in A 
and B respectively. Also, (a + da') x (b + db') = a x b + a x db' + aa' x b 
+ a a ' x a b l = a  x b+_d(a x b')+a(al x b )+a(a 'xab1)+(a  chain in A x Y u  
X x B) when a and b are relative cycles. 

The most important case of this is X = I = [O, 11. We will also use I to 
denote the affine simplex [ ( O } , ( l } ] : A 1  -+I and we let c, and e ,  be the 
0-simplices e,(e,) = 10) and el(e,) = f 1) of I. Thus d l  = c, - c,,. 

For a chain c€A,(X) we have 1 x ceA,+ ,(I x X) ,  and 

Define D: Aq(X) + A, + , ( I  x X )  by D(c) = 1 x c. Then 

Let qO and q1  be the maps X -+I x X given by q,(x)=(O,x)and q,(x)=(l ,x) .  
Then rl,,(c.) = c, x c .  Thus we have 

t 
16.4. Theorem. I f - l ,  1: f,:(X, A)-+(Y, B) then ~o ,= .~I , :A , (X,~~)+A, (Y,B)  
and therefore fo, = f H,(X, A) -+ H,(Y, B). 

PROOF. The second statement follows immediately from the first. If 
F:l x ( X ,  A)-+(Y, B) is a homotopy between fo and f ,  (so that F o q ,  = fo 
and Foq, = f,) then it induces FA: A,(l x X,  1 x A) -+ A,(Y, B). If we compose 
this with aD + Da = q 1 ,  - q,, we obtain 

which shows that FAoD is the desired chain homotopy. 0 

16.5. Corollary. Singular homology satisfies the Homotopy Axiom. n 

17. Subdivision 

We wish to prove that singular homology satisfies the Excision Axiom. First 
we will indicate the difficulty with doing this, and outline the remedy, and 
finally we go into the detailed proof. 

Suppose, for example, U c A c X with 0 c int(A) and we wish to "excise" 
U .  If all singular simplices which are not completely within A miss U 
completely, then we could just discard any simplex in A. Thus the problem 
is with "large" singular simplices, those touching both X - A and U .  These 
sets are "separated," i.e., their closures do not meet. Thus if we could somehow 
"subdivide" a singular simplex into smaller simplices (a chain) which satisfy 
the above condition then we might be able to make excision work. 

We are going to define an operator Y called "subdivision" on Ai(X) and 
a chain homotopy T from Y to the identity. 

Recall that the standard q-simplex Aq c Rq", Let L,(A,) be the sub- 
complex of A,(A,) generated by the affine singular simplices, i.e., singular 
simplices of the form a: A, -+ A, such that a(Ci  l ie l )  = X I  Ilvl where El A, = 1 
and vi = a(e,). We denote such affine singular simplices by a = [v,, . . . , up]. 

Now we define the "cone operator" which takes an afline simplex and 
forms the "cone" on it from some point, producing a simplex of one higher 
dimension. Let V E A ,  and let a = [L?,, . . .,up]: A,-+ A, be afline. The cone on 
a from v is then defined to be va = [v, v,, . . . , v,]: Apt +A,. For a cham 
c = X g  n0a~L,(Aq) ,  let vc = 1, n,vo~L,+ ,(A,). Taklng cwuc  gives a 
homomorphism 

(By definition, vO = 0.) I f  p > 0 then we compute 



If p = 0 then avo = a - [ v ] .  Thus, for a 0-chain c.,dl?c = c - e(c)[v] where 6 
is the augmentation, of Section 2, assigning to a 0-chain the sum of its 
coefficients. Thus we have that 

We now define the "barycentric subdivision" operator Y: Lp(Aq)-+ Lp(Aq) 
inductively by 

for p = 0, 

where g denotes the "barycenter" of the affine simplex a, i.e., 
g = ( X h o  vi)/(p + 1) for a = [vo,. . . . up]. This defines Y on a basis of Lp(Aq) 
and thus we extend it linearly to be a homomorphism. See Figure IV-7. 

17.1. Lemma. T: Lp(Aq) -+ Lp(Aq) is a chain map.  

PROOF. We shall show that Y(do) = a(Y(0)) inductively on p where o is an 
affine p-simplex. If p = 0 then Y(aa) = Y(0) = 0, while d(Y(a)) = ao = 0, since 
there are no ( - 1)-chains. If p = 1 then Y(aa) = da while a(T(a)) = 
d(g(Y(da))) = a(g(a0)) = da - ~(da)[g] = do. 

For p > 1 and assuming that the formula is true for chains of degree c p, 
we have a(T(o)) = d(gY(aa)) = T(&) - g(aYa~)  = I-(&) since d r a g  = Yaaa=O 
by the inductive assumption. 

Now we define T: Lp(Aq) 4 L,, ,(Aq) by induction on the formula 

To  = g(Ya - a - T(aa)), 

and T = O  for p=0 .  
We wish to show that a T  + Td = Y - 1. For p = 0 we compute 

since Ya = a for p = 0. For the same reason (Y - 1)o = 0. 

Figure IV-7. Barycentric subdivision. 
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For p 0 we compute - 

The term aTda = (Y - 1 - Td)(do) = Yaa - aa so that the entire right-hand 
term of (*) vanishes, which yields the claimed formula. Thus T is a chain 
homotopy from 1 to Y. 

We are now done for afline chains in A,. We now transfer these results 
to general singular chains of X. \ 

We wish to define Y: A,(X) + A,(X) and T: Ap(X)-+ A,, ,(X) such that: 

(1) (naturality) Y fA(c) = fA(rc) and T(fA(c)) = fA(T(c)) for f: X -+ Y; 
(2) Y is a chain map and dT + Ta = Y - 1; 
(3) Y and T extend the previous definition on affine chains; and 
(4) Ya and Ta  are chains in image(a). 

Note that (4) follows from (1). We list it for stress. 
Thus let a: A, -+ X. Then we have a = oA(l,) and, of course, zp~Lp(Ap). We 

define 
Yo = CTA(YlP). 
Ta  = aA(Trp). 

Of course, one must check that these coincide with the previous definitions 
when o is affine, but this is obvious because Y and T were defined on affine 
simplices using only affine operations. Property (4) is also clear, so this settles 
(3) and (4). 

To show naturality (1) we compute Y fAo = Y( f oa),(i,) = (f oa),(Yr,) = 
fA(aA(T I,)) = fA(Ya), and similarly for T. 

It remains to prove property (2). To show that Y is a chain map, we 
compute 

= y(d(@A(zp))) 

= ( a A ( , ) )  (since a, is a chain map) 

= a A ( ( d P ) )  (naturality) 

= aA(d(Yrp)) (since 1, is affine) 

= d(aA(Yzp)) (since a, is a chain map) 

= ~ ( Y u )  (by definition). 

Similarly, for the formula involving T we compute 

Tag = T(aA(dlP)) = aA(Tdlp) 
and 

aTa  = aaA(TzP) = aA(aTzP) 
so that 

17.2. Corollary. For k 2 1, Yk: A,(X) --+ A,(X) is chain homotopic to the 
identity. 



PROOF. This follows from Y2 rr Yo1 -J o 1 = 1, etc. Another way to show it, 
which displays the chain homotopy explicitly is to note that 

Let us denote this chain homotopy (GT in the second proof) by Tk and 
note that it is natural. 

17.3. Lemma. If o = [v,, . . . , up] is an afine simplex of A, then any simplex 
in the chain Yo has diameter at most (p/(p + l))diam(a). 

PROOF. A simplex in Yo has the form gz where r is a simplex of Y(do), i.e., 
.r is a simplex of Y(o")) for some i. Thus a simplex of Yo has the form 
[go,  gl, g2,. . .] where o = o, > cr, > a,. . . , using a > to mean that /? is a 
proper face of a. Each of the barycenters gi is the average of some of the v,. 
If j > i then gj  is the average of some of these v,. Thus by reordering the 
vertices, the lemma comes down to the following: 

If w,, . . . , wksRq with m c k I p + 1 then 

Since x/(x + 1) is an increasing function and m < k I p + 1, it suffices to 
show that the left-hand side of this inequality is at most ((k- l)/k) 
max 11 wi - wj 1 1 .  We calculate 

Both the terms in the norm of the last expression are in the convex span of 
the w, and so this entire expression is at most ((k - m)/k) max I I  wi - will I 
((k - I)/k) max 11 wi - wj (I. 

17.4. Corollary. Each afine simplex in Yk(l,)~LP(Aq) has a diameter of at most 
(p/(p + diam(Aq), which approuches 0 as k -+ co. 

17.5. Corollary. Let X he a space and U = ( U , )  an open covering of X. Let 
a he a singular p-simplex oJX. Then 3k3Yk(a) is U-small. That is, each simplex 
in Yk(o) has imuge in some U,.  

_ PROOF. This is an easy consequence of Corollary 17.4 and the Lebesque - 
Lemma (Lemma 9.1 1 of Chapter I). 

17.6. Definition. Let U be a collection of subsets of X whose interiors cover 
X. Let A:(X) c A,(X) be the subcomplex generated by the U-small singular 
simplices and let H:(X) = H,(A:(X)). 

17.7. Theorem. The map Ht(X) -+ H,(X) generated by inclusion is an isomor- 
phism. 

" X with PROOF. First we show the map to be a monomorphism. Let c€AP( ) 
ac = 0. Suppose that c = ae for some eeAP+ ,(X). We must show that c = ae' 
for some e'€A:+ ,(X). There is a k such that rk(e)€A:+ l(X) and 

Thus 

so that 

by the naturality of Tk. 
Now we shall show the map to be onto. Let c€AP(X) with ac = 0. We 

must show that there is a c1eA:(X) such that c - c'. There is a k such that 
Yk(c) eA:(X). Then 

Yk(c) - C = Tk(ac) + aTk(c) = aTk(c). 

Thus c' = Yk(c) works. 

We remark that it can be shown that the isomorphism of Theorem 17.7 
is induced by a chain equivalence. 

To discuss the relative case of this result, put 

where U n  A is the set of intersections of members of U with A. We have 
the commutative diagram 

This induces a commutative "ladder" in homology 

Thus Hy(X, A )  A Hi(X, A) follows from the 5-lemma. 
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Now we are prepared to prgve the Excision Axiom. Note that the following 
statement of it is slightly stronger than the axiom itself. 

17.8. Theorem (Excision). If B c A c X with B c int(A) then the inclusion 
( X  - B, A - 3) -(X, A) induces an isomorphism H,(X - B, A - B) 4 

H*(X, A). 

PROOF. Let U = (A, X - B}. Then X = int (A)v(X - B) = int(A)u int(X - B). 

Thus we have Hy(X, A) H,(X, A). Note that 

A:(X) = &+(A) + A,(X - B) 

as a subgroup of A,(X). (The sum is not direct.) Also 

A,(A - B) = A,(A) n A,(X - B). 

By one of the Noetherian isomorphisms it follows that inclusion induces the 
isomorphism 

A,(X - B)/A,(A - B) -% A~(X)/A*(A). 

Thus the inclusion maps induce 

This diagram of chain complexes and chairi maps induces the following 
diagram in homology: 

H,(X - B, A - B) L H ~ ( X ,  A)  

It follows that the map marked incl, is an isomorphism. 

This concludes the demonstration that singular theory does satisfy all the 
axioms. 

18. The Mayer-Vietoris Sequence 

In this section we derive an exact sequence that links the homology of A, B, 
A n B, and A u B directly. It is often useful in doing computations of homology 
groups. It will also play a major role in the proofs of some important results. 

18. The Mayer-Vietons Sequence LLY 

, 

18.1. Theorem (Mayer-Vietoris). Let A, B c X and suppose thut X = int(A)u 
int(B). Let U={A,B). Let iA:~n~, '~,  i B : A n B c , B ,  j A : A c + ~ u B ,  
and jB: B c-., A v B be the inclusions. Then the sequence 

':el: 
A B 

0 4 Ap(A n B) + O A,(@ 
J A  - J A  * A:(Au B) -+ 0 

is exact and so induces the long exact sequence 

called the "Mayer-Vietoris" sequence. I f  A n B  # then the reduced sequence 
is also exact. 

PROOF. This is all straightforward and elementary, given our present 
machinery. 

The reader should note that we could just as well have taken the difference 
instead of the sum in the first map and the sum in the second. 

We wish to give a version of this for relative homology. Consider the 
diagram 

with exact columns. The first two nontrivial rows are exact, and an easy 
diagram chase shows the third to be exact. (Another way to see that is to 
regard the rows as chain complexes. The columns then provide a short exact 
sequence of chain complexes and chain maps. Thus there is an induced long 
exact homology sequence with every two out of three terms zero, and so the 
remaining terms are also zero; which is equivalent to the third row being 
exact.) 

Also consider the diagram 



with exact rows. The first two vertical maps induce isomorphisms and so 
the third one must also induce an isomorphism in homology by the 5-lemma. 
Putting this together gives: 

18.2. Theorem. If A, B are open in A u B c X then there is the long exact 
Mayer- Vietoris sequence 

. .  -+ Hp(X, A n B )  + Hp(X, A)@ H,(X, B)-+ Hp(X, AU B) 

-, Hp-l(X, AnB)-, -.., 

where the map to the direct sum is induced by the sum of the inclusions and the 
map from the direct sum is the dgerence of those induced by the inclusions. 

1. Use the Mayer-Vietoris sequence to give another derivation of the homology 
groups of spheres (of all dimensions). 

2. Use the Mayer-Vietoris sequence to compute the homology of the space which 
is the union of three n-disks along their common boundaries. 

3. Use the Mayer-Vietoris sequence to give another derivation of the homology 
groups of the projective plane. 

I 4. + For X = int(A)uint(B), consider the following commutative braid diagram: 
1 

in which all four braids are exact. (Two of the sequences are the exact sequences 
of the pairs (A ,  A n B) and (B, A n  B) with a modification resulting from the excision 
isomorphisms for the inclusions (A, A n  B) c+ (A u B, B) and (B, A n  B) CL, 
( A u  B, A).) Show that the Mayer-Vietoris exact sequence 

can be derived from the braid diagram by a diagram chase alone. (Therefore, this 
Mayer-Vietoris sequence follows from the axioms alone.) 

19. The Generalized Jordan Curve Theorem 

The Jordan Curve Theorem states that a circle in the plane divides the plane 
into two parts. The Generalized Jordan Curve Theorem proved below is the 
analogue in higher dlmenslons. As consequences of this theorem we also 
prove two classlc theorems called Invariance of Domain and Invar~ance of 
Dimension. These show that for an open set in euclidean n-space the 
dimension n is a topological invariant. That is, if an open set in n-space is 

homeomorphic to one in m-space then n = m. This intuitively "obvious" fact 
is, in fact, rather difficult to prove without the sort of advanced tools we 
now have at our disposal. 

First, however, we prove a result saying, in effect, that the homology of 
each piece of an increasing union of open sets determines that of the union. 

Although we use the terminology "direct limit" (lim) in this section, it is 
not really necessary to know what a direct limit is,<ince we only use the 
two properties listed below in Theorem 19.1. However, the reader can consult 
Appendix D for this definition and its simple properties, if so desired. 

19.1. Theorem. Let X be a space and let X = U (U,l i = 1,2,3,. . .) where the 
U i  are open and Ui c Ui + ,, for all i. Let in: Un c, X and i,,,: Un c, U, be 
the inclusions. Then Hp(X) = I$ Hp(U,). That is: 

( 1 )  each a€HP(X) is in im(in.) for some n; and 
(2 )  i j  an€ Hp(Un) and in@,) = 0 then im,,Jan) = 0 for m suficiently large. 

PROOF. Note that if C c X is compact then C c Un for some n. To prove (I) ,  
let a be represented by the singular chain a€A,(X). Since a involves only 
a finite number of singular simplices and the image of each"of them is compact 
we must have that aeAP(Un) for some n and this implies (1). Part (2) is proved 
in the same way. 

We wish to show that i f f :  Dr-+Sn is an embedding then I?,(sn - f (Dr)) = 
0. The next theorem will be a generalization of this. 

First, let us point out that the complement of the image of this r-disk in 
S" need not be contractible. (If it were the result would be trivial.) One 
counterexample of this is the "wild arc" of Fox and Artin illustrated in Figure 
IV-8. It can be shown that the complement of this arc in R3 is not Z 
connected. Although this is quite plausible, a proof is difficult, and we will 

' 

hiMiw1Anp.- 
not attempt it here. 

Another counterexample is the Alexander horned disk depicted in Figure 
IV-9. This is an inductively constructed object in 3-space. We will briefly 
describe it with no attempt at proving anything about it. One starts with an 
ordinary disk (right-hand side of the figure). Embed that in 3-space in the 
standard way. Then take two disks inside it and map them to "horns" on 

Figure IV-8. Wild arc of Fox and Artin. 
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Figure IV-9. The Alexander horned disk. 

the embedded disk. You now have an embedded disk shaped with horns and 
a map of the standard disk to the embedded disk. In each of these two 
subdisks, now take two more disks and use them to put horns on the horns 
in such a way that the two pairs of horns seem to link like a chain. This 
process is continued ad infinitum. If done carefully you will end up with a 
one-one map (hence a homeomorphism) of the standard disk to an embedded 
disk in 3-space whose complement is not simply connected. For details about 
these, and similar, examples see Rushing [l]. 

The following theorem, and its proof, is essentially due to Alexander (see 
Dieudonne [I], p. 57): 

19.2. Theorem. Let n be fixed. Suppose that Y is a compact space with the 
property that H,(sn - f (Y)) = 0 for every embedding f :  Y + Sn. Then I x Y 

i 
also has this property. 

PROOF Let f:  I x Y AS" be an embedding and suppose that 0 # a€ 
E7,(sn - f (I x Y)). Put 

u, = sn - f ([O,+] X Y) 

and 

u1 = sn - f ([$, 11 X Y). 

Then 

and 

UOUUl = sn - f((3) X Y). 

The latter is acyclic by assumption. There is the following Mayer-Vietoris 
exact sequence: 
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The terms involying U,U U ,  are 0 by assumption. Our element 
0 f c r e g i ( ~ ,  n U,) must then map nontrivially into at least one of $(u,) 
and G,(u,) and it is no loss of generality to suppose it is U,. Now replace 
the interval I by [O,:] and repeat the argument. 

In this way we get a sequence_of intervals I 3  I, 2 I, 3 ... where I, has 
length 2-, and cr maps to a, # 0 in Hi(Sn - f (I, x Y)). Let Vk = Sn - f (I, x Y), 
an open set. Then we have V, c Vl c V, c -. , r )  I, = {x) for some x ~ l ,  and 
U V ~ = S ~ - ( I  f ( lk  X Y)=Sn- f((x) x Y). 

By Theorem 19.1, we have 0 # (ak) € 1 5  fii(vk) = fii(U V,) = fii(sn - 
f((x) x Y)) = 0, (i.e.,a maps to a, f 0 for all k and so it must map to a 
nonzero element of H , ( U  V,) by Theorem 19.1), a contradiction. 

19.3. Corollary. Iff: Dr +Sn is an embedding then fi,(sn - f (D')) = 0. In 
particular S" - f (D') is connected. 

PROOF. This is clearly true for r = 0. By Theorem 19.2, it follows for 
r=1,2,3 ,.... 

19.4. Theorem (The Generalized Jordan Curve Theorem). Iff: Sr+Sn is an 
embedding then 

Z for i=n- r -1 ,  
A,(v - f (Sr)) = { O for i f n - r - 1 .  

That is, fii(sn - f (Sr)) z fii(sn-'- I). 

PROOF. We use induction on r. For r = 0 we have Sn - f (So) % Rn - (0) - Sn- ' . 
Suppose we know the result for r - 1, i.e., that Gi(sn - f(S-I))  % Z for 
i = n - r and is 0 otherwise. Then for an embedding f of Sr in Sn put 

U+ =Sn-  f(D;) and U- =Sn-  f(D'), 

so that 

U + n U -  =Sn- f (S)  and U + u U -  =Sn-f(Sr-I). 

In the Mayer-Vietoris sequence for the pair U + and U -, 

the direct sum terms are 0 by Corollary 19.3. Thus the terms between are 
isomorphic and this implies the result. 

Now we shall apply the foregoing results in a sequence of propositions 
culminating in two classic facts called Invariance of Domain and Invariance 
of Dimension. These results are so intuitively plausible that it is very easy 
to allow some unproved intuition to creep into the proofs. The reader should 
keep this in mind when going through the demonstrations. 



19.5. Corollary (Jordan-Brouwer Separation Theorem). Iff:Sn- ' 4 S n  is an 
embedding then Sn - f (Sn- ') consists of exactly two components and hoth of 
them are acyclic. Moreover, f(Sn-') is the topological boundary of each of 
these components. 

PROOF. By Theorem 19.4, H,(Sn - f (9- ' 1 )  w Z @ Z and all other homology 
groups are zero. This is equivalent to the first statement of the corollary. 
For the last statement, let U and V be the two components of S" - f(S"-'). 
Note that since f(Sn-') is compact, its complement is open and any point 
in it is in an open €-ball completely contained in U or V. Thus such a point 
is not in the boundary of either U or V. Therefore dU c f(Sn-') and 
a V c  f(Sn-'). Let p€S"-' and suppose that f(p)$dU. Then some open 
neighborhood N of f(p)  does not touch U. Let W be an open ball in Sn-' 
about p so small that f ( W ) c  N. Since Sn-' - W w  Dn-', we have that 
Y = Sn - f (Sn- ' - W) is an open connected set by 19.3. Now Y = U u V v 

f ( W ) c  U u V u N . B u t U n ( V u N ) = @ a n d s o  Y = ( U n Y ) u ( ( V u N ) n Y ) i s  
a disjoint union of two nonempty open sets, a contradiction. Thus f ( p ) ~ d U ,  
and a similar argument shows that f ( p ) ~ a V .  17 

19.6. Corollary. Iff: Sn-'  +R", n 2 2, is an embedding then Rn - f (Sn-') has 
exactly two components, one of which is bounded and the other not. The bounded 
component is acyclic and the other has the homology of S"-'. 

PROOF. Let V be a component of S" - f(Sn-') and let XEV. Then consider 
the exact sequence of the pair (V,  V - {x}): 

The homology of Vis trivial by Corollary 19.5, so 
- 

Hi(V- ( x ) ) ~ H ~ + ~ ( v ,  V- (X})ZH~+, (D" ,D~-  {0)) 

z Hi(on - (0)) H i ( 9 -  I), 

where the first isomorphism is from the sequence for (V, V - {x)), the second 
is by excision, the third is from the exact sequence for (Dn, Dn - (O)), and 
the fourth is by homotopy. • 

19.7. Corollary. Iff is an embedding of Dn in Sn (or in Rn) then f(Dn - S"- I )  = 

f (Dn) - f (Sn - ') is open in Sn (or Rn) and equals a component of Sn - f (S" - ') 
(or Rn - J'(Sn - I ) ) .  

PROOF. Let U ,  and U ,  be the two components of Sn-f(S"-I).  Then 
S" - f(S"-') is the disjoint union U ,  + U,. But it IS also the disjoint union 
(Sn - f (Dn)) + f(Dn - Sn- '). By Corollary 19.3, A, = Sn - f(Dn) is open and 
acyclic and therefore connected. Also A ,  = j(Dn - Sn-')  is connected. Now 
A,  c some U,, say U,. Then A ,  c U,.  Since A , u  A ,  = U , u  U, we must 
have A ,  = U ,  and A ,  = U,. 0 

19.8. Corollary. If Mn is a topological n-manfold and f :  Mn -+ Rn is one-one 
and continuous, then f is an open mapping. 

PROOF. Let V c  Mn be open and XEV. Then there is an open neighborhood 
U c V of x and a homeomorphism g: Rn -+ U such that g(0) = x. Then 
g(Dn - Sn-')  is open in U, by Corollary 19.7, and therefore is open in M. 
Consider the composition fog 1 D,: Dn -P Rn, which is an embedding by 
Theorem 7.8 of Chapter I. Now (f og)(Dn - Sn-') is open by Corollary 19.7 
and contains f (x). But this set is f (g(Dn - Sn- ')) c f (U) and so f (U) is a 
neighborhood of f(x). Therefore f (V) contains a neighborhood of each of its 
points and so is open. • 

19.9. Corollary (Invariance of Domain). If Mn and Nn are topological 
n-maniJolds and f: Mn+ Nn is one-one and continuous, then f is open. 

PROOF. It suffices to show that the image under f of a neighborhood of x is 
a neighborhood of f(x). Let f ( x ) ~ V  c Nn be an open set homeomorphic to 
Rn. Then the restriction off to f -'(V)+ V w R" is one-one, continuous and 
hence open by Corollary 19.8. Now, if U is an open neighborhood of x then 
so is U n f - '(V). Therefore f takes this into an open neighborhood off (x). 
Hence f (U) is a neighborhood off (x). El 

19.10. Corollary (Invariance of Dimension). If an m-manifold Mm is homeo- 
morphic to an n-manfold Nn then n = m. 

PROOF. If m < n then one can embed Rm in Nn w Mm in such a way that Rm 
is not open in Nn. But then this Rm is not open in Mm contrary to 
Corollary 19.9. 

There is also an easy direct proof of Corollary 19.10 as follows: By 
embedding an m-disk Dm in Mm with 0 corresponding to x we compute 

H,(M, M - (x)) w H,(Dm, Dm - (0)) (by excision) 

z f i  - (Dm - 0 (by the exact sequence) 

=fi , - l (Sm-l)  (by homotopy) 

and we know this group to be Z for i = m and 0 otherwise. It follows that m 
is a topological invariant of Mm since the groups Hi(M,M - { x f )  are 
topological invariants. 

In the classical situation of embeddings f :S1 +S2, it is also known that 
the closure of each of the two components of SZ - j (S1)  is homeomorphic 
to D2.   his is called the Schoenflies Theorem and follows from the strong 
form of the Riemann Mapping Theorem in complex analysis. (See, for 
example, Nehari [I 1.) 

In higher dimensions, the analogue of this is false, in general, as is shown 
by the Alexander horned sphere. However, by assuming a "bicollaring" on 
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the embedding, one can prove the higher~dimensional case. The rest of this 
section is devoted to just that. It will not be used elsewhere in this book and 
so it can be skipped. However, it does provide an exposure to some interesting 
topological techniques quite different from others studied in this book. 

This higher-dimensional case was first proved by Mazur [I] with an 
ingenious argument. His argument assumed an additional niceness hypothesis 
that was later removed by Morse 111. Independently of Morse, M. Brown 
[I] gave an elegant new proof that also avoided the additional condition. 
Our treatment is based on Brown's proof. 

19.1 1. Theorem (Generalized Schoenflies Theorem). Suppose f: Sn- ' x 
[- 1,1] +Sn is an embedding. Then the closure of each component of 
S" - f (S"-' x {O)) is homeomorphic to D". 

PROOF. First we need the following four lemmas: 

19.12. Lemma. Let K,, . . . , K, be compact sets in Rn, let K = U K ,  and let 
Rn/(Ki) denote the quotient space obtained by  identifying each Ki to a point. 
If g: Rn/{Ki} -+ R" is a one-one map then it is an embedding onto an open set. 

PROOF. We must show that g is open. Let f:  R" -, R" be the composition of 
g with the quotient map Rn+R"/{Ki). Let D be an n-disk with K c intD. 
Then f (D - dD) is contained in a component W of R" - f (aD). Note that 
f (D - aD) = f (D)n W. By Invariance of Domain, f (D - dD - K) is open. But 
f(D) is compact and so f (D-aD-K)= f(D)n(W- f(K)) is closed in 
W - f(K). Since f(K) is a finite, W - f(K) is connected and we conclude 
that f (D - aD) = W, which is open. Now g is an embedding on D/(Ki} by 
Theorem 7.8 of Chapter I and so g: (int D)/f K,) + W is a homeomorphism. 
Thus (int D)/(Ki), and hence Rn/{Ki), is an n-manifold and so g is open by 
Invariance of Domain. 

19.13. Lemma. Let A and B be disjoint compact subsets of Rn. Suppose that 

I J 

Figure IV-10 Avoldlng B. 
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the quotient space R"{A, B )  obtained hy identifying A to a point and B to 
another point can be embedded in R". Then R"/A and Rn/B can be embedded 
in Rn as open sets. 

PROOF. (See Figure IV-lo.) Let f: Rn-+ R" be the composition of the quotient 
map R" -+ Rn/{A, B) with the embedding of the latter in Rn. Let f(A) = (a} 
and f (B) = { b ) .  By Lemma 19.12, f (R") is open in R". 

Let U c f(R3 be an open disk with b € U  and a4.u.  Let g:Rn-iR" be an 
embedding which is the identity on U and whose image does not contain a. 
(The image can be taken to be any open disk slightly larger than 0.) On 
f - '(R" - ( b } )  the map f - ' g  f is defined since a4.g f (R"). It is the identity on 
f - ' (V)  I> B. Thus the function h: R" -+ R", defined by 

is continuous, collapses A to a point, and is an embedding on R" - A. The 
induced map R"/A -, R" is one-one and hence an embedding onto an open 
set in R" by Lemma 19.12. 

19.14. Lemma. If A is a compact subset of R" and Rn/A can be embedded as 
an open set in R" then A is "cellular," meaning that each neighborhood of A 
contains a neighborhood homeomorphic to Dn. 

PROOF. (See Figure IV-11.) We may assume that A c int D". Let f :  R" --+ Rn be 
the composition of the quotient map Rn-+R"/A with the hypothesized 
embedding Rn/A -+ R". Let V 2 A be open. Let f (A) = ( a ) ,  so a~ , f (U) .  

Let V be a small open disk about a with I/ c f (U). Let g: Rn+ Rn be an 
embedding such that 

g(x) = x for X E  V, 

im(s) c f (U). 

Figure IV-11. Showing A to be cellular. 



Then f - ' g f  is an embedding on Rn - A and equals the identity on 
'f - ' ( v  - (a)). Thus the function h: Rn -+ Rn defined by 

for XEA, 
h(x) = 

is an embedding. Then h(Dn) x Dn and A c h(Dn) c U ,  as required. 0 

19.15. Lemma. Let Mn be a compact topological n-manifold, possibly with 
boundary. Let A c M - a M  be cellular. Then M x MIA. 

PROOF. Give M a metric. (For our use we could assume further that M c Rn.) 
Since A is cellular, there exist, in M - dM, n-cells (homeomorphs of Dn) 
Q = Q o 2 Q 1  2 Q 2 . - .  with Qi+lcint(Qi)  and A = n Q i .  Let h,:Q+Q be a 
homeomorphism which is the identity on aQ and is such that diam (ho(Ql)) < 
1. Then let h, : Q -+ Q be a homeomorphism which equals ho on Q - Q1 and 
has diam (h,(Q,)) z: 112. Continue inductively to construct homeomorphisms 

such that 

and 

For any XEQ, we have dist(hi+ , (x), hix)) 5 diam(hAQi+ ,)) < 112' since hi+ , = hi 
outside Qi+ ,, and (hence) hi+ ,(Qi+ ,) c hi(Qi+ ,). 

Therefore the hi converge uniformly to a map Q --+ Q which is the identity 
on 3Q. Also 

dist(hi(x), h(x)) 5 dist(hi(x), hi+ , (x)) + dist(hi + ,(x), hi+ 2(x)) + -.. < 1/2i- I. 

Now h = hi on Q - Qi+ ,. Therefore h is one-one outside A. Since h(Q,+ ,) = 
Q-h(Q-Q,+l )=Q-hc(Q-Qi+, )=h , (Q,+l ) ,  we have h(A)=nhi(Qi+1) 
which has diameter at most 1/2' for all i. It follows that h(A) is a single point 
which is distinct from any h(x) for x$A. 

We claim that h is onto. To see this, let XEQ. Then, for any i, there is a 
point x, with h,(xi) = x. Thus dist(x, h(x,)) = dist(h,(x,), h(x,)) c 112'-', so that 
h(x,) -+ x. Since im(h) is compact, we conclude that x~im(h) .  

The map h extends by the identity to M and so induces a map MIA-+ M 
which is one-one onto, and hence a homeomorphism by Theorem 7.8 of 
Chapter I. 

Now we shall prove the main theorem (Theorem 19.11). Let 4:s"- '  x 
[- 1, I ]  +Sn be an embedding. Then d(Sn- ' x {O)) divides Sn into two 
components with common boundary $(S"- ' x {O}), by Corollary 19.5. Let 
M + be the closure of the one of these components containing 4(SP -' x { 1 ) )  

b 

Figure IV-12. Final proof of the Generalized Schoenflies Theorem. 

and M-  the closure of the one containing 44s"-' x ( -  1)). Put 

A=(Sn-- 4(Sn-' x (-l, l)))nM+, 

B=(S"-4(Sn-I x ( -1 , l ) ) )nM- .  

(See Figure IV-12.) Consider the map &S"-' x [-I, 11 -+Sn given by 

O(x, t) = (xcos(xt/2), sin(nt/2)) ER" x R = Rn + '. 
Then 0 0 4 - l  extends to a map f:Sn+S" taking A to the north pole, B to 
the south pole, M +  onto D>nd M -  onto D"_ In particular, f induces , 

homeomorphisms M + /A -% D: and M - /B --% D? . 
If peS" - ( A u  B) then f induces a homeomorphism (S" - (p))/(A, B} -+ 

S" - f (p). Regard R" as Sn - (p). By Lemma 19.13, Rn/A and Rn/B can be 
embedded as open sets in R". By Lemma 19.14, A and B are cellular. By 
Lemma 19.15, M +  z M+/A%D"+ and M -  %M-/B%DY. 

PROBLEMS 

1. Let Y  = A u B where A, B, and A n  5 are homeomorph~c to closed disks. Let X, 
be a union of three r-dimensional disks along their common boundary; is., X, = 

{(x0 ,... , x , ) E R ~ * ~ ~ C , X ~ =  1, or xo=Oand C,x:< 1). 

(a) For any embedding f:  Y  -+Sn show that t?,(sn - f ( Y ) )  = 0. 
(b) For any embedding g: X, -+ S" find fi,(S" - g(X,)). 
( H l n t :  X ,  is a union of two sets each of which IS homeomorph~c to some Y, as 
above, and wtth intersectton X ,  _ , .) 

2. Find a cellular set in R 2  which is not arcwise connected. 

3. Find a mantfold M 2  and a compact set A c M Z  such that M / A  1s a 2-manifold 
but A 1s not cellular 

4. Consider the graph G consisting of the vertlces and edges of A, Show that G 
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cannot be embedded in$'. (Hint: Assume the Schoenflies Theorem, use Eulerh (1 + gJa and so -= 

Formula, and derive the relation 3F s 2E.) 
t,on, = (1 + g,): Hp(X; Z2)+ Hp(X; Z,). 

5. Consider the Fox-Artin wild arc A of Figure IV-8. Let C be a small circle loopin 
around a portion of A (one that does not obviously deform to a point in R3 - In particular, if g, = 1 then t ,  on, = 0. 
Sketch a surface in R3 - A bounded by C, thereby showing directly that we have H ( X *  Z,) ~3.  P" - L -- _ 
homologous to 0 in the complement of A. Do the same for a loop C around The exact sequences we have derived are obviously natural with respect 
of the horns of the Alexander horned disk of Figure IV-9. to equivariant maps, i.e., maps f: X +X' between the total spaces of two 

double sheeted coverings such that fog = g'o f (using g' to denote the 6. Let A c Rn be a closed set homeomorphic to Rk. Determine H,(Rn - A). 
nontrivial deck transformation of X'). 

7. Let A, B  c Sn be disjoint, with A % Sp, B  a Sq. Find H,(Sn -(A u B)). 

8.  If A, B c Sn are as in Problem 7 except that A n  B  is a single point, find 20.1. Theorem. Let g: Sn -+Sn be the antipodal map (and similarlyfor g' on 
H*(Sn - ( A u B ) ) .  and let 4:  Sn -+ Sm be equivariant. Then n I m. 

9. Let G c Sn be a finite connected graph. Find H,(Sn - G). Also try this for a PROOF. Suppose that n >m. The coverings in question are the double 
disconnected graph. coverings of the real projective spaces by the spheres. We claim that the 

exact sequence for Sm must look Jikeis: 2 

20. The Borsuk-Ulam Theorem 0 0 
0 - Hm(Pm; 2,) H,(s"; Z,) - Hm(Pm; Z,) 5 H,- ,(pm; Z2) 

Let n: X --t Y be a two-sheeted covering map. Let g: X + X be the unique . . . AH l ( ~ m ;  Z,) H~(P"; Z,) H,(s"; Z,) --% H~(P"; Z,) - 0. 
nontrivial deck transformation. We have g2 = 1. Also g(x) # x for all EX, 

Throughout this section we will use singular homology with coefficients To see this, we do not need to know the homology of Pm. If the first map 
in Z,. This can be regarded as the homology based on the chain compl marked 0 were nontrivial then the composition Hm(Sm; Z,) -+ Hm(Pm; Z,) -+ 

A,(X; Z2) = A,(X) @ Z2 or more s ly as the complex of chains C, n, rZP Hm(Sm; Z,) would be nontrivial since the second map is a monomorphism. 
where n,eZ,. But that composition is trivial by the remarks above (it is 1 +g',). Thus 

For any simplex o: Ap+X the simplex goo is distinct from o. Thus the Hm(Pm;Z2) w Z, and the first two markings are correct. The second 0 is 
simplices of X fall into a set of pairs (o, goo). Any simplex z of Ycan be lifted correct since Hm- ,(Sm; Z,) = 0 and the same reasoning applies to the rest. 
to a simplex of X since the standard simplex is simply connected. There are By naturality we get the commutative diagram (where $: Pn -+Pm is the 
exactly two such liftings of the form o and goo. Define a chain map induced by 4): 
t:  A,(Y; Z,)-+A,(X; Z,) by taking z into a + goo = (1 + g,)o. C1 
7tAot = 0 since we are using mod 2 coefficients. Suppose a chain c of X is in Hi(Pn; Z,) 2 + Hi- ,(Pn; Z,) 
the kernel of n,: A,(X; Z,) -+ A,(Y; Z,). That means that c contains the 
simplex g o o  whenever it contains a and that means that it is in the image 
of t. Thus we have shown that there is the short exact sequence of chain 
complexes 

0 - A,(Y; z,) A,(x; 2 , )  -% A,(Y; 2,) - 0. The isomorphisms shown are true for i - 1 = 0. It follows that $, on the left 
is also an isomorphism. Then we can look at the same diagram for i = 2,3 

The chain map t (and its induced map t, in homology) is called the "transfer." and so on until we no longer know that the horizontal maps are isomor- 
We have the induced long exact sequence in homology: phisms, i.e., until, and including, i = m. Now look at the commutative diagram: 

a .-. - H,(Y; 2,) 2 H,(x; z2) 5 H ~ ( Y ;  2 , )  -i H,- ,(Y; z,) ---+ .-.. 

(This sequence is a rather trivial special case of an extensive theory due to 
P.A. Smith; see Bredon [4].) The composition ton, takes a simplex a to 

N 



This diagram is self-contradictory, and so we have reached the desired 
contradiction. 

20.2. Theorem (Borsuk-Ulam Theorem). Iff: S" + R" is a map then there 
exists a point xeSn such that f (x) = f ( -x). 

PROOF. If not then consider the map 4(x) = (f (x) - f (-x))/ I /  f (x) - f ( - x) (1 E 
Sn-'. This satisfies 44-4 = -4(x) so that it contradicts Theorem 20.1. 

203. Corollary. At any particular time there is a place on the earth where the 
barometric pressure and the temperature are both equal to those at the antipodal 
point. 0 

A ham sandwich consists of two pieces of bread and one piece of ham. 
The following corollary says that one can always slice it with a straight cut 
of a knife so as to cut each slice of bread exactly in two and the same for 
the ham. 

20.4. Corollary (The Ham Sandwich Theorem). Let A,, . . . , A, be Lebesque 
measurable bounded subsets of Rm. Then there exists an afine (m - I)-plane 
H c Rm which divides each A, into pieces of equal measure. 

PROOF. The proof is illustrated in Figure IV-13. Regard Rm as Rm x (1) c 
Rm+l,  i.e., the subset {(x,, . . . ,x,+ ,)lx,+, =)I}. For a unit vector x ~ R ~ + ~ , l e t  

c 
Vx=Rm x { l } n { y ~ R " ~ ' I ( x , y ) 2 0 )  

and 

H ,  = Rm x (1) n {yeRm+ ' I (x, y) = 0). 

Let fi = measure(Vxn A,) which is continuous since Ai is bounded. Then 
put f = (f ;,. . . , f,): Sm -, Rm. By the Borsuk-Ulam Theorem (Theorem 20.2), 

Figure 1V-13. Ham sandwich. 

there is a vector xa such that f(xo)= f(-xo). Then H,, is the d5sired 
hyperplane. 

Let us discuss briefly a generalization of the Ham Sandwich Theorem due 
to Stone and Tukey [I]. 

Suppose we are given maps fo, . . . , f,: Rk -+ R and bounded measurable 
sets A,, ..., A, c R k .  Suppose that the f, are independent in the sense that 
{xeRkl C;=oIi fi(x) = 0) has measure zero unless all the ii are zero. For 
I = (I,, . . . ,l,)eSn define 

and note that V; = V + , .  Define 

g: S" -+ R" 

by g = (g,, . . . , g,) where gX1) = measure(V: n A,). That g is continuous is not 
hard to prove, but requires more measure theory than we wish to assume. 
It will be clear in the examples we give. Then by Theorem 20.2, there exists 
a leSn with g(I) = g(-I). That is, 

measure(V: n A,) = measure(V; n A,) for all i, 

so that the solution set V: = { X ~ C ; = ~  Ij f jx )  = 0) cuts each A, in half. For 
example, if f o  = 1, f, = x,,. . . , f, = x,, this is the Ham Sandwich Theorem. 
For f, = x2 + Y2, f l  = X, f2  = y, f3  = 1, we conclude that, givep three sets 
A,, A,, and A, in R2, there is a circle or a line (the solution set 
{(x, y)lI,(x2 + Y ~ )  + ;1,x + A2y + I, = 0)) cutting each A, in half. That "or a 
line" cannot be omitted is shown by Problem 5. Similarly, the functions 
f O  = x2, f, = xy, f 2  = y2, f3  = X, f4 = y, fs = 1 show that any five such sets 
A,, . . . , A, in R2 can be cut in half by some conic section. 

20.5. Theorem (Lusternik-Schnirelmann). If Sn is covered by n + 1 closed sets 
A,, . . .,A,+ , then at least one of the A, contains an antipodal pair of points. 

PROOF. Suppose that A, is disjoint from - Ai for i = 1 , .  . . , n. By Urysohn's 
Lemma (Lemma 10.2 of Chapter I), there is a map f,: S"-+ [O,1] which is 0 
on A, and 1 on - A , ,  for all i = 1 , .  . . ,n. Let f = (f,,. . . ,fn): Sn -+ Rn. By 
Theorem 20.2 there exists a point ~ ~ € 9  such that f(xo) = ,f ( - xo)  I f  X,E A ,  
for some i < n then j,(x) = 0 while f,(-x,) = 1 and so f(xo) # f(-x,). Thus 
x,# A, for any i 5 n. Similarly - x,# A,  for any i 5 n. Since the A ,  cover Sn, 
both x, and -x, must lie in A,,,. 



Ws conclude this section by giving an alternative ppof of Theorem 2 
using a combination of smooth methods and homology. If 4: S" 4 Sm satisfi 
(p(-X) = - 4(x) with m < n then composing (p with the inclusion Sm c, 
gives an equivariant map f: S" -+ S of degree zero. Thus Theorem 20.1 follow 
from: 

20.6. Theorem. Iff: S" -+ S" satisfies f (-x) = - f (x) then deg( f )  is odd. 

PROOF. Let g:S"-+Sn be a smooth approximation to f so close 
11 f (x) - g(x) )I < 1 for all XES". Put h(x) = (g(x) - g( - x))/2 eRn+ ' - (0) an 
k(x) = h(x)lll h(x) 11. Then 2 11 h(x) - f ( 4  11 = ll - g( - x) - f ( 4  + f (- x) /I 
\ I  g(x) - f (x) 11 + 11 g( - x) - f (-x) ]J < 2 so that 11 h(x) - f (x) 1) < 1. This impli 
that h(x), and hence k(x), is in the open half space in R"" with f(x) as 
and this implies, in turn, that k:Sn-+S" is homotopic to f via the homot 
F(x, t) = (tk(x) + (1 - t)j(x))/ Jl tk(x) + (1 - t) f (x))l. Also k is smooth 
equivariant. This shows that we may assume that f is smooth. Now discar 
the notation g, h, k. 

Let VES" be a regular value of f and put f - '(v) = (x,, . . . , x,); see Figur 
IV-14. Note that d = deg( f )  (mod 2) by Corollary 7.5. There is a great spher 
s"-1 c S" not containing any of the points xi and hence not containing any 

of the - xi. Let D + w D" be the closure of one of the components of S" - Sn- ' 
and D - the closure of the other component. Let ( y,, . . . , y,) be those points 
among the -t xi contained in D +. Let r: S" -, S" be the "folding" map that is 
the identity on the hemisphere with center v and th) reflection taking - v 
to v on the other hemisphere. Since f (Sn-l) c S" - (v, - u), and hence 
rf(S"-I) c S" - {v) w R", the restriction rf I,+ extends to D- -+Sn - {v). Let 
g: Sn+S" be rf on D+ and this extension on D - .  Then g-l(v) = f y,, . . . , y,) 
and so deg(g) E d (mod2) by Corollary 7.5. Note that - v$g(D,). Let 
k: S" - fv, - v) 4 s " - '  be the obvious equivariant map, which is a homotopy 
equivalence, and put h = kog:Sn-'-+Sn-' which is equivariant. The com- 
mutative diagram 

.x, = v 3  
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HAS") 2 HASS D- 1. __ a* 
H,(D+,Sn-'1 - H , _ , ( S n - ' ) - - y - - t H , .  ,(Sn-I) 

lg* l q *  Is* Is* lh* 
a 

H , ( S ~ ) ~ H ~ S " . S ~ - { ~ I ) ~  H , ( s ~ - { - v J , s " -  (u, - u j ) + ~ ~ - ~ ( s ~ - { ~ ,  - ~ j ) ~ ~ . ~ , ( s - ~ )  

shows that deg(h) = f deg(g) r d = deg( f )  (mod 2). Since the result is clear 
n = 0, it follows from this by induction on n. 

1. Let f be a map P" + Pm with n > m > 0. Show that f#: a, (P") + al(Pm) is trivial. 

2. Show that P2 is not a retract of P3. 

3. Show that Sn can be covered by n f 2 closed sets, none containing an antipodal pair. 

4. If A,, . . . , A, are measurable subsets of S", show that there is a great Sn- cutting 
each Ai exactly in half. 

5. It has been stated in the popular literature that, given three regions in the plane, 
there is a circle dividing each into equal pieces. Show by example that this is false; 
indeed, give an example ofjust two regions for which no such circle exists. However, 
show that for any three regions on SZ there is a circle on S2 dividing each region 
into equal pieces. 

6. Give a simple derivation of Theorem 20.1 out of Theorem 20.2. 

7. Derive Theorem 20.6 from Theorem 20.1. (Hint: From an equivariant maps" -, S" 
of even degree, show how to construct one of degree zero, and from such a map 
of degree zero construct an equivariant mapsn+' -+Sn. There is also an easy proof 
out of the proof of Theorem 20.1.) 

8. Justify the statement, in the proof of Theorem 20.6, that there exists a great sphere 
Sn-' not containing any of the xi. - 

2 1. Simplicia1 Complexes 

Points v,, . . . , v,ER* are "affinely independent" if they span an affine n-plane, 
i.e., if 

If this is not the case then if, for example, 2, # O  we can assume 2, = - I 
and solve the equations to get 

- 1) 

Figure IV-14. Proof of Theorem 20.6. which means that v0 is in the afine space spanned by v,, . . . , on. 



If v,, . . . , v, are affinely independent then we put 

which is the "affine simplex" spanned by the vi. Note that this is the convex 
hull of the vi. For k < n, a k-face of a is any affine simplex of the form 
(via,. . . , vik) where these vertices are all distinct and so are affinely independent. 

21.1. Definition. A (geometric) simplicia1 complex K is a collection of affine 
simplices such that: 

( 1 )  a e K  *any face of a is in K, and 
(2) a, z € K  * a n  z is a face of both a and z, or is empty. 

Figure IV-15 illustrates two noncomplexes, and they are not complexes 
because the intersection of two simplices is not a face of at least one of those 
simplices. Both of these could be "subdivided" to form simplicial complexes. 

If K is a simplicial complex then we put 1 Kl = U ( o l o ~ K ) .  This is called 
the "polyhedron" of K. 

21.2. Definition. A space X is a polyhedron if there exists a homeomorphism 
h: I K I -% X for some simplicial complex K. The map h, together with the 
complex K, is called a triangulation of X. 

Let K be a finite simplicial complex and choose an ordering of the vertices 
u,, v,,.. . of K. If o = (u,,, . . . , van) is a simplex of K, where c, < ... <a,  then 
let f,: A, + I K I be 

fa = Evuo,. . ., ~ ~ " 3 ,  

in the notation of Definition 1.2. Then this gives a CW-complex structure 
on I K I with the f, as characteristic maps. 

In this situation we will use (u,,, . ..,van) = a to denote a as an n-cell of 
this CW-complex. 

Recall the boundary formula (Theorem 10.3) for cellular homology of a 
CW-complex: If a is an n-cell then do = C, [z: 017, where [T: a] = deg(p, fa,). 

Figure IV-15. Not simplicial complexes. 
L 

_In the present situation it is clear that 

constant if T is not a face of 0, 

of degree f 1 if r is a face of a, 

because, in the latter case, this map is homotopic to a homeomorphism since 
it maps a face of the boundary of a simplex homeomorphically and collapses 
all other faces. Therefore we get the boundary formula 

where E, ,~  = f 1. We wish to determine this sign. The equation ad = 0 implies 
that E, ,~  = - E , , ~  + ,. Thus E,,~ = en('- l)i for some signs E, = + 1. 

But, for homology calculations, it does not matter what the signs E, are, 
since the cycles and boundaries do not depend on that.-Thus, we get the 
correct homology if we just take E, = 1. (Technically, to work this out, one 
must produce a fixed homeomorphism of the n-simplex A, with the n-cube 
In. It is clear that one can make those choices so that the sign E ,  comes out 
any way one wants.) Thus we can arrange so that the boundary formula for 
a simplicial complex is 

This describes a chain complex we shall, temporarily, name C:(K). That 
is, we order the vertices of K (which we do here by naming them v,, v,, . . .) 
and we let C;(K) be the free abelian group on the n-simplices (v,,, . . . , v,,,), 
where a,  < -.. c a,, and we take the boundary formula (*). We have shown, 
by way of considering this as a CW-complex, that 

There is another way of describing this chain complex. It is called the 
"oriented simplicial chain complex" and it is defined as follows: Let C,(K) 
be the abelian group generated by the symbols (v,,, . . . , u,,,) where the o, 
are distinct vertices of a simplex of K, subject to the relations that make 
these "alternating" symbols, i.e., we regard 

for any permutation p ofO,. . . , n. The boundary operator is still defined by (*). 
If we take an ordering of the vertices of K then any chain in C:(K) can 

be regarded as an oriented chain, and, in fact, we get all oriented chains this 
way. (For example, (v,,  v,)) is an oriented chain, but i t  is equal, as an oriented 
chain, to - (v,,, o, ), and the latter is a chain in C?(K).) I t  is clear that this 
correspondence preserves the boundary operator and so it is an isomorphism 



I v .  nornology 1 heofy 

of chain complexes. Thus, we a l s ~  have that 

H*(lKl) = H*(C*(K)), 

and this does not depend on any ordering of the vertices. 
It is easy to generalize these considerations to the case of infinite simplicial 

complexes as long as they are locally finite in the sense that each vertex is 
the vertex of at most a finite number of simplices. The only difficulty with 
general infinite complexes that are not locally finite is in comparing them to 
a CW-complex, and there it is just a matter of changing the topology to the 
weak topology to make the discussion go through. 

The formula for the boundary operator in simplicial theory is very nice, 
but it is almost always much more difficult to make computations with it 
than it is for the cellular homology since there are usually many more 
simplices in a triangulation than there are cells needed in a CW-complex 
structure for the same space. For example, the real projective plane P2 requires 
only a single cell in dimensions 0,1, and 2, while Figure IV-16 shows the 
simplest triangulation of this space. It has 6 vertices, 15 edges, and 10 faces. 
It is the image of the triangulation of S2 as an icosahedron. 

Of course, Figure IV-16 does not describe a complex in the sense of our 
definition of a simplicia1 complex, since we have given no embedding in 
euclidean space. This can be done by taking those faces of the standard 
simplex A, c R6 which correspond to simplices in the figure. (For example, 
include the simplex [e,,e,,e,] since ( 1,3,4) is a simplex in the figure.) 
Obviously, this works for any finite complex, and that suffices for our 
purposes. 

There is another important variety of simplicial complex called an 
"abstract simplicial complex." We will not make use of this concept in this 
book, but briefly give its definition. An abstract simplicial complex is a set 
V, whose elements are called vertices, and a collection K offinite subsets of 
V, called simplices, such that ~ E K ,  # z c o s T E K ,  and V E V  * (v )EK.  It 
is possible to assign a topological space IK)  to such an abstract simplicial 
complex which, for finite complexes, is equivalent to a geometric simplicial 

Figure IV-16. Triangulation of the projective plane. 

: 21. Simplicia1 Complexes 249 

complex. The notion of an abstract simplicial complex is useful in a number 
of ways, but we shall not have a need for it in this book. 

Perhaps it is useful to do one calculation using simplicial theory, and we 
hall do so with the projective plane as triangulated as in Figure IV-16. We 

e the discussion of the zeroth homology to the reader, and shall do the 
d second (oriented) homology groups. We start with the easier of the 
e second homology group. Thus suppose we have a 2-cycle c. If c 

tains a term n(0, 1, 3) then, this term contributes dn(O,l, 3) = n(l,3) - 
+ n(0,l) to the expression for ac. For c to be a cycle, these have to 

be cancelled out. But, for example, the only way to cancel out n(O,3) would 
be to have a term n(0,3,2) in c because that is the only %-simplex besides 
the original (O,1,3) that has (0,3) as an edge. Reasoning in the same way 
for all the "interior" 1-simplices, we see that the cycle c must have the same 
coefficient on all of the 2-simplices (0,1,3), (0,3,2), (1,4,3), (3,4,5), 
(2,3,5), (2,5,l) (1,2,4), (0,4,2), (0,5,4), and (0,1,5). These are just all 
ten 2-simplices written with the vertices in such an order that they go clock- 
wise in the figure. Thus c must be a multiple of the chain which is the sum of 
these 10 simplices. Computing the boundary of this chain, and just loo$ing 
at the contribution to the term in (0, I) ,  we see that that is 2<0,1>. This is 
not zero, and so this 2-chain cannot be a cycle, nor can any nonzero multiple 
of it. Thus, H2(P2) = 0. (If we compute with mod 2 coefficients, however, note 
that this 2-chain would be a cycle, the only one, and so H2(P2;Z2) % Z,.) 

Now let us try to compute the first homology group. We shall not try to 
find all 1-cycles (there are many) but shall look for representatives within a 
homology class. That is, starting with an unknown 1-cycle c we allow 
ourselves to change c by adding boundaries of 2-simplices, and thus will try 
to get c into some standard form. In fact, let us try to get c into 
a form only involving the 1-simplices (0, I), (1,2), and (2,O). We will first 
work on the edges around the vertex (3). Clearly we can add a multiple, 
perhaps, 0, of d(O,1,3) to c to get rid of any term involving (0,3). Then 
we can add a multiple a(3,1,4) to get rid of a term in ( 1 , 3 )  (without ruining 
previous work, of course). Similarly, use (3,4,5) to get rid of (3,4), then 
use (3,5,2) to get rid of (3,5). At this point, we have gotten rid of all the edges 
around the vertex (3) except for (2,3). But the resulting coefficient on (2,3) 
must be 0 or else the boundary of this 1-cycle would have a nonzero term 
n(3). Working in the same way, we can use (1,2,4) to get rid of (1,4); 
(0,4,5) to get rid of (4,5); (0,2,4) to get rid of (0,4) and we get rid of 
(2,4) for free, because of the vertex (4). Then use ( I ,  5,2) to get rid of (2,5), 
and (0,5,1) to get rid of (1,5), and (0,5) disappears automatically because 
of (5). Now we have altered c, within its homology class, into the 
form c = i(0,l) + j(l,2) + k(2,O). Then we calculate 8c = i((1) - (0)) + 
j ( ( 2 ) - ( 1 ) ) + k ( ( O ) - ( 2 ) ) = ( k - i ) ( O ) + ( i - j ) ( l ) + ( j - k ) ( 2 ) .  Forthis 
to be 0 we must have i = j =  k. Thus there is an n such that 
c - n((0,l) + (1,2) + (2, O)), and this is, indeed, a 1-cycle. However, we 
showed above that there is a 2-chain u (the sum of the I0 clockwise 2-simplices) 
with du = 2((0, I )  + ( l ,2)  + (2,O)). Thus the homology class ci  = [{O, 1 )  + 



(1,2) + (2, O)] generates H,(P~) and 2a = 0. Hence H, (P~)  % Z2. Mod-2 
coefficients give the same result. 

1. Triangulate the torus and use simplicial theory to compute its homology. 

2. Triangulate the Klein bottle and use simplicial theory to compute its homology in 
both integer and mod 2 coeficients. 

3. Consider the triangulation of S2 as an octahedron. This is invariant under the 
antipodal map and so gives a CW-decomposition of P2 into four triangles. Show 
that this is not a triangulation of P2. 

22. Simplicial Maps 

For simplicial complexes K and L there is a class of mappings I K 1 -+ ILI of 
the associated polyhedra which are closely related to the triangulations. These 
are the "simplicial maps" studied in this section. A simplicial map induces 
a homomorphism in homology that is very easy to describe. We will prove 
an important result called the "Simplicial Approximation Theorem" which 
says that any map IKI -+ ILI is homotopic to a simplicial map after, perhaps, 
subdividing K. 

22.1. Definition. If K and L are simplicial complexes then a sirnplicial map 
f: K -+ L is a map f: I K I + ILl which takes vertices of any given simplex of 
K into vertices of some simplex of Land is afine on each simplex, i.e., 
f (C,l,u,,) = 2l iA.f  (v,,). 

Note that such a map is characterized by its values on vertices. Also a 
function f from the vertex set of K t o  that of L will define a simplicial map 
if and only if 

(u,,,.. . , uok)eK f(v,,),. . . , f (uOk) are vertices of some simplex of L 

(not necessarily distinct). It follows that f: JKI 4JLJ is cellular and the induced 
chain map f,: C,(K) -+ C,(L) has values 

< f (v,,), . . . , f(v,,)) if the latter vertices aredistinct, 
j* (urn">. - .  > 0,") = 

if they are not distinct. 

(To see this, choose an ordering of the vertices of L such that these are in 
the correct order.) Thus this formula serves to calculate the homomorphism 
in oriented simplicial homology induced by any simplicial mapf. 

To generalize this to arbitrary maps between polyhedra we need a way 
to replace an arb~trary map by a simplicial one. This is called "simplicial 
approximation." It also requires subdivision of one of the complexes involved, 

and we shall deal with that frst.,For the rest of this section we shall deal 
exclusively with finite simplicial complexes. 

Suppose K to be a simplicial complex. Let K' be its "barycentric sub- 
division," i.e., the complex whose vertices are the barycenters a of the simplices 
a of K and the simplices are of the form (go ,..., a,) where a, < ... <a,. 
Recall that the barycenter of (/I,, . . . , u,,) is the average of the u, and that 

"<" relation between simplices means the first is a proper face of the 
ond.) Also, let Kt'] denote the r-fold iterated barycentric subdivision of K. 
We have that I K I = I K'I (proof left to the reader). 
Define mesh(K) to be the maximum diameter of a simplex of K. In 

ection 17 it was shown that 

here n = dim K, and hence that  mesh(^"') -+ 0 as r -+ oo. 

22.2. Definition. For xel K 1, for a simplicial complex K, we define the carrier 
of x (carr(x)) to be the smallest simplex of K containing x. 

Note that 

-3. Definition. Let j: 1 K1-f 1 LI be continuous. A simplicia1 approximation 
f is a simplicial map g: K -+ L such that g(x)~carr( f (x)) for each xel K I. 

Note that this condition is equivalent to carr(g(x)) c carr(f(x)). 

22.4. Corollary. I j g  is a simplicia1 approximation to f then f - g. 

PROOF. Since f (x) and g(x) are both in the simplex carrwx)), the line segment 
between them is in carr(f(x)). Thus the homotopy F(x, t) = tg(x) + (1 - t) f (x) 
works. 

22.5. Lemma. Ifg: K -+ L is simplicial then g(carr(x)) = carr(g(x)). 

PROOF. Let (o,, . . . , vp)sK and x = C f = o l , ~ i  with all li > 0. Then carr(x) = 

(v,, . . . , up). Since g is simplicial, g(x) = Cr=o lig(ui). Note that some of the g(q) 
may be equal. Thus carr(g(x)) = convex hull of {g(v,), . . . , g(v,)) = g(carr(x)). 

22.6. Corollary. Iff ,: ( K  I -* I LI and 1,: 1 LI -+ ( M I  ure continuous and gi is a 

simplicial approximation to ji then g,.g1 is a simplicia1 approximation to 
fZOfl. 





andi t  follows from Lemma 23.1 that 

Similarly 

tr(fZ,) = t r ( f ~ , )  + tr(f~.). 

Thus x i ( -  l)'(tr( fc$ - tr( f,,- ,)) = Ci(- l)'(tr(fB.) + tr(fH,)). The terms in- 
volving Bi cancel out and so we get the following fact: 

23.2. Theorem (Hopf Trace Formula). If C, is a chain complex of bounded 
finite type over a field A and f: C ,  -+ C ,  is a A-linear chain map then 

x ( -  lftr(fC,) = x ( -  lytr(fH.)eA, 
i i 

where fH, is the induced map on homology. CI 

Note that for f = 1 and C, = C,(K), for a CW-complex K, this is just the 
Euler-Poincarb formula (Theorem 13.3). 

23.3. Definition. Let K be a finite simplicial complex, and consider homology 
with coefficients in a field A. Let f: J K 1 + J K 1 be a map and f,: Hi(] K 1; A) + 

Hi(I KI;A) the induced map in homology and tri(f,) its trace in degree i. 
Then we define the Lefschetz number o f f  to be 

23.4. Theorem (Lefschetz-Hopf Fixed Point Theorem). Let K be a finite 
simplicial complex and f: I K I -+ I K I a map. If LA( f )  # 0 then f has afixed point. 

PROOF. Suppose that f has no fixed points. Then we must show that L( f )  = 0. 
Since dist(x, f (x)) is a continuous function there is a number 6 such that 
dist(x, f (x)) 2 6 for all x ~ l  Kl. Subdivide K so that mesh(K) < 612. We may 
as well assume this holds for K itself. That is, we have 

dist(x, f (x)) > 2 - mesh(K). 

Let g: Kfnl -+ K be a simplicial approximation to f .  Thus X G  I KI g(x) 
~carr , (  f (x)). It follows that dist(g(x), f (x)) 5 mesh(K). We conclude that 

Therefore XEOEK => g(x)$o. This shows that 

ang (a )  = for all simplices a of K. 

Now g may be regarded as a cellular map KLnl+ Kin) even though it is 
not simplicial. Recall that the induced cellular chain map is glvcn by 
ga(o) = C,deg(g,,,)z where, for k-cells a and z,g,.,: Sk -+Sk is induced by the 
composition of the characteristic map for a with the collapse to V ,Sk followed 
by the projection to the zth sphere. Since g(Ia1) has empty intersection with 

la j we have ,deg(g,,,) = 0. Therefore gA: Ct (~["] )  -+ Ck(K1"]) has trace 0. Since 
f E g, we deduce that 

L( f )  = C(- 1)' tri(g,) (since g, = f,) 

= - 1)' tri(gA) (by Hop0 
= o  (since all terms are 0). 0 

Now we will discuss the case of integer coefficients. Let A be an abelian 
group. Then the tensor product A Q Q of A with the rationals Q is the abelian 
group generated by the symbols aQq for aeA and q e Q  subject to the 
relations of being bilinear ((a + b) Q q = a @ q + b @q and a @ (p + q) = 

a @ p + a  Q q). This is a rational vector space (by r(a Q q) = a Q rq for reQ). 
If A is finitely generated, as is the case with the applications in this section, 

then A @ Q  is easy to understand. The torsion part T(A) of A disappears 
in A Q Q because if nu = 0 for some integer n then a Q q = a Q (n)(q/n) = 
naQ(q/n) =OQ(q/n) =O. But A/T(A) is free abelian and it is clear that 
(A/T(A)) Q Q is just the rational vector space on a basis of this free abelian 
group, so the same is true of A QQ.  Unfortunately, this description is not 
"natural" and so masks the fact that, for example, tensoring a commutative 
diagram with Q gives a commutative diagram. 

If 0 -+ A -t B -+ C -+ 0 is a short exact sequence of abelian groups then 

is also exact. (That is, Q Q  is an exact functor.) We only need this for finitely 
generated groups and the reader should be able to prove that case with ease. 
(If not, then refer to Chapter V, Section 6, where general tensor products are 
discussed in detail.) It follows that for any chain complex C,, we have 
H*(C* Q Q) = H*(C*) O Q. 

Suppose now that A is finitely generated and that f :  A -+A is an endo- 
morphism. Then f induces an endomorphism A/T(A) + A/T(A). Since A/T(A) 
is free abelian with a finite basis, this has a matrix representation over the 
integers, and therefore has a trace in Z. We denote this trace by tr(f). 

Then f @ 1 is defined on A @ Q = A/T(A) Q Q, which, as mentioned above, 
is a vector space over Q with basis consisting of a basis over Z of A/T(A) 
tensored with 1. Thus f @ 1 has the same matrix representation as does f. 
Therefore trq( f @ 1) = tr( f )  and is an integer. 

Thus if f :  I K I -+ I K I is a map of a finite polyhedron to itself then one can 
define the integral Lefschetz number 

L(f)  = 1 ( - lytr(f(H,(IKI)/torsion))'Z 
1 

but we have L(f')= LQ(f) by our remarks. Therefore Y f )  can always be 
computed using rational coefficients, and the result is always an integer. 

We shall now make a slight generalization of Theorem 23.4 to the case 
of a compact "euclidean neighborhood retract" (ENR). An ENR is a space 
which is homeomorphic to a retract of some open set in some Rn. If X is a 
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compact ENR then X is a retract of a finite polyhedron K because it is the 
retract of an open set U in some Rn and one can triangulate Rn so finely 
that any simplex touching X is inside I/, and the union of those simplices 
can be taken as K. Conversely, a retract of a finite polyhedron is an ENR 
since the polyhedron is an ENR as is shown in Appendix E (not needed 
here). It follows easily from the Tubular Neighborhood Theorem that any 
smooth compact manifold is a compact ENR. In Appendix E it is shown 
that any topological manifold embeddable in euclidean space, and hence any 
compact topological manifold, is an ENR (not needed here). 

23.5. Corollary. Let X be a compact ENR. Iff: X -+ X has L( f )  # 0 then f 
has a jixed point. 

PROOF. By the above remarks X is a retract of some finite polyhedron K. 
Let i :  X c, K be the inclusion and r: K 4 X the retraction, so that rOi  = 1. It 
follows from this that H,(X) has bounded finite type since the identity map 
on it factors though H,(K) which has bounded finite type. Therefore L( f )  is 
defined. We cannot apply Theorem 23.4 directly because we do not assume 
that X can be triangulated. Put f = i0f.r: K -+ K. On Hp(.; Q), and recalling 
that tr(AB) = tr(BA), we have 

tr,(f :I = tr,(i*f*r*) = tr,(f*r*i*) = trp(f*o 1) = trp(f*), 

andso  L(f)=L(fx). IfL(f)#O thenL(fK)#Oandso f K  hasafixedpoint 
X E K  by Theorem23.4. But x = f K(x) = if r(x) shows that XEX and so 
f ( x )  = x. 

Let us now examine a few examples and corollaries. First note that if X 
is arcwise connected then, for any map f: X -, X, f, is the identity on Ho(X). 
That is so because Ho(X) is generated by a singular 0-simplex, which is 
essentially just a point in X, and any two of these are homologous because 
there is a singular 1-simplex having the difference of the points as boundary 
(a path from one to the other). Consequently, I[X] = [ f (x)] = f*[x]. 

The following result is an immediate consequence of Corollary 23.5 and 
Corollary 11.5 of Chapter 11. Note that L(1,) = x(K) .  

23.6. Corollary. If M is a compact smooth manifold with Euler cliaructeristic 
x ( M )  # 0 then any tunyent vectorfield on M has a zero. 

The converse of Corollary 23.6 is also true but cannot be shown here. It 
is proved in Corollary 14.5 of Chapter VII. 

23.7. Corollary. If' f': S" -+ S" has deg(f f # ( - I )" + ' then f has a jxed point. 

This implies, of course, that the degree of the antipodal map on Sn is 
(-  1)"' ' as seen before. 

23. The Lefschetz Hopf f:~xed Point Theorem 23 1 

23.8. Definition. A space X is said to have thefixed point property if every 
map ,f: X -+ X has a fixed point. 

For example, any polyhedron X which is acyclic (E,(x; A) = 0) over any 
field A has the fixed point property. Thus the "dunce cap" space and the 
real projective plane have the fixed point property. In fact, the real projective 

ace of even dimension PZm is acyclic over Q and so has the fixed point 

We shall give some further examples based on some results we shall have 
to state without proof (all but one of which will be proved later in the book). 

Consider a map f :  CPn 4 CP" on complex projective n-space. Recall from 
Problem 7 of Section 10 that Hi(CPn) z Z for i even with 0 i 2 2n. It is 
known (shown in Proposition 10.2 of Chapter VI, also see Section 10 of 
Chapter V), that if 0 # aeH2(CPn) and f (a) = ka then f, is multiplication by 
ki on H2,(CP"). Thus L(f) = 1 + k + k2 + .-. + k". This is not zero for k = 1. 
For k # 1 we have L(.f) = (1 - kn+')/(l - k). But this has no integer k as a 
root if n is even. (For n odd, there is the single root - 1.) Consequently, CPn 
has the fixed point property for n even. 

A similar argument also applies to quaternionic projective space QPn. 
The homology of this space is H,(QPn) = Z for i divisible by 4 and 0 5 i 5 4n. 
There is also the added fact about these spaces that for n 2 2, it can be shown 
that there is no map f: QP" -+ QP" which is multiplication by - 1 on H,(QPn), 
i.e., the analogue of k here cannot be - 1. It follows that QP" has the fixed 
point property for all n 2 2. 

The reduced suspension SCP2 is a CW-complex with single cells in 
dimensions 0,3, and 5. It follows that its mod 2 homology is Z2 in these 
dimensions and 0 otherwise. It is a fact that iff is a self-map in SCP2 then f, is 
nontrivial in dimension 3 if and only if it is nontrivial in dimension 5. Thus 
L,,( f )  = 1 in Z, always. Therefore SCP2 has the fixed point property. (Proofs 
of the foregoing facts about QP" and SCPn can be found in Section 15 of 
Chapter VI.) 

A known theorem in the other direction states that if K is a slmplicial 
complex of dimension at least 3, with no lodal cut points (i.e., no point of IKI 
disconnects all small connected neighborhoods), and Euler characterist~c 
x(K) = 0, then there is a self-map of I K I without fixed points and homotopic 
to the ident~ty. (See R.F. Brown [I].) 

23.9. Proposition. A retract A o f u  space X with the jixed point property has 
the fixed point property. 

PK(x)F. This follows from the last part of the proof of Corollary 23.5. 

23.10. Proposition. The one-point union A v R has the jixed point property 
o both A and 13 have the fixed potnt properiy. 

PR(x)F. Let x ,  stand for the common base poinl. For (e) suppose 



.f: A v B -, A v B and let us assume that /(x,)EA and is not x,. Let g: A + A  
be pAo f where pA is the projection of A v B onto A. Then g(ao) = a, for 
some a,€ A. 

If f (u,)EA then a, = g(a,) = p,f(u,) = f(ao) and we are done. 
Iff (u,)EB then a, = g(a,) = p,f(a,) = x, contrary to the assumption that 

f (x , )~A - B. 
The implication (*) follows from Proposition 23.9. 0 

Putting together several of the last "results," we see that the space 
X = QP3 v SCP2 v SCP2 has the fixed point property, but 1 x X does not. 
This is because all three "factors" of X have the fixed point property by the 
above remarks, but x(I x X) = x ( X )  = 1 + (3) - (2) - (2) = 0, so that there is 
a map without fixed points on I x X by the theorem cited above. (In this 
computation, the 1 represents the unique 0-cell, the others are contributions 
from higher cells in the three factors.) Examples like this are rather hard to 
come by. They are useful to prevent hard work being expended trying to 
prove intuitively plausible guesses such as "I x X has the fixed point property 
if X does" which are, in fact, false. There are more sophisticated examples 
of polyhedra K and L such that K x L has a fixed point free map but every 
polyhedron homotopy equivalent to either K or L has the fixed point 
property; see Bredon [3]. 

Lefschetz originally proved his fixed point theorem for manifolds only. 
That is the form appearing here in Theorem 12.6 of ChapterVI. The 
version (Theorem 23.4) in the present section is due to Hopf. 

Remarks on computation of homology groups. Let K be a finite CW-complex. 
Since B,-, c C,-, is free abelian by the Fundamental Theorem of Abelian 
Groups (see Section 13), the exact sequence 0 -, Z, -+ C, -+ B,- , -+ 0 splits. 
Thus C, -5 Z,@ B,-, and C,,  , -5 Z,, , @ B,. In this representation, a,,? is 
just the inclusion Bpc=-+Zp. By the Fundamental Theorem of Abel~an 
Groups there are bases (z,, . . . , z,, b,, . . . , b,) of C, and (z',,. . . , z:., b;,. . . , b:,) 
of C,,,, such that ab;= kizi where k,Ik21...Ik, .. It follows that 

where the pth Betti number 6, = n - r'. (Some of the k ,  may be 1 in which 
case Z,, is trivial.) Thus 

= rank (C,) - rank(?,) - rank (a, + , ). 
?'he matrix A of d,,, in these bases is diag(kl, . . . , k,.) padded with some 
zero rows and/or columns. 

A change of bases is given by Bt-t U B V  where ( J  and V are unimodular 
(intcgcr matrices with determinant t 1). This can be achieved by a sequence 
of' row and colurnn opcr;itions which are addi t ion of an integcr multiple of 
;I row or column to anothcr, interchange o f  rows or columns, and change 
of the sig11 of a row or  column. ThcreSore the matrix A,  and hence the k i ,  

iF 
can be obtained, via these operations, from the matrix of (7,+, in its canonical 
basis. The latter is just the matrix 

of incidence numbers, where the ri are the p-cells of K and the cj are the 
(p + 1)-cells of K. Such matrix reductions can be given in algorithmic form 
and hence can (easily) be programmed on a computer. 

1. Let f: R2 -+ R2 be the map taking (x, y ) ~  (- x - y, x). Since this is linear and 
preserves the integral lattice Z2, it induces a map f:T2-+T2 on the torus. Let 
w0eTZ be the point corresponding to the origin (0) of R2. 
(a) Find f#: n,(T2, wo) -* n,(T2, wO) and use this to  find f,: Hl(T2) -+ H,(T2). 
(b) Find f,: H2(T2) -r H2(T2). 
(c) Show that any self-map on T Z  homotopic to f has a fixed point. 

2. Let Y be the union of the cylinder {(x, y, z)€R3 1x2 + y2 = 1, / z J  5 1)  with the disk 
((x, y , z ) ~ R ~ l x ~  + y2 5 1,z = Of. Let X be the quotient space of Y obtained by 
identifying antipodal points on the circle {z  = 1) in Y and also identifying antipodal 
points on the circle {z = - 1) in I! Show that X has the fixed point property. 

3. If X is a polyhedron with the property that any map f X -+ X has L( f )  # 0, then 
show that any finite polyhedron Y homotopy equivalent to  X has the fixed point 
property. Also show that this is false if Y is allowed to be any topological space 
homotopy equivalent to X. 

4. Consider the subset X of the plane consisting of the two circles A and B of radrus 
1 centered at (0, 1). Let f X 4 X be the reflection in the y-axis on A and a map 
B - + B  of degree 2 on B. Show that L( f) = 0 but that any map g: X -+ X homotopic 
to f has a fixed point. 

5. Let X = A u B u C  be the subset of R h h e r e  A = ( ( l  +l/ t )e2""11<t<co)  (a 
spiral), 3 = { ( x , O , z ) ~ R ~ ( ( x -  1)' + z2 = 1,z 2 0 )  (a semicircle), and C  = {zECI 
Izl  r 1 ). (a disk). Show that X is compact and acyclrc (whence L(j')= 1 for all 
f: X -+ X) but there exists a map f: X -+ X w~thout  fixed points. Why does this not 
contradict Corollary 23.5? 

6 + Let K = {(x, y)eR21x2 + y2 < 16,(x - 2)' + y2 2 l , (x  + 2)' + y2 2 1 } which is 
a dlsk with two small separated disks removed; i.e., the simplest surface with three 
boundary components. Iff K -+ K is a homeomorphism w~thout fixed points, show 
that f must cyclically permute the three boundary components and must reverse 
orrentatlon Also, construct such a homeomorphism w~thout  fixed points. 



CHAPTER V 
Cohomology 

I shall allow myselffree excursions as the 
changing stimulus of surroundings may lead me 

to do ... . 

1. Multilinear Algebra 

Let V be a vector space over the real numbers. Denote by Ap(V) the vector 
space of all alternating multilinear p-forms on V. That is, w€AP(V)  is a 
function which assigns to each p-tuple ( X , ,  . . . , X,) of vectors in V ,  a real 
number o ( X , ,  . . . , X,) such that 

for any permutation a of 1,2,. . . , p, and such that w is linear in each variable. 
There is a product, the "wedge" product or "exterior" product, AP x Aq 

-+ A P + ~  defined by 

A q(X,,...,Xp+,)=Csgn(a)m(x,l, . . . ,X a p ) ~ ( X a p + l > - . - , X a p + q ) .  
a 

where the sum is over all permutations a of 1,2, ...,p+ q such that 
a ,  < ... < crp and cr,,, < ... < oP+,. Note that this is the same as 

where the sum is over all permutations. 
The wedge product is bilinear and associative. 
For p = 0 we define AO(V) = R. Note that A'(V)  = V*, the dual space lo 

V. It is easy to see that if a,,. . . , u p  are I-forms then 

1 ((ol 
A 

A o,,)(Xl ,..., X p ) =  det[w1(X,)]. 1 
Indeed, that IS  essentially the definition of a determinant. 
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1.1. Proposition. If o,,. . .. wn is a basis of V* then {w,, A A uip1il < ... < ip! 

is a basis of AP(V) over R. 

PROOF. Let X,, .  . . , X ,  be the dual basis of V, so that o , ( X j )  = Let o be 
a p-form. For indices i, < .. . < ip let ail ,,,., ip  = o ( X j 1 , .  . . , XiP). Then we see that 

for all j, 6 .,. <jp since ail A ..- A mip(Xjl , .  . . , X j p )  = 1 when the j, equal the 
i,, and is zero otherwise. It follows that these forms are identical. Thus the 
forms in question span AP(V). If the above sum is zero, i.e. if o = 0, then 
each of the coefficients ail,,,,,ip vanishes and so the forms in question are 
independent. 0 

1.2. Corollary. 

dim AP(V) = (i) = n!/(p! (n  - p)!) where n = dim K 

1.3. Corollary. 

~ E A ' ( V ) ,  q€Aq(V) => o ~ q = ( - l ) ~ " q ~ o .  

PROOF. Both sides of the for=ula are bilinear. They coincide, by direct 
examination, when o and q are from the basis given in Proposition 1.1. Thus 
they coincide for all forms o and q. 

1.4. Corollary. 

o€AP(V),podd * m ~ w = O .  

2. Differential Forms 

Let Mn be a smooth manifold. Recall that T,(M) denotes the tangent space 
of M at X G M .  

2.1. Definition. A duerential p-form o on M is a differentiable function which 
assigns to each point X E M ,  a member ox~AP(T,(h4)) .  

In this definition, "differentiable" means the following: In local coordinates 
x,, . . . , x, about x, T,*(M) has the basis dx , ,  . . . , dx, where dx,(8/dxj) = ax Jax, = 
6,,. Thus o can be written as 

and the f i l ,  . , , l p  are required to be smooth. 



We let RP(M) be the vector space of all smootkp-forms on M. Note that 
RO(M) is the space of all real valued smooth functions on M. 

One has the wedge product on RP(M) by operating pointwise. In the case 
of a function f€RO(M) and a form oeRP(M) we use the notation f o = f A w 
for short. 

Note that if XI, .  . . , X ,  are vector fields on M and o is a p-form then 
o (Xl ,  . . . , X,) is a smooth real valued function on M. (It can be shown that 
smoothness of w is equivalent to the smoothness of the functions obtained 
this way.) 

In general, iff is smooth real valued function on M, and X is a smooth 
vector field, then we define df (X) = X( f  ). Note that df = Ci(a f /ax,)dx,. 

If oeRP(M) then we define its "exterior derivative" ~ W E R ~ + ' ( M )  as follows. 
If o = f  dx,, A . . . A dxiPthen we put d o  = d f A dx,, A - - . A dxip. This is then 
extended linearly to all forms. 

Of course, it must be shown that this definition is independent of the local 
coordinates used to define it. This is straightforward and will be left to the 
reader. A nice way to do this is indicated in Problem 1. 

Note then that the exterior derivative gives a linear map 

2.2. Proposition. We have that dd = 0. 

PROOF. It is sufficient to check this on o = f dx, A -.. A dx,. We calculate 

Thus 

n n a 2 f  d d ~  = 1 1 - d x j ~  dx, A dx, A . . .  A dx,. 
j= l  i = l  axjaxi 

If we rearrange the double sum so that it ranges over j < i then we get two 
terms for each pair i,j. These terms are identical except for a dx, A dx, in 
one and d.x, A dxj in the other. Thus it all cancels out. 

2.3. Proposition. I f  w is a p-form and q i s  a qTform then 

d ( o ~ q ) = d o ~ q + ( - l ) ~ o ~ d q .  

PK(x)F. One need only check this when w = fdx, A -.. A dx, and q = 

y dx,, A ... A dxlq. This is straightforward. 

One can prove (but we will not do so here) the foilowing invariant formula 
for da): 

dw(X0,. . . , X,)  = i = o  (- l ) ' X ~ ~ ( x ~ , .  . . , Bi, .  . ., X,)) 

+ i < j  c (- ~~+'..([x~,x~],x~,. . . ,Ri, .  . . , l j , . .  .,x,), 

where [X, Y] = XY- YX, the so-called Lie bracket. 

2.4. Definition. A p-form w is closed if d o  = 0. It is exact if o = dq for some 
( p - 1)-form q. 

Note that the sequence . .. -+Rp- '(M) -+ RP(M) -+ QP+'(M) -+ ... is of order 
2 and so it is a chain complex except that the operator d raises degree instead 
of lowering it. Thus what we get by taking its '6homology" is called "cohomol- 
ogy." more precisely: 

2.5. Definition. The pth de Rham cohomology group of M is the real vector 
space 

ker(d: RP(M) -+ RP+ '(M)) - closed p-forms 
Hg(M) = - .  

im(d: Q P -  '(M) -+ RP(M)) exact p-forms 

It is a classical problem in analysis to decide when a given form is exact. 
It is easy to check whether or not a form is closed since that is just a 
computation. Thus, if H;(M) = 0, then exact is the same as closed and so 
the problem is solved in that case. 

Note that there is a product Hg(M) x H:(M)-+ Hfi+q(M) given by 
' I  [a] x [q]t-+[o A q]. This is well defined by Proposition 2.3 and it is -__- -.- --- -- " b~linear and associative. Moreover, the constant function 1 is a unity element. 

Thus HZ(M) is a graded (signed) commutative R-algebra. 
Let us compute Hz(M). This is the kernel of d: RO(M)-+R'(M). That is, 

it is { f: M -+ R(df = 0). But df = 0 means all partials off vanish and that 
means that f is locally constant. Thus H ~ ( M )  is the cartesian product of 
copies of R, one copy for each component of M. In particular, it is R if M 
is connected. 

Now we will study "induced forms." Let 8: M-+ N be a smooth map. 
Recall that the differential 6, of 8 at a point XEM is defined by 
8,(X)(f) = X(f 00) where X is a tangent vector at x of M. 

2.6. Definition. If 0: M --+ N is smooth then B*: RP(N) -+RP(M) is defined 
by 

where X ,*, . . . , Xpx are tangent vectors to M at x. On functions 0*( f )  = f 06. 



v. Cohomology 

Note that for a smooth real valued function f there are the fo1lowing 
identities which follow immediately from the definitions: 

Of course, we must show that the form B*(w) is smooth. This follows 
immediately from part (3) of the following result: 

2.7. Proposition. I f0  and II/ are smooth mappings of manifolds then: 

(1) (80 *)* = ** 08*; 
(2) 8*(w A q) = B*(w) A 8*(q); 
(3) 8*(f dyl A -.. A dy,) = f 08d(yl 08) A 0 . .  A dCy,o8); and 
(4) e*(do) = d(e*(o)). 

PROOF. The first two folfow directly from the definitions. For the third, we 
compute 

For part (4), and for o = fdy, A .-- A dy,, we have 

It follows from Proposition 2.7 that 8* induces a ring homomorphism 

taking [o] to [@*a]. 

1. On an open set U cR" show that the exterior derivative d is the only operator 
d :  Rp(U) 4 R p f  ' ( U )  satisfying: 
(a) d(w  + q ) = d w + d q ;  
(b) w € R P ( U ) ,  qeQg(U)+d(w A q)  = d o  A r]  + (- l)Pw A dq; 
(c) f e R O ( U ) * d f ( X ) = X ( f ) ;  and 
(d) J eRO(U)*d(d f )  = 0. 
Deduce that d is independent of the coordinate system used to define it. 

2. On the unit circle S' in the plane, let 0 = arctan(y/x) be the usual polar coordinate. 
Show that dO makes sense on S' and is a closed 1-form which is not exact. 

3. For w e R 1 ( M ) ,  verify the special case do(X,  Y) = X(o(Y) )  - Y(w(X))  - w ( [ X ,  Y ] )  
of the invariant formula mentioned above Definition 2.4. 

I 3. Integration of Forms 265 

I 3. Integration of Forms. 

We wish to define the '"integration" of an n-form on an n-manifold. First we 
onsider the case of an open subset U c Rn with coordinates x,, . . . , x,. 

For a form o, define the support of w, support(o), to be the closure of 
(.lox t' 01. 

Let o be an n-form on U c Rn with compact support. Note then that w 
extends to all of Rn by 0 with support in some cube. Now o can be written 

and f = 0 outside some compact set. Thus we can define 

where the right-hand integral is an ordinary Riemann integral. In fact, f need 
only be Riemann integrable with compact support for this to make sense. 

Now suppose that W is another open set in Rn and let 8: W - ,  U be a 
diffeomorphism. Then we have the n-form 8*(w) on W where, by definition, 

e*(w)=(foe)d(xloe) A .-- A d(xn0e). 

Now 

where J,,{B) is the i,j entry of the Jacobian matrix of 8. Thus 

= det(Ji,j(8))dx, A ... A dx,. 

Therefore 8*(w) = (f 08) det(Ji,A8)) dx, A ... A dxn and So 

J B*(o) = J J . . - J /(B(x,, . . . , x,)) det(Ji,j(8)) d x ,  - . . dx,, 
R" 

by the standard Riemann change of variables rule, where the sign is the sign 
of det(Ji,,(8)). If U is not connected then we are assuming here the same sign 
on all components. 



Now assume that Mn is an oriented manifold and use only charts consistent 
with its orientation. Let o be an n-form on Mn whose support is contained 
in the open set U where U is the domain of a chart 4: U + W c Rn. 

Then (4-')*o is an n-form on W c R". Thus we define 

To show that this is independent of the choice of 4 let $ be another such 
map and let 0 = $04-l. Then $-lo8 = 4-' so (4-')* = 0*0($-I)*. Thus 

(4-')*w = 0*(IC/-l)*o = ($-')*o S S S 
which proves this independence. 

Now let o be an arbitrary n-form on Mn with compact support K. Let 
f i: M -+ R give a smooth partition of unity so that: 

(a) fi 2 0; 
(b) support( fi) c Ui where {U,) is a locally finite covering of M with each 

Ui the domain of a chart; and 
(c) Cifi = 1. 

Note that the compact set K touches only a finite number of the Ui. We 
define 

We must show that this is well defined. Thus suppose {gj) to be another 
such partition. Then 1 = xi.j fi gj- Hence fi  = f iz jg j  = xj f gj- It follows that 

Therefore 

as claimed. 
We already had a local change of variables rule which now generalizes 

easily to the global fact that if 9: Mn-+ Nn is a diffeomorphism of oriented 
n-manifolds, which preserves orientation, then 

for any n-form o on Nn with compact support. 

1 1 4. Stokes' Theorem 
! 

Consider an n-manifold Mn with boundary. It can be shown, in a similar 
manner to the Tubular Neighborhood Theorem, that such a manifold can 
be embedded in an n-manifold without boundary by adding an outward 
"collar" to aM. For technical reasons we shaIl assume this to be done. (In 
this way, we do not have to redefine forms, etc.) 

We also assume Mn to be oriented. Given, at a boundary point, a system 
of local coordinates x,, . . , xn such that Mn is defined by x, 1 0  (as in 
Definition 2.7 of Chapter 11), we have that x,, . . . , xn form local coordinates 
for the boundary. (See Figure V-1.) We take these coordinates, renumbering 
in the same order, to define an orientation on the boundary aM. (The reader 
should convince himself that the boundary is, indeed, orientable.) Let B = aM 
denote the boundary and i: B -+ M the inclusion map. 

Let o be an (n - 1)-form on Mn. Then i*o is an (n - 1)-form on Bn- '. We 
will denote this by ol, = i*w or simply by o when it is clear we are talking 
about Bn-' and not Mn. 

A 

Thus, if o = Ci fidxl A ..- A dxi A . - -  A dx,, then 

A 
oIB = i*o= Ifid(xloi) A A d(xiOi) A ..- A d(xnOi)= fi dxz A A dx, 

i 

since B is given by x, = 0, whence d(x, o i) = 0. 

4.1. Theorem (Stokes' Theorem). If Mn is an oriented n-manifold with boundary 
aMn and o is an (n - I)-form on Mn with compact support then 

PROOF. We first prove this in the case for which the support of o is in a 
"cubic coordinate neighborhood {(x,, . . . , xn)l lxil l a ) .  (At a point on the 
boundary, we assume as usual that x, 1 0  defines M.) We can take 

Figure V-I. Coordinate patch at a boundary point. 
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A 
w = xi fi  dx, A . . . A dx, A . . . A dx,, where support( f i )  is in the coordinate 
neighborhood. Because of the linearity of both sides of the equation in 
Theorem 4.1, it suffices to prove Theorem 4.1 for the individual terms 

Then 

Accordingly, we compute 

X i  =o 
A 

dx ,  dx i e  - . dx,, 
*,= - a  

where xi  = a should be replaced with xi = 0 in the case of coordinates at a 
boundary point and i = 1. For an interior point this last term is zero since\ 
f vanishes where it is being evaluated. At a boundary point, with i # 1 we 
also get 0. In both cases JaMw = 0 since wl = 0. 

The only case remaining is that of a boundary point, and i = 1. In this case, 

as was to be shown. Now we take the general case. Let (g,) be a smooth 
partition of unity with the support of each gi being compact and inside a 
cubic coordinate neighborhood as above. Then 

To close this section, we shall briefly discuss the relationship between this 
material and the classical Stokes' Theorem in R 3  one usually sees in a calculus 
course. 

in R 3  a 1 -form o can be written 

To this, one can associate the vector field I;= = (f, y, h). A Zform q can be 
written 
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,and this too can be associated with the same vector field F = (f, g, h ). The 3- 
form f d x  A dy A dz can be regarded as the function f. 

Then one can compute that 

d w  = (g, - f,,) dx A d y  + ( fi - h,)dz A dx  + (hy - gz) dy  A dz, 

so that the form d w  corresponds to the vector field curl F. 
Similarly, for a Zform q, as above, we have 

which is identified with the function div F. 
For a function f, the vector field grad f corresponds to the form d f .  
On a (compact smooth) solid M 3  c R3 one can see that the Zform induced 

from q by the inclusion map aM3 .-,R3, corresponds to F z d o  on aM3 where 
ii is the outward normal and d o  is the element of surface area. This is 
essentially the same calculation that is done in calculus books. In this case, 
then, the formula SM dq = 1 q of Theorem 4.1 becomes 

which is the "Divergence Theorem" or "Gauss' Theorem" in calculus books. 
Similarly, if M 2  is a surface with a boundary in R3 and w is a 1-form as 

above, then the restriction of w to aM2 can be computed to corre~pond to - - 
F-  T ds where T is the unit tangent vector to the curve aM2 appropriately 
oriented, and ds is the element of arc length. Thus, the formula jM dw = JaM w 
of Theorem 4.1 becomes 

J cud B-a do = QlaM F. T ds 
M 

which is the "Stokes' Theorem" in calculus books, and becomes, in case M2 
is planar, what is variously called "Green's Theorem" or "Gauss' Theorem" 
in the plane. 

Also, of course, the formula d 2  = 0 becomes, in the classical notation, 
div curl F = 0 when applied to I-forms, and curl grad f = 0 when applied to 
0-forms. 

5. Relationship to Singular Homology 

We wish to relate de Rham cohomology to singular homology. In order to 
do that we must make a slight modification to singular homology (which 
will be shown later to give the same groups). We will restrict attention to 
smooth singular simplices a:A, -+  M". (Actually we require a to be defined 
and smooth in a neighborhood of A, in its p-plane, but we don't care about 
its values there. This is just to avoid a separate definition of "smooth" for 
nonmanifolds like A,.) 



Since we are going to integrate a p-form over the standard p-simplex, 
must choose an orientation for A,. Do this by taking the positive orientati 
on the 0-simplex A, and, if an orientation has been chosen for A,- ,, choose 
the one on aA, making the face map F,: A,-, -+ aA, preserve orientation. 
(Ignore the (p- 2)-skeleton so you can think of A, as a manifold with 
boundary.) Then orient A, consistently with its boundary, in the wa 
described in the previous section. Since the face maps Fi satisfy Fi 
[e,, e,, el,. . . , e*,, . . . , e,] 0 F, it follows that Fi preserves orientation if and on1 
if i is even. 

Now suppose we have a p-form w on M" and a smooth singular si 
a: A,+ Mn. Then a*w is a p-form on A,. Ignoring the ( p  - 2)-skeleton 
we can integrate o*w over A,. (To be precise, one must do an approximation 
in order to avoid the (p - 2)-skeleton, or expand the treatment of integration 
a bit. One could, for example, multiply the form by a smooth function to 
[O,l] which is 1 outside a small neighborhood of the (p - 2)-skeleton and 0 
inside a smaller neighborhood, and then pass to a limit as these neighbor- 
hoods get smaller. The result of all that is clear, however, so we shall leave 
the details alone.) 

Thus we define 

(Note that Mn need not be oriented for this. It is the orientation of A, th 
matters.) Define, for a p-chain c = 2, n,o, 

This provides a homomorphism 

Y(w): Ap(M) -+ R 

given by Y(w)(c) = 1,w. Note that this is linear in o as well. Therefore we 
have the homomorphism 

Y: @(M) 4 Hom(Ap(M), R), 1 
where Hom(A, B) denotes the group of homomorphisms A -+ B. 

Now let o be a (p - 1)-form and a a (smooth) singular p-simplex in Mn. 
Applying Stokes' Theorem, we obtain 

= 6(~(w))(fl), 
where 

6 : Hom(Ap -, (M), R) -+ Hom(A,(M), R) 

is the transpose of a, i.e., (6 f)(c) = f (ac). 
Thus we have the commutative diagram 

That is, Y is a chain map. We shall study it. 
The groups on the right (the duals of the chain groups) are called "cochain 

groups," their elements being "cochains." The (smooth) singular "cochain 
complex" is 

together with the transpose 6 of a. The singular "cohomology" of M is 

HP(M; R) = HP(A*(M; R)), 

that is, the kernel of 6 on AP modulo the image of 6 from AP-'. The chain 
map Y, above, then induces a homomorphism 

I Y*: H;(M) - Hp(M, R). I 
The "de Rham Theorem" (originally conjectured by E. Cartan) states that 
Y* is an isomorphism for all M. We will prove that theorem in Section 9. 
First we must develop the elements of the theory of singular cohomology, 
and related things. 

6. More Homological Algebra 

We briefly discussed the tensor product A @B of two abelian groups A and 
B before. Let us take it up again a little more fully. The group A Q B  is 
?ei~ned as the abelian group generated by the symbols a@ b, a e A  and ~ E B  
subject to the relations that make this bilinear, i.e., (a, + a,) O b = a, O b + 
u, 8 band a @ (b, + b,) = a Q b,  + a @ b,. It is characterized by the "universal 
property" that a bilinear map A x B-t C into an abelian group C factors 
uniquely through A Q B where A x B + A Q B taking a x h to a  Q b is bilinear 
and the induced map A @  B -t C is a homomorphism. 
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The tensor product is a covariant functor ofboth variables. That is, 
homomorphisms f :  At+ A and g: B'+B induce a homomorphism f @g: 
A1@B'-+AQB by (f Qg)(aQb)=f(a)@g(b). 

I f A f c A a n d  K c A Q B i s  theimageofiQ1:AfQB+A@B,then there 
is the homomorphism (A/A1) @ B -t (A @ B)/K taking [a] @ b into [a @ b].  
There is also the homomorphism (A Q B)/K + (A/A') @ B induced from the 
homomorphism A Q B -+ (A/A1) 8 B and taking [a Q b] ~ [ a ]  Q b. These two 
homomorphisms are mutually inverse, and so define an isomorphism 
(A/A1)@ B x (A@ B)/K. This is equivalent to saying that the short exact 
sequence 

induces the sequence 

A~@B+AQB+A"QB-+O 

which is exact at the A@ B term. It is also obviously exact at the A"@ B 
term, and so it is exact. That means that 64 is a "right exact functor." , 

There is the isomorphism Z @ B z B making 1 0  b correspond to b. This 
covers all of Z Q B because of the identity n @ b = (1 + 1 + + 1) 0 b = 
l @ b + . . - +  1 @ b =  1@nb. 

If (A,) is a collection of abelian groups then (@AJQ B is generated by 
the elements a,@ b. The group @(A,@ B) is also generated by elements 
a,@b. This symbol means different things in the two groups, but the 
correspondence between them generates an isomorphism 

Similarly, if A and B are abelian groups then Hom(A, B) denotes the 
abelian group of all homomorphism A + B. If 0 -t A' + A -, A" -+ 0 is exact 
then it is very easy to see that the induced sequence 

is exact. Thus Horn(.;) is a "left exact" contravariant functor of the first 
variable. It is easy to see that it is also a left exact covariant functor of the 
second variable. 

Now let (C,, a) be a chain complex and let G be an abelian group. Then 
C ,  @ G is a chain complex with the differential a@ 1. Also Hom(C,, G) is a 
chain complex with the differential 6 =Horn@, I), but note that this raises 
degree by one instead of lowering it. (Some people call this a "cochain 
complex" but we will usually not do that unless we want to stress that the 
differential is of degree + 1 instead of - 1.) 

If A ,  and B, are chain complexes and 4: A,  -+ B, is a chain map then, 
for any abelian group G, 4 @ 1: A, Q G -+ B, Q G is a chain map, and 4' = 

Hom(4,l): Hom(B,, G) 4 Hom(A,, G), given by #( f )(a) = f (4(a)), is also a 
chain map, i.e., 64'= 4'6, by 
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Thus there is an induced homomorphism 
-= 

4,: H*(Hom(B,, G)) + H*(Hom(A,, G)), 

and similarly 

Let 0 +A, -, B,  -, C, -+O be an exact sequence of chain complexes and 
ain maps which is split, by a splitting C ,  -+ B, which is not assumed to 
a chain map (and usually is not). (For example, the splitting exists if each 
is free abelian, e.g., C ,  = A,(X).) In this case we get the short exact sequence 

0 + Hom(C,, G) + Hom(B,, G) -+ Hom(A,, G) -, 0 

and therefore the induced long exact sequence 

-+ Hi(Hom(C,, G)) -+ Hi(Hom(B,, G)) -, H'(Hom(A,, G)) 
, Hi + 1 (Hom(C,, G)) + . - - 

and similarly for the tensor product. 
For example, in singular theory, if A c X then there is the split exact 

sequence 

0,- A,(A) 4 A,(X) -+ A,(X, A) -t 0 

which induces 

where, for instance, AP(X, G) = Hom(Ap(X), G). Note that this "cochain group" 
can be thought of as the group offinctions from the set of singular simplices 
to G, since these simplices are a set of free generators of the chain group. 
By the exact sequence, it follows that we can similarly regard AP(X, A; G) as 
the set offunctions on singular p-simplices of X to G which vanish on simplices 
totally in A. Of course, the singular cohomology group HP(X, A; G) with 
coefficients in G is defined to be 

HP(X, A; G) = HP(A*(X, A; G)). 

The last short exact sequence then induces the long exact sequence in 
singular cohomology with coefficients in G: 

I ..- +H~(X,A;G) -+H ' (X;G)~H~(A;G)-+H~+ '  (X, A; G) + . . . . 

For another example, but one involving changing the other variable in 
Hom, suppose that 0 4 G' --+ G -+ G" -+O is a short exact sequence of abelian 
groups, and that C, is a free chain complex. Then this induces the short 
exact sequence 

the exactness on the right following from the assumption that C, is free, 



and hence the lotlg exact sequence 

. . -+ Hi(Hom(C,, G')) -+ Hi(Hom(c,, G)) -+ Hi(Hom(C,, G")) 
-+ Hi+'(Hom(C,,G'))-+-.,. 

For singular theory, this gives, for example, the exact sequence 

. -  -+ Hi(X, A; G') -+ H'(x, A; G) -+ Hi(X, A; G") -+ Hi+ '(X, A; GI)-+ ..-. 

In singular homology, the tensor product gives, similarly, the long exact 
sequences 

and 

. 
We shall now introduce and study the "derived functors" Ext and Tor of 

Hom and 0, respectively, in the category of abelian groups. 

6.1. Definition. An abelian group I is called injective if, whenever G' c G, any 
homomorphism G' -+ I can be extended to a homomorphism G -+I. An 
abelian group D is said to be divisible if, for any element  ED and any integer 
n # 0, there is an element  ED with nd' = d. An abelian group P is called 
projective if, for any surjection G -+ G" of abelian groups, any homomorphism 
P -+ G", can be factored via a homomorphism P -+ G. 

The group I being injective then means that the following diagram with 
exact row can always be completed to be commutative: 

Similarly, the group P being projective then means that the following 
diagram with exact row can be completed to be commutative: 

6.2. Proposition. An abelian group I is injective o it is divisible. 

PR(x)F. If 1 is injective, then applying the definition of injective to the inclusion 
nZ c, Z and the h,omomorphism nZ- i  I taking n k ~ k d  shows that I is 
divisible. If D is divisible and h': G' -+ D is a homomorphism and G' c G then 

consider all pairs (f, H) where H is a subgroup of G containing G' and 
f H -+ D is a homomorphism extending h'. Order these pairs by inclusion (of 
homomorphism as well as of group) and note that the union of any chain 
of this partially ordered set is a member of the set. Thus, by the Maximality 
Principle, there is a maximal such pair. We may as well suppose that (h', G') 
is already maximal and must then show that G' = G. Suppose geG - G'. If 
ng#G' for any integer n > 1 then we can extend h' by putting h'(g) = 0. Thus 
also define h'(gl+ kg) = h'(gr), for any ~ ' E G '  and ksZ. This is a proper 
extension contradicting maximality. Next suppose that n g ~ G '  for some 
minimal integer n > 1. Since D is divisible, there is a deD such that nd = h'(ng). 
Then, extend h' by putting h'(gr+ kg) = h'(gr) + kd. This is a well-defined 
proper extension of h' and so this again contradicts maximality. 

6.3. Proposition. Any abelian group G is a subgroup of an injective group. 

PROOF. There exists an epimorphism F -+ G for some free abelian group F; e.g., 
F could be taken as the free abelian group on the elements of G. Thus G is 
isomorphic to FIR for some R c F. If we take D to be the rational vector 
space on a basis of F then F c D, so that G x F / R  c D/R and D/R is divisible 
and hence injective. 

Since the quotient of a divisible group is divisible and hence injective, it 
follows that, for any abelian group G, there is an exact sequence 

O-+G-+I-+J-+O 

with both I and J injective. (This is called an "injective resolution of G.") 
Applying the functor Hom(A, .) we get an exact sequence 

0 -+ Hom(A, G) -+ Hom(A, I) -+ Hom(A, J). 

The group Ext(A, G) is defined to be the cokernel of the last map. That is, 
it is defined so that the following sequence is exact: 

Letting I0 = I and I' = J ,  the resolution can be regarded as a small cochain 
complex I* with augmentation G-+I*.  Then C* = Hom(A,I*) is also a 
cochain complex and the above exact sequence amounts to saying that 
HO(c*) = Hom(A, G) and H1(C*) = Ext(A, G). 

6.4. Proposition. If G -+ I* and H-+ J* are injective resolutions of the abelian 
groups G and H respectively, and if h: G -+ H is a given homomorphism then 
there exists a chain map h,: I* -+ J *  extending h. Moreover, any two such 
extensions are chain homotopic. 

PROOF. We will prove this for the resolutions of length two that we have in 
the case of abelian groups, but it would extend easily to those of any length. 



We are to show that there is a completion to a commutative diagram (with 
exact rows) as shown: 

The composition joh: G -+ J0 extends to the map h, by injectivity of J'. This 
makes the first square commute. Regarding, as we can, i,j as inclusions, there 
is the induced diagram with exact rows 

I 0 - JO/H J 1 .  

The map j o o &  extends to h,: I' -+ J1 by injectivity of J'. This completes the 
construction of h, and h,, the desired commutativity being clear from the 
construction. 

Now suppose that hi: I' -+ Ji, i = 0,1, give another extension of h. The 
desired chain homotopy will be a map D: I' -+ JO (since it vanishes in other 
degrees) such that Doi, = & - h, and j o o  D = h', - h, .  Since & - h, vanishes 
on G it induces a map 10/G 4 JO and this extends to a map D: I' -, J0 because 
J0 is injective. Thus we have the commutative diagram: 

which is exactly what we were after. (The commutativity of the lower triangle 
follows from the surjectivity of i,, the only place we are using that these are 
resolutions of length 2.) fl 

This shows that there is a canonical isomorphism between the versions 
of Ext(A, G) obtained from two injective resolutions of G and also shows 
that Ext(A,G) is a covariant functor of G. Naturality in A of the sequence 
defining Ext(A, G) shows that Ext(A, G) is a contravariant functor of A. 

If 0 -+ A' -+ A -+ A" -+O is exact then so is 

for I  injective, the exactness on the right being precisely the definition of 
"injective." Thus 

0 -, Hom(An, I*) -+ Hom(A, I * )  -+ Hom(A1, I * )  -+ 0 

is a short exact sequence of cochain complexes, and hence induces the (not 
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very) long exact sequence in homology: 

If P is projective and 0 -+ G -+ I -+ J -+ 0 is an injective resolution of G then 
Hom(P, I) -+ Hom(P, J )  is onto, by definition of "projective," and so 
Ext(P, G) = 0. Suppose that O-+ R -+ F -+ A -+ 0 is exact with F projective. 
(Here "F" stands for "free" since a free abelian group is obviously projective, 
and such a sequence always exists for any A with F free.) This gives the exact 
sequence 

since Ext(F,G) =O. Thus Ext(A, G) could also be defined via this exact 
sequence. 

Suppose now that A is such that Ext(A, G) = 0 for all G. Let 0 -+ R -+ F -+ 

A -PO be exact with F projective and let 0 -+ G, -+ G, -+ Go -+ 0 be exact. Then 

0 -+ Hom(A, G,) -, Hom(F, G,) --+ Hom(R, G,) 4 0  

is a short exact sequence of chain complexes. Its induced homology sequence 
contains the segment 

H,(Hom(R, G,)) -+H,(Hom(A, G,))-+ Ho(Hom(F, G,)). 

But the right-hand term is zero since Hom(F, .) is exact because F is projective. 
The left-hand term is also zero since 0 -+ Hom(R, G,) -+ Hom(R, GI) -+ Hom(R, 
Go) is exact. Therefore the middle term is zero which means that Hom(A, GI)-+ 
Hom(A, Go) is onto. Since this is true for all surjections G1 -+Go, it follows 
that A is projective. This shows that Ext(A, .) = 0 o A is projective. 

For general A, and for an exact sequence 0 -+ R -+ F -+ A -+O with F 
projective, the exact sequence 

shows that Ext(R, G) = 0 for all G, since Ext(F, G) = 0. Therefore R is 
automatically projective, so that we really have a projective resolution of A. 
Since R is an arbitrary subgroup of F we conclude that any subgroup of a 
projective group is projective. 

[Of course, it IS well known that a subgroup R of a free abelian group 
F is free abelian. It follows easily that "projective" is the same as "free" for 
abelian groups. However, we do not need these facts.] 

Let 0 -, P ,  -+ Po + A  -+O be a "projective resolution" of A; e.g., take Po = F, 
P,  = R  as above. Then Hom(P,,G) is a cochqin complex with 
HO(Hom(~, ,  G)) = Horn(A, G) and I-I'(Horn(P,, G)) = Ext(A, G) for all G I f  



isexact then so is F 

0 -+ Hom(P,, G') -t Hom(P,, G) -+ Hom(P,, GI-0 

since P ,  is projective. The induced homology sequence of this gives the exact 
sequence 

I 0 -+ Hom(A, G') + Hom(A, G) -+ Hom(A, G") -+ Ext(A, G') I 

Similar considerations apply to the tensor product in place of Hom, as 
we will briefly describe. For any abelian group A, let 0 -+ R -+ F -+ A -+ 0 be 
a projective resolution. Then there is the exact sequence 

which defines the "torsion product" A*B. This is often denoted by Tor(A, B) 
or Tor,(A, B). It is symme;ric in the sense that A*B z B* A (in a canonical 
way). (To see this, chase the diagram made up of the tensor product of a 
projective resolution of A with one of B.) Also, any exact sequence 0 -+A'-+ 
A -r A" -+ 0 induces the (somewhat) long exact sequence 

~ + A ' * B - + A * B - + A ~ * B ~ A ' @ B + A @ B - - + A " Q B - + O .  

Clearly A*B = 0 if either A or B is projective since, then, 0 -+ R -+ F -t A -+ 0 
splits. 

Now we shall compute Ext and Tor for finitely generated groups. Since 
they commute with finite direct sums, as is easily seen by looking at split 
exact sequences, it suffices to compute them for cyclic groups. 

Since Z is projective we have 

A *Z = 0 and Ext(Z, A) = 0 for all A. 

From the exact sequence 0 -+ Z 2 Z -t Z, -+O we have, for any G, the exact 
sequence 

Since Hom(Z, G) x G, we conclude that 

Ext(Z,, G) % G/nG. 

In particular, 

To compute Ext(Z,, Z,) consider the exact sequence 0 + Z, -+ QLZ * Q/Z -+ 
0 where the map on the right is multiplication by m. This induces the exact 
sequence 

0 -+ Hom(Z,, Z,) -+ Hom(Z,, Q/Z) -!!!+ Hom(Z,, Q/Z) -+ Ext(Z,, Z,) -+ 0 

where the middle map is multiplication by m. The groups on the ends must 
be cyclic, and counting orders using exactness shows they must both be Z, 
for some d.  Thus it suffices to compute the kernel of multiplication by m on 
Hom(Z,, Q/Z) % Z,. We claim the kernel is the (cyclic) subgroup of order 
d  = gcd(n, m). To see this let n = d p  and rn = dq where p  and q are relatively 
prime. Then k~ker(m) o nlkm * dplkdq o pl k q e  pj k, whence k = p works 
and is the smallest such, proving the claim. Therefore we have 

Ext(Z,, Z,) x Z, z Hom(Z,, Z,) where d  = gcd(n, m). 

The exact sequence 0 -+ Z Z -+ Z, -+O induces the exact sequence 

Since Z is projective, this reduces to 

where the middle map is multiplication by n. As above this implies that the 
groups on the ends are cyclic of order d  = gcd(n, m). That is, 

I Z, * Z, = Z, = z,, 4 Z, where d  = gcd(n, m). 

Recall that an abelian group A is said to be "torsion free" if na = 0 for 
some 0 # neZ implies that a = 0. 

6.5. Proposition. The abelian group A is torsion Spee o A * B = 0 for all B. 

PROOF. e: Suppose A has n-torsion and consider the exact sequence O-,  

Z -& Z -+ Z, 4 0. This induces the exact sequence 

O-+A*Z, -+A@Z -"--tAQZ-tA@Z,-+O 

where the middle map is multiplication by n. Then A*Z, x ker{n: A-t  A }  # 0 
as claimed. 

-: For arbitrary B suppose A*B# 0, with A torsion free. Let 
0- R -t F -+ B 4 0  be a projective resolution of B. This induces the exact 
Sequence 



Let 0 # aeA* B. Then, regarding a as an element of A @  R, a can be writ@n 
a = Cai@rp Let G c A be the subgroup generated by the a,. Consider the 
commutative diagram 

1 1 
O-+G*B-+ G O R  + G B F  -G@B+O 

I 1 1 1 
O-+A*B-+ A@R + A@F -+A@B+O 

with exact rows and columns. The element afA*B taken into A@R comes 
from some BEG@ R by construction. The image of /3 in G B  F maps to 0 in 
A @  F, and so comes from (A/G)*F. But (A/G)*F = 0 since F is projective. 
Thus j? comes from G*B. But G is finitely generated and torsion free, hence 
free, so G*B = 0, a contradiction. 

6.6. Proposition. 

( 1 )  A  is projective e Ext(A, G) = 0 for all G. 
(2) G is injective - Ext(A, G) = 0 for all A. 

PROOF. Part (1) has already been proved. For part (2), if G is injective then 0 -+ 

G -+ G -+ 0 -+ 0 is an injective resolution and Ext(A, G) = 0 from its definition. 
Conversely, suppose that Ext(A, G) = 0 for all A. Then, for an exact sequence 
0 -+ A' -+ A -+ A" -+ 0, the induced sequence 

is exact. The surjectivity on the right is precisely the definition of G being 
injective. 

We conclude this section with some remarks on other "base rings." If A 
is a commutative ring with unity and A, B are A-modules then one can 
define the tensor product A@, B and the module of A-homomorphisms 
Hom,(A, B). The only differences are the addition of the relation Ra Q b = 
a@ l b  for the tensor product and the requirement that h ~ H o m ,  (A, B) 
be A-linear; i.e., h(la) = Rh(a). Then A O, B and Hom,(A, B) are A-modules. 
If A is a principal ideal domain then everything done in this section, and 
most of the rest of the book, goes through with no major differences. In fact, 
however, the only major use made of such generalizations in this book is in 
the case of a field A. Even in that case, we use only the fields Q, R, and Z,, p 
prime. For a field, 0, and Hom, are exact functors and all A-modules are 
both A-projective and A-injective and so the theory is a great deal simpler 
for them than for the integers or for a general principal ideal domain. More 
general base rings would have no impact on the ideas covered in this book. 
For that reason, and for the sake of simplicity, we shall generally restrict 
attention to the case of the integers, with a few special comments in the case 
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of a field. Occasionally, we will st* results for a principal ideal domain as 
base ring, but this is only done in order to give a unified statement covering 
the case of a field in addition to the case of the integers. When this is done, 
Q and Hom should be interpreted as 0, and Hom, even if those subscripts 
are omitted. 

7. Universal Coefficient Theorems 

In this section we will show that the integral homology groups determine 
the homology and cohomology groups with arbitrary coefficients. Note that 
this does not mean, and it is not true, that anything you can do with these 
more general groups can be done with integral homology. In the first place, 
field coefficients, by their simplicity, often provide a better platform for 
computation. Much more significant is the fact that cohomology can be 
given extra structure which is not present in homology, as we shall see in 
Chapter VI. 

Assume, throughout this section, that C ,  is a free chain complex, i.e., that 
each C,  is free abelian. Let 2, denote the p-cycles, B, the p-boundaries, and 
H, = Zp/Bp the pth homology group. 

Since 8,- , is projective (because B,- , c Cp- , and Cp- , is free), the exact 
sequence 

splits. Let 4: C,-+Z, be a splitting homomorphism. 

7.1. Theorem (Universal Coeficient Theorem). For a free chain complex C, 
there is a natural, in C, and G, exact sequence 

0 -, Ext(H, - ,(C,), G) -+ Hn(Hom(C,, G)) 2 Hom(H,(C,), G) -+ 0 

which splits (naturally in G but not in C,) and where (81 f])([c]) = f(c). 

PROOF. The proof is just an easy diagram chase in the diagram: 

0 

T j 

O-+ Hom(B,, G) -+Hom(C,+ ,, G) Ext(H,- ,, G) 
T l a  T 

O t  Hom(Z,,G)t Hom(C,,G) +-Hom(B,~,,G)tO 

T l.----J t b  T 
Hom(H,G) Hom(Cp- ,,G)+Hom(Z,-,, G)+O 

T 
0. 



The diagram is, for the most part, induced by the exact sequences O-+ 2, -+ 
C, -+ B,-, -+ 0 and 0 -+ B, -+ 2, + H,-+ 0. The rows and end columns are 
exact. Starting with an element f ~Hom(c,, G) killed by 6 ,  we chase ieft, up, 
and right. Since that is Sf = 0, and the right arrow is monomorphic, the 
element goes to 0~Hom(B,, G). By exactness of the first column the element 
can be pulled back to the Hom(H,, G) tern. Iff was in the image of S then 
the first part of the chase kills it. Thus the chase describes the desired 
homomorphism /3. The curved arrow is Hom(4, I), arising from the splitting 
map 4, and clearly induces, by an even simpler chase, the desired splitting 
homomorphism. To see the map ftom Ext(H,-,, G), go down and left. To 
see that this produces a cocycle, note that, starting at Hom(B,-,,G) and 
going left then up is the same as going left twice then up then right, but 
going ieft twice gives zero, as claimed. To see that it is well defined, note 
that the indeterminacy comes from the Hom(C,-,,G) term and that goes 
into a coboundary in Hom(C,,G). That the map from Ext(H,-,,G) to 
Hom(C,, G) goes into the kernel of the map to Hom(H,, G) is clear. To see 
exactness at that point, note that any cocycle of Hom(C,, G) mapping to 
zero in Hom(H,, G) must already map to zero in Hom(Z,, G). Thus it comes 
from Hom(B,-,, G), but that implies that it comes from Ext(H,-,,G) as 
claimed. 0 

7.2. Corollary (Universal Coefficient Theorem). For singular homology and 
cohomology there is the exact sequence 

0 -+ Ext(Hn- , (X,  A), G) -+ Hn(X, A; G) A Hom(Hn(X, A), G) -+O 

which is natural in G and in (X, A) and which splits (naturally in G but not in 
(X, A)). 0 

7.3. Corollary. If Hn- ,(X, A) and H,(X, A) are finitely generated then so is 
Hn(X, A; Z). Indeed 

(not natural) where F, and Ti are the free part and torsion part, respectively, 
of H,(X, A). 0 

Now we take up the dual situation of the tensor product. 

7.4. Theorem (Universal Coefficient Theorem). For a free chain complex C, 
there is a natural, in C, and G, exact sequence 

which splits (naturully in C hut not in C,) and where cr([c] O g )  = f c @ g ] .  

PRWI;. This is a dual argument to Theorem 7.1 using the analogous diagram: 

Algebraically, this diagram is identical to that of Theorem 7.1 after rotating 
it 180". (The splitting C, Q G -+ Z, Q G implies a splitting B,- , Q G -+ C, Q G.) 
Thus an algebraically identical diagram chase gives the result. 

7.5. Corollary (Universal Coefficient Theorem). For singular homology there 
is the exact sequence 

which is natural in G and in (X, A) and which splits (naturally in G but not in 
(X, A)). 

7.6. Example. For an abelian group G let 

TG = (geGJ ng = 0 for some integer n 2 1) 

which is called the "torsion subgroup" of G. The exact sequence 0 -+ TG -+ G -+ 

G/TG -+ 0 induces the exact sequence 0 -+ TG* B -+ G* B -+ G/TG*B which 
implies that G*B % TG*B since G/TG is torsion free. The exact sequence 
0 -+ Z -+ Q -+ Q/Z -+ 0 induces the exact sequence. 

Now TGQQ=O and so 

Therefore Corollary 7.5 gives the exact sequence 

7.7. Example. This example shows that the splitting in Corollaries 7.2 and 
7.5 cannot be natural. It is simply the map 4 :  P2+S2 which (regarding 
P2 as a 2-disk with antipodal points on the boundary identified) collapses the 
"boundary" circle P' to a point. Since H ,(P2) z Z2 and H2(P2) = 0, the map 
4*:  HAP2)-+ Hi(S2) is trivial for i = 1,2. If the splitting 
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were natural then the homomorphism 4,: H2(P2; Z,) 4 n,(S2; Z,) would 
have to be zero. (Both these groups are Z,.) We claim that this is not the 
case, i.e., we claim that 4, is an isomorphism. To see that, note that 4 is 
cellular for the usual CW-structures on P2  and SZ. By Theorem 11.6 of 
Chapter IV, the chain map 4,: C2(P2; Z2) -+ C2(S2; Z2) is given by &,(a) = 
deg(4,,)z (mod 2) where a and z are the unique Zcells of P2 and SZ, 
respectively. But $,, is clearly of degree + 1 in this example; indeed 4,,, is 
a homeomorphism. Since a and z, being the only Zcells, must generate their 
respective homology groups, the contention follows. 

The following is a corollary of Theorems 7.1 and 7.4: 

7.8. Corollary. Let 4: A, -+ B, be a chain map of free chain complexes inducing 
x isomorphisms 4,: Hp(A,) 5 Hp(B,) for all p. Then ( 4  @ I),: Hp(A, @ G) - 

Hp(B, G) and 4*: HP(Hom(B,, G)) -% HP(HO~(A,, G)) for all p. 

PROOF. The Universal Coefficient Theorem (Theorem 7.1) provides the 
commutative diagram 

and the second of the claimed isomorphisms follows from the 5-lemma. The 
first claimed isomorphism follows the same way from the analogous diagram 
from Theorem 7.4. 

7.9. Corollary. If 4: (X, A) +(Y,  B) is a map such that 4,: Hp(X, A) + HP(X B) 
is an isomorphism for all p, then 

4,: Hp(X,A; G)+Hp(KB;G) 

and 

4,: HP(yl B; G)-+ HP(X, A; G) 

are isomorphisms for all p and all G. 

1. Prove the analogue of Example 7.7 for cohomology with coeficients in Z, .  That 
is, show that +*: H2(S2;Z2)*  H 2 ( P 2 ; Z 2 )  is an isomorphism. 

2. Given that the Klein bottle K2 has H,(K2) x Z, H,(K2) -- Z @ Z, ,  and all other 
integral homology groups zero, compute the homology and cohomology of K 2  
in all dimensions for coefficients in Z, and in Z,, all primes p. 

3. If X arises from attaching a 2-disk to a circle by a map of circles of degree 9, then 
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compute the homology of X with coefficients in Z, and in Z, and in Z,. Do the 
same in case the map was of degree 3, and of degree 6. 

4. Suppose f, g: X -+ Y are maps such that f ,  = g,: H,(X; Z )  -, H,(Y; Z). There are 
cases in the literature of the Universal Coefficient Theorem being cited as implying 
that then f, = g,: H,(X; G)+  H,(Y; G)  for any coeficient group G. Show by 
example that this is false. 

5. If H,(X) is finitely generated then show that x ( X )  = C(- 1)'dim HAX; A) for any 
field A. 

6. Show that H 1 ( X )  is torsion free for all X .  

7. + If G is finitely generated show that there is a natural exact sequence 

which splits naturally in G but not in X ,  A. i 
I 

8. Excision and Homotopy 
\ 

8.1. Theorem (Excision). If B c A c X and B c int(A) then the inclusion map 

( X  - B, A - B) c+ (X, A) induces isomorphisms HP(X, A; G) 5 Hp(X - B, 

A - B; G) and Hp(X - B, A - B; G) 5 Hp(X, A; G) for all P and G. 

PROOF. The Excision Theorem for integer homology (Theorem 17.8 of 
Chapter IV) says that this inclusion induces, through the chain map A,(X - B, 
A - B)+A,(X, A), an isomorphism in homology. Thus the present result 
follows immediately from this and Corollary 7.9. 

The following result is a similar consequence of Corollary 7.9. 

8.2. Theorem. If U is a collection of subsets of X whose interiors cover X, 
and we put A:(X; G) = Hom(Ay(X), G) then A*(X; G) -+ Ac(X; G) induces an 
isomorphism in cohomology and A:(X) Q G -+ A,(X) Q G also induces an 
isomorphism in homology. 

Consider the case of X = int(A)uint(B), and put U = {A, B}. Then we have 
the exact sequence 

of Theorem 18.1 of Chapter IV. Since these groups are all free abelian, 
applying Horn(,, G) or (.)@ G to this sequence yields short exact sequences. 
These, in turn, induce Mayer-Vietoris long exact sequences, proving, via 
Theorem 8.2: 

8.3. Theorem (Mayer-Vietoris). If X = int(A)uint(B) then there is the long 



exact sequence - 

for any coeficient group G. Also Theorem 18.1 of Chapter IV holds for any 
coeficients. 

8.4. Theorem. If X = -I- Xu (topological sum) then the inclusions and projec- 
tions induce an isomorphism HP(X; G) % X Hp(Xu; G). 

PROOF. This is true already on the cochain level. That is, 

In the proof of the Homotopy Axiom for singular homology with 
integer coefficients we constructed (in Section 16 of Chapter IV) a natural 
chain homotopy D: Ap(X) -+Ap+ ,(I x X) between qoA and yIa, where q, is the 
chain map induced by the inclusion X c, I x X taking x to (i, x). That is, 
aD + Dd = q,, - qOd. Putting D' = Hom(D, l), y; = Hom(qiA, 1), and 6 = 
Hom(d, 1) etc., this becomes 

D ' ~ + S D ' = ~ ~ - ~ ~ ,  

where D': Ap(I x X; G) -+ AP- '(X; G). Thus if F: I x X -+ Y is a homotopy 
between fo,f,: X-+ Y then, with FA = Hom(FA, 1): A*(Y; G)-+A*(I x'X; G), 
we have 

Consequently, f r = f g: HP(Y; G ) - +  Hp(X; G). 
The naturality of D implies that D and D' induce similar chain homotopies 

on pairs (X, A). The reader can fill in these details. We state the final resuit. 

8.5. Theorem (Homotopy). If fa -- f, : (X, A) -+ (Y, B) then, for any coeficient 
group G, 

and 

9. de Rham's Theorem 

We now return to de Kham cohomology (closed forms modulo exact forms) 
and its relation to singular theory. As mentioned, the relationship is through 
singular theory based on s~zooth singular simplices. Thus we must know to 
what extent the development ofsingular theory can be followed with the restric- 

tion to smooth simplices. Of course, we are interested only in (co)homology 
of smooth manifolds, and smooth maps and homotopies. There are a few 
things we will need below for this theory. We will need the long exact se- 
quences, the Mayer-Vietoris sequences (for open subsets), and the triviality 
of the homology of contractible manifolds (like euclidean space). All of this 
goes along quite easily for smooth simplices with two exceptions. First, one 
must talk about chains in the standard simplices, but these spaces are not 
manifolds. They do, however, carry a functional structure as subspaces of 
euclidean space, and so smoothness makes sense for them. This is really a 
nonissue. More serious is the proof of Theorem 15.5 of Chapter IV that a 
contractible space has trivial homology. It does no good to cite the 
Homotopy Axiom for this, as it is a crucial ingredient of the proof of that 
axiom. The problem is the "cone" construction of a ( p  + 1)-simplex from a 
given p-simplex and the contracting homotopy. This construction simply 
does not produce a smooth simplex. However, if you look at where this 
result is used in proving the Homotopy Axiom, you see that it is used only 
in the "acyclic models" argument constructing the cross product of chains. 
There, one has a cycle in the product of two standard simplices and one 
wishes to conclude it is a boundary. But it i$ clear that, by induction, this 
construction need only be done on afine chains, yielding afine chains. In 
that case, we are in good shape because that is exactly what the cone 
construction does, i.e., in that case it is the same as the cone operator discussed 
in Section 17 of Chapter IV. That takes care of the second problem. 

Recall that in Section 5 we defined the "de Rham homomorphism" 
Y*: HL(M) -+ HP(M, R) (using smooth singular theory) which is induced by 
Y(o)(a) = [,o where o is a p-form and o is a (smooth) p-simplex in M. The 
purpose of this section is to prove the following: 

9.1. Theorem (de Rham's Theorem). The homomorphism 

Y * : HA(M) -+ HP(M; R) 

is an isomorphism for all smooth manifolds M. 

To prove this we will need to know a few things about de Rham 
cohomology analogous to some things we know about singular cohomology. 
The first of these is an analogue of the Mayer-Vietoris sequence. Let U and 
V be open subsets of the smooth manifold M and consider the sequence 

where the first nontrivial map is the difference of the restrictions, and the 
second is the sum of the restrictions. We claim this sequence is exact. The 
only part of this that is nontriv~al is the surjectivity on the right. Thus suppose 
o is a p-form on U n V. We must show that, on U n V, o = o, + o, for some 
p-forms (0, defined on U and w, defined on V. 

By taklng a smooth partltlon of unity on U u V subordinate to the cover 
{ U ,  V )  and passing to the function with support in V we get a smooth 



--- V. Cohomology 

- function f: U u V -+R which is 0 on a neighborhood of U - V and 1 on a 
neighborhood of V - U. Then fo is zero on a neighborhood of U - V and 
so can be extended by 0 to U. Similarly, (1 - f)o is zero on a neighborhood 
of V- U and so extends by 0 to K So, o = f o + (1 - f )o gives us our 
desired decomposition. Thus this sequence generates a long exact sequence in 
de Rham cohomology. Moreover, the de Rham map Y :  RP(Uu V)-+ 
AP(U u V) can be composed with the map AP(U u V)-+ A; (U u V), yielding 
the commutative diagram: 

with exact rows, the vertical maps being Y. Therefore there is the associated 
"ladder" commutative diagram, with exact rows, in homology: 

9.2. Lemma (Poincare Lemma). The de Rham Theorem (Theorem 9.1) is true 
for any convex open subset U of Rn. 

PROOF. We can assume that U contains the origin. We must show: 

(i) that any closed p-form o, p~ 1, on U is exact; and 
(ii) that any smooth function f on U with df = 0 is constant (this suffices 

because the de Rham map takes a constant function with value r to the 
constant 0-cocycle taking value r on each 0-simplex). 

Part (ii) is clear since d f = 0 means that all partials off are zero, implying 
that f is locally constant, hence constant since U is connected. 

We prove part (i) on U c Rn+', for notational convenience, with coordi- 
nates x,, . . . , x,. For p 2 0, we define 

as follows: If w = f(xo, ..., xn)dxjo A A dxjP then put 

where 

P A 
q = (- l ) i ~ j t  dxjo A . . . A dx,, A - .. A dxjp. 

r = O  

Then, using D, to denote the partial derivative with respect to the kth variable, 

9. de Rham's Theorem 289 

where S is the sum term and Tthe rest. Also 

n 

d o  = D, f (x) dx, A dxjo A . . A dxjP, 
k = O  

so that 

since dq = (p + l)dxj, A A dxjP. Then d4(o) + 4(do) = w for ~ E Q ~ ( R " + ~ ) ,  
p 2 1. Thus, if d o  = 0 then o = d($(o)), as required. CI 

9.3. Lemma. If the de Rham map Y* is an isomorphism for open sets U, Vin 
M and for U n V then it is an isomorphism for U u V. 

PROOF. This follows from the Mayer-Vietoris "ladder" (*) and the 5-lemma. 
17 

9.4. Lemma. Ifthe de Rham map Y* is an isomorphism for disjoint open sets 
U ,  then it is an isomorphism for the union U U,. 

PROOF. This follows from the Product Theorem (Theorem 8.4) and its obvious 
analogue in de Rham cohomology, and the naturality of Y*. a 

The de Rham Theorem (Theorem 9.1) now follows from the next lemma 

9.5. Lemma. Let M" be a smooth n-mangold. Suppose that P(U) is a statement 
about open subsets of Mn, satisfying the following three properties: 

(1) P(U) is true for U diffeomorphic to a convex open subset of Rn; 
(2) P(U),  P( V), P(U n V) + P(U u V); and 



(3) {U,) disjoint, and P(U,), all cr => P(U U,). 

Then P(M) is true. 

PROOF. First, we shall prove this in case Mn is diffeomorphic to an open 
subset of Rn. We may as well, and will, think of Mn as equal to an open set 
in Rn. 

By (1) and (2) and an induction it follows that P(U) is true when U is the 
union of a finite number of convex open subsets, because of the identity 

Let f :  M -, [O, co) be a proper map (so that it extends to the one-point 
compactifications). For example, we can use the fact that the one-point 
compactification M +  is metrizable and let, for some such metric, f ( x )  = 
l/dist(x, co). Or, we could take a partition of unity { fi) subordinate to a 
collection of open sets Ui with Ui compact and then take f (x) = C, nf,(x). 

Then define A, = f -'[n, n + I], which is compact since f is proper. Cover 
A, by a finite union U, of convex open sets contained in f - '(n - i, n + $1. Then 

It follows that the sets U,,,, are disjoint. Similarly, the sets Uodd are disjoint. 
See Figure V-2. 

Since Un is a finite union of convex open sets, P(Un) is true for all n. 
From (3) we deduce that P(U) and P(V) are true, where U = U U,, and 
V = U Uzn+,. But U n  v =(U Uzn)n(UU2,+,) = (J(Uzin U2j+1) (disjoint) 
and each Uzi n UZj+, is a finite union of convex open sets. Therefore P(U n V) 
is also true. By (2) it follows that P(M) = P(U u V) is true. 

Now we know that P(U) is true whenever U is diffeomorphic to an open 
subset of Rn. In the general case, substitute in (1) and in the above proof, 
the words "open subset of Rn" for "convex open subset of Rn." The proof 
clearly applies and shows that P(M) is true for all M. 

Figure V-2. An "onion" used in the proof of Lemma 9.5. 

This completes the proof of the de Rham Theorem. People with knowl- 
edge of Riemannian geometry will note that one can prove Lemma 9.5 and 
hence Theorem 9.1 in "one pass" by substituting "convex" in the sense of 
Riemannian geometry (unique geodesic segment between two given points) 
for "convex in Rn" in (I) and in the proof. The given "two pass" proof, how- 
ever, is a good deal more elementary. The present proof dates to 1962 when 
the author gave it in a course on Lie Groups. 

There is one final wrinkle to this story. de Rham's Theorem as it now 
stands involves smooth singular cohomology. We would like to replace that 
by ordinary singular cohomology. There is the inclusion 

(* *)  smooth * (M)c=--iA*(M). 

This induces, via Horn(., G), the chain map 

A*(M; G) -, A,*,,,,h(M; G). 

Exactly the same proof as the above use of Lemma 9.5 will show that the 
induced map 

H*(M; G) -, H,*,,,,(M; G) 

is an isomorphism for all smooth manifolds M. (Better would be to use 
Lemma 9.5 to show. that (**) induces a homology isomorphism. Then the 
result for cohomology would follow from Corollary 7.8.) 

PROBLEMS 

1. Deduce from_ de Rham's T h ~ r e m  that if U c R 3  is open and H,(U) = 0 then any 
vector field F on U with curl F = 0 is a gradient field. 

2. Deduce from de Rham's Theorem that if U c R3 is open and H,(U) = 0 then any 
vector field on U with div = 0 has the form =curl for some vector field 
G on U. 

3. If is an incompressible (id. div? = 0) vector field on R 3  = {O) then show that 
there is a real number a and a vector field G on R 3  - (0) such that = curl z+ 
( a l p 3 ) ( x ,  y, z), where p is the distance from the origin. 

4. Call a smooth real valued function f(x,y) defined on R 2  ''periodic" if 
f (x + n, y + m) = f (x, y) for all real x, y and integers n, m. Call a pair (f, g ) of 
periodic functions, a "periodic pair." Call a periodic pair (f , g )  "nice" iff, z g,. 
If h(x, y) is periodic then (h , ,  h , )  is a nice periodic patr; call such a nice pax, 
"excellent." 
(a) Show that there are nice periodic pairs which are not excellent. 
(b) The set of all nice periodic pairs forms an abelian group N under vector 

addition. The excellent ones form a subgroup E of N. Find the quotient group 
NIE. 

(c) Descr~be all nice periodic pairs as explicitly as you can. 

5. Suppose that o ts a closed p-form on a smooth manifold Mn such that J,w = 0 
for every smooth p-cycle c of Mn. Then show that w 1s exact. 
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10. The de Rham Theory of CPn @ . 

In this (optional) section we are going to illustrate de Rham's Theorem in 
a very special case, that of complex projective n-space CPn, which is a real 
2n-dimensional manifold. Most readers will get a deeper understanding of 
the theorem from these very explicit manipulations, and discussions, of forms. 

Let (2,: 2, : z,) be homogeneous coordinates on CP2. The complement of 
the complex line CP1 = {(O: 2,: z,)) is the afline space ((1 : u: u ) ]  = C x C. To 
describe forms on CP2 it suffices (by density) to write them down for the 
afline space. (Of course, it must be checked that they extend smoothly to all 
of CP2.) 

Let 

(Thus r,8 and s , 4  are polar coordinates. Note that r is not smooth, but 
r2 = x2 + y2 is, and hence rdr is smooth, since 2rdr = d(r2). Similarly, 
2x0 = arctan(y/x) is not even globally defined, but 27cr2 dB = xdy - ydx is a 
smooth 1-form and 2zrdr A dB = dx A dy is a smooth 2-form. These things 
should be kept in mind.) 

Our strategy is going to be this: We wish to write down a closed 2-form 
w on CP2 which is not exact. But the restriction of that form to affine space 
will be exact ( o  = dq on C x C) by de Rham. Thus we shall start with the 
1-form q. (Of course, q cannot extend to CP2 or o will be exact.) 

We claim that the 1-form 

works. (The obvious generalization to more variables on CPn also works.) 
Thus define 

where the first equality holds on C x C only. 
We must show that o defines a form on all of CP2. To do this we must 

compute the change of variables to the charts {(*: 1: *)) and ((*: *: l)) ,  but, 
by symmetry, i t  suffices to considerjust the first. It is easier to change variables 
in the form q and then pass to dq and analyze it. 

Thus note that 
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Hence the change of coordinates is 

Therefore 

(Note that the s t  d4,  part is all right but the part involving dB, is not defined 
when r, =O; which is why q is not a global form on CP2.) We need o n l y ~ ~ \  
check that 

1 + r: + s: 
is a smooth form on this affine space. But this is 

- (1 + s:)2rl dr, A dB, + [(I + r: + s:)2s1 - (1 + s:)2s1] ds, A dB, 
(1 + r: + s:)' 

The term in r, dr, A do, is smooth as noted above. The expression in the 
square brackets is 2slr:ds A do, = (2s, ds,) A (r:dBl) and so that is smooth 
also. Hence w is a 2-form on all of CP2. Since, on C x C, d o  = ddq = 0, we 
have that d o  = 0 on CP2, by continuity; that is, o is closed. 

We also wish to show that o is not exact. But it suffices to show that 
o A o is not exact and we wish to compute that anyway. Using the explicit 
formula (1) for o ,  we compute 

Using dr A d6, A ds A d4  to orient CP2, we can now compute 

(The complement CP' of the affine space is "small" and will not affect the 
integral, so we can, and d ~ d ,  ignore ~t in the cornputahon.) In particular, 
o A o is not exact, by Stokes' Theorem. 



[Remark. Similarly, you can integrate o o v a  CP' = ((1 : u: 0)) and get 1. 
This implies that w is an "integral class," that is, it is in 

This uses the fact that CP1 "represents" the generator of H2(CPZ; Z); i.e., the 
map Z % H,(CP') -+ H2(CP2) z Z induced by inclusion, is an isomorphism. 
(The reader might want to try to prove that.) This form o on CP" ( in general) 
is, up to sign, what is called the "first Chern form" for the "canonical line 
bundle" over CPn, and its cohomology class, up to sign, is called the "first 
universal Chern class cl."] 

We treated only CP2 above merely to simplify notation. It is easy to 
generalize q and o = dq to CPn. Thus we would get a closed 2-form o on 
CPn such that J 

o A . . . A o # 0 (indeed = I), 

where the wedge is of n copies of o. Thus none of p, 02, .  . . , o n  are exact and 
they must, therefore, give generators of 

which we already know to be R by the de Rham Theorem and the previous 
computation of the homology of CPn (Problem 7 of Section 10 of Chapter IV). 

For fun, we will apply the above computations to some topological facts 
about CP2. These things will be done in more generality later, but must 
await the further development of cohomology theory. 

10.1. Theorem. Let X be any space homotopy equivalent to CP2. Then any 
nzapf: X --+ X has Lefichetz number L(f) # 0. (Hence if X is a compact ENR, 
then f must hone a,fixrd point.) 

PROOF. It follows easily from the Universal Coefficient Theorem that L(f) 
can be computed, in the obvious way, using real cohomology, so we stick to 
cohomology. 

Let (6: CP2+  X be a homotopy equivalence with homotopy inverse 
I): X + CP'. Consider the map $0  f 04: CP2 --+ CP2. We have the com- 
mutative diagram 

and t t  follows that L(J)  = L($o j 0d)). (This results from the algebra~c formula 
trace(ABA-')= trace(&) Thus the space X is tmmater~al. I t  suffices to 
compute on ('P2 ~tself. 

On CP2 we have that f is homotopic to a smooth map by the Smooth 
Approximation Theorem (Theorem 11.8 of Chapter 11), and hence we can 
take f to be smooth as far as computing L( f )  is concerned. 

Then it makes sense to talk about [[f*o] = f*[o]~H;(cP~).  Since 
to] generates HA(CP2) it follows that f*[o] = r[o]l, for some ~ E R .  (That 
is, f *w = r o  + dp for some p.) Then f *go A o] = [ f * o  A f *a]  = 
[rw A r o  + exactj = I r a  A r o j  = r2[o A a]. (All of this is, of course, just 
a special case of the fact that A induces a natural product structure on Hg.) 

Thus,L(f)=trace f*IH:+tracef*IHf,+tracef*IHA=l + r + r 2 .  
Since 1 + r + r2 # 0 for all real. r, we are done. (Actually it follows from 

the naturality of the de Rham isomorphism and of the Universal Coefficient 

isomorphism H2(CP2; R) 5 Hom(H2(CP2), R), that r must be an integer.) 

'\ 
Recall that CP2 can be represented as a CW-complex by CP2 = S2 u,, D4 

where the attaching map h:  S3 -+S2 is called the "Hopf map." Explicitly, one 
can show that h is (u,u)~+uu-' of S3 = ((u,v)EC x + lv12 = 1) -+ 

Cu (03) = S2. 

10.2. Corollary. The Hopf map S3 -is2 is not homotopic to a constant map. 

PROOF. If h 2: constant then CP2 -S2uconstantD4 = S2 v S4 has a map f 
without fixed points (project to S2 and follow by the antipodal map on S2), 
and hence with Y f )  = 0, contrary to the theorem. 

It is, in fact, known that n,(S2)% Z, generated by the class of the Hopf 
map; see Section 8 of Chapter VII. 

Another consequence of the de Rham Theorem is in showing that CP3 
does not have the homotopy type of S2 x S4 even though these spaces have 
the same homology groups. One can see this by showing, similarly to one 
of the previous arguments that any self-map of CP3 (and thus of any space 
of its homotopy class) for which the map on H2(CP3) z Z is multiplication 
by k must be multiplication by k2 on H4 and multiplication by k3  on H6. 
On the other hand, the map f on S2 x S4 which is the projection to S2 is 
the identity on Hz  but kills H4 and H6. 

It is instructive to compute the pull back of w to C3 - 10) (or to the unit 
5-sphere in this). Thus let n:  C3 - (0) --+CP2 be the map from nonhomo- 
geneous coordinates to homogeneous coordinates; i.e., the nrap 

d 
Thus Y = b/a, 0 = /I - cc and s = c/a, 4 = y - cl in the notation above. Again $ 

1 
i 
1 
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it is easier to puP back t,~ first: z 

n*(q) = n* 
r2 do + s2 dq5 b2(dp - da) + c2(dy - da) ( l + r 2 + s 2  )= a 2 + b 2 + c 2  

- - b2dP + c2dy - (b2 + c2)dcl - a2da + b2d#l + c2dy - - da. 
a2 + b2 + c2 a2 + b2 + c2 

Thus a*o  = n*(dq) = da*q = dv (since dda = 0), where 

(Note that v is everywhere defined on C3 - (0) whereas the "-da" prevents 
n * ~  from being defined on the set a = 0.) 

Let us now see how v restricts to a fiber S' (of S5 -+CP2). The inclusion 
of a typical fiber can be given as i:S1 -,S5 c C3 - (0) where 

qe2niL) = (aoe2ni(oo f f i  ) e2zi(B~+ 4, c o e Z n i ( ~ ~ +  2) 
2 0 ), 

where a; + b; + ci  = 1. Use 1 as the coordinate on S'. Then a = a, +A, etc., 
and 

i*v = 
a 2 d l  + b2dl  + c 2 d l  

= dl. 
a 2 + b 2 + c 2  

(Of course, l is not globally defined, and so d l  is not really exact. Thus 
i*v = d l  = the standard 1-form on S1. Note that the integral over S1 of d l  
is jdl=jAdA= 1.) 

Passing to cohomology, we claim that we have defined a homomorphism 

In fact, for an arbitrary closed 2-form w on CP2 we take n*o on C3 - (0) 
(or on s5). Since H3C3 - (0)) = 0  (by de Rham's Theorem), x*w must 
be exact: 

a*o  = dv. 

Then i*v is a 1-form on S1; automatically closed for dimensional reasons. (It 
is closed for a better reason also: d(i*v) = i*dv = i*n*o = (noi)*o = 
(constant)*w = 0.) Therefore [i* vJEH;(S') is defined, so we put 

z [wl) = [i* v] where n*o = dv. 

Of course, we must show that this is well defined: Suppose v is replaced by 
v + v' where dv' = 0. Then v' is a closed 1-form on C3 - (0) and hence it is 
exact. Thus v' = dv", and [i*v] = [i*v + d(i*vU)] = [i*(v + vr)$ Similarly, if 
o js replaced by w + doJ, then n*(o + do') = a*o + da*wl = d(v + x * ~ ' ) .  
But i*(v + n*wl) = i*v f i*n*wl = i*v, since i*n* = (noi)* = constant* = 0 on 
p-forms, p > 0. 
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From our specific calculation, z is an isomorphism in the present example. , 
Homomorphisms constructed this way are called "transgressions." Note that 
a similar definition works in singular cohomology with arbitrary coefficients. 

11. Hopf's Theorem on Maps to Spheres 

In this section we will show that the set of homotopy classes of maps of an 
n-dimensional CW-complex to an n-sphere can be completely described by 
cohomology. This is a precursor to what is known as "obstruction theory," 
and contains, in fact, most of the ideas from that subject. 

Let us recall the definition of cellular homology. If a is an n-cell of a 
CW-complex K, let f,: D" -+ K be the characteristic map and fa,: Sn+ ' + K 
its restriction, the "attaching map." We denote by p,: K(")-tSn, the map 
collapsing everything but the "interior" of o to the base point. (A choice of 
homeomorphism of the collapsed space with Sn is involved here, and it is 
resolved by assuming that the map 

p,o f,: D n 4 S n  

is a fixed predefined collapsing map y,, but this is rather a technicality.) For 
an n-cell a and an (n - 1)-cell z we defined the "incidence number" to be 

Then C,(K) was defined to be the free abelian group on the n-cells, and the 
boundary operator was defined by do = C, [z: a]z. 

Thus the cellular cochain groups are defined to be 

CyK; G) = Hom(C,(K), G). 

The coboundary operator is, of course, defined by (6c)(o,+ ,) = c(ao). Thus 

The resulting cohomology group is isomorphic to Hn(K; G) by the Universal 
Coefficient Theorem (Theorem 7.2). 

In this section we are going to treat S" and Dn+ ' as explicit CW-complexes, 
with one cell in dimensions 0, n and (for the disk) n + 1, so here are the boring 
details of that. The cells will be called *,en, and en+ ,. We let 

~ n + l  
Dn+l = *~/do.Dn'J/de.., 

.Dn+l +Dn+l We take fen: Dn-+Sn  to be y, and f e n + ,  . to be the identity. Note 
t h a t p e n ~ y n = p e , o f e , , = y n , s o  thatpen= 1 . T h ~ ~ I I e , : e , + , I = d e g ( ~ , ~ ~ f ~ , ~ + , ) =  
deg(1) = 1. Therefore, the boundary formula is &,+, = en. (Of course, all that 
work was just to figure out the sign.) 

Now let K be a CW-complex. We wish to study homotopy classes of 
maps K -+ Sn. By the Cellular Approximation Theorem (Theorem 1 1.4 of 



Chapter IV), we know: 

(1) Any map 4: K -tSn is homotopic to one that takes K'"-') to *. 
(2) If 4, t,b: K+Sn are cellular and 4 - t,b then they are homotopic via a 

homotopy K x I+Sn which takes (K x I)'"-" to the base point *. (Note 
that this skeleton is K("-') x d l  u K'"-~) x I.) 

If (6: K(") -tSn is cellular then recall from Theorem 1 1.6 of Chapter IV that 
the induced map 4,: Cn(K) -t Cn(Sn) is given by 4,(.r) = deg(+,,,)e where 
+,,: Sn+Sn is that map making 

commutative and where e = en. D.efine a cochain c4fCn(K; Z) by 

rzGGJ 
Then 

11.1. Proposition. If 4: K + Sn then cg is a cocycle. 

PROOF. We have that (8c4)(a) = cg(80) = 0 since c4(8a)e = dA(8a) = &$,(a) = 0 
because +,(a)€ Cn + ,(Sn) = 0. 

The cocycle cd, is called the "obstruction cocycle." The following gen- 
eralizes ~ r o ~ o s i t i  bn 1 1.1. 

11.2. Proposition. Let a be an (n + 1)-cell of K and suppose that 4: K(")-+S" 
is a map defined on the n-skeleton. Then (6cg)(a) = c4(o'a) = deg(40 fa,). 

PROOF. Clearly, we may assume that the characteristic map f,: Dn+ ' + K is 
cellular since we can throw the rest of the (n + 1)-cells and higher dimensional 
cells away as far as this computation in concerned. (Note that fa is always 
cellular except on the 0-cell of Dn+', so we are just saying that the 0-cell * 
can be assumed to go into a 0-cell of K for the purposes of this computation.) 
Thus f, induces a chain map fitting in the diagram: 

Chase this diagram starting with the cell en+, at the upper left. Going right, 
down, right gives 4,(aa) = c+(do)e since (f,),(en+ ,)=a. Going down, right, 
right gives cPa((f a,)a(ae, + 1) = (4 aa)A(en) = dedd "fa,)e. 

Now we will study homotopies of maps of K to Sn. Suppose that 
F: (K x I)(")-+ Sn and let F(x,O) = 4,(x) and F(x, 1) = 4,(x) where 4i: K(")+Sn. 
We wish to compare the cochains cbo and cg,. 

Define d, E Cn - '(K; Z) by 

ddr) = cdr x I) = deg F,,,. ,. 

113. Proposition. In the situation above, and for an n-cell o of K, we have 

(8d,)(g) = deg(FOf a,, XI)) + (- 1)"+'(c4, - cgO)(a). 

PROOF. We have (6dF)(on) = d,(do) = c,(da x 'I) = cJd(a x I) - (- 1)"a x (1) 
+(- 1)"a x (0)). Substitution of c#(a x I)) = deg F o  fa, I ) ,  from Proposition 
11.2, yields the desired formula. 

Note that the degree term here vanishes if F is defined on Kt") x I. This 
gives: 

11.4. Corollary. If 4, - 4, : K -t Sn then [cgO] = [cg,] in Hn(K; Z). Cl 

Thus for 4: K -t Sn an arbitrary (not necessarily cellular) map we put 

where 4, is a cellular approximation to 4. Then 4 - t,b t4 = 

11.5.   he or em. If dim(K) = n, or f n = 1, and 40, K -+S" then: 

(1) 40 2.4 ie<go= (4,; and 
(2) for any (€Hn(K;Z), 34:K-S" with (4 = t. 

PROOF. We will prove (2) first. In the case dim(K) = n let c be a cocycle 
representing (. Then map K'"'+ K'n)/K'"-"-t V (Sn), one sphere for each 
n-cell r, the map to the one-point union of spheres being induced by the 
projections p,. Follow this by putting, on the rth sphere, a map to Sn of 
degree c(r). If the final map is called 4 then c4(r) = c(r) by definition, proving 
(2). 

In the case n = 1 of (2) we can get the map 4 on the 1-skeleton as above. 
Then we try to extend it over a 2-cell a. Consider the map 40 f,,:S1 +S1. 
By Proposition 11.2, we have deg(&ofaa) = (6c)(u) = 0 since c is a cocycle. 
Thus this map extends to J l 2  and this means, looking at the quotient topology 
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of this cdl, that 4 extends over the cell a. We can thus extend 4 over the 
2-skeleton. We make the same argument to extend over 3-cells, but, in this 
case it is the fact that any map Sk+S1 extends to Dk+l,  for k 2 2, that makes 
it go through. Thus one gets an extension over the whole complex K. 

(Note that this argument works for n > 1 to the extent of getting an 
extension of the map to K("+". One cannot go further than that.) 

Now we address part (1). We already proved the =. half. For t h e e  half, 
suppose that 5+, = 5+,. We may assume that the 4i are cellular. Then 
(- l)"+'(c+, - c+,) = Sd for some deCn-'(K). Define F: K(") x alu K("-') x I 
-+Sn by: 

(a) F is cellular (meaning here that it takes the (n - 1)-skeleton to the base 
point); 

(b) F = c$i on K x ( i ) ,  i = 0,l; and 
(c) for z an (n - 1)-cell of K, deg F,,, ., = d(t). 

Then note that d, = d, because, by definition, dF(z) = CAT x I) = deg F,,, . , = 
d(r). Hence, for an n-cell a, (6d,)(a) = (- l)"+'(c+, - c+,)(o) + deg FO fa(, . 
by Proposition 11.3. However, this is equal to (6d)(a) = (- l)""(c+, - cg,)(o), 
and so deg F a  fa(, XI) = 0. This implies that F extends over the (n + 1)-cell 
a x I, by Corollary 16.5 of Chapter 11. Therefore it extends to all of K x I when 
dim(K) = n. The remainder of the proof in the case n = 1 is exactly as for 
part (2). 

The fact, from Corollary 16.5 of Chapter 11, that a map Sn -+Sn of degree 
zero extends over Dn+'  (which is equivalent to saying it is homotopic to a 
constant) is a crucial item in the proof of Theorem 11.5, and in most of 
algebraic topology. Since some readers have skipped that part of Chapter 11, 
and others may have found the proof there to be difficult to follow, we will 
give a different proof of this fact at the end of this section in Lemma 1 1.13. 

11.6. Theorem (Hopf Classification Theorem). Let K be a C W-complex and 
assume that dim(K) = nor that n = 1. Then there is a one-one correspondence: 

11.7. Corollary. The function degree: nn(Sn) -+ Z is a bijection, 

This was also shown in Corollary 16.4 of Chapter 11, using smooth 
manifold methods. In fact, degree was shown there to be a homomorphism, 
hence an isomorphism. That is also an easy consequence of Corollary 7.5 of 
Chapter IV. 

11.8. Example. Let K = P2, the real projective plane. Then n2(P2; Z) z Z2, 
as follows from the Universal Coefficient Theorem (Theorem 7.3). 'Thus there 
are exactly two homotopy classes of maps from P2  to s2, one of which, of 
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course, is the class of the constant map. The other class is represent+ by 
the collapse P2  -+P2/P1 =S2, which was shown to be nontrivial in mod 
2-homology, and hence not homotopic to a constant, in Example 7.7. 

Now we wish to derive an expression for tg for any given map 4: K -+Sn. 
Let e be the top cell of Sn and let e'eC"(Sn;Z) = Hom(Cn(Sn), Z) be defined 
by ef(e) = 1. Define the "orientation class" IS1, = [[e ']~ Hn(S"; Z). 

11.9. Theorem. For a map 4: K'") -+ Sn we have lg = 4*(9,), 

PROOF. We calculate 4A(e')(a) = ef(4*(a)) = el(cdo) e) = c&o) Therefore, 
c, = +ye1). Hence 5+ = [cg] = 4*[e1] = (P*($,). 

11.10. Corollary. A map 4: K")-+Sn is homotopic to a constant ifand only if 
4*: Hn(Sn; Z) -+ H"(K'"'; Z) is trivial. 

11.11. Corollary. Two maps K'"'-+Sn are homotopic ifand only ifthey induce 
the same homomorphism on Hn(-; Z). 

11.12. Corollary. For any C W-complex K, [K; S1] % H '(K; Z). 

This is meant to indicate only a one-one correspondence, but the maps 
of any space into S1 can be made into a group by using the group structure 
on S', and it can be shown that the correspondence in Corollary 11.12 is a 
group isomorphism. 

As mentioned above, we are going to give another proof of the following 
important fact. 

11.13. Lemma (Hopf). A map S" -+ Sn of degree zero is homotopic to a constant. 

PROOF. For the proof we will regard Sn as the boundary of the standard 
(n + 1)-simplex, so that it is a simplicial complex K. Let f :  I K I + I K I be a 
map of degree zero. Then, by the Simplicia1 Approximation Theorem it is 
homotopic to a simplicia1 map from some subdivision Kc'] to K. We may as 
well assume f  to be this simplicia1 map. Take one of the vertices u of K as 
a base point and consider the opposite face t. In its structure as a sphere, 
take a disk in that face. Then there is a deformation of the sphere ending 
with a map 4 :  I K 14 1 K 1 taking the interior of that disk diffeomorphically to 
IKI - (v} and taking everything else to v. Let g = 40 f .  Then f - g and g has 
a very special nature: On each simplex of Krrl, g either maps the entire simplex 
to the base point v or i t  is an affine homeomorphism to t followed by 4. 
Let us call the latter type of simplex "special," and call this type of map on a 
simplex a "special map." Note that all special maps differ only by an affine 
homeomorphism of simplices, i.e., by the ordering of the vertices. Each special 
map collapses the exterior of a disk to the base point and maps the interior 
diffeomorphically to the complement of the base point. Therefore a specla1 



map has a degree which is +_ 1. The degree of the original map f is just the 
sum of these local degrees by Theorem 7.4 of Chapter IV. Thus half of the 
local degrees are + 1 and the other half are - 1. 

Consider two n-simplices of Kfrl which have a common (n - 1)-face. If one 
of them, a, is special and the other, p, is not, we will describe how to perform 
a homotopy which makes the second one special and the first not, and does 
not change the map outside these simplices. The homotopy will be constant 
outside these two simplices and so it suffices to describe it on a space 
homeomorphic to their union. One can take the union of two regular simplices 
in Rn for this purpose. First we "shrink" the special simplex as follows. Tak 
a point inside the special simplex a and conslder a deformation F: a x 1 -+ 
through embeddings starting with the identity and ending with a m 
shrinking cr into some small neighborhood of the selected point. (By this 
mean to describe a homotopy of the map on a as follows: Embed a x 1 
a x 1 by (x, t ) ~ ( F ( x ,  t), t )  and let 8 be the inverse of this embedding (define 
of course, on its image). Then define a homotopy which is (g x 1 ) o O  on t 
image of this embedding and is constant to the base point outside it.) No 
that, after this "shrinking," the map is special on the shrunk simplex and 
constant to the base point on its complement in a. 

By the same type of construction, we can then "move" the shrunk simp1 
over to the nonspecial simplex p. (The space requirements of doing this mo 
dictate how small the previous shrinking had to be.) Now by rotating a 
stretching we can maneuver the shrunk and moved simplex so that it i 
shrunk version of ,u. Then we can expand it (the inverse operation to shrinkin 
until it fits p exactly. Now the map on p is special and a maps to the ba 
point. See Figure V-3. (The figures depict irreguIar simplices in order 
emphasize only what is important.) 

Now suppose we have two such adjoining simplices a and p which a 
both special but have opposite local degrees. (Again we are looking at the 
as adjoining regular simplices in euclidean space.) Then the maps on the 

k/fi 'A' 
h , / i  A 

start shrlnk 

move poslt~on expand 
affi nely 

Ftgure V-3 Movlng a specral s~rnplex 
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simplices are identical except for the ordering of the vertices. By shrinking 
one of thcm, rotating, and expanding, we can bring them into a pos~t~on 
such that the maps on them are mirror images across the common face, 
because they have opposite local degrees. Suppose, as we may, the common 
face to be in the plane x,  = 0 of euclidean space and that the heights of these 
regular s~mplices are I .  Let h:Rn-+S" be the given map on these s~mplices 
extended to be constant to the base point outside them. Then the fact that 
the maps on the simphces are mirror images means that Iz(x,, x,,. . . . u,,) = 
/I(-.\-,, u,, . . . ,x,). The homotopy G: R" x I-,  Rn given by 

starts with h and ends w~th  the constant map to the base point. (Note that 
this is always constant to the base point outside the two simplices.) Thus, 
this lets us convert the two special simplices with opposite local degree to 
two nonspecial simplices. See Figure V-4. 

Now let us complete the argument. If there are no special simplices then 
the map is constant and we are done. If there are special simplices then there 

st be one of positive degree and one with negative degree. There must be 
sequence of n-simplices each having a common (n -- 1)-face with the next, 

starting with a special simplex with positive degree, ending with one of 
negative degree with only nonspecial simplices between. (We give a rigorous 
proof of this in the next paragraph.) Thus, by a sequence of changes of the 
type we have described, one can cancel out  these two special simplices. By 
an induction on the number of special simplices, the map must be homotopic 
to a constant, finishing the proof. 

Finally, as promised, let us show that there is a sequence of simplices as 
described above. Let L be- the simplicia1 complex K"'. As a space i t  is the 
n-sphere. Then it follows from the Invariance of Domain (Corollary 19.9 of 
Chapter JV) that no three n-simplices can have a common (n - 1)-face. since 
the face plus the interiors of two of them is an n-manifold and so must be 
open in the sphere. Now starting with a special simplex of local degree + I ,  
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wnte down a sequence of n-simplices each having a common (n - 1)-fa Let G be a Lie group and let T,(G) be its, tangent space at the identity 
with the last. If we come to a place where it is impossible to add anot element eeG. Let L,:G-+ G be left translation: Ldz) = oz. If X,ET,(G) is a 
n-simplex that is not already in the list, we look for any simplex v in the tangent vector at e then X,=(L,),(X,) is a tangent vector at acG. This 
that does have an (n - 1)-face in common with an n-simp1 defines a vector field X on G which is "left-invariant." Such a vector field X 
there is one then we retrace our steps (adding repetitions t is uniquely determined by X,. 
we come to v. Then we add that new simplex bordering v to the list. Even 
we either come to a special simplex with negative local d .l. Proposition. Any left-invariant vector$eEd is smooth. 
continue. We claim the latter possibility cannot happe 
then the list we have at that point is a set of n-simplices PROOF. For a smooth real valued function f defined near CT, we have 
n-simplex with an (n - 1)-face in common with one of the simplices in 
list, is also in the list. We can regard this set of n-simplices, without repetiti 

X(f = Xa(f) = (La)*(Xe)(f = XXf o LC). 

as an n-chain c with mod 2 coefficients (in the simplicia1 chain comple Let x,, . . . ,xn be local coordinates at eeG and put X, = C aia/dx,. Let 
L). Since any (n - 1)-face of any of these simplices is the face of exactly y,, . . . ,yn be local coordinates at CT. Then, for z near e, we can write 
n-simplices, we see that ac = 0. But the sum s of all th ~ i ( 4  = FiOll(4,. . . ,ynto), x,(z), - . . ,xn(z)), 
also an n-cycle. Since there are no n-boundaries (there 
simplices) the homology group Hn(L; Z,) is the same as th where the Fi are smooth real valued functions defined near 0 in Rn x I&". Then 
Since we have found two different nonzero cycles, we conclude that Hn(L; " a 
Z,, contrary to our knowledge of this group. Thus this e x.(f OL.) = a,ax.(f(F~(Y7~)3-.  .7Fnb7x)))lx=0 
happen, and so we have constructed a sequence of n-simp1 i = l  

repetitions, from a special simplex of degree + 1 to one of degree - 1. Somewh is smooth in y,, . . . , yn as required. 
within this sequence must be a subsequence from a special 
+ 1 to one of degree - 1 with only nonspecial simplices Similarly, if o is a p-form on G then Lz(w) is another p-form and o is 
what we set out to construct. said to be "left-invariant" if L,*(o) = o for all oeG. As in Proposition 12.1, 

left-invariant forms can be seen to be smooth and hence are in one-one 

PROBLEMS correspondence with the p-forms on the vector space T,(G). 
If X and Y are left-invariant vector fields then the Lie bracket 

1. Let K = S2 u fD3  where f: S2 -+ SZ is a map of degree p. Find the num [X, Y] = XY - YX is also left-invariant. This defines [X, Y ]  on T,(G). We 
homotopy classes of maps K -t S3. define L, to be T,(G) with this product [X, Y]. Then L, is called the "Lie 

2. How many homotopy classes of maps are there from the 
circle? We shall assume the formula for d o  given above Definition 2.4. If o is a 

left-invariant p-form and X,, . . . , X, are left-invariant vector fields, then 
3. Show that a map P3 -+S3 extends to P4 -== it is homotopic to a constant m . . , X,) is a constant function and so Xi(w(Xo,. . . ,Ri, .  . . ,X,)) 
4. Let K be a CW-complex of dimension n + 1 and let A c K be 0. Therefore, in this case, the formula for d o  simplifies to 

that a map 4:  A+Sn extends to K s  <+ is in the Image o 
Hn(K)-+ Hn(A). (Hint: Note that (n + 1)-cells in A have no effect 
and so can be discarded.)  do(^,,. ..,x,) = 1 ( - l ) ' t j ~ ( [ ~ i , ~ , ] , ~ O  ,..., 8 ,,..., g,,. ..,x,). 

i < j  

5 Show that there is a one-one correspondence [ K , T V H n ( K ; Z " )  for 
complexes K. Let X , ,  . . . ,Xn be a basis of L, and let w,, . . . , o n  be the dual 1-forms, i.e., 

(Xj) = dl,,. The o, can be considered as left-invariant 1-forms on G and so 
= w ,  A ... A on is a left-invariant n-form. Let this n-form be fixed once 

f: G -+ R is a smooth function with compact support then we 
12. Differential Forms on Compact Lie Groups a 
This optional section is an introduction to a very small portion of the the 
of compact Lie groups. We wish to derive some elementary consequen 
that de Rham's Theorem has for the cohomology of a compact Lie grou 



Assuming now that G is compact, we can normalize this integral so that- 

1, 1 d o  = 1. 

By the left-invariance of o, we have 

J l ; f o ~ . d o  = [ / d o  

for all ZEG,  which we can write as 

f ( z o ) d o =  f (o)do.  S, I 
This left-invariant integral on G is called the "Haar integral." 

Now a left-invariant n-form, where n =dim G, is unique up to a constan 
multiple. Let R,: G -+ G be right translation: swot-'. Then L,oR, = R,oL 
and it follows that Rf  (o) = c ( z )o  where C(Z)ER. NOW R,*, = R:oR,* and i 
follows that c(az) = c(a)c(r). Therefore c: G -t R is a homomorphism. Sin 
G is compact and the only compact multiplicative subgroup of R - (0) 
( 5  I), we must have that c(o) = 5 1 for all a, and cIearly c(o) = - 1 o 
reverses orientation. (For G disconnected, we orient the components of G s 
that left-translation always preserves orientation.) Hence 

Sf (oT-  ' ) d o  = [;ORro = 4 r ) -  (/OR.) R f ( w )  IG 
= c(r)-I R:( f o) = = I f  do. 

That is, the Haar integral is automatically right-invariant for G compact. 
Suppose now that G acts smoothly on the smooth manifold M ;  i.e., th 

there is given a smooth map G x M-+ M taking (o,x)~+tJx), such th 
t,, = t,ot, and t ,  = 1,. Then a p-form o on M is said to be "invariant" 
t:(o) = o for all ~ E G .  Let RG(M) be the set of invariant forms on M. Define 

I: R(M) -, RG(M)  

by 

I ( o ) ( X , , .  . . , X,) = tf o ( X , ,  . . . ,Xp)do  = o((t,),X,, . . . ,(t,),X,)da. 

Then 

S S 
t : ( I (@))(x  1 > .  . ., X P )  = I(o)((tz)*X1,.  - .  7 ( t z )*Xp)  

by the right-invariance of the integral. Thus I (w)eRG(M)  for all o c Q ( M ) .  
Suppose that weRG(M). Then 

y the normalization of the integral (assuming, as we do, that G is compact). 
Let J : Q ~ ( M ) C + R ( M )  be the inclusion. Then we have just shown 

at 

I J  = 1 : RG(M) + R G ( ~ ) .  

2.2. Lemma. I: R(M)+ R G ( M )  is a chain map; i.e., d l  = Id. 

PROOF. Using the shorthand notation X u  = (t,),X we have 

= ~ ( d o ) ( X ~ , .  . . , Xp). 

Now G acts as a group of automorphisms on HP(M; R). Let HP(M; R)G 
denote the fixed point set of this action. This is all of HP(M;R)  if G is 
connected, since then t ,  2: 1, for each aeG.  

123. Theorem. The inclusion J:R,(M) c-+f2(M) induces an isomorphism 



PROOF. We have I*J* = 1 since I o J  = 1. Therefore, I* is oato and J* is an 
injection. We must show that the image of J *  is all of H*(M; R)G. 

If a = [mIJcH*(M; R)G then we claim that J* I*(a) = a, which suffices. 
That is, we claim that o and I(o) represent the same class In H*(M; R). 

Let OEG. Then o - t,*(o) = dq for some ( p  - 1)-form q depending on O, 
since [o] is invariant under G. Therefore, for a smooth p-cycle ceAP(M), 
we have 

Thus 

Hence j,(I(o) - o )  = 0 for every p-cycle c. That is, the de Rham isomor- 
phism HP(R*(M)) -t HP(M; R) % Hom(H,(M), R) kills [l(o) - w].  Therefore 
[I(w)] = [on in H* (M; R). 

12.4. Corollary. Let G be a compact connected Lie group. Then HP(G;R) 
is isomorphic to HP(LF), where L2f is the chain complex of alternating forms o on 
L, with d$erential given by 

dw(Xo,. . . , X,) = (- l)'+'w([Xir XJ],XO,. - .  ,gI,. . . . ,gj,.  . . , X,). 
i < ~  

We can do better than this by applying Theorem 12.3 to the action of 
G x G on G given by (0 x z)(g) =ogz-'. Then the real cohomology of G 
(compact connected) is given by the "invariant forms," meaning now 
two-sided invariance. But this is the same as the space of left-invariant forms 
which are also invariant under conjugation. Let c,: G -t G be c,(z) = aza-'. 
Then the differential of c, defines an automorphism of the vector space 
T,(G) = L, and the invariant forms on G are equivalent to forms on L, 
invariant under each (c,),. This linear transformation (c,), of (the underlying 
vector space of) L, is called Ad(a)€GI(L,). Then at+Ad(a) is a homomor- 
phism Ad: G -+GI(L,) called the "adjoint representation" of G. This induces 
an action of G on forms m by putting 

(T(w)(X . . , X,,) = o(Ad(o-l) X I , .  . . , Ad(a- ') X,). 

12.5. Theorem. Let G he u compact connected Lit) group Let (1) he a multilrneur 
p-form (not nt.c.essari1.y alternating) on L,. Then the udjoint uc.iion of G ieaves 
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w invariant o the following identity holds: 

2 (4x1 ,.-., x ,-,, [Y,X,I,X,+l, ..-, X p ) = 0  
I =  1 

for all Y,X , , . . . ,  X,EL,. 

The proof of Theorem 12.5 will be deferred until the end of the section because 
it involves many details and would disrupt the flow of ideas. 

By an "invariant" form on L, we mean one invariant under the adjoint 
action. 

12.6. Proposition. Every invariant alternating form on L, is closed. 

' + I '  - PROOF. Pu t t i ng~ , ,~  = 0 , ~ , . ~  = (- ly'if i < j and ei,' = (- 1)' ~f i > j, we have 

1 
= - 1 (- 1)' 1 E,,~w([X,, Xj], XO,. . . , g i , .  . . ,&,. . . , X,) 

2 ,  J 

= 0, 
since the inner sum is zero by the invariance formula of Theorem 12.5. 

12.7. Corollary. For a compact connected t i e  group G, HP(G; R) is isomorphic 
to the vector space of invariant alternating p-forms on L,. 

For the remainder of this section, we assume that G is a compact connected 
Lie group. Let [L,, L,] denote the span of the elements of L, of the form 
[X, Y ]  for X, YE L,. 

12.8. Corollary. 
[LG,LG]=LG o H1(G;R)=O. 

PROOF. If [LG,LG] #LC then there is a nonzero 1-form o vanishing on 
[L,, L,], and conversely. Such a form is invariant since that just means that 
w([X, Y l )  = 0 for all X, YEL,. 

12.9. Corollary. 
H1(G;R)=O =. HZ(G;R)=O. 

PROOF. Let o be an invariant alternating 2-form on L,. Then 

0 = dw(X, Y, Z) = - w([X, Y ] ,  Z) + o([X, Z], Y) - o([Y, Z], X) 

= - o(CX, Y1, Z) - { w(CZ, XI, Y) + Q(X, EZ, YI)) 

= - o(CX, YI,  2) 

by invariance. Since [L,, L,] = L, by Corollary 12.8, o - 0. 



12.10. Theorem. If H1(G; R) = 0 then the assignment q ~ w ,  where 
o(X, Y, Z) = q([X, Y], Z) is a one-one correspondence from the space of 
invariani symmetric 2:forms q on L, to that of inaariant alternating 3-forms 
o on L,. 

PROOF. Given an alternating 3-form w, define an alternating 2-form w, on 
L, by w,(X, Y) = w(X, Y,Z).  We claim that o, is closed. We compute 

0 = do(Xo, XI ,  X,, 2 )  

= - ~ ( ~ x o > x l I , x , , ~ )  + ~ ( C X O , X 2 1 , X l , ~ )  - ~ ( ~ x l , x 2 1 , x o , z )  

- ~ ( ~ X O , ~ 1 ~ X , , X , ) +  ~ ( C x l , z l , x o , x , )  -~(CX2,ZI,X, ,X,)  

= dwz(X0, Xl ,  X,), 

since the last three terms cancel by the invariance of o. Since H~(G;R) = 0 
by Corollary 12.9, we conclude that o, = dc, for some I-form (,. That is, 

w(X, Y, Z) = WAX, r3 = dC,(X, Y )  = czcx, Y1). 

Put q(S, T) = (AS). This is clearly linear in S. Since [L,, L,] = L,, q(S, T) is 
also linear in T. For OEG and XEL,, denote (ca),(X) by Xu where c, is the 
inner automorphism of G by a. Then 

q([X, Y-J, 2 )  = o(X, Y, Z )  = o(XU, Y", 2") 

= q([XU, Y"], 2") = q( [X, Y]", 2"). 

Since [L,, L,] = L, it follows that q is invariant. 
Now q decomposes uniquely as q = qs,, + q,,,, and both terms must be 

invariant by the uniqueness of the decomposition. Since H2(G; R) = 0, we 
have that qskew = 0. Thus r ]  is symmetric. 

Conversely, if r ]  is given and w is defined by w(X, Y, Z) = q([X, Y], Z) then 
o is invariant by the same argument. By invariance of q we have q([X, Y], 2) = 
- q(Y,[X,Z]). Thus an interchange of X and Y or of X and Z changes 
the sign of o. It follows that o is alternating. 0 

There always exists a nontrivial invariant symmetric 2-form on L,, for G 
compact, since if (.;) is a positive definite inner product on L, then 

is a positive definite invariant inner product. Consequently, we have the 
following result: 

12.1 1 .  Corollary. If G is nontrivial and H1(G; R) = 0 then H3(G; R) # 0. 0 

12.12. Corollary. The only spheres which are Lie groups are So, S', and S3. 
0 

Now let US introduce the notation 

L, = (XEL, I [X, Y] = 0 for all YE L,]. 

12.13. Proposition. Given an invariant positive definite inner product (.;) on 
L,, we have [L,, LC] = L,I. 

PROOF. If X EL, then (X, [Y, Z] ) = ([X, Y], Z )  = 0 by the invariance 
formula of Theorem 12.5. Thus L, c [LC, L,]'. Conversely, if Xe[L,, LC]'- 
then ([X, Y],Z) = (X,[Y,Z]) =Ofor all Yand Z and so [X, Y] =Ofor all 
Y, whence XEL, by definition. CI 

12.14. Corollary. H '(G; R) z LX, the dual space to  L,. 

PROOF. The invariant 1-forms on LC are just the 1-forms vanishing on 
[L,,LG]. Thus they are the I-forms vanishing on L:, and those can be 
identified with all I-forms on L,; i.e., with the dual space L,*. 

12.15. Corollary. dim H1(G; R) = dim L,. 

From some basic Lie group theory which we cannot derive here, it can 
be seen that L, is just the tangent space at e to the center of G. Thus, the 
condition H '(G; R) = 0 is equivalent to the center being finite. A compact 
connected Lie group with finite center is said to be "semisimple." It is said 
to be "simple" if it is nontrivial and has no connected normal subgroups 
except for ( e )  and G itself. Another basic fact, which we must leave unproved, 
is that any invariant subspace of L,, for G semisimple, is the tangent space 
of a closed normal subgroup of G. Moreover, a compact semisimple group 
is, locally at e, a product of its simple normal subgroups. (More precisely, the 
universal covering group of G is compact and is the product of simple normal 
subgroups.) Granting this gives the following corollaries. 

12.16. Corollary. If G is simple then H ~ ( G ;  R) = R. 

PROOF. Let (X, Y) be a positive definite invariant inner product, and let q 
be an invariant symmetric 2-form on LC. Put 

k =min{q(X,X)((X,X) = 1 )  

and let ((X, Y) = rl(X, Y )  - k (X, Y). Then ((X, X) 2 0 for all X and equals 
0 for some X # 0. If [(X, X) = 0 = ((Y, Y) then 

2 U X ,  Y )  = [(X + Y, X + Y) 2 0, 

- 2[(X, Y )  = ( ( X  - Y, X - Y) 2 0, 

and so < ( X ,  Y) = 0 and ( ( X  + Y, X + Y) = 0. Therefore 

s = {Xli(X,X) =0}  
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- is a vector subspace of L,. But [ is invariant and it follows that S is in d 
under Ad. Since G is simple, 5 must be identically zero. Therefore = -(~(B,x, , .  . . , B,X,))T,=~ 

dt 
k ( . ; ) .  By Theorem 12.10, there is then exactly one nontrivial 
alternating 3-form on LC up to a constant multiple and so dim H3(G; 1 

= lim -{o(BrXl, . . . , BrXp) - o(X,,.  . . , X,)} 
r - 0  t 

12.17. Corollary. H1(G; R) = 0 =. dim H3(G; R) equals the number of simple 1 
= lim -((o(B,X, - X I ,  B,X2,. . ., B,X,) 

normal factors of G. 1-0 t 

+ o(X,, BrX2 - X2, B,X3,. . .) + ... 
PROOF OF THEOREM 12.5. For a finite-dimensional vector space V, suppose 
are given a linear action of G on 'V; i.e., a homomorphism 8: G-+GI(V +~(XI,XZ,...,X~-~,B,X~-X~)J 
(Think of V as Rk if you wish.) Then the differential of 8 at e is a linear m 1 
0,: LC = T,(G)-+ T,(GI(V)) = Endo(V), the space of endomorphisms of V(i.e., =o  lim-(B,Xl -X,),lim B,X ,,... 
the k x k matrices if Vis regarded as Rk). For ve V, we claim that O(o)(v) = t r+o 

for all oeGo0,(X)(v) = 0 for all X€LG. Let @':R-+G be the o 1 

1 
parameter subgroup of G with tangent vector X = 4z(d/dt) at e. (Reca + o  Xl,lim-(B,X2-X2),limBrX3 ,... ( r-0 t t-0 
from Theorem 12.10 of Chapter 11 that this exists for each XEL, and 
that they fill out a neighborhood of e in G and hence generate G.) The +- - -  ( 1 

) 
Oc$'(t) is a one-parameter group in Gl(V) and therefore has the for +o  X ,,..., X,-,,lim-(B,X,-X,) 1-0 t 

8dX(t) = erA for some AeEndo(V). By definition 0,(X) = 0,(4:(d/dt 
(d/dt)erAIr =, = A. Thus 04'(t)(v) = erAv = v + tAv + $t2A2v + --.. If v is =o(ad Y(Xl),X2,. . .,X,) 

by the action, then this is v and so Au = (d/dt)(&#~'(t)(v)) 1, =, = (d/dt)(v) I,, , + w(Xl,ad Y(X2),X,,. . ., X,) + ... 
Conversely, if Av = 0 then ezAv = v + tAv + $t2A2v + - + .  = v and so v is fix 
under G since the one-parameter subgroups generate G. +o(x~, . . . ,X,- , ,ad  Y(X,)) 

For the adjoint representation Ad: G -+ Gl(LG), the differential is calle 
ad = Ad,: LC -+ Endo(L,). By definition, if 4': R -+ G is the one-paramete d d 
subgroup with tangent I: then - B,X,I,=o = - ~d ~$~(t)l,=,(X,) = ad Y(Xi). 

dt dt 

ad Y = Ad,(Y) = Ad&: (g 1 ,) = ; ((A~O~Y)(~))I  By the general remarks at the beginning of the proof, ~ E V  is invariant 
r=o 

(i.e., 0(+ = o for all o~G)ofI,(Y)(o) = 0 for all YEL,. 
and so Therefore Theorem 12.5 will be proved once we show that ad Y(X) = [Y,X]. 

d d For that, consider the left-invariant vector field Y. Left-invariance means 
ad Y(X) =-(Ad(4Y(t)))lr=o(X) = -Ad(4Y(t)(X))It=o. 

dt dt 
that Yo = (L,), Ye for all ~ E G .  Thus, for a smooth function f, we have 

Let Vbe the space of p-forms (not necessarily alternating) on LC with action ya(f) = (La)*(ye)(f) = Ye(f .La) 
given by 

= - (foL,)=- ( foL ,04~)  
8(0)(w)(X,, . . . ,X,) = w(~d(a - ' )  Xi , .  . . , Ad(a- ')X,). 

Then 0(4- Y(t))(o)(Xi,. . . , X,) = w(~d(4'(t)) Xi , .  . . , A ( ( ) )  X )  and so, 

(:I,,) :lo 
d 

putting B, = ~d(+'(t)), we have = -(f(o+Y(t)))lt=o. 
dt 

- o,( y)(@)(x~,  . . . , x,) = e,+, (i lO)(o)(xl, +.  . , xP) Consider the function g(t,s,u) = f(4X(t)4Y(s)4X(~)). We have 

d a a a a 
=-0(4-y(t))(a)(xi , . . . , xp ) l r=o  

dt at as (1(0,0,0) = arhf(4x(t)dy(.~))l.=,=o 
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=XY(f) ate. 

Similarly 

= YX(f) ate. 

If h(s, t) = g(t, s, - t) then 

=[X,Y](f) ate. 

That is, 

On the other hand, s ~ ~ ~ ( t ) c $ ~ ( s ) 4 - ~ ( t )  is-a one-parameter group whose 
tangent vector at e is Ad(~$~(t))(y) by definition of Ad. Thus 

4X(t)4Y(s)4 -X(t) = 4Ad(QX(f))(Y)(s) 

and so 

since (dlds) f (+z(s))l s,o = Z,( f )  as seen before. Therefore 

Comparing formulas gives the desired result ad X(Y) = [X, Y]. 0 

We remark that the common notation for the one-parameter group 4'(t) 
with tangent vector X at e is exp(tX). That is, exp:L,-+G is defined by 
exp(X) = 4'(1), and so exp(tX) = 4lX(1) = 4'(t). This is compatible with the 
previously defined exponential map for the classical matrix groups. 

Products and Duality 

Algebra is generous; she ofien gives more than 
is asked of her. 

1. The Cross Product and the Kiinneth Theorem 

Now we begin discussion of several varieties of products that can be introduced 
into homology and, especially, cohomology. First, we need to discuss a sign 
convention. 

Suppose that A,, B,, C, and D, are graded groups. A map f:  A,  -r B, is 
said to be of degree d if it takes Ai to B,,, for all i. For the most part d has 
the values 0 or -+_ 1. We define the tensor product of two graded groups A, 
and B, to be the graded group A, @ B, where 

(A* QB*), = @ Ai Q Bj. 
i + j = n  

~f f :~ , - , c ,  and g:B,+D, then we definef Og:A,OB,-+C,@D, by 

Note that the exponent in the sign is the product of the degrees of the items 
whose order is interchanged. For compositions of such maps, it is easy to 
check that 

(.f Q g)o(h @ k) = ( - l)de~'g'deg'h' (f 0h)O(g0k). 

In particular, for the chain complexes A,(X) and A,(Y) we have the chain 
complex 

(A*(X) @ A*( = i + j = n  @ Ai(X) @ Aj( Y), 

with boundary operator = 8 8 1 + 1 8 8. The sign convention holds here, 
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J l L  

is a vector subspace of L,. But < is invariant and it follows that S is i 
under Ad. Since G is simple, [ must be identically zer 
k ( + , . > .  By Theorem 12.10, there is then exactly one nontrivial 
alternating 3-form on L ,  up to a constant multipte and so dim 

12.17. Corollary, H1(G; R )  = 0 =.> dim H ~ ( G ;  R) equals the number of simple 
normal factors of G. 

PROOF OF THEOREM 12.5. For a finite-dimensional vector spa 
are given a linear action of G on V; i.e., a homom 
(Think of V as Rk if YOU wish.) Then the differential of 
0,: L ,  = Te(G) -, T,(GI(V)) = Endo(V), the space of endomo 
the k x k matrices if Vis regarded as Rk). For V E  V, we clai 
for all ~ E G  o 0,(X)(v) = 0 for all XEL,. Let d X  
parameter subgroup of G with tangent vector X = I$:( 
from Theorem 12.10 of Chapter I1 that this exists for 
that they fill out a neighborhood of e in G and hence generate G.) The 
OcjX(t) is a one-parameter group in GI(V) and there 
OdX(t) = elA for some A ~ E n d o ( v ) .  By definition B,(X) = 8,(4:(d/dt)) 
(d/dt)e*AJ,=O= A. Thus B&X(t)(v)=e'Av = v+tAv+qt2AZv  + .... If v is fix 
by the action, then this is v and so Av = (d/dt)(O+X(t)(v))lf, 
Conversely, if Av = 0 then erAv = v + tAv + qt2A2v + ... = v and so v is fi 
under G since the one-parameter subgroups generate G. 

For the adjoint representation Ad: G -+Gl(L,), the 
ad = Ad,: L ,  -+ Endo(L,). By definition, if 4': R -, G is the one-param 
subgroup with tangent I: then 

ad Y = Ad,(Y) = Ad&: (g l o )  = $ ( ( A ~ O  

and so 

d d 
ad Y ( X )  =-(Ad(&'(t)))Il=o(X) = 2 Ad (4y(t)(X))lt=o. 

dt 

Let V be the space of p-forms (not necessarily alternatin 
given by 

O(o)(w)(Xl, . . . , x,) = o ( ~ d ( o  - ') X , , . . . , ~ d ( a  - ' )  X,). 

Then 6(4  - ' ( t ) ) ( o ) ( ~ , ,  . . . ,X,) = o ( ~ d ( $ ' ( t ) )  X I , .  . . , ~ d ( ' ( t ) )  X )  and so, 
putting B, = Ad(+'(t)), we have 

-~*(y)(o)(xl,...,xp)=~*4;y -- ( ~ ) ( X l , . . . > X , )  

d 

( j t  I, 
=-0(4-Y(t))(~)(X,>...,Xp)ll=, 

dt 
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since 

- X,), lim B,X3,. . . 
f+O 

=o(ad  Y ( X l ) ,  X,, . . . , X,) 

+ o(X, ,ad Y(X,),  X ,,..., X,) + ... 
+ 4 X 1 , . . . , X p - 1 , a d  Y(X,)) 

By the general remarks at the begi he proof, ~ E V  is invariant 
(i.e., 6 ( a ) o  = o for all a ~ G ) o 0 , ( Y ) ( w )  = 0 for all YEL,. 

Therefore Theorem 12.5 will be proved once we show that ad Y ( X )  = [Y, XI .  
For that, consider the left-invariant vector field Y. Left-invariance means 
that Y, = (L,), Ye for all oeG. Thus, for a smooth function ,f, we have 

Consider the function y(t, s, u) = f (4X( t )4Y(s )4X(u) ) .  We have 
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=XY(f)  ate. 

Similarly 

= YX(f) ate. 

If h(s, t) = g(t, s, - t) then 

=[X,Y](f) ate. 

That is, 

On the other hand, s ~ 4 ~ ( t ) 4 ~ ( ~ ) 4 - ' ( t )  is a one-parameter group whose 
tangent vector at e is Ad(4x(t))(Y) by definition of Ad. Thus 

4X(t)4Y(s),#) - X(f) = pd(bX(l))(r)(S) 

and so 

since (d/ds) f (4z(s))ls,o = Ze( f )  as seen before. Therefore 

Comparing formulas gives the desired result ad X ( Y )  = [X, Y]. 0 

We remark that the common notation for the one-parameter group 4'(t) 
with tangent vector X at e is exp(tX). That is, exp:L,-+G is defined by 
exp(X) = 1$'(1), and so exp(tX) = 41x(l) = $'(t). This is compatible with the 
previously defined exponential map for the classical matrix groups. 

Products and Duality 

Algebra is generous; she ofien gives more than 
is asked of her. 

1. The Cross Product and the Kiinneth Theorem 

Now we begin discussion of several varieties of products that can be introduced 
into homology and, especially, cohomology. First, we need to discuss a sign 
convention. 

Suppose that A,, B,, C, and D, are graded groups. A map f: A, --+ B, is 
said to be of degree d if it takes Ai to Bi+, for all i. For the most part d has 
the values 0 or + 1. We define the tensor product of two graded groups A, 
and B, to be the graded group A, Q B, where 

(A, Q B*), = @ Ai Q Bj. 
i + j = n  

Iff: A ,  --+ C, and g: B, + D, then we define f Q g: A, Q B, -+ C, 63 D, by 

(f Q g)(a Q b) = (- l)deg'a'deg'g' f (a) @ g(b). 

Note that the exponent in the sign is the product of the degrees of the items 
whose order is interchanged. For compositions of such maps, i t  is easy to 
check that 

(.f Q g)o(h Q k) = (- l)deg(g)deg(h) (fOh)@(gOk), 

In particular, for the chain complexes A,(X) and A,(Y) we have the chain 
complex 

(A*(X) Q A*( Y))n = @ Ai(X) Q Aj( Y), 
i + j = n  

with boundary operator a@ = a @ 1 + 1 8 a. The sign convention holds here, 

315 
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so this means 

a,(a,ob,)=(ao 1 + 1 @ a ) ( a Q b ) = a a o b + ( - l ) P ~ @ a b .  

The subscript on a ,  is used only for stress. It will be dropped in many cases. 
If x and y are points then (A,((x))QA,((y))),= A o ( ( x ) ) @ A o ( { y } ) ~  

generated by x O y .  Also Ao((x)  x ( y ) )  z Z generated by (x ,  y). Recall 
in Section 16 of Chapter IV we had a "cross product" X : A,(X) x A,( 
A,(X x Y). Because this is bilinear, it induces a homomorphism, still 
a cross product, 

X :A,(X)QA*(Y)-+A,(X x Y) ,  

which, by definition, takes a Q b to a x b. The product is natural in X 
Y, and is the canonical map ( x  x y = (x ,  y)) when X and Yare points. T 
was the boundary formula d(a x b) = aa x b + (- l)deg(a)a x ab. Thus 

a ( X ( a @ b ) ) = d ( a ~ b ) = a a x b + ( - l ) ~ ~ ~ ( ~ ) a x a b  

= X (aa Q b + ( - l)deg'a'a Q ab) 

= x (8,(aQb)). 

That is, X is a chain map. 

1.1. Lemma. If X and Yare contractible then there is a chain contract 
A,(X) Q A,(Y). Consequently, H,(A,(X) Q A,(Y)) = 0 for n > 0 and 
generated by [x0 Q yo], for n = 0. 

PROOF. In Theorem 15.5 of Chapter IV we constructed such a chain 
traction for X. That is, for the chain map E: Ap(X)+Ap(X) which is 0 
p > 0 and E(C n , ~ )  = C n,xo, we constructed a map D: A,(X) + A,+ ,(X) s 
that aD + Da = 1 - E. Put E = D Q 1 + E Q  D on A,(X)QA,(Y). Then 

Ed, +a,E=(DQl + ~ @ D ) ( a @ l +  l Q a ) + ( a Q l +  lQa) (DQl  + C O D )  

=Da@l + D Q ~ - E ~ ? Q D + E Q D ~  

+aD@1 + a e @ D - D @ a + ~ @ a D  

=DaQ1 + ~ @ D a + a D @ l  + E Q ~ D  

=(Da+aD)Q 1 + E Q ( D ~ + ~ D )  

= ( I  -€ )@I +€@(1  - E )  

= ~ Q ~ - - E @ ~ + E @ ~ - - E @ E  

= 1 63 1 - E Q E = identity - augmentation. 

1.2. Theorem. There exists a natural (in X and Y )  chain map 

e: A,(X x Y)+A,(x)QA,(Y) 

which is the canonical map (x ,  Y ) H X @  y in degree 0. 

PROOF. Note that naturality means that for maps f :  X -+ X' and g: Y -+ Y' We 
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have O o ( f  x y), = ( f A @ g A ) o O .  Tht; proof is by the method of acyclic models. 
Suppose 6 is defined for degree less than k, such that 88 = 613 in those degrees. 
This holds trivially for k = 1. 

Consider the case X = A, = Y and let d,: A, -+ A, x A, be the diagonal map. 
Then dk€Ak(Ak x A,). The chain e(dd,)~(A,(A,) Q A,(A,)), - is defined and 
aO(ad,) = 6(aadk) = 0. Thus @(ad,) is a cycle in A,(A,)Q A,(A,) (and if k = 1 
then the augmentation takes this to 0). Therefore O(ad,) is a boundary by 
Lemma 1.1. Let B(dk) be some chain whose boundary is 8(adk). 

Next, for general X and Y, let n,: X x Y -+ X and n,: X x Y -+ Y be the 
projections. Let a: A, -+ X x Y be any singular k-simplex of X x Y. Then we 
have the product map nxo x .n,a:A, x A,+X x Y. We can express a as the 
composition a = (n,o x n,a)od,: A, -+ X x Y. It  follows that a = (nxa x 

in Ak(X x Y )  where (nxa x n,a), is the induced chain map 
A,(A, x A,) -, A,(X x Y). Thus, for 6 to be natural, we must define 

We do so. Then naturality of this definition is clear. To prove the boundary 
formula, we compute 

1.3. Theorem. Any two natural chain maps on A,(X x Y )  to itself or on 
A,(X) Q A,(Y) to itselfor on one of these to the other which are the canonical 
isomorphisms in degree zero, with X and Ypoints, are naturally chain homotopic. 

PROOF. The proofs of all four eases are similar. One uses "models" z,Q Z,E 

A,(A,)Q A,(A,) for the complex A,(X) @ A,(Y), and d,~d,(A,  x A,) for the 
complex A,(X x Y),  and then tries to construct a chain homotopy D 
inductively so that Da + aD = 4 - $ where 4 and I) are the two chain maps. 
One does this by computing, inductively on a model, the boundary of 
q5 - $ - Da, showing it is zero and using a chain of which it is a boundary 
as D of the model. We will do one case in detail and the reader can furnish 
the details of the other three. 

We will take the case of 4, $: A,(X x Y )  -+ A,(X) Q A,(Y). Take D to be 
zero on 0-chains. Suppose that we have defined D on chains of degree less 
than k, for some k > 0. We compute 

Since A,(A,)QA,(A,) is acyclic by Lemma 1.1, there exists a (k + 1)-chain 



whose bounda~y 1s (+ - $ - Da)(dk). We let Dd, be one such ch in .  If a is 
any singular simplex of X x Y then we have a=(x,a x n,o),(&) as seen 
before. Thus we define Da = ((n,a),@(x,a),)(Dd,). Extending by linearity, 
this defines D on A,(X x Y) for all X and Y, such that Da + aD = 4 - $ on 
chains of degree k. This completes the induction. 

1.4. Corollary (The Eilenberg-Zilber Theorem). The chain maps 

8 :Ay (X  x Y)-+A, (X)@A,(Y)  

and 

are natural homotopy equivalences which are naturally homotopy inverses of 
one another. 

The implication of this result is that one can compute the homology and 
cohomology of a product space X x Y from the chain complex 
A,(X)@ A,(Y). That is, 

Hp(X x Y ;  G )  = Hp(A,(X)@ A,(Y)@ G), 

and 

HP(X x Y ;  G)  = HP(Hom(A,(X) @ A,(Y), G)) .  

1.5. Theorem (Algebraic Kiinneth Theorem). Let K ,  and L, be free chain 
complexes. Then there is a natural exact sequence 

o-+(H,(K*)@H,(L,)), ~ H , ( K , @ L , ) + ( H , ( K , ) *  H,(L,)),- -t 0 

which splits (not naturally). 

PROOF. Recall that (H,(A,) 63 H,(B,)), means @(H,(A,) @ H,(B,)lp + q = 
n),  and similarly for the torsion product. Let Z ,  denote the group of cycles 
of K,, and B, the group of boundaries. There is the exact sequence 

which splits, slnce B,_ ,  is projective. Tensoring this with L,  gives a short 
exact sequence 

This induces (he long exact sequence 

Now B, has trivial differential and B,@(.) is exact. It follows that a cycle 
of B, @ L,  is just an element of B, @ Z,(L,). This group is generated by 
elements of the form ak @ 1 = (a @ 1)(k @ 1) where a1 = 0. Therefore 
A,[ak@l] is represented by ( i @ l ) - l a ~ ( k ~ l ) = ( i @ l ) - l ( a k @ I ) = ( j @ l )  
(ak @ I )  where j:  B, c, Z ,  is the inclusion. Because B, @(.) and Z ,  @ (.) are 
exact, we have the canonical isomorphisms 

H , ( ~ ,  @ L,) B,  @ H,(L,) and H,(Z, @ L*) =Z* @ H*(L*). 

It follows that, under these isomorphisms, A, becomes j @  1: B, @ H,(L,) + 

2, @ H,(L,). This is part of the exact sequence 

From (*) one derives the exact sequence 

0 - (coker A,), -+ H,(K, O L,) -+ (ker A,),- -0. 

But coker A, z coker(j@ 1) % H,(K,)@ H,(L,) and ker A, ;=: ker(j@ 1 )  z 
H,(K,)*H,(L,), and the substitution of these gives the desired Kiinneth 
sequence. 

If ~ E K ,  and IEL,  are cycles, then it is easy to trace through the 
correspondences to see that the first map in the Kiinneth sequence takes 
[kj @ [l]€H,(K,)@ H,(L,) to [ k @ l j ~ H , ( K ,  @ L,), so this map is, indeed, 
the cross product. 

We may regard the graded groups H,(K,) and H,(L,) as chain complexes 
with zero differentials. 

If 4:  K, + Z,(K,) and $: L,  + Z,(L,) are splittings then @: k w  [+(k)] 
and Y :  l~ [ t+h( l ) j  are chain maps 0: K ,  -+ H,(K,) and Y :  L ,  -, H,(L,) since 
[4(ak)J = [ak] = 0 = a [ N k ) ]  (the latter by definition). Hence @ @ Y :  
K ,  @ L, + H,(K,) @ H,(L,) is a chain map inducing 

where we identify "chains" with homology in the right-hand side since the 
differential is zero there. If ak = 0 = d l  then 

and so this gives the deslred splitting. Since it is defined through the splittings 
4 and $ which are not natural, this splitting may not be natural. Indeed, 
examples, such as that given for the Universal Coefficient Theorem, show 
that there does not exist a natural splitting. 

It can be seen that the freeness assumption in Theorem 1.5 can be replaced 
by the hypothesis that t i , (K,  * L,) = 0, but that would entail extending the 
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proofand we have no need for that generality. (See Dold [I] or Spa PROBLEMS < 

for a proof.) The result can also be proved, in exactly the same way, 
chain complexes over a principal ideal domain instead of Z. In particula 1 Verlfy the example on P2 x PZ by using a CW-structure to compute its homology 

it holds over a field, in which case the torsion term does not appear. Bu 
over a field 0 is exact and the result is quite trivial in that case. resulting from attaching an n-cell to Sn- ' by a map of degree 

h Theorem to compute the homology of X ,  x X, for any p,q. 
1.6. Theorem (Geometric Kunneth Theorem). There is a natural exac or spaces X, Y of bounded fin~te type, show that x(X x Y )  = x(X)X(Y). 
sequence 

omplete the proof of Theorem 1.3. 

o-+(H,(X)@H,(Y)),, x Y)-+(H,(X)*H,(Y)),-, -+O 

which splits (not naturally). . A Sign Convention 
For example, we compute 

t us ask whether the coboundary operator should have a sign attached 
H2(p2 x p2) x 0 H2(P2) 0 H1(P2) O H ~ ( P ~ )  0 H2(p2) 0 H,(P') it instead of being given by the formula 6 f = f 08. A singular P-cochain 

0 Ho(P2)* Hl (P2)0  H,(P~)*H,(P~) a map A,(X) -+ G and G can be thought of as a graded group B, with Bo = G 
. Then f is a map of graded groups of degree - p ,  i.e., it ~zOoOzz@zzOo@zOz*z,@z,*z 

w Z 2 0 Z , ~ Z 2 .  dgroups A,,B,,weletHom(A,,B,)-,= HO~(A, ,B,)~  
orphisms taking A,  -+ B,-,. Then f ~Horn(A,, B,IP and 

For another example, let eeH,(Sn) be the canonical generator (cl be consistent with the way signs work in most places in homological 
point), and [Sn]~Hn(Sn) a generator, the "orientation class." Then lgebra we should have the formula 
generates x Sm), g x [Sm] generates Hm(Sn x Sm), [s"] x 0 ge 
Hn(Sn x Sm) and [Sn] x [Sm] generates Hn+,(Sn x Sm). (In case n = m t aCf(a)) = ( d f  )(a) + (- 1Y f (aa) 
0 x [Sn] and Pm] x Q are a free basis of Hn(Sn x Sn).) our case. The left-hand side is 0 in our case of a complex B, vanishing 

For a subspace A c X the cross product A,(X)@A,(Y)-+ A,(X x us we should define 
carries A,(A)@A,(Y) into A,(A x Y) and hence induces a cha 
A,(x, A) Q A,(Y) -+ A,((X, A) x Y). This induces an isomorphism in h 
logy by the 5-lemma. Thus one obtains a natural Kunneth exact sequ 

in fact, we will use this convention in the remainder of the book. Note 
this change does not affect which cochains are cocycles and coboundaries 

ffect cohomology groups. It does affect some things in 
nor ways. (For example, the de Rham map Q*(M)-+A*(M; R) = Hom(A,, 
is no longer a chain map strictly speaking.) For the most part, however, 
nly affects signs in various formulas that we will use in subsequent parts 

which splits nonnaturally. In general, there is no such result when f the book. This sign convention will have the effect of making a number 
replaced by a pair (Y, B); see Bredon [2].  There is one, however, if A and f formulas appear much more logical than they would otherwise (see Mac 
are both open. For open sets U, V c X the map A,(X x Y)/(A,(U x Y) 
A,(x x v))-+A,((x, U )  x (Y, V)) induces an isomorphism in homo1 
follows that the map A,(X, U)@ A,(Y, V) -+ A,((X, U) x (Y ,  V)) Induces an 
isomorphism in homology, and hence that there is a natural Kunneth exact 
sequence 3. The Cohomology Cross Product 

O-+(H*(X, U)@H*(Y, V)),-+H,((X, U) x (Y, V ) )  

-+(H,(X, U)*H,(Y, 1/)),- 1-4. 

n t h ~ s  sectlon we will consider cohomology with coefficients in a commutative 
ring A wlth unlty. (The work can be generalized a bit to the case of two 
groups G ,  and G, of coefficients and a pairing G, @ G2 -+ G to a third.) 



Recall that we had a natural chain equivalence $:A,(X x Y)-+A,(X)@ 
A,(Y). Let f eAP(X; A) and geAq(Y; A). T h w  f :  Ap(X) -+ A and g: Aq(Y) -+ 

Then 

is defined using the ring structure of A. We define the cohomology cross 
product 

That is, if 8(c) = Cp+,=,(Ciuf O by), then (f x g)(c) = (f @g)8(c) = Xi(- l y 4 .  

f (af)g(b:). (One regards f as zero on Ai(.) for i # p, etc.) We compute 

giving the coboundary formula 

It follows that X indy~es a product 

X : HP(X; A)@ Hq(Y; A) -+ HP+q(X x Y; A). 

Note that the fact that 8 is unique up to chain homotopy implies that this 
product does not depend on the choice of 8. (The reader should detail this.) 

There is another, simpler product called the "Kronecker product" that 
takes 

If cr = I[ f ]€HP(X; G) and y = [c]eHp(X) then this product is defined by 

This is also denoted by a(y). It is clear that (a, y )  = b(a)(y) where b: HP(X; G)-t 
Horq(Hp(X), G )  is the map appearing in the Universal Coefficient Theorem. 
The Kronecker product is sometimes referred to as evaluation of a 

cohgmology class on a homology class. It  is a spesial case of the "cap 
product" whioh we shall study later. We will need the following formula. 

3.1. Proposition. For cocycles f,g and cycles a, b of X, Y, respectively, 
we have 

PROOF. (f x g)(a x 6) = (f @ g)8(a x 6) = (f 63 g)B x (a b). Using that 6 

8 0 x  = l + D a , + a D  this is ( f @ g ) ( a @ b ) + ( f O g ) ( D d s + d D ) ( a @ b ) =  
I 

(f Q g)(a @ b) ) SCf @ g)(D(a 8 b)) = (f O g)(a 63 6) = ( - I )deg(9)deg(a) f(a)g(b) by 
our sign conventions. Note that f (a) = 0 if deg( f )  # deg(a). 

For any space X, we let l€HO(X) denote the class of the augmentation 
cocycle 6: Ao(X) -+ Z taking each 0-simplex to 1. The reason for this notation 
will become apparent momentarily. Clearly f *(l) = 1 for any map f :  X -+ Y. 

For a one-point space P, easy acyclic model arguments show that the 
composition 

is naturally chain homotopic to the chain map A,(X x P) 5 A,(x) induced 

by the projection p,: X x P A X .  The first of these induces crwa x 1 of 
Hk(X)+ Hk(X x P). By naturality of the cross product applied to the map 
X x Y + X  x P, it foliows that 

for any aeH*(X). Similarly, 

for any BEH*(Y). 
We will now discuss the cross product for relative cohomology. As above, 

coefficients for cohomology will be in the ring A throughout, and will be 
suppressed. Suppose that A c X and let f €AP(X, A) = ker(AP(X)+AP(A)). 
That is, f EAP(X) and is zero on A. The following diagram commutes: 

and the vertical maps are monomorphisms. If c€A,(A x Y) then ( j  x y)(c) = 
(f Qg)O(c) = 0 since f is zero on A, and so f x g€A*(X x Y, A x Y )  = 
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A*((X, A )  x Y). Thus we get a relative product and commutative diagram: 

HP(X)@ Hq(Y) 5 HP+q(X x Y). 

Consider the diagram: 

We claim that this commutes. We will chase the diagram with representatives 
.f €AP(A), geAq(Y) with 6 f = 0 = Sg. Extend f to a cochain f'€AP(X). Then 
f' x g extends f x g. Since Sf' is zero on A, GS'GA~+~(X,  A). Going down 
and then right in the diagram yields a class represented by (6 f') x g. Going 
right then down, gives a class represented by 6( f ' x g). Since 69 = 0, these 
are equal, as was to be shown. 

For the case of a relative group in Y we get the diagram 

which does not quite commute. Instead the two directions of travel differ by 
the sign ( - 1)P. 

The formulas a x 1 = p;(a) and 1 x f l  = p;(/?) also hold for relative classes 
a and /?. 

Now let us consider the question of commutativity of the cross product. 
That is, the relation between a x P and P x a. 

Let T: X x Y -t Y x X be (x, y)~-+(y, x) and consider the (noncommutative) 
diagram 

L 

where z(hq@ up) = ( -  l)PqaP@ bq. Note that t is a chain map. By Theorem 1.3, 
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there is a chain homotopy z08,,,oTA z: O,,,.,That is, there is a D so that, 

T $ ~ , ~ T ,  - O X , Y  = Da + a,D. 

Let SfP=O=Sgq. That is, f oa=O=god. Note that ( g Q  f)o(Dd+ d,D)= 
(g Q f)oDd = + 6((g @ f )OD) is a coboundary. Now we compute 

T*(ilgj x I[f]l)= T*(%g x f] l )= T*(I I [ (g@f)Oe~,~j>  
= lI(g Of )"~,*XO TAD 
= (- l)"I[(f @g)ze,,,T,j (using commutativity of A) 

=(-l)"U(f os)e,,Yn x ,-I, 
=(-l)pqffll X hgll. 

Thus we conclude that for cohomology classes a€ HP(X) and Hq(Y), we have 

In general there is no Kiinneth Theorem for the cohomology cross 
product although one can prove such a result under conditions of finite type 
for the spaces involved. We need only the case of a field of coefficients (for 
Section 12), and that is easy: 

3.2. Theorem. Let A be apeld. Then the cross product 

(H*(X;A)QAH*(Y;A)),+Hn(X x Y;A) 

is an isomorphism. If one of H,(X; A) or H,(Y; A) is offinite type then the 
cross product 

is an isomorphism. 

PROOF. The case of homology can be proved by a simpler version of the 
proof of Theorem 1.5 and that will be left to the reader. For the case of 
cohomology, there is the diagram (coefficients in A throughout) 

which commutes by Proposition 3.1. The maps P and f l @  P are isomorphisms 
since Horn(., A) is exact over a field A The map y is an isomorphism by the 
assumption of finite type on one of the factors. Horn( X , 1 )  is an iso- 
morphism by the case of homology. Thus the map on top, the cohomology 
cross product, is an isomorphism. 



It can be seen that y,and hence X , is injective for all fields A in all cases. 
It can also be seen that it is surjective only under the hypothesis of 
Theorem 3.2. 

PROBLEMS 

1. Show that a x (B x y) = (a x B) x y for cohomology classes a, 8, y. 

2. Fill in the details of the proof of the formula a x 1 = pg(a). 

4. The Cup Product 

The most important product is the "cup product" with which we deal in this 
section. 

4.1. Definition. Let d: X -+ X x X be the diagonal map d(x) = (x, x). Then the 
cup product is the homomorphism 

defined by a u p  = d*(a x P). (Coefficients are in any commutative ring with 
unity.) 

An immediate consequence of the rules for the cross product is that 

where p and q are the degrees of a and 8. Also the cup product is natural in X. 
The cup product is often denoted by juxtaposition, i.e., = sup. 
If p,: X x X -+X is the projection to the first factor then 

Similarly, 1 u a = a so that 1 cHO(X) is a two sided unity element. 
One can define the cup product on the cochain level by f u g  = dA( f x g), 

I.e., 

where CEA,+,(X), f eAP(X), g€Aq(X) and where 6 is the Eilenberg-Zilber 
map of Theorem 1.2. We will give a more explicit formula for this later. 

The coboundary formula for the cross product immediately yields one for 
the cup product: 

By naturality of the cochain formula, if the cocycle f vanishes on A (meaning 
on singular simplices entirely in A), then so does f vg .  Thus, iff vanishes 
on A and g vanishes on B then f u g  vanishes on A and on B, but not 

generally on A u  B. But we know, by the discussion of subdivision, that the 
inclusion AJA) + A,(B) r A*(Au B) induces an isomorphism in homology, 
and hence in cohomology, if A and B are open. In this case, the complex 
{ f €A*(X)l f (cr) = 0 if a is a simplex of A or a simplex of B) can be used to 
compute H*(X, A u  B). Thus, in this case there is a cup product 

u: Hp(X, A; A) @ H4(X, B; A) + HP+q(X, A u B; A). 

In particular, this holds if A and B are both open, or if one of them is 
contained in the other, e.g., if one of them is empty. (The latter case is 
immediate from the definition.) 

Suppose given al ,a2~H*(X) and /3,,P2eH*(Y). Let dx: X + X  x X, 
Y + Y  x Y and d x x y : X x  Y + X x  Y x X x  Y be the diagonal maps. 
t T : X x X x Y x Y + X x Y x X x Y  be given by T(x,,x2,y1,y2)= 

and so we have the formula 

In particular, for the projections p,: X x Y + X and py: X x Y -+ Y, we have 

so that the cross product can be recovered from the cup product. 
We will now discuss more explicit cochain formulas for the cup product. 

The composition 

A = 8odA:A,(X)-+A,(X x X)-+A,(X)QA,(X) 

is called a "diagonal approximation." Note that on 0-simplices A(x) = 8(x, x) = 

xOx.  Also note that f u g = ( f  Qg)060dA=(f Qg)oA. 

4.2. Definition. A diagonal approximation is a natural chain map 

such that A(x) = x @ x on 0-simplices x. 

4.3. Theorem. Any two diagonal approximations are naturally chain homotopic. 

PR(x)F. This is an easy application of the method of acyclic models which 
will be left to the reader as Problem 5. 



328 V1 Products and I I u a l ~ t ~  
1: 
-5 

Thus, for-computine the CUD ~ roduc t  of cohomoloev classes, anv diagonnl < " A ' ", , , 0-- -X'  

approximation will do. We will now describe a particular such approximation 
that makes computations on the cochain level relativelv simule. 

For a singular simplex a: A, -+ X and for p + q = n, 0 5 p, q 5 H ,  we denote 
by 

the "front p-face" of a, which is the composition of cr with the inclusion eit-+ei 
of A, in A,. Similarly, we denote by 

the "back q-face" of a, which is the composition of o with the inclusion 
ei+-ie,-q+i of A, in A,. 

4.4. Definition. The Alexander- Whitney diagonal approximation is generated 
by 

'3 where a: A, -+ X. 4 
- 3  

This is clearly natural and has the right value on 0-simplices. We must 
check that it is a chain map. Bv naturalitv it suffices to do that on i = . . - . . . - - - -- -n 
[e,, . . . ,en].  The computation is straightforward but lengthy and will be 
omitted. 

This diagonal annroximation eivec: ns the r ~ ~ n  nrnd~~rt  fnrm~~la '!I 

Note that f u g  # - k g u  f on the cochain level. In fact, the failure of 
commutativity on the cochain level turns out to yield some useful "operations" 
on cohomology classes. We will dlscuss that later in this chapter (section 16). 

For simplicial chams on an ordered slmplicial complex and for p + q = n, 
the formula 

,w becomes d 

We now list the major properties of the cup product on H*(.). .& 

4.5. Theorem. Thefollowing are properties of the cup product on C O ~ O ~ O ~ O Y Y  

c1assc.s which hold whenever thqv make sense: 

( 1 )  u is natural; i.e., zf A: X -, Y then 2.*(a up) = ;l*(a)uA*(p); 
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(2) a u l = a = l u a ;  - 
(3) ~ ~ ( D u Y )  = ( a u P ) u y ;  
(4) a u p = ( - l)degfa)dcg(U)pu a; and 
(5 )  6*(a u i *( f l ))  = 6*(a)u  where a €  H*(A), B E  H*(X),  and i*: H*(X)  -+ H*(A) 

and 6*: HP(A)  -, HP+l(X ,  A)  are the homomorphisms in the exact sequence 
for ( X ,  A). 

PROOF. We already have (I), (2)  and (4). Item (3)  follows easily from the 
Alexander-Whitney diagonal approximation or from the associativity 
formula for the cross product. 

To prove (5),  let f e A P ( X )  be such that [ f  1.1 = a and let g€Aq(X)  represent 
p. Since g is a cocycle, 6g = 0. Now a u i*p is represented by f 1 A u g  1 A = 

( f  ug ) lA .  It follows that 6*(aui*p) is represented by 6( f u g )  = (6 f ) u g ,  but 
this also represents 6*(a)up. 

The graded group H*(X) together with the cup product on it is called the 
"cohomology ring" of X or the "cohomology algebra" of X .  

Note that Theorem 4.5(5) means that 6*: HP(A)  -+ HP+' (X ,  A) is an 
H*(X)-module homomorphism, as are the other maps in the cohomology 
sequence of (X, A) by naturality of the cup product. 

We will now do three explicit examples of computations with the cup 
product. The computations will be made much easier by using general results 
developed later on in the book, but the explicit arguments here should make 
the nature of the cup product more accessible. We will do some examples 
using simplicial homology, but we have not fully justified this usage, although 
that can be done. This is of no importance, the examples being just to make 
the ideas about cup products clearer. Computations are virtually never done 
this way in actual practice. 

4.6. Example. This is an example of a computation made in simplicial 
homology. For the cup product to make sense on the cochain level in 
simplicial homology one must fix an ordering of the vertices of each simplex 
and apply the Alexander-Whitney formula only to chains written in terms 
of simplices in that order. Otherwise, it contains inconsistencies. The easiest 
way to do this is to order all the vertices. For example, we take the projective 
plane triangulated as in Figure VI-1. 

We take the base ring A = Z,, so all cohomology will be in H*(P~;  Z,). 
Let f be the I-cochain marked with the 1's in the figure. That is, f takes the 
value 1 on the marked 1-simplices and the value 0 otherwise. Since every 
2-simplex has either 0 or 2 of the l's, and coefficients are mod 2, i t  
follows that 6 f = 0. (For example, we compute (6 f ) ( 2 , 3 , 4 )  = f (? (2 ,3 ,4 ) )  = 

. f ( ( 3 , 4 ) - ( 2 , 4 )  + ( 2 , 3 ) ) = 0 -  1 + 1 =0.) 
Considerjv f .Wecompute(fu f ) ( 2 , 4 , 6 ) =  f ( 2 , 4 ) . f ( 4 , 6 ) =  1 . 1  = I .  

Similarly, ( J v f ) ( 1 , 3 , 6 ) =  f ( 1 , 3 ) . f ( 3 , 6 ) =  1,0=0.  In fact, j u f  can 
be seen to vanish on all simplices except (2 ,4 ,6 ) .  Now j u j IS a cocycle, 
as are all 2-cochalns. However, it is not a coboundary since the coboundary 



Figure VI-1. Triangulation and cochains on the projective plane. 

of a 1-simplex takes value one on exactly two 2-simplices, and it follows that 
any coboundary takes value 1 on an even number of 2-simplices. Thus 
O # [ E ~ U ~ ] E H ~ ( P ~ ; Z , ) ~ Z , .  

If we let a = [[ f 4 then we get a2 # 0, so that 1, a, and a2 generate the 
cohomology of P2. Thus, as a ring, H*(PZ; Z,) x Z2[a]/(a3), a "truncated 
polynomial ring" over Z,. 

4.7. Example. Here we give an alternative derivation of the cohomology 
ring of PZ using singular, rather than simplicial, theory. Let f be a singular 
1-cocycle representing a generator of the nonzero class a = 1 f lJcH'(P2; Z,) w 
Z,. Note that the map H'(PZ; Z,) -+ Hom(Hl(PZ), Z,), of the Universal 
Coefficient Theorem, is an isomorphism since it is onto and both groups are 
Z,. Let I be a loop representing the generator of H1(P2), which exists by 
the Hurewicz Theorem (Theorem 3.4 of Chapter IV). Then f (A) = 1. From 
covering space theory, for example, we can take this loop to be the "semicircle" 
in Figure VI-2. 

Let const, and const, denote a constant I-simplex and 2-simplex, respec- 
tively, at the base point of I .  Then f(const,) = f (d const,) = (6 f)(const,) = 0. 

Figure VI-2. A singular 2-simplex in the projective plane. 

Consider the 2-simplex cr illustrated in Figure VI-2. (It maps ,edges (0,l) 
and (1,2) along A and (0,2) by a constant map, and takes the interior of the 
standard 2-simplex homeomorphically onto PZ - P1.) Then (3a = 22 - const,. 
We compute 

Also 

We claim that f u f is not a coboundary. Iff u f = 6g then 

1 = (f u f )(o) = (6g)(c) = g(dc) = g(2A - const,) 

= 2g(I) - g(constl) = g(constl) = g(a const,) 

= (Sg)(const,) = (f u f)(const,) = 0. 

This contradiction shows that uz = [ f u f ]  # 0, as we wished to prove, 

4.8. Example. This is one more calculation using simplicia1 homology. The 
space will be the torus T2, and the coefficients for cohomology will be the 
integers Z. Order the vertices of the torus as shown in Figure VI-3. 

Let f be the 1-cochain corresponding to the 1's along the horizontal in 
Figure VI-3, i.e., it is 1 on any edge mapping to the middle edge by the 
horizontal projection. Similarly, let g be the 1-cochain along the middle 
vertical. It is easily checked that these are both cocycles and so they represent 
classes a = [ f ] And p = [g] in lf1(T2). Computations as in Example 4.6 
show that f u g < 5 , 8 , 9 )  = 1 and it is zero on all other Zsimplices. It is easy 
to see that the cohbmology class of such a cocycle is a generator of H'(T,). 
Thus a u /? is a genef-ator. It is not hard to show directly that a and fl form a free 
basis of H1(T2), but we will give an indirect argument for this using only the 

Figure V1-3. Triangulation and cochains on the toru, 
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fact that a u j  is a generator. Note first that the signed commutative law 
the cup product implies that for a cohomology class y of odd degree, y2  = - y 
Since the cohomology of the torus is free abelian, t h ~ s  means that the square 
of any one-dimensional class is 0. (In particular, a and j3 cannot be equal 
since aj3 # 0.) Suppose that u and v form a free basis of H'(T'). Then we can 
write 

a =  au + bv, 

p = cu + dv, 

for integers a, b, c, d. We compute ap  = (au + bv)(cu + dv) = acuu + aduv 
bcvu + bdvo = (ad - bc)uv. But, for this to be a generator of H'(T') M Z, we 
must have that ad - bc = ) 1. But that implies that a and P also form 
basis. 

It is worthwhile pointing out that f = p:(c) and g = p:(c) where c is 
cocycle of S 1  ( 1  on the "middle" 1-simplex) and the pi are the projections 
the torus to the circle. If y = [c] then we deduce that a u p  = pT(y)upr(y) 
(1 x y ) u ( y  x 1 ) =  - y  x y .  

We will illustrate a similar example using singular theory in Example 4.1 

4.9. Theorem. Suppose that X = U u  V where U and Vare open, acyclic se 
Then sup = 0 for all cohomology classes c r ,b~H*(X)  of positive degree. 

PROOF. Consider the exact sequence HP(X,  U )  -+ HP(X) -+ HP(U) for the pa 
( X ,  U).  If a € H P ( X )  then it maps to 0 in HP(U) = 0, and so it comes from 
class t7€HP(X, U). Similarly, p€Hq(X)  maps to 0 in Hq(V) = 0, and so com 
from a class Pj H ~ ( x ,  V) .  Then 3 u f i  H " + ~ ( X ,  U LJ V )  = HP + q(X, X )  = 0, and 
maps to a u ,8 via the homomorphism HP+q(X,  U u V )  -+ HP+q(X).  

4.10. Corollary. The projective plane and the 2-torus cannot be written as t 
union of two open, acyclic sets. 

4.1 1. Corollary. The suspension of a space has trivial cup products in positi 
degrees. 

4.12. Example. Let a€H,(S") and b ~ N , ( s " )  be generators and let a€Hn(Sn) 
and ,!~EH'"(S") be dual generators, I e., n(a) = l and b(h) = 1 Then, by 
Proposltlon 3.1, 

(a x P)(a x b )  = ( - l)""a(u)P(b) = ( -  I)""'. 

I t  follows that a x b must be a generator of Hn+,(Sn x Sm) and cr. x must 
be a generator of Hn+"(Sn x Sm). Now let p,:Sn x Sm-iS" and p2:Sn x Sm" 
Sm be the projections and put u = pT(a) and v = p:(P). Then uo = u u o  = cr x 
generates Nn+"(Sn x Sm). 

Now consider the case n = m. Here we can take h = u and p = a. Th 
Kiinneth Theorem implies that a x 0 and 0 x a form a basis of H,,(Sn x Sn 

By Proposition 3.1 we have (a x l)(a x 0 ) = 1 ,  (a x 1)Co x a) = 0 (because 
the degrees don't match), (1 x d ( a  x 0 ) = 0, and (1 x a)( Q x a)  = 1. Then 
it follows from the Universal Coefficient Theorem (Theorem 7.2 of Chapter V )  
that u = a x 1 and v = 1 x a form a basis of H"(Sn x Sn). 

heorem. With the notation of Example 4.12 and with n = m, let f :  S" x S"-+ 
be a map of degree rfr 1, i.e., that induces an automorphism of 
Sn). (For example, any homeomorphism works.) Let the integers 

a, b, c, d be dejned by 

f *(u) = au + bv, 

f *(v) = cu + do. 

If n is even then the coeficient matrix must be 

and all these can be realized by obvious maps. 

PROOF. Since a2 = 0 we also have u2 = 0 and similarly v2 = 0. But then 

0 = f *(u2) = ( f  *(u))' = (au + b ~ ) ~  = a2u2 + 2abuv + b2v2 = 2abuv. 

Since uv # 0 we conclude that ab = 0. Similarly, 0 = f *(v2) implies that cd = 0. 
Also -t uv = f *(MU) = (au + bv)(cu + dv) = (ad + bc)uv, which implies that 
ad+bc= f 1. In case a=O, we get bc= + I ,  then d=O and b,c= 21. 

arly, if b = 0 then ad = & 1, then c = 0 and a, d = + 1. Maps realizing 
cases are reflections in the factors, reversal of the factors and 

compositions of these. 

We remark that if, in Theorem 4.13, n is 1,3, or 7 then any matrix of 
determinant one can be achieved but for other odd n there are further 
restrictions; see Corollary 15.14 and Proposition 15.1 5. 

.14. Theorem. For n even, Sn is not an H-space, i.e., there is no map 
S n  x Sn -+ S" such that p0 i ,  - 1 and 110 i2 2 . 1 ,  where i, and i2 are the inclusions 
( x )  = ( x ,  *) and i,(x) = (*, x). 

ROOF. Let w6Hn(S") be a generator and let u = p:(w) and v = pT(w) where 
the pi are the projections. Then 1 =(p,oi,)* = iTp: and it follows that 
zT(u) = w and that iT(v) = w. Similarly, iT(v) = 0 = i;(u). 

Put p*(w) = au + hv. Then w = 1 *w = (pi,)*(w) = i:p*(w) = i:(au + bv) = 
ow. Thus a = 1. Similarly, we can show b = 1 .  Therefore, p*(w) = u + v. 
However, 0 = p*(w2) = (U + u ) ~  = 2uv # 0, a contradiction finishing the proof. 

The cup product can be defined for more general coefficient groups. 
For example, the Alexander--Whitney diagonal approximation gives a cup 



- - 

product 

HP(X; GI)@ H4(X; G2)+ HP+q(X; G1 QGZ) 

by putting (f vg)(a)  = (- f (oj,) Q g(,La). In particular, since Z Q Z, x 
there is the cup product HP(X; Z) Q Hq(X; Z,) -+ HP+q(X; Z,) and it coinci 
with the product obtained by first reducing mod k and then taking the c 
product over the ring Z,. 

PROBLEMS 

1. Suppose that a space X can be covered by 11 acyclic open sets. Then show t 
the cup product of any n cohomology classes of positive degree is zero. 

2. In the proof of Theorem 4.14, determine the crucial place@) where the assumptio 
that n is even is used. 

3. Show that any map S4 -+ S2 x S2 must induce the zero homomorphism on H4(.). 

4 .  Find maps S1 x S1-+S'  x S1 of degree one realizing all possible matrices 
determinant one, as in Theorem 4.13. 

5. Prove Theorem 4.3. 

6. Verify that the Akxander-Whitney diagonal approximation A of Definition 4 
a chain map. 

7 .  Let Po: H1(X;ZP)-+ H1+' (X;Z)  be the Bockstan homomorphism associated 
the exact sequence O - + Z - + Z - t Z , - t O  where p is prime. For a ,  b€H*(X;  
show that p,&(ab) = Bo(a)b + (- l)d"g'"'a~o(h) where p, is reduction modp. ( 
If f: A,(X) -t Z represents a then 6 f = pg for some cocycle g: A,(X) -+ Z w 
then represents Bo(a).) 

8. Let /?: H'(X; Z,) -+ Hi+ ' ( X ;  Z,) be the Bockstein homomorphism associated 
the exact sequence O-+ Z,-+ Zp2  -+ Z ,  -+O where p is prime. For a, beH*(X;  
show that /?(ab) = /?(a)b + ( l ) d e g ( a ) a ~ ( b ) .  (Hint: Show that P = p,o/?, and app 
Problem 7.)  

5. The Cap Product 

Throughout most of this section we take homology and cohomology with 
coefficients in a commutative ring A with unity, but we will suppress this in 
the notation. As usual we regard a p-cochain ,f to be defined but zero on 
i-simplices when i # p. Define the "cap product" on the chain--cochain level 

--- 

where A is some diagonal approximation. If. we use the Alexander-Whitney 
diagonal approximation, then this is f Pn a,+, = (1 Q f ) (C  a jqQpLa), i.e., 

5.1. Proposition. Using the Alexander- Whitney diagonal approximation and 
with E: Ao(X) + A being the augmentation (taking all 0-simplices to I), the 
cap product has the following properties: 

(i) Enc=c ;  
(ii) f G AP(X), CE Ap(X) E( f n C) = f (c); 
(iii) (f u g ) n c  = f n(gnc); 
(iv) 1: X -+ Y, f €AP(Y), C E A ~ X )  * ;lA(AA( f )  n C) = f n ;lAc; and 
(v) f ~ A ~ ( X ) * a ( f  nc)=Sf A C + ( -  1)'f nac. 

PROOF. Parts (i) and (ii) are elementary. For part (iii) let f EAP(X), geAq(X), 
and oeA,(X). Let n = p + q + r. Then the left-hand side of (iii) is 

The right-hand side of (iii) is 

rhs = f n ( -  l)qiP+r)g~~a)o_lp+, 
= (- l )q(~+r)+~r  j-( p L( aJp+r))g(qLo)oJr- 

Since ,L(a I,+,) = (,+,La) Jp, this is the same as the left-hand side. 
Part (iv) is easy and is left to the reader. For part (v), consider the diagram 

Starting at the upper left with c,Qc, and going to the right, we get 
(- l )P"~n O f (c,), which is identified with (- I)," f (cp)cn. Going down with 
this gives ( -  1)"" f (c,)ac,. Again from the upper left, but going down gives 
(dc,)@c,. Taking this to the right gives (-  f(cp)dcn. Thus the diagram 
commutes up  to the sign (- Then we calculate 
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n : HP(X) Q H,(X, A) -+ H, - ,(X, A). 

The boundary formula (v) shows that this product induces the cap prodwt 
in homology: 

(*) 

This is easily seen to be independent of the diagonal approximation A used 
to define it. Properties (i)-(iv) translated to (co)homology classes give: 

5.2. Theorem. The cap product (*) satisfies the following properties: 

(1) 1 n y  = y; 
(2) deg(4 = deg(y) = €,(a ny) = U(Y) = <a, Y ); 
(3) (aufl)ny =an(finy); and 
(4) 1: X -+ Y, aeH*(Y), PeH,(X) =. L,(A*(cx)nP) = anA,(P). 

Let us now discuss the cap product for relative (co)homology classes. 
A c X and c is a chain in A then f n c  is a chain in A. Thus there are induced 
cap products 

n : AP(X) @I An(X, A) --+ A, - &X, A) 
and 

Iff EA~(X, A), i.e., f eAP(X) and is zero on A, then for a chain c in X, f 
is a chain in X which is unaffected by modification of c by a chain in 
Thus the cap product induces maps 

n : AP(X, A) O A,,(X, A) -+ A, - ,(X), 
and 

More generally, if A, Bare subspaces such that the inclusion A,(A) + A,(B) c, 
A,(A u B) induces an isomorphism in homology then there is a cap product 

n : Hp(X, A) O H,(X, A v B) -t H, -,(X, B). 

In particular, this holds when either A or 3 is empty, or when they are both 
open. 

The formulas of Theorem 5.2 remain valid for relative classes where they 
make sense. 

5.3. Corollary. The Kronecker product ( ., . ) of HP(X) Q Hp(X) -* A satisfies: 

(1) ( a u B , r >  = ( a , P n y ) ;  and 
(2) ( f *(a), Y ) = (a, f*(y) ) . 

PROOF. These result from Theoremc5.2(3) and (4) upon applying 6 ,  and using 
5.2(2). 

5.4. Theorem. For a e  H*(X), fi€H*(Y), a €  H,(X) and beH,(Y), we have 

(a x fl) n (a x b) = (- l)deg(@)deg(a)(a n a) x (fi n b). 

. Consider the following diagram, where z is the signed interchange 
two middle factors and f, g are cocycles representing a, fi: 

A, (X)@A, (Y)  
X * A,(X x Y).  

The triangle and square on the bottom commute. The top rectangle commutes 
up to chain homotopy by an acyclic model argument. The vertical map 
1 0  f @g on the bottom right is a chain map (up to the sign (- l)deg(f)+deg(g)) 
when f and g are cocycles, as the reader can verify. Thus the composition 
from the upper left going down and then right to A,(X x Y) is chain 
homotopic to the composition going right and then down to A,(X x Y). 
Starting with the chain a @ b at the upper left, the first of these compositions is 

a @ bt+ A(a) @ A(b)t+( - l)deg(a)deg'g) ( f  na)@(gnb)  
,+( - l)deg(a)deg(g) (f n a) x (9 n b). 

The other composition is 

a@bt+a x bt-+A(a x b)t-+(lO f Og)(lQ@)A(a x b)=(IO(f  xg))A(a x b) 

= ( f  x s ) n ( a x b )  

and so, on the level of homology with a and b cycles, these two compositions 
induce the same homology class. 

It is easy to generalize the cap product to arbitrary coeflicients 

via the definition 

giving the product 

n : HP(X; G) O H,(X) -+ H, - p(X; G) 

and similarly with the various relative cap products. Even more generally 
we can define 

~ : A P ( X ; G ~ ) Q A , ( X ) O G ~ - + A , - ~ ( X ) O G ~ O G ~  



yielding the product 

1. For S" x Sm compute all cap products on (co)homology classes. Do not exclude 
the case n = m. 

2. For aeHp(X), PcHq(Y),a~HP(X), and beHq(Y) show that 

<a x j3,a x b) =(- 1)P4(a,a)(j3,b). 

3. Let a e ~ ' ( P ' ;  Z2) x Z,, ~EH,(P';  Z,) x Z, and beH,(PZ;Z2) x Z2 be generators. 
Show that ana#O, a n b f 0 ,  and a 2 n b # 0 .  

4. If B: H1(X; Z,) -+ H' + '(X; Z,) and j3: H,(X; Z,) -+ H a -  ,(X; Z,) are the Bocksteins 
associated with the coefficient sequence 0 -+ Z, 4 Zp2 -+ Z, -+ 0 and if aeHi(X; Z$ 
and c e  Hn(X; Z,) then show that j3(a nc)  = B(a)nc + (- l)d'g(")a n j3(c). 

5. If Po: H1(X; Z,) -+ HI + ' ( X ;  Z) and Po: H,(X; Z$ -+ Hn- , (X;  Z) are the Bocksteins 
associated with the coefficient sequence 0 + Z -+ Z -+ Z, -+ 0 and if ae  Hi(X; Zp) and 
ceHn(X; Z) then show that Bo(a n c) = po(a)nc. 

6. Classical Outlook on Duality a 
In most of the remainder of this chapter we shall be concerned with the 
homological properties of manifolds. In this optibnal section we will describe 
the classical viewpoint on this matter. The modern approach, given in 
subsequent sections, is very powerful and provides easier proofs than does 
the classical approach, but this comes at a cost of forgoing much of the 
intuitive content of the latter. It is the intent of this section to provide that 
intuitive content, without going into details of either theorems or proofs. 
This section is not used elsewhere in this book and may be skipped with 
impunity. Details can be found in the classic textbook of Seifert and Threlfall 
C11. 

Let M" be a connected, compact, triangulated n-manifold. For an n-simplex 
a, of M, any (n - 1)-face z of a ,  is the face of exactly one other n-simplex 
a,. Then the boundary d(a, + a,) contains .r with coefficient 1 2  or 0. If a, 
and a, are oriented coherently then this coefficient is zero. (This can be taken 
as a definition.) If all the n-simplices of M can be oriented coherently then 
the sum (. of all those simplices is an n-cycle and the n-cycles are precisely 
the mult~ples of c. If  a coherent orientation is not possible then there can be 
no nonzero n-cycles, and M is called "nonorientable." Thus H,(M; Z) z Z if 
M 1s orientable and is zero otherwise. With Z, coefficients, c IS always an 
n-cycle and so H,(M; Z,) z 2,. In case M has a boundary then c is an n-cycle 

Figure VI-4. Dual cell structure on a manifold. 

modulo dM; i.e., H,(M, dM) z Z if M is orientable. The class I[c]EH~(M, dM) 
is called the "fundamental homology class" of M, or the "orientation class" 
of M. 

For simplicity in the rest of the discussion we will take Z, coefficients, 
and so questions of orientability and sign are mute. 

Consider the barycentric subdivision of M. The closed stars (in the 
subdivision) of the vertices of the original triangulation form a collection of 
n-cells. See Figure VI-4 where the irrelevant parts of the barycentric 
subdivision are suppressed and the bouhdaries of the dual cells are drawn 

Two of these n-cells (stars) are hatched in the figure and they correspond 
the two vertices u and v of M. The intersection of these two cells is an 
- 1)-cell (a l-cell in the figure, where it is made up of two edges of the 

arycentric subdivision). Consider the correspondence of vertices u, v of M 
h the n-cells D(u), D(v) of this "dual cell structure," the hatched Zcells in 
figure. To the l-simplex (u, v) of M, we make correspond the (n - 1)-cell 

u)n D(v). m t h i s  (11 - 1)-cell D((u, 0)). Similarly, for a third vertex, w in ct- 
figure, we make the 2-simplex ( u, u, w ) correspond to D( ( u, v ,  w )) = 

)nD(v)nD(w), which is an (n - 2)-cell (which is a single point, a vertex, 
of the dual cell structure in the figure). 

Now consider, for example, the boundary a(u, v )  = (0 )  - (u ) of ( u, v )  
as a l-chain. How does this relate to D((u,v))? The answer is that, if we 
consider D((u,v)) not as a chain but as the cochain taking value 1 on the 
physical cell D((u, v ) ) ,  then its coboundary GD((u,v)) takes value 1 on the 
n-cells D(u) and D(v). This can be written 6D((u, u ) )  = D(v) - D(u), which we 
cannot resist rewriting as D(d(u, v)). This is a general phenomenon and so 
it call be seen that we can assign, to each (simplicial) p-chain c of M, an 
(n - p)-cochain D(c) (of the dual cell structure) such that 6D(c) = D(dc), and 
vice versa. But then D clearly induces an isomorphism 

H,(M) % Hn-P(M) 

called "Poincare duality." 
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Figure VI-5. Dual cell structure on TZ. 

(Actually, cohomology was unknown in the classical period, and so t 
duality was expressed via homology alone using "intersection numbe 
Thus, we are injecting a small bit of modernity into this discussion.) 

One can elaborate on this. For example, for orientable manifolds Mn wit 
boundary, one gets isomorphisms 

H,(M, aM) x Hn-P(M) 
and 

H,(M).x HH"-P(M, aM). 

Again in the absolute case, note that since a single vertex v gener 
H,(M), the dual generator D(v) of Hn(M) is a single n-cell; i.e., the coc 
taking value 1 on D(v) and value 0 elsewhere. 

Figure VI-5 illustrates a triangulation of the torus T2 and its dual 
subdivision. A 1-cycle, going from the bottom left to the top right, is 
in heavy ruling with arrows, and its dual 1-cocycle is indicated in solid 
to distinguish it from the other 1-cells of the dual cell structure. 

There is not much difficulty in providing the details of this disc 
What is hard is to show that the results are independent of the triangu 
and to derive some of the more sophisticated applications of duality. Fo 
that, the modern approach is far preferable. Triangulations will not ente 
the picture in any way. Indeed, we will prove duality for topological manifold 
which may not even be triangulable. 

7. The Orientation Bundle 

In this section we begin studying the special properties that (co)homolog 
has for manifolds. The study starts by examining the nth homology group 
of an n-manifold and culminates, in Section 8, with the Poincare- Aiexander- 
Lefschetz Duality Theorem. Our treatment owes much to that of Dold [I]. 
The entire remainder of this chapter is devoted to applications of duality. 
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In thisaection Mn will denote a topological n-manifold We make no 
assumptions of smoothness, connectedness, paracompactness, or anything 
else. (A manifold is, however, Hausdorff by definition.) 

We start by defining and studying a notion of orientation for such spaces. 
For smooth manifolds we already have a notion of orientation, and the two 
will be related at the end of this section. 

The notion of orientation is based on the fact that Hn(Mn, Mn - (x)) sz Z 
for any point xeMn, as we see below. 

Let A c Mn be a closed set and let xeA. Let G be any coefficient group 
and denote by 

jx,~: Hn(M, M - A; G) -+ Hn(M, M - {x}; G), 

the map induced from the inclusion. \ 

7.1. Proposition. If A is a compact, convex subset of Rn c M then j,,, is an 
isomorphism and both groups are isomorphic to  G. 

PROOF. The set A is contained in the interior of some closed n-disk 
D c Rn c M. Thus there is the commutative diagram (coeffcients in G) 

HAM, M - A) + HAM, M - (x}) 

I i - T - (excision) 

Hn(Rn, Rn - A) - Hn(Rn, Rn - (x} ) 

i - T = (homotopy) 

Hn(D, aD) - Hn(D, aD). 

The group on the bottom is Z Q  G sz G by Theorem 6.6 of Chapter IV. 

7.2. Definition. Let Ox Q G = Hn(M, M - (x}; G) % G. For G = Z we just use 
Ox. Also let @QG=U{O,@G(XEM} (disjoint) and let p: @ @ G - + M  be 
the functioh taking Ox Q G to x. Give O Q G the following topology: Let 
U c M be open and LYE Hn(M, M - 0; G). Then for xt. U, j,,fi(cr)~O, 63 G. 
Let U ,  = (j,,o(a)lx~U} c p-'(U) c OQG. Take the U ,  as a basis for the 
topology on O Q G. 

7.3. Proposition. The sets U, defined in Definition 7.2 are the basis of a 
topology. With this topology, p: O Q G -+ M, restricted to any component, is 
a covering map and fiberwise addition is continuous. 

PROOF. A point 2e0,QG = Hn(M, M - (x}; G) satisfies 2 = j,,,(a) for some 
A = U which is convex in a euclidean neighborhood, by Proposition 7.1. 
Thus any point is in one of the prospective basis sets. 

If 2~ U,n Vp then 2 = j,,fi(a) = j,,F(P). Take XG W c U n V, W a convex 
open set in a euclidean neighborhood of x. Then j,,# is an isomorphism by 
Proposition 7.1. Let yeH,(M, M - W; G) be such that j,,@(y) = 2. Then the 
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homomorphism H,(M, M - 0; G) +H,(M, M - W; G) must take cc to y since 
y is the unique element going to 2. Similarly, f i  must go to y. This shows 
that X"E Wy c Uan  VD and hence that we do have a basis for a topoiogy. 

To show it is a covering when restricted to components, note that p 
open and continuous by definition. Consider an open set U with 0 conve 
and compact in some euclidean subset of M. Consider the commutativ 
diagram 

U x H,(M, M - u; G) p-'(U) 

/' 
U 

where q(x, a) = j,,,(a) and H,(M, M - 0; G) has the discrete topology. The 
cp is open since, for I/ c U open, cp takes V x {a} onto Va. If cp(x, a) = cp(y, 
then x = y since p(cp(x, a)) = x and p(q(y, a))  = y. Also j,.,(a) = jx,s(P) whi 
implies that a = /?because jx,, is an isomorphism. Hence cp is one-one into. 

Next, cp is onto since, for any YE U ,  the mapj , ,~:  H,(M, M - U ;  G) -* 0, @ 
is onto. Therefore, for V c U open, cp-'(Va) = V x (a). It follows that cp 
continuous. Consequently, cp is a homeomorphism. 

On a fiber (i.e., inverse image of a point in U) cp is just j,,, which is a 
isomorphism. It follows that the fiberwise group operations correspond t 
the operations on the second factor of U x H,(M, M - 0; G), and so th 
are continuous. 

7.4. Definition. For A c M closed, the group of sections of O O G is 

T(A, O O G )  = (s:A+O@G, continuouslpos= 1). 

This is an abelian group under the operation (s + s')(x) = s(x) + sl(x). A1 
let Tc(A, O @ G) be the subgroup consisting of sections with compact support, 
i.e., those sections with value 0 outside some compact set. 

75.  Definition. The topological n-manifold M is said to be orientable along 
A,  where A c M is closed, if there exists a section 9,eT(A,O) which is a 
generator of each 0, for XEA. The manifold M is said to be orientable if it 
1s orlentable along M. An orientation along A is such a section 9,. 

7.6. Proposition. If M u an n-maniiold, then the following conditions are 
equivalent: 

( 1 )  M is orientable. 
( 2 )  M is orientable along all compact subsets. 
( 3 )  Thc units in each .fiber Ox of'@ jiwm a trivial double cover. 
(4 )  O FZ M x Z via a homeomorphism commuting wilh the projection to the base. 

I>u(wr. For convenience we use the word "cover" in Proposition 7.6 to mean 
everyth~ng In the definlt~on of a coverlng space except for the connectivity 

7. 1 nt: VI I G I I ~ ~ L ~ W U  L I ) U I S L L ~ G  

Clearly (1)=>(2). For (2)*(3) it is enough to-treat the case In which M 
is connected. If the subspace of O formed by the units is not connected 
then it is clear that the units form two components each mapping 
homeomorphically to M. In the only other case, they form a connected 
double cover. This implies that there is a path R in O from one unit in a 
fiber to the other unit in that fiber. The image of R in M is compact and 
there is no section over it. 

The implications (3) q(4)  and (4) +(I) are obvious. 13 

For A c M closed, define the homomorphism 

We must, of course, show that the section J,(a) has compact support. To 
prove this, let CEA,(M) be a representative of a. Then c is a chain in some 
compact subset B of M. We claim that JA(a)(x) = 0 for x$B. To see this, 
note that c, as a chain in An(M, M - A), goes to zero in A,(M, M - (x}) since 
B c M - {x}, Thus a maps to zero in H,(M, M - {x}) as claimed. 

We must also show that J,(a) is continuous. For this, again represent a 
by a chain c. Then dc is a chain in M - A (since aeH,(M, M - A)). Thus ac 
is a chain in some compact subset of M - A. Hence, for X E A  there is an 
open neighborhood U of x such that dc is a chain in M - 0. Then c represents 
a class PEH,(M, M - 0). But then the section cp(U x (P)) coincides with 
J,(a) over U n A, where cp is as in the proof of Proposition 7.3, establishing 
continuity. 

7.7. Proposition. 

(1) For A 3 B both closed, the following diagram commutes: 

H,(M, M - A; G) ---+ H,(M, M - B; G) 

1 i j8  

Tc(A, 0 0 G) -----+ I-,(B, 0 0 G). 

(2) For A, B c M both closed, the sequence 

is exact, where h is the sum of restrictions and k i s  the diflerence of  
restrictions. 

(3) I f  A ,  3 A ,  3 .-.are all compact and A = n A , ,   hen [he rertrrctlon homo- 
morphisms I-(A,, O @ G) -+ T(A, O @ G) induce un i\omorphltnz 

requirements. (Note that I-, = T in ( 3 )  since u11 the A ,  are compacl.) 
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PROOF. Parts (1) and (2) are elementary. For part (3) suppose that s, s' are where the top isomorphism comes from thefact that any chain is contained 
sections over some A, which restrict to the same section over A. Since sections in a compact subset. (The isomorphism already holds on the chain level.) 
that coincide at a point do  so on an open set about the point, there is a (For p # n, disregard the bottom of the diagram.) 
open set U 3 A such that s = s' on U n A,. But, by compactness, there is 
j > i such that Aj c U. Then s and s' coincide on Aj, which means they giv 
the same element in the direct limit. Thus the map in (3) is one-one. 

To show that the map in (3) is onto, we must show that a sect 
over A extends to a neighborhood of A. For XEA, there is a se s item follows from Hp(M, M - U A,) z H,(U N,, N, - U A,) x 

Hp(Ni, N ,  - A,) z @H,(M, M - A,) and the similar thing for the T,. Let 
call such unions with disjoint neighborhoods "separated unions." 

number of conditions) and contains A. 

7.8. Theorem. Let Mn be a topological n-manifold and let A c Mn be close is follows from the commutative diagram (disregard the bottom if p # n) 
Then: 

I@, H,(W, W-(An W)) 2 Hp(M,M-A) (a) Hi(M, M - A; G) = 0 for i > n; and 
(b) J,: HAM, M - A; G )  -+ T,(A, O 8 G) is an isomorphism. 

- 
l@,r,(An W,O@G) - T,(A,O@G). 

P, satisfies the following five properties (i) through (v): The theorem now follows from the next lemma. This lemma will be used 
o prove several other important results in subsequent sections. 

7.9. Lemma (The Bootstrap Lemma). Let PM(A) be a statement about compact 
This is immediate from Proposition 7.1 and its proof. sets A in a given n-mani$old Mn. If (i), (ii), and (iii) hold, then PM(;4) is true for 

all compact A in Mn. 
(ii) 

This follows from the 5-lemma applied to the commutative diagram 
and ifallfive statements (i)-(v) hold for all Mn, then PM(A) is true for all closed 
A c M and all Mn. 

PROOF. In the first case, we get PM(A) for all finite unions of compact convex 
sets A,  in a given euclidean open set U by an inductive argument using (i), 

in which the first row is a Mayer-Vietoris sequence from Theorem 18.2 of (ii) and the identity An(B, u ... u B,) = (An B,)u ... u ( A n  B,). Then (iii) 
Chapter IV. implies it for all compact sets inside U .  Repeating this argument without 

convexity, one gets PM(A) for all finite unions of "small" compact sets, "small" 
(iii) meaning "contained in some euclidean neighborhood." Finally, (iii) implies 

it for all compact sets, since any compact set is the intersection of a sequence 
Putting A = A, ,  this follows from the commutative diagram of such finite unions. (Here we are using that a compact set In a manifold 

is separable metrizable.) 
1% H,(M, M - A,) - H,(M, M - A) For the second case note that the one point compact~fication M +  of 

z 
can be glven a separable metric with distances bounded by 1. Let 

f(x) = l/dist(x, oo) for XEM. If C c M is closed, let 

l$ Tc(A,, @ @ G)  - rc(A, @ @ G) A , = c ~  f - ' [ 2 i - 2 , 2 i -  11, = 

A, 2 A, 1.. . , all compact, PM(Ai) for all i P,(n Ai). 

Pw(A n W) for all open, relatively compact W c M + P,(A). 



and - 
B, = C n  f -'[2i- 1,2i]. 

Set A = u A, and B = u B,, and note that these are separated unions. Then 
A, and B, are compact, so PM(Ai) and P,(B,) are true. From (iv) it follows 
that PM(A) and PM(B) are true. But A n  B is also the separated union of the 
compact sets A in  B,. Therefore PM(AnB) is true. Now (ii) implies that 
PM(C) = PM(A u B) is true. 

For the last statement, note that an open, relatively compact set W c M 
is separable metrizable and so Pw(An W) is true for all closed A and all 
such W by the second case of the lemma. Condition (v) then implies PM(A) 
for all closed A c M. 0 

Note that, for a given abelian group G and a given element geG, the 
following maps are natural in A (closed in a given M): 

where the middle h a p  is induced by the homomorphism Z-, G taking 1 to 
g. It follows that they induce a map O -+ OO G commuting with the projection 
to M. On the fibers this is Z-+ G taking 1 to g. (Note that we only know 
the additive structure on the fibers, so we cannot distinguish 1 from - 1 in 
a fiber, or g from - g.) The (possibly disconnected) cover of a closed connected 
set A in M provided by the units + 1 in the fibers of O maps to a similar 
set in O O G. Clearly, this map is a homeomorphism unless g = - g, in which 
case the two sheets of the first covering go to a single sheet of the second, 
which is a section of O O G over A. This proves the following: 

7.10. Proposition. If A c Mn is closed and connected then 

G i f  M is orientable along A, 
T(A, 06-3 G) z 

,G i f M  is not orientable along A, 

where ,G = (geG12g = 0). (Note that ,G z G*Z,.) 

7.11. Corollary. If A is closed and connected in Mn then 

i G ifA is compact and M is orientable along A,  
Hn(M, M - A; G) z ,G ifA is compact and M is not orientable along A, 

0 ifA rs  not compact. 0 

7.12. Corollary. I f  M" is connected lhen Hn(M; G) = 0 for i > n crnd 

i G ifM is conzpact and orientable, 

M ) z ,G if M is compact and not orientablr, 
0 ifM is not compact. 

7.13. Corollary. l f ' M n  i s  connected then the torsion subgroup 7'N,,. , (M) is 
2, i/'M is compact ond not orienruble and is 0 f M  is noncompuct or oric~nicihle. 

, ".L V.A"..."..".. I,",.",., 

PROOF. By Example 7.6 of Chapter V we have the exact sequence 

where TA denotes the torsion subgroup of A. If M is noncompact then this 
sequence looks like O-+O-+O -+?-+O, which takes care of that case. If M 
is compact and orientable the sequence looks like 0 -+ Q/Z -+ Q/Z -+ ? -+ 0 
and it is easy to show that any monomorphism Q/Z-+Q/Z is onto, so the 
"?" is zero. If M is compact but not orientable then the sequence is 

--+ 0 4 ,(Q/Z) 4 ?  -+ 0. Clearly ,(Q/Z) z Z,. 

If M is a compact manifold then it can be shown that H,(M), and hence 
H*(M), is finitely generated. (See Appendix E.) For smooth manifolds, the 
slmple discussion in Corollary E.5 suffices. The following result uses this. 

7.14. Corollary. If Mn is a compact connected n-manifold then 

G ifM is orientable, 
Hn(M; G) z 

G/2G ifM is not orientable. 

PROOF. From the Universal Coefficient Theorem we have that 

Hn(M; G) z Hom(Hn(M), G)@ Ext(Hn- ,(M), G). 

If M is orientable then Hom(Hn(M), G) z Hom(Z, G) z G, and Hn- ,(M) 
is free abelian by Corollary 7.13, and hence Ext(Hn-,(M),G)=O by 
Proposition 6.6 of Chapter V. If M is nonorientable then Hn(M) = 0 and 
Hn- ,(M) is the direct sum of a free abelian group and Z,, by Corollary 7.13. 
Thus Hom(Hn(M), G) = 0 and Ext(Hn- ,(M), G) % Ext(Z,, G) z G/2G. 0 

7.15. Theorem. If M is a smooth manijbld then it is orientable in the sense in 
which that was defined in terms of charts if and only it is orientable in the 
sense o f  this section. 

PROOF. The first sense of orientability is that one can choose an atlas so 
that all the transition functions have positive Jacobian determinants. Suppose 
that is the case. At a point X E M  take the inverse 4 of such a chart, i.e., a 
d~ffeomorphism 4:  R n 4  U. We can assume that 4(O) = x. Let 9 e  
H,(Rn, Rn - (Of) z Z be a generator, chosen once and for all. Then 4 , ( 9 ) ~  
H,(U, U - {x}) = Ox is a generator. Two such charts can be compared to a 
third one whose domain is contained in those of both charts. Thus suppose 
$: R n - +  V c U is another ruch chart with $(O) = x. Then 4-'$ is a dif- 
feomorphism of R" into itself, fixing the origin, and with positive Jacobian. 
We have seen (essentially In Lemma 16.3 of Chapter 11) that such a map is 
isotopic to the identity. ( I t  is isotoplc to a linear map which is isotopic to 
the identity its determlnaiit is pos~tive.) Such an isotopy gives a homotopy, 
to the identity, of the palr (R", R" - {O))  mapping to itself. Thus the induced 
map on homology is the identity. Therefore the element s, = 4,(9)eOX is 
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independent of the choice of the chart 4. The section SET(@) is easily seen 
to be continuous by comparison to the map 4,: H,,(Rn, R" - Dn) -+ Hn(U, 
U - D) where D c b(D") is a small disk neighborhood of x. 

On the other hand, if one has an orientation in the present sense, i.e., a 
section s of O, then at any point if one looks at any chart, either the element 
4,(9)~@, given as above by the chart coincides with s, or not. If it does 
not, then the chart which is just the composition with a reflection through 
a hyperplane does give a conforming element. Taking just those charts that 
do give the orientation section provides an atlas. By the previous remarks, 
the Jacobian of any change of variables within that atlas must have positive 
determinant and so this is an orientation of the old sort. 0 

PROBLEMS 

1. If M m  and N" are manifolds then show that M x N is orientable = both M and 
N are orientable. 

2. If M is a connected manifold such that s , ( M )  has no subgroups of index 2 then 
show that M is orientable. 

3. If T:R"-t R" is a map with T2 = 1 then show that T has a fixed point. (Hint: Use 
the method of Section 20 of Chapter IV.) 

4. + Repeat Problem 3 replacing T2 = 1 by TP = 1 for some prlme p. 

5. For a connected nonorientable manifold M" show that there exists a unique 
orientable double covering space of Mn. 

8. Duality Theorems 

In this section we prove one of the most important results in this book. It 
is a "duality theorem," generally going under the name "Poincarl Duality," 
which relates a homology group of a compact oriented manifold with the 
cohomology group in the complementary dimension. The main Duality 
Theorem (Theorem 8.3) contains generalizations of this due to Lefschetz 
and Alexander. An easy corollary will be a far-reaching generalization 
(Corollary 8.8) of the Jordan Curve Theorem. This section w111 be central to 
the remainder of this chapter. 

Let Mn be an orientable n-manifold and let S ,ET(M,  O )  be an orientation. 
For K c M compact, 9 ,  restricts to S , E ~ ( K , O )  = r , ( K , O )  z Hn(M, M - K )  
and we will regard 9 ,  as lying in Hn(M, M - K). W e  let 9 = 19,) be the 
collection of all these, and will call 9 an orientation. 

For closed sets L c K c M define 

H ~ ~ ( K ,  L; G) = l$ ( H I U ,  V; G)I(U, V )  1 ( K ,  L), U ,  V open). 

This group appears to depend on the embedding of K in ,iLI and on the 
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particular manifold,M, but actually it doesn't. It is naturally isomorphic to 
what is called the ''tech cohomology group." If K and L are reasonably nice 
spaces such as euclidean neighborhood retracts (e.g., CW-complexes or 
topological manifolds) then it is known (see Corollary E.6) that this is 
naturally isomorphic to singular cohomology. In general, however, it is not. 
(See DSld [I] for details on these matters, which we shall not need.) 

Suppose that (K, L) c (U, V) as above. Then there is a cap product 

en by f n ( b + c ) = f n b + f n c =  f n c .  Note that in homology 
(U - L, U - K) x H,-,(M - L, M - K). Also H,((A,(V) + A,(U - L))/ 

A,(U - K)) x H,(U, U - K) x H,(M, M - K) by excision, and since { V, 
U - L) is an open cover of U. Thus, in (co)homology we get a cap product 

HP(U, V; G) @ H,(M, M - K) + H,- ,(M - L, M - K; G).  

Also, this is natural in (K, L) (fulfilling the restrictions it must). In particular, 
one can cap with a class in H,(M, M - A) for some very large compact set 

the (co)chain level this is given by the following: Let f €AP(U,  V; G) 
H,(M, M - A), and let y be represented by the chain b + c + deA,(V) + 
- L) + A,(M - K). Then 

I[fjny=[f n ( b + c + d ) ] = [ f n c ] ~ H , - , ( M - L , M - K ; G ) ,  

since f n b = O  while f n d i s a c h a i n i n  M-K.  
Thus by capping with 9, for A "very large," we get the homomorphism 

ble with changing A, and inclusion maps for (U, V). Thus in the direct 
get a natural map 

Note that, although we assumed M to be orientable, it is really only 
cessary for it to be orientable along K .  Also, if we work over Z, as the 

ase ring, then there need be no orientability requirement. 
In order to prove some things about this map, we give its (co)chain 

description. Let X E ~ P ( K ,  L; G) be represented by the p-cocycle f of (U, V), 
where (U, V) is some open neighborhood of (K, L). Thus f = 0 on V and 

= 0 on U .  Extend f to a cochain on all of M. Represent the orientation 
y a chain a = b + c + d where b is a chain in V; c, in U - L; d, in M - K. 
en f n ( b + c + d ) = f n b +  f n c +  f n d . B u t f n b = O , a n d  fnd i sacha in  

in M - K so it doesn't matter. Thus a n 9  is represented by f nc .  Note the 
special case for which L = 9. In that case, we can take V = $3 as well, and 
the chain b does not even enter into consideration. 

%% 

8.1. Lemma. The following diagram (arbitrary coeficients) has exact rows und 
t + 



cornmutes: regarded slgce it will produce chams in M - ( K  u L) having n_o effect on the 
final result of the diagram chase. Then 6 * ( a ) n 9  is represented by -- f?"(K, L) --- ~ ? P ( K )  --------+ fip(l,) - I?"+'(K, L) - h n ( b  + c + d )  = h n ( c  + (b  + d ) )  = S f  n c .  

1 1 1 1 
4H. A M - L , M - K ) + H . _ , ( M , M - K ) + H . - , ( M , M - L ) + H  ,_,_, ( M - L , M - K ) +  On the other hand, the bottom sequence is induced by the exact chain 

where ull vertical maps are the cap products with the orientation class 9. 
A ( M )  -a-*--+ A*(M) 

PROOF. The exactness of the top row follows from that of the direct li A,(M - ( K  u L ) )  A,(M - K )  A,(M - L )  A,(M - K )  + A,(M - L )  
functor; see Theorem D.4. 

The only thing really in question is the last square (the connectin 
homon~orphisms). Choose f eAP(M; G)  such that f l V ~ A P ( V ;  G)  repres hus a n  9 € H n T P ( M ,  M - ( K  n L); Gf is represented by f n a modulo 
~ E H ~ ( V ;  G)  mapping to the class in k p ( ~ ;  G)  we wish to chase. Thus 6 f = *(M - K;  G) + A,(M - L; G). This pulls back to ( f  n a, 0 )  whose boundary 
on V .  a )  f n a a , O ) = ( 6 f n c + 6 f n d f  f n d a , O )  which 

Represent 9 by a = b + c + d€An(V)  + An(U - L )  + An(M - K). This is c, 0 )  since G f n d f f n aaeA,(M - K). Therefore 
decomposition of a appropriate to the ( K , L )  pair. But note t ( K  u L)),  represents d,(a n a), proving the commu- 
a = 0 + b + (c  + d)€A,(@) + An(V - @) + An(M - L) is the decomposi 
appropriate to the pair (L ,  (21). This shows that the same chain a can be u 
in the definition of both cap products under consideration. Note that, si nder-Lefschetz Duality). Let Mn be an 
9 is a class of ( M ,  M - K), da must be a chain in M - K.  , and let K 3 L be compact subsets of M.  Then the 

Now we do the chase starting with f .  Going right gives 6 f .  Then g 
down gives 6 f n u .  On the other hand, taking f down first, gives f n u  an 
then going right gives a( f n a) = (b  f ) n a  ) f n da. But f n da is a cha ~ ~ : H ~ ( K , L ; G ) - ~ H , - ~ ( M - L , M - K ; G )  
M - K and so it vanishes on passage to homology. th the orientation class, is an isomorphism. 

8.2. Lemma. Let K and L be compact subsets of the n-manifold M with . By the 5-lemma and Lemma 8.1 it is enough to prove the theorem 
orientation 9. Then the diagram (arbitrary coefficients) case L =  0. That is, it suffices to show that 

- H ~ ~ K U I . )  - . H ? K ) @ H ~ L )  6* 
+ rjp(K n L) H P +  ' ( K  u I,) - n9: H P ( K ) - + H , - ~ ( M , M  - K )  

1 1 1 ,  1 is an isomorphism. (The coefficient group is immaterial and will be 
- H .  . ( M , M - ( K u I - 1 ) - H .  , ( M , M - K ) @ H . . J M , M - L ) - H ,  , ( M , M - ( K ~ L ) ) - L H , . ,  , ( M , M - ( K u L ) ) - +  

where the vertzcal maps are the cap products with 9 ,  commutes and has exact (*) IS an isomorphism when K is a point, since for 
rows. p # 0 both groups are zero, and for p = 0, and for U a neighborhood of x,  

(*) is induced by the map H'(u) -+ Hn(M, M - {x}) taking 1 H 1 n = 9{,). 
PROOF. Only the square Involving the connecting homomorphisms is at issue. For compact sets K c  M ,  let P,(K) be the statement that, "The 

The top sequence IS induced by the exact cochain sequences homomorphism (*) is an ~somorphism for K for all p." Then it suffices to 
show that P satisfies the conditions (i), (ii), and (iii) of the Bootstrap Lemma 

0-t Hom(A*(U) + A,(V), G)  -+ Hom(A,(U), G ) O  Hom(A,(V), G)  

-+ Hom(A,(U n V) ,  G )  -+ 0 For property (i), let K be a convex compact subset of a eucl~dean open 
set and let X E K .  Then (I) follows from the diagram for open ne~ghborhoods U 2 K and V 3 L. Let c t ~  H P ( K  n L; G) be represented 

by / e A p ( M ;  G )  where 6 f  = 0 on U n V for some such U ,  V. Then H P ( K )  5 H,-,,(M, M - K )  
~ * ( ~ ) E A ~ + ' ( K  v L , G )  is obtained as follows Pull f back to ( ~ , O ) E  
Hom(A,(U), (;) 63 Hom(A*(V), G)  and then take ~ t s  coboundary ( b  f ,  0 ) .  
Then the element h€Hom(A,(U)  + A,(V), G )  defined by h(u + v) = (b  f )(u) 
represents b*(a). W e  can extend h arbitrarily to heHorn(A,(M), G). 

I 
H P ( { X ~ )  H,-,(M, M - { X I ) .  - 

Now let 9 be represented by the chain u = h + ( + d + e in A,(U n V )  + 
A,(U - L) + A*(V - K )  + A*(M - ( K  uL)). The last term e can be dls- Property (il) follows from Lemma 8.2 and the 5-lemma 
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For property (iii), Let K ,  z, K ,  3 ... be a decreasing sequence of compact 
sets, ail of which satisfy P,(.), and let K = fl K,. For each i let Uirj be a 
fundamental system ofopen neighborhoods of K,. Because Ki has a metrizable 
neighborhood, we can use a sequence here, say the l/j-neighborhood, but 
this is only for notational convenience and is not important.) Again, 
notational convenience, we can redefine these sets so that for any 
UlVj 3 U,,j 2 ---, either by using a metric as above or merely noting tha 
can inductively intersect the original sets with the previous items in this 
Then the Ui,j form a fundamental set of neighborhoods of K, so 

I $ ~  HP(K~) = 12, t$j H"(U~,~) 51$~,~ HP(U,.~) = HP(K) 

by Theorem D.5. The commutative diagram 

I$, RP(K~) - Hn - ,(M, M - K,) 

1 - - 
1% 

@(K) Hn-,(M, M - K) 

then proves property (iii). 

Taking K = M, compact, in the diigram of Lemma 8.1, gives the followin 

8.4. Corollary (Poincare-Lefschetz Duality). If Mn is a compact orien 
n-manifold and L c Mn is closed, then we have the following diagram with 
rows and all verticals (cap products with the orientation class) being is 
phisms: 

. . . ---, RP(M, L) ---+ P(M) -----+ RP(L) -------) RP+ '(M, L) - - - 
1% 1= 1- 1% 

...-+ Hn-p(M-L) -t Hn-,(M) -+ H,-p(M,M-L) -+ H,-,-,(M-L) +.* 

(The isomorphism involving M alone is called "Poincart Duality.") This hol 
with arbitrary coefjicients, and Mn need not be orientable for Z2 as base ring. 

8.5. Corollary. If L is a proper compact subset of an orientable connected 
n-mangold Mn then R"(L; G) = 0 for any coefficient group G. 

PROOF. I t  is isomorphic to H,(M, M - L; G) = 0, since M - L # %. 

8.6. Corollary (Alexander Duality). If A is a compact subset of Rn then 

@,(R" -A; G) % P- , - ' (A;  G). 

PROOF. f?"-,- '(A; G) s Hq+ '(Rn, Rn - A; G) % H,(R" - A ;  G) by the reduced 
homology sequence of (Rn, R" - A). 

8. Duality Theorems 353 

8.7, Corollary (Alexander Duality). If A # @ is a closed subspace of Sn then 

@,(in - A; G) s f i n - ,  '(A; G). 

PROOF. We have I?"-,- '(A; G) w H, + , (Sn, S" - A; G). Also H, + , (Sn, S" - A; G )  
w g,(S" - A; G) except when q + 1 =&In that case we have the commutative 
diagram with exact rows 

which makes the result clear. (The 0's on the bottom row are because the 
inclusion map Sn - A QS" factors through a contractible space S" - point.) 

n 

\ 
8.8. Corollary (Generalized Jordan Curve Theorem). Let Mn be a connected, 
orientable, compact n-manifold with H,(Mn; A) = 0 over some ring A with unity. 
Let A be a proper closed subset of M". Then $-'(A; A) is a free A-module 
whose rank is one less than the number of components of Mn - A. 

PROOF. The number of components of M - A is rank(H,(M -A)) = 
1 + rank(l?,(~ - A)). Since H,(M) = 0 and H,(M) = 0, the exact sequence 
of (M, M - A) gives I?,(M -A) w H,(M, M - A) and the latter is isomorphic 
to *-'(A) by duality. 

8.9. Corollary. Let Mn be a connected, orientable, and compact n-manifold 
with H ,(Mn; Z) = 0. Then no nonorientable compact (n  - 1)-manqold Nn- ' can 
be embedded in Mn. 

PROOF. This is because H n -  ' (N;  Z) w Z, is not free. 

For example, this last corollary implies that real projective 2n-space cannot 
be embedded in SZn+ Of course, in the proof of Corollary 8.9, we are using 
the fact from Appendix E that I?*(N) w H*(N). Note that in the case for 
which Mn and Nn- are smooth and Nn-' is smoothly embedded, this follows 
immediately from the Tubular Neighborhood Theorem (Theorem 11.14 of 
Chapter 11). 

8.10. Theorem (PoincarC). There is a compuct 3-manifold having the homology 
groups o fS3  hut which is not simply connected. 

PROOF. Consider the group I of rotational symmetries of a regular icosa- 
hedron, the "icosahedral group." We have 1 c SO(3) and it is well known 
that I is isomorphic to the alternating group A, on five letters. (This can be 



Figure VI-6. Shows that I = A , .  

seen geometrically by considering the five tetrahedra inscribed in a 
dodecahedron (which is dual to the icosahedron) and the permutations of 
them induced by the action of I. See Figure VI-6.) Also we11 known is the 
fact that this group is simple. Consider the homomorphism S3 +S0(3), where 
S3 is the group of unit quaternions. The inverse image of I in S3 is a group 
I', of which I is the quotient by the subgroup { + I }  c 1'. The dodecahedron 
has an inscribed cube, so that I contains the rotation group of a cube. 
Assuming the cube to be aligned with the coordinate axes, this implies that 
the quaternions i, j, k are in I'. Thus iji-'j-' =iji j=k2 = - 1 is in the 
commutator subgroup [I',I1]. The image of [ I J ,  1'1 in 1 is [I, I] = I, and it 
follows that [I: I'] = I'. The space in question is Z3 = S3/I'. From covering 
space theory, we have xl(X3) = I' and so H1(X3) -- ~r,(Z~)/[x~,  nl]  = 0. By the 
Universal Coefficient Theorem, H'(.ZI) = Hom(Hl(T3), Z) = 0. By Poincare 
duality, H2(C3) z H1(C3) = 0. 

This example occupies an interesting niche in the history of topology. 
Poincar6 originally conjectured that a manifold which is a homology sphere 
is homeomorphic to a sphere. When the above counterexample, called the 
"Poincark dodecahedra1 space," and others came to light, the conjecture was 
modified to include the hypothesis of simple connectivity. Today, for smooth 
manifolds, that conjecture is known to be true with the single exception of 
dimension three, where it remains an open and very important conjecture 
called, of course, the "Poincare Conjecture." 

Another interesting fact about t h ~ s  space C3 = S 0 ( 3 ) / 1 =  S3/ l '  is that i t  is 
the unique example of an "exotlc homogeneous homology sphere." That is, 
if C" is a closed n-manifold with the homology groups of S" and if G 1s a 
compact Lie group acting transitively on En, with isotropy group H, then, 
w~th  the single exception of this example, En is diffeomorphic to  S" and G 
acts on it linearly, i.e., as a subgroup of O(n + I) .  (See Bredon PI.) For 
another context in which this space occurs, see Section 18. 

PROBLEMS 

1. -+ If Mn is a connected, orientable, and compact n-manifold with f ,(Mn; Z) = 0 
and if Nn-' c M n  is a compact connected (n- 1)-manifold, the show thdt 

M n  - Nn ' has exactly two components with N n +  as the topologi al boundary 
of each. 

2. G~ve a counterexample to Problem 1 if the condition H ,(Mn; Z) = 0 1s 1 ropped. 

3. Show, by example, that Corollary 8.8 would be false if fi were replaced by H. 

4. For a locally compact space X, define H:(X) = 1% 
over the compact subsets of X. (This 1s called 
supports.") For an oriented n-manifold Mn, define 
H,,.,(Mn) and show that it is an isomorphism. 
compact, 1% HP(X, X - U) = 1% Hp(X, X - o).) 

5. Using Problem 4, show that, for a connected n-manifold M", H:(M ) Z for M" 

orientable and H:(Mn) z Z, for Mn nonorientable. 1 
6. If MZn+ ' is a compact connected (2n + 1)-manifold, possibly nonon 

that the Euler characteristic of M2"+' is zero. (Assume the fact 
finitely generated.) 

7. If M~ is a compact, connected, and nonorientable 3-manifold, sho 
is infinite. (Hint: Use Problem 6.) 

8. If U c R3 is open, show that H,(U) is torsion free. (Hint: This would be false for 
U c Rn,n> 3.) 

9. Show that Corollary 8.9 remains true if the hypothesis that Hl(M;Z)=O is 
weakened to H ,(M; Z,) = 0. 

10. Rework Problems 6-9 of Section 19 of Chapter IV in light of the results of the 
present section. 

9. Duality on Compact Manifolds with Boundary 

We remark that, in general, if M n  is compact then the orientation 8 is simply 
an element of H,(Mn) which is a generator on each component. In this case, 
we usually denote it by [MI eH,(M) .  This class [ M I  is called the "orientation 
class" or "fundamental class" of M. 

Let Mn be a compact n-manifold with boundary aM.  We shall assume 
that there is a neighborhood of dM in M" which is a product aM x [O,2), 
with aM corresponding to aM x (0). This is clearly the case for smooth 
manifolds and it is also known to always be the case for paracompact 
topological manifolds, by a theorem of M. Brown [2] Also, one can avoid 
such an assumption merely by adding an external collar. For simplicity of 
notation, we will treat dM x [O,2) as a subspace of M. 

Assume that Mu is connected and orientable, by which we mean that 
its Interior M - aM 1s orientable. Then we have the following isomor- 
phisms: 
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H,(M, aM) % H,(M, aM x [0, 1))  (homotopy) + , and H,,,,(Af is either Z (if orientable) or 0 (if not). Thus 
% H,(int(M), dM x (0,l)) (excision) nd a, must be onto to make the cokernel torsion free. 

% HO(M - dM x [0, 1)) (duality) /" 

x HO(M) (homotopy) 9.2. Theorem. If Mfl is an oriented, compact, connected n-man!fofold with 
% Z. boundary, then the diagram (arbitrary coeflcients) 

The orientation class ScH,(int(M), aM x (0,l)) corresponds to a cia 
. H P ( M )  I* H P ( ~ M )  61-- H P + I ( M , ~ M )  J* , H P + ~ ( M ) - . . .  [M]EH,(M,~M). At the other end of this sequence of isomorphism 

orientation C I ~ S S  corresponds to 1 EHO(M), the class of the augmen i [ n [ ~  - 1  M ( - p + l  slniw I r [ n [ ~  

cocycle taking all 0-simplices to 1. 
A H . _ ~ ( M , ~ M ) ~ H , - ~ - , ( ~ M ) T - H ,  p - ~ ( M ) - H n - p - I ( M , a M ) - . . .  

Consider the following sequence of isomorphisms: I* 

HP(M; G) = HP(M - dM x [O, 1); G) (homotopy) mutes up to the indicated signs. This also holds, without 

% H,-,(int(M), aM x ( 4  1); G) (duality, cap with 9) riction, over the base ring Z2. 

H, -,(M, aM x [0, 1); G) (excision) 
cal isomorphisms, except the third, result from previous 

NN H,-p(M, dM; G) (homotopy). eorems or remarks. The third one will follow from the 5-lemma as soon 

By naturality of the cap product, the resulting isomorphism HP(M, we have proved the commutativity. 
H,-,(M, dM; G) is the cap product with the orientationclass [MIeHn(M, a Let ceA,(M) represent the orientation class [MI EH,(M, aM). Then dc is a 

9.1. Lemma. If Mn is compact and orientable then dM is orientable For the first square, let f eAP(M) be a cocycle. Then going right and then 
[dM] = d,[M] is an orientation class, where a, is the connecting homo own gives a class represented by f 18, n dc = f n ac = (- l)'a(f n c). Going 
phism of the exact sequence of the pair (M, dM). down then right gives a(f n c). 

For the second square, let f eAP(M) with 6 f = 0 on aM. Then going right 
PROOF. Let A be a component of dM, and put B = aM - A (possibly empty). hen down gives (6f)nc = a(f nc) + (- f ndc which is homoiogous to 
Consider the exact homology sequence of the triple (M, AuB, B). Part of it - 1)p+ If n ac = ( - l)P+I f 1 aM n ac. Going down then right gives f 1 n ac. 

is the homomorphism 3,: H,(M, A u B) -+ H, - , (A u B, B). The first group is Commutativity of the third square is obvious. 
H,(M, d ~ )  and the second is isomorphic, by excision, to H,- ,(A). If c is a 
chain representing CM]EH,(M, aM) then [MI = [c] goes to [part of dc in 9.3. ~orollary. n [MI: HP(M, dM; G) -+ H, -,(M; G) is an isomorphism- 
A] in H,- ,(A). Thus we are to show that the part of dc in A is an orientation, 
i.e., that it gives a generator of H,- ,(A). ~t is often desirable to have a version of duality entirely in terms of 

For any coefficient group G, we have cohornology and the cup product. To this end, let A be a principal ideal 
H,(M, B; G) % H,(M, B x [O,l); G) domain and, with the notation of Example 7.6 of Chapter V7 Put 

= Hn(int(M), B x (0,l); G) P ( . )  = HP(,)jTHP(.), 
% r,(int(M) - B x (0, I), 0 0 G) 

the "torsion free part" of the pth cohomology group. Note that if A is a field 
= 0, then H = H. We shall assume the fact, proved in Appendix E, that H*(M; A) 

since int(M) - B x ((41) is connected and non-compact. By the Universal is finitely generated. Then it follows that Ext(H,(M), A) is all torsion so that - 
Coefficient Theorem, the Universal Coefficient Theorem glves the isomorphism HP(M;A)+ 

O = H , ( M , B ; Q / Z ) = H , ( M , B ) O Q / Z  O TH,-,(M,B), 

see Example 7.6 of Chapter V. Hence, H,-,(M,B) is torsion free and the 9.4. Theorem. Let M" he compact, connected, oriented (over A) n-manqold 
exact sequence of the triple (M, A u  B, B) has the segment hen the cup product pairing 

0 -+ H,(M, aM) H, - , (A) -*(torsion free). HP(M;A)Q,H"-P(M,~M;A)-* Hn(M,aM;A)~  Ho(M;A)%A 



taking (1x8 P ) ~ a u @ ~ ( c t u P ,  [M])EA, is a duality pairing, That is, the ma Verify, by d~rect,computatlon, the isomorphism HP(M, A)= H3-,(M,B) for 
M3 =S1 x D2 and where A is a nice 2-dlsk in aM and B is the closure of the HP(M; A) -+ HO~,(H"-P(M, aM; A), A), 
complement of A In aM. r 

taking at-+# where a(@) = (auj?, [MI), is an isomorphism. If Mm and N" are compact orientable manifolds with boundary, show that 
H,-,((M, aM) x N) w H"+"(M x (N, 8N)). 

PROOF. We have the isomorphism HP(M; A) --% HO~(H,(M), A) 
HO~(H"-P(M, aM), A) (given by the Universal Coefficient Theorem and c 
with [MI, respectively), taking, say, a to a* and then to a", where a*(y) 
(a, y) .  We claim that a" = &, which would prove the desired isomo . Applications of Duality 
Wecomputea0(~)=a*(Pn[M])=(a,~n[M])=(auP,[M])=E(~). Q 

In this section we will give several applications of duality to problems about 

PROBLEMS ds. It is standard terminology to refer to compact manifolds without 
ry as "closed manifolds. We shall occasionally use the fact, from 

1. If Mn and N" are compact connected oriented n-manifolds, one defines ppendix E, that such manifolds have finitely generated homology. 
"connected sum" M#N as follows Take a nicely embedded n-disk in each, re 
its interior, and paste the remainders together via an orientation reversing 10.1. Proposition. Let Mn be a closed, connected, orientable manifold and let 
morphlsm on the boundary spheres of these disks. Show that the coho "-+M be a map of nonzero degree. Then H,(Mn; Q) w H,(Sn; Q). If, 
ring of M#N is isomorphic to the ring resulting from the direct produ 

reover, deg( f )  = f 1, then H,(Mn; Z) H,(Sn; Z). rings for M and N with the unity elements (in dimension 0) identified and 
orientation classes identified. Similarly, the multiples of these identifications m 
also be made. (The orlentation cohomology class of M is that class 9€Hn(M) wh OOF. For the last part, suppose Hq(M;Z) # 0 for some q # 0, n. Then it 
is Kronecker dual to [MI, l.e., such that $[MI = 1. It can abo be described n easily be seen from the Universal Coefficient Theorem that there is a 
the class that IS Polncare dual to the standard generator in H,(M), the cl Id A such that Hq(M; A) # 0. For the first part, take A = Q. 
represented by any 0-simplex.) In particular, cup products of positive dlmensi If O # ~ E H ~ ( M ; A )  then there is a PEH"-~(M;A) with ctu/?#O. Thus 
classes, one from each of the two original manifolds, are zero. =key, where y is a generator of Hn(M;A) and 0 # k6A. Therefore 

2. Suppose that Nn is a compact, orientable, smooth n-manifold embedded smoo = 0.0 = f *(a) f *(P) = f *(aP) = f *(ky) = k-deg( f)-generator # 0. 17 
in the compact, orientable m-manifold Mm. Let W be a closed tubular neighborh 
of N ~n M. Show that there exists an isomorphism H,(N) z H,-,+,(W,aW). 0.2. Proposition. The cohomology rings of the real, complex, and quaternionic 

rejective spaces are: 3. +- Let Mn be a compact manifold with boundary aM = AuB where A and B are 
( A  - 1)-manifolds with common boundary AnB.  Since A n B  is a neighborhoo H*(RPn;Z2)xZ2[a]/an+' where deg(a)=l, 
retract in both A and B (see Appendix E) the inclusion A,(A) + A,(B) c, A,(Au B H*(CPn; Z) x Z[a]/an+ ' where deg(a) = 2, induces an isomorphism in homology, and so there is a cap product 

H*(QPn; Z) x Z[a]/an + ' where deg(a) = 4. 
n : H P ( M , A ) Q H n ( M , A u B ) + H n - p ( M ,  B). 

Take the orlentatlon class [A] to come from [aM] =a,[M] via H,-,(aM)= PROOF. We already know the addit~ve (co)homology groups of these spaces. 
H,_ , ( A  u B) -+ H,-I (A u B, B) w H,- ,(A, A n  B) (by excision and homotopy). Show The arguments for all of these are essentially the same so we will give it only 
that the dlagram for the case of complex projective space. The proof is by induct~on on n. 
--+ NB(M, A) - HP(M) -----------* Hp(A) -----+ HP+'(M, A) - Suppose it holds for n - 1 ,  i.e., that there is an element UEH~(CP'- ' )  such 

= l n [ ~ l  that 1, a, a2, . . ,a"- ' generate the homology groups in those dimensions. NOW 1 : -  = In[MI Hn p-~(A.?A)  CPn is obtained from CPn- ' by attaching a 2n-cell. It follows from the exact 

1 = sequence of the paw (CPn,CP'-') that H'(cP")-+H'(CP"-') is an 

-+urn ,,(M,R)--+H., p ( M , d M ) - H n _ p _ , ( A ~ B , B ) - H n  ,(M,B)----+ isomorph~sm for i 5 2 n  - 2. Thus it makes sense to identify a and its powers 
up to an-'  w~th their prelmages in HL(CP") in this range. (This IS just a 

commutes up to slgn. Deduce that there IS the duallty lsomorphlsm notat~onal convenience.) Also, of course, the case n = 1 is trivial, so we can 
assume n 2 2 Thus we have the classes a€ H2(CPn) and an- ' E (CPn). 

n [MI: HP(M, A) Hn-,(M, 8). By Theorem 9.4, the product an = a u  a"-' must be a generator of H2"(CPn). 
a 
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10.3. Corollary. Any homotopy equivalence CPZ" 4 CPZn preserves orientation We remark that all orientable two- and three-dimensionaLclosed manifolds 
for n 2  1.  re boundaries. The Klein bottle is a nonorientable wanifold  which is a 

PROOF. Such a map f must be an isomorphism on H2(CP2") z Z and so, fo 
a generator a we must have f *(a) = +a. Therefore f *(aZn) = (f *(or))2n Definition (H. Weyl). Let M be a closed oriented manifold. The signature 
(1 or)'" = aZn. The contention follows since this is a top dimensional generator defined to be 0 if dim(M) is not divisible by 4. If dim(M) = 4n, then 

ature(M) is defined to be the signature of the quadratic form (a, B)  = 
u P) [MI  on HZn(M; R). 

We will now study to a small extent the cohomology of manifolds th 
are boundaries of other manifolds. Recall that a quadratic form over the reals is the sum and difference of 

squares. Its "signature" is the sum of the signs on those squares. Another 
10.4. Theorem. Let A be afield (coeficients for all homology and cohomol term used for this is "index." 
Let v2"+' be an oriented (unless A = 2,) compact mangold with a V  = 

connected. Then dim H"(M2") is even and 10.8. Corollary (Thorn). If M4" = dV4"+ ' is connected with V compact and 
dim[ker(i,: H,(M) -+ H,(V))] = dim[im(i*: H"(V) -+ HYM))] = $dim HY orientable then signature(M) = 0. 

Moreover, im(i*) c Hn(M) is self-annihilating, i.e., the cup product of any PROOF. Let W = HZ"(M; R) and let dim(W) = 2k. The quadratic form (over 
classes in it is zero. R) of Definition 10.7 is equivalent to the sum of, say, r positive squares and, 

thus, 2k - r negative ones. That is, there is a subspace W+ on which the 
PROOF. Consider this portion of the Poincark-Lefschetz diagram: is positive definite and another subspace W -  on which it is negative 

ite with dim W+ = r and dim W -  = 2k - r. By Theorem 10.4, there is a 
i* 6* space U c Wof dimension k such that (a, /3) = 0 on U. Clearly U u W+ = HYV - Hn(M) ---+ Hn+'(V,M) 

so the sum r + k of their dimensions cannot be greater than the 

n../ = % I n[V]  n 2k of W. That is, r + k I 2k, so that r _< k. 
y U n W- = {0), so that (2k - r) + k I 2k, i.e., k I r. 

H,,(M) - H"(v). Thus r = k and the signature is zero. 

From the diagram we see that (im(i*)) n [MI = (ker(G*)) n [MI = k 10.9. Example. The connected sum (see Problem 1 in Section 9) M~ = 
Thus rank(i*) = dim im(i*) =dim ker(i,) = dim H,(M) - rank(i,) = dim Hn cpZ#cpZ is not the boundary of an orientable 5-manifold. To see this, note 
rank(i*), since i* and i, are Kronecker duals of one another (this is t that the ring of M4 is generated by classes ~ , B E H ~ ( M ) ,  with a6 = 0 and 
that the rank of a transposed matrix equals the rank of the original). Therefor a2 = P2, SO that its quadratic form is the identity 2 x 2 matrix whose signature 
dim Hn(M) = 2.rank(i*) = 2.dim(ker(i,)). is 2 (or -2 for the other orientation). 

Now if a, PeHn(V) then 6*(i*(a)ui*(/3)) = (6*i*)(aup) = 0 since 6*i* = Of course, a more general argument shows that the signature is additive 
by exactness. But 6*: H2"(M) -+ Hz"+ (V, M) is a monomorphism since it with respect to the connected sum operation on oriented manifolds. 
dual to i,: H,(M)-+ H,(V). Thus i*(a)ui*(j?) = 0 as claimed. However, CP2# -CP2 is the boundary of the orientable 5-manifold 

V5 = (CP2 - U )  x I, where U is an open 4-disk in C P ~ .  (-CP' stands for 
10.5. Corollary. If Mm = a V  is connected with V compact, then the Euler CP2 with the opposite orientation.) The only difference in the cohomology 
characteristic x(M) is even; also see Problem 1. ring is that P2 = -a2, but that is enough, of course, to make the signature 

zero. Naturally, this is a general fact having nothing to do with Cp2 
PROOF. If dim(M) is odd then Poincark duallty on M pairs odd and even 
dlmens~ons and so x(M) = 0 for all closed M. For M of dimension 2n, Also we clalm that CP2#CP2 is the boundary of a nonorientable 
have that x(M) r dim Hn(M; 2,) modulo 2. For M = dV,  the latter is 0 (mo 5-manifold. To see this consider (CP2 x I)#(RP' x s3), where the sum is done 
2) by Theorem 10.4. away from the two boundary components. Now run an arc from one of the 

boundary components through an orientation reversing loop in RP' x s3 
10.6. Corollary. RP~",CP~",  and QPZn are not boundaries of compac and then to the other boundary component. Done nicely this arc has a 
mangolds. product neighborhood, and we can remove that. This leaves CP~#CP' as the 
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boundary of the resulting, nonorlentable, 5-manifold. Again, thls is a general 
construction and has nothing to do wlth C P 2  specifically. 

In Section 20 of Chapter IV, we proved the Borsuk-Ulam Theorem by a 
somewhat special argument. Now we shall reprove it using a fairly direct 
argument with the rlng structure of the cohomology of real projective space. 

10.10. Theorem. I f  m > n  then for ally map 4 . P n ' - + P " ,  the induced 
homomorphzsm 4 # :  n ,  ( P m )  --+ n l ( P n )  is triural. 

PROOF. T h ~ s  IS clear for n = 1 since the homomorphism in question is Z ,  -+ Z .  
Thus take m > n > 1 .  Since nl(P1')  is abelian, it is naturally isomorphic to 
H,(P") by the Hurewicz Theorem (Theorem 3.4 of Chapter IV). Therefore it 
suffices to show that 4,: H I  ( P m )  --+ H I  (P")  is trivial. 

Similarly, the Universal Coefficient Theorem gives a natural epimorphism 

H1(Pn; Z , )  -+ Hom(H,(Pn) ,  Z , )  

which is an isomorphism since both groups are isomorphic to Z, .  Thus 
suffices to show that &*: H1(P", Z , ) -+  H1(Pm;  Z,) is trivial. But, if it is n 
trivial then +*(a) =@ $0 for some a€H1(P"; Z,). Then 0 = 4*(O) = &*(am) 
(#J*(.))" = pm # 0. 

Now we will use Theorem 10.10 to reprove Theorem 20.1 of Chapter I 
and hence the rest of the results in that section. 

10.11. Corollary. If 4:s" +S" is any nzap with #J(-x) = - - 4 ( x )  for all x, the 
m s n .  

PROOF. #J induces a map Pm -+ P". It suffices, by Theorem 10.10, to show th 
this cannot be trivial on n p  Consider any path y in Sm from some point 
to -x. Then 4.y is a path in Sn from 4 ( x )  to b ( - x )  = - 4 ( x ) .  In Pm, y proj 
to a loop a ,  and in Pn, 40 y also projects to a loop p. These are not homotopi- 
cally trivial loops since they lift to nonloops. Therefore 4 # ( [ a ] )  = [PI is 
nontrivial. 

10.12. Theorem. For n 2 2, P" cartilot he embedded ~n S"+' 

PROOF. For n even this already follows from Corollary 8 9. For n odd, 
Corollary 8.8 Implies that if P" c Snt ' then S"" = A u B with A n B = P". 
(See Problem 1 of Section 8.) We will show that this 1s ~ncompatible wlth what 
we know about the cohomology of P" with Z ,  coefficients For the remainder 
of the proof we assume coefliclents In Z , ,  whtch will be suppressed from the 
notation We are also going to assume that R*(P") % H*(Pn). This IS always 
true, and is proved in Corollary E 6 One could just assume that P" is 
embedded smoothly, from which thls follows immediately from the Tubular 
Neighborhood Theorem (Theorem 1 1 4 of Chapter Ii) 

By naturality of the cup product, there is a cup product on H* induced 
by the direct limit. The exactness of the direct limit functor and the Mayer- 
Vietoris sequence for open sets implies that there is an exact Mayer-Vietoris 
sequence of the form 

It follows that H ~ A )  @ H ~ B )  + Hi(P") is an isomorphism for 0 < i < n. Also 
the latter group is Z, .  Hence we may assume that H'(A)  % Z ,  and H ~ ( B )  = 0. 
There is a class E H ~ ( A )  mapping to 0 # p e H 1 ( P " )  z Z, .  Thus an maps to 
p" # 0, and so the map &(A) -+ Hn(P") is onto. 

Also, since A and B are proper closed subsets of S"+', we have, from 
Corollary 8.5, that ii"+ ' ( A )  = 0 = jj"+ ' (B).  

These conclusions are contrary to the exactness of 

(part of the Mayer-Vietoris sequence above). 

Our last application is to lens spaces, which have been mentioned before. 
Consider the sphere S3 as ( ( u , v ) E C ~ ~  1 ~ 1 ~  + ] v ( ~  = 1 ) .  Let w = e2"i'P, a 
primitive pth root of unity. For q relatively prime to p, consider the map 
T,: S3 -+ S3 given by Tg(u, o) =(mu, mgu). This has period p and none of the 
iterates T,, T i , .  . . , T;-' has fixed points. That is, T, generates a free action 
of the cyclic group of order p on S3. The orbit space of this action is called 
L(p ,q ) ,  and is known as a "lens space." Then L ( p , q )  is an orientable 
3-manifold and has S3 as its universal covering space, with p sheets. 

For given p, we aim to attach a homotopy invariant to L( p, q) that depends 
on q. For this, we need to recall the "Bockstein homomorphism." The short 
exact sequence 0 -+ Z --% Z + Z, + 0 of coefficient groups induces the long 
exact sequence 

--. -+ H"(x; Z )  L H ~ X ;  Z )  -L H ~ X ;  z,) AH"+ '(x; Z )  -r ... . 

Let f l =  poPo: Hn(X; Z,)  -+ Hn+ ' ( X ;  Z,).  This, and 8, itself, is called the 
Bockstein homomorphism. It is natural in X, so that it is what IS called a 
"cohomology operation." 

For the case of L = L ( p ,  q), we have that n,(L( p, q)) = Z ,  by covering space 
theory. Using the Hurewicz Theorem, the Universal Coefficient Theorem, 
and Poincare duality, we can calculate that 

H I ( &  Z) % z,,, H 1 ( L ;  Z )  % 0, H I ( L ;  Z , )  Z ,  = H'(L;z,),  
H 2 ( L ; Z )  % 0, H2(L; Z) = Z,, H,(L; Z , )  = Z ,  zz H:(L; Z,), 
H ,  (id; Z )  % Z ,  H 3 ( L ; Z ) % Z ,  H , ( L ; Z , ) = Z p = H 3 ( L ; Z p ) .  

The exact sequence 
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showsahat 6 ,  and p are isomorphisms here, and so - ey are p-fold -coverings. Therefore @*[I.,( p, I)] = $ q[u p, q) lF the + 
p: H '(L; z,) -+ H ~ ( L ;  z,) r a difference in choice of orientations. 

Let a~Hl(L(p ,q) ;Z , )  be a generator and put b = $*(a). Then 
is an isomorphism. P(b) = $*@(a)) and bp(b) = +*(afl(a)) and we have 

Now let a~Hl(L(p ,q) ;Z , )  be a generator. Then 
a p ( a ) ~ H ~ ( L ( p ,  q); Z,) is a generator by Poincarl- duality (Theorem t 1 < b/3(b), [a P, 0 1  ) 
[L(p, q)]€H3(L(p,  q); Zp) be the mod p reduction of a generator of H,( = < $*(afl(a)), EL( P, 111 ) 
Z )  w Z.  This is unique up to sign. For any generator atzH1(L(p,q); = <a/3(a), $* [Y P,  I ) ] >  
have that (ap(a), [L (p ,q ) ] )  is a generator of Z,. For any other ge 
b = na (n prime to P), we have (bP(b), CUP, q)l ) 

= < aP(a), + 4CY P, dl ) 
n2(a/3(a), [L(p,q)]) .  Thus, the generator (ap(a), [L(p ,q)] )  is deter = -f 9 < a/3(a), [L( P, 911 ) 
independent of the choice of a and of the orie 2 qt,. 
factor, prime to p, in Z,. Let i G j be the equivalen 

Thus t ,  r q2t, g qt, , as claimed. that i r &jn2(mod p) for some ~ E Z ,  prime to p. T 
t q ~ Z p ,  modulo the equivalence relation E ,  by 

10.14. Theorem. I f  L( p, q )  1: p, q') then qq' = +n2 (mod p) for some integer 
n. (That is, either qq' or -qq' is a quadratic residue mod p.) 

PROOF. If h: I.( p, q) -+a p, q') is a homotopy equivalence then it has degree 
where a€ H1(L( p, q); 2,) is a generator. f1. Therefore h,[L(p,q)] = f [L(p,ql)]. Then, if b~H'(L(p,q ' );z , )  is a 

nd a = h*(b), we have 
10.13. Lemma. The invariants t ,  satisfy t ,  z qt,. 

t, r < afl(a), CY P, 4 1  ) 
PROOF. First we remark that detailed calculations can show that t 1  r 1 
we do not need that. If v = reie& and k € Z  then we will use dk' to de = <h*(bfl(b)), CY P, dl ) 
rekie . Consider the map 4:S3+S3 where 4 = < b@(b), h* ( a  p7 911 ) 

4Tl(u, v) = ~ ( w u ,  o v )  = (wu, W ~ V ( ~ ) ) ,  and Tq+(u, = k < bp(b), CY P, 4 ' ) l )  
Thus 4 T 1  = Tq4, which means that 4 carries the z t,.. 
by T, on S3. (That is, 4 is equivariant with 
Consequently, 4 induces a map $: L( p, 1) + L(p, q). From covering spa ce q't, r t,, z t, 2 qt,, and so qq' r qq r 1. 
theory, n,(L(p, 1)) is generated by the loop which is the image of any pa 
in S3 from the base point * to TI(*), and similarly for L(p,q) and T,. Sin rem. There exist two orientable closed 3-man$olds with the same 
4 carries the path for Tl to that for T,, we conclude that groups and homology groups, but which are not homotopy 

$# :n l (Y  P, l))-+"l(L(P,4)) 

is an isomorphism. By the naturality of the Hurewicz homomorphism, lens space L(5,l) is not homotopy equivalent to L(5,2) since 
follows that $,: HI  (4 p, 1 ) )  - + H I  (Y p, q)) is an isomorphism and consequen is a quadratic residue mod 5. 0 
$*: H1(L( P ,  q); 2,) -+ H1(L( p, 1 ) ;  Z,) is an isomorphism. 

Now 4 is easily seen to have degree q. (For example, it is the doubl Much more is known about these interesting spaces. The converse of 
suspension of the map vt+uq on S1.) The diagram Theorem 10.14 is true, due to J.H.C. Whitehead [ I ] ;  see Example 11.17 of 

4% 
. It is not hard to see that up, q) x L( p, q') if q' = + q f  ' (mod 

H3(S3;Z)  --------+ H3(S3;Z) and it is known (hard) that the converse is also true; see Brody [ I ] .  This 

I example, that L(7,l) and L(7,2) are not homeomorphic, even 
,'I) 2: L(7,2) since 1.2 r 32 (mod 7). Also see Milnor [4]. Another 

HAL( P, 1 ) ;  Z )  
$* 

+ H,(L(p, q); Z) fact is that the connected sum of three projective planes embeds in 
not in L(14,l) even though L(14,1)zL(14,3) since 1.3 r -5' 

shows that $ has degree q, since the verticals both have degree p becaus od 14); see Bredon and Wood [ I ] .  
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PROBLEMS 

1. If VZn+'  is a compact manifold with boundary M'" then show that X ( M 2  
2x(VZ"+ I). 

2. If M ~ " +  is a closed orientable manifold, show that x(M) is even. 

3. + The generalized lens space LZn-' ( p ; q l r . .  .,qn) is defined to be the orbit s 
of the free action of Z ,  on S2"- l ,  the unit sphere in C", generated by (u , ,  . . .,u 
( u ~ ~ u , , . .  .,cognu,) where the qi are relatively prime to p. If L'"-' ( p ; q l , . .  
LZ"-I  ( p ;  q ; ,  . . . , qb), show that q; . . - q: = + q ,  . . . q,kn (mod p) for some int 

(Hint: First show, as in Proposition 10.2, that H'(L'"- ' ( p;q , ,  . . . ,q,); Z ,  
for 0  5 i 1 2 n  - 1 and that there is a one-dimensional generator a  such tha 
b  = /?(a), then bk generates HZk and abk generates HZ" +'; i.e., W*(LZn - ' ( p ;  q , ,  . . . , 
Z,)  E A (a)  @ Z,[b]/(bn),  for p  odd.) The converse is also true. 

4. If the lens space p, q)  admits a homotopy equivalence 4 p, q)  + L( p, q) 
reverses orientation then show that - 1 is a quadratic residue mod p. 

5. Show that the connected sum L(3,1)#L(3,1) is not homotopy equivale 
L(3, I)#  -L(3,1).  

6.  Reprove Theorem 20.6 of Chapter IV from the point of view of the p 
section. 

7 .  Show that there can be no 5-manifold M 5  with H,(M) E Z, H2(M)  % 

H , ( M )  % Z  and all other homology groups zero. (Hint: Use Problem 8 of Section 

8. + Let M3 be a closed oriented 3-manifold. Consider the exact sequence 

o - + H z ( M )  QQ/Z-+Hz(M;  Q / Z )  T H l ( M ) + O  

of Example 7.6 of Chapter V. Let D: Hz(M;  Q / Z )  -% H1(M;  Q / Z )  be the 
of the Poincare duality isomorghism nCM]:  U ' (M;  Q / Z )  5 H,(M;  Q/ 
a , b 6 T H 1 ( M )  put lk(a,b)= ( D y - l ( a ) , b ) ~ Q / Z .  Show that this is a well- 
pairing T H l ( M ) Q  T H , ( M )  + Q / Z .  (It is called the "linking pairing.") Als 
that Ik(a, b)  = lk(b,a). I f H , ( M )  x Z,and 0  # a e H , ( M )  then show that lk(a,a) 

11. Intersection Theory j=t 

In this section we show how to define the "intersection" of homology classe 
in a compact oriented manifold. If the classes are fundamental classes of 
submanifolds in "general position" then we relate their intersection produc 
to the physical intersection of the submanifolds. Also, the intersection produc 
is the Poincark dual of the cup product. This provides a nice geometri 
interpretation of the cup product which is intuitively useful. Through th 
correspondence, algebraic information about the ring structure in th 
cohomology of the manifold yields geometric information about the manifold 
and conversely. 

Historically, the idea of the intersection product preceded that of 
cohomoiogy and hence of the cup product. Today, it is of less importance 
since, unlike the cup product, it is limited to homology classes in a manifold. 
It is due to Lefschetz. 

Let M" be a compact, oriented, connected manifold, possibly with 
boundary, although we are concerned mainly with the closed case. Let 
D: H,(M, aM)  -+ Hn-' ( M )  or D: Hi(M)-+ Hn- ' (M,aM)  be the inverse of the 
Poincarh duality isomorphism. That is, 

If the manifold M must be specified, we use the notation DM for D. 
Define the "intersection product" 

a b = D - '(D(b) u D(a)) = (D(b) u D(a)) n [MI = D(b) n(D(a)  n [ M I )  = D(b) n a, 
that is, 

(Note the reversal in order.) We have 

Also, D(a (b  c) )  = D(b c) u D(a) = (D(c) u D(b)) u D(a) = . . . = D((a b) c), so 
that 

Our aim is to give a way to see the intersection product geometrically. 
This can be used, for example, to compute the dual cup product from obvious 
geometric information. First we must define and study the "Thom class" of 
a disk bundle and the "Thom isomorphism." 

Let Nn be a connected, oriented, closed n-manifold and let n: W"+k -+ N n  
be a k-disk bundle over N. For those unfamiliar with the concept of a bundle, 
this means the following: Each point of N has a neighborhood U such that 
n- ' (U)  has the structure of a product 

such that the projection n to U corresponds to the projection U x I l k  -+ U .  
(For a smooth bundle, which we do not require here, 4 must be smooth.) 
Over two such sets U and V with homeomorphisms & and $,the composition 
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$0 4- ', defineQon U n V, induces homeomorphisms 0,: Dk -+ Dk fa- XE U n ~ h i c h  coincides with i'. SbiEarly, ir = f ~ * ( z n ( + ) ) :  Hp+,(W,dW)+ H,(N) is, 
We require these maps 8, to be linear. 

Thus Wn+k is an (n + k)-manifold with boundary aW being a (k - 1 
sphere bundle over Nn. at i' is an isomorphism since i, is, and similarly for il. Thus 

Let us also assume that Was well as N is oriented. (In this case the fibe ces to prove that the two indicated maps coincide. Let P = i*(a), so 
are oriented and the linear maps 8, preserve orientation. Presently = n*(P). Then we compute 
give the orientation of the fibers Dk specifically.) Alternatively to havi 
Wn+k and Nn oriented, we could use Z, coefficients in all the (co)homolog il(P) = D i* D; (P) 
in this section. = Dwi,(i*(a) n [N]) 

The origin in each fiber Dk provides an inclusion (a "section") of N in = Dw(an i,[N]) (by Theorem 5.2) 
which we will call i: N -+ W. For simplicity of notation we will regard Nn as 

= DW(a n (z n [ W])) (by definition of z) 
subspace of Wn+k. Note that i*: H*(W)-+ H*(N) is an isomorphism inv 
to n*: H*(N)-+ H*(W). = DW((a u z)n  [W]) (by Theorem 5.2) 

= a u z  = n*(P)uz. 
11.1. Definition. In the above situation, the Thom class of the disk bun 
is the class z€Hk(W,aW) given by imilar computations yield the homology isomorphism, which we will not 

0 
z = D,(i,[N]). 

Equivalently, Now we wish to prove a similar Thom Isomorphism for disk bundles 
ver base spaces that are not necessarily manifolds, but which are embedded 

z n [W] = i,[N]. 
Assume that, in the above setup, A c N is a closed subset. Put A" = 

Sometimes we will regard zeHk(W, W - N) x Hk(W,aW). -'(A) c Wand aA" = i n a w  (By this notation we do not imply that aA" is 
manifold or the boundary of anything.) 

11.2. Definition (Hopf-Freudenthal). Iff: Nn -, Mm is a map from a c 
oriented n-manifold N to a compact, oriented m-manifold M, taking 11.4. Lemma. If A c N is closed, then ki(A", 82) = 0 for i < k. 
aM, then 

f ': HnmP(N) -+ Hm-p(M) and f ': Hn-P(N, aN) -+ Hm-p(M, aM), ) be the statement that the conclusion of this lemma is true 
A. Then PN(A) is certainly true if A is a compact convex 

are both defined by bset of a euclidean set in N. The Mayer-Vietoris sequence shows that 

f'= D ~ ~ * D ; ' .  n B) => P,(A u B). The fact that Cech cohomology 
ct limits (Theorem 8.3, proof of (iii)), shows that if {A,) 

Also a decreasing sequence of closed sets, then PN(AL), all i, Pdr) A,). Thus 

f :  H m P  4 H ( N )  and 5: Hm-,(M, aM) -+ H,-,(N, aN), e present lemma follows from the Bootstrap Lemma (Lemma 7.9). 

are both defined by 11.5. Lemma. The restriction zX~kk(A",d2) of z, when A = {x), is a 

f l =  D,'f *DM. 

These are called "transfer" maps or "shriek" maps. (Also see Section 14.) PROOF. Note that here, (A",aZ) = (Dk, Sk- I). Suppose, first, that z, = 0 for 
some x. Then consideration of a neighborhood (as A) of x in N shows that 

11.3. Theorem (Thom Isomorphism Theorem). If n: W -t N is a k-duk bundl = 0 for ally near x. Slnce N is connected this implies that z, = 0 for all y~ N 
over the connected oriented closed n-manifold Nn, then there u the "Thorn or closed sets A c N, let PN(A) be the statement that z, = 0, where z, 
Isomorphism" e restrlct~on of z to (A",aA"). Then PN(A) IS true when A is a convex set 

some euclidean open set In N, slnce the restr~ction to a polnt In the set 
H"(N) -& - H"(w) HP+~(W, a W) an isomorphism on the cohomology involved and r, = 0. - 



If PR(A) and P,(B) hold, then PN(AuB) follows from-the diagram Now we contln_ue with the program of showing how one can interpret the 
intersection product geometrically. Below, all manifolds will be assumed 

0 - Hk(WuW,a(WuW))  - H ~ ( w , ~ w ) @ H ~ ( w , ~ w )  

I 
compact and oriented, and possibly with boundary. We also assume them 

1 to be smooth manifolds. 

0- f i k ( ~  g ,  a(A g))  ---------- l ih(d, ad) CB Gk((B, a s )  Let ir: Nn + Ww be a smooth embedding of smooth manifolds with bound- 
ary, and assume that N meets aW transversely in aN. 

which is a portion of a Mayer-Vietoris diagram, and where the zeros on th 
left are from Lemma 11.4. . Definition. In the above situation, denote i ,",[N]~fl,(~,aW) by 

If PN(A,) holds for each set in a decreasing sequence of closed sets then ,. Also define z r =  Dw([NIW)~Hw-"(W), the Thorn class. Here 
P, also holds for the intersection, by the fact that the direct limits commute 
with t ech  cohomology, as in the proof of Lemma 11.4. Thus, by the Bootstrap 

w: H,(W, aW) - Hw-"(W). 

Lemma (Lemma 7.9), we have that PN(N) holds. But this means that z = 0, 
and it is not. Note that the Thom class z r  is the image of the Thom class of the normal 

We conclude that the hypothesis, that any z, = 0, is untenable. 
n)-disk bundle vr of N in W via 

Z 
Suppose then that z, is not a generator for some x. Say T,EH~(D~, sk- ')  ~:-2tube, a tube) & Hw-"(W, W-tube)-+ Hw-"(W), 

Z is + m, and let p be a prime dividing rn. Then if we pass to Z, coeflicien 
we deduce that 7, becomes 0. This still provides a contradiction, as abo re the first map is the inverse of the excision isomorphism. One can see 

and proves the lemma. by "doubling" W to get rid of the boundary. 
By dualizing the definition r r  = Dw[NIw, we get 

11.6. Corollary. If N is connected then the class zenk(W,aw) is (up to sign) 
the unique class whose restriction to the fiber over each point is a generator. 
Thus we can think o l z  as defining the orientation in thefibers. 

ow suppose that Kk and Nn are two such submanifolds of Ww. Then 

PROOF. The cup product with z gives the Thom Isomorph that 

W, a W). Thus z generates Hk( W, a W) z 2, which ma HO(N) z HO(W)-+ H ( 
the claim obvious. 

11.7. Theorem (Thom Isomorphism Theorem). For any compact A c N, the Again, our intention is to interpret this intersection product geometrically. 

map Now assume that K meets N transversely in W. (In symbols, K ct\N.) Then 

K ( . )  u 2,: k ' ( ~ )  -+ H + k(2, ad)  v z  restricts to v;,,. (See Figure VI-7.) That is, v;,, = v,Wl,,, 
This implies that the Thom class of K in W restricts to the Thom class 

is an isomorphism. f K n N  in N, since its restriction to any point gives the generator in the 
cohomology of the fiber modulo its boundary, and the Thom class IS charac- 

PROOF. This is another argument using the Bootstrap Lemma (Lemma 7. terized by this. Of course, actually, this only characterizes the Thom class 
essentially the same as its use in Lemma 11.5. The details should be supplie 
with ease by the reader. 

Remark. One can get the Thom Isomorphism Theorem, from the above, for 
any oriented disk bundle over a compact space embeddable in euclidean 
space, since all such bundles arise as above. We indicate the proof of this: 
Embed the base space A in some sphere S". The bundle then extends over 
a neighborhood of A in S". (One must know a bit more about bundles than 
we are assumlng to justify this statement.) One can then take a neighborhood 
In the form of a manlfold with boundary. By doubling thls ( j o ~ n ~ n g  two copies 
along the common boundary) one gets a manlfold N and a d~sk  bundle over 
it whose restriction to the subspace A is the origlnal bundle. Consequently, 
our assumptions are not as restrictive as they appear 

xw 
1-igure VI-7 Transverse intersection and normal bundle 
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up to sign, so demanding that the resulting class be the Thom class on t 10. Theorem. Let Mn be an orienttble closed man$old and let A, B c M. 
nose is really an orientation convention: it specifies the orientation of K n r aeH,(A) and BEH,(B) and let aM and B, denote their images in H,(M). 
when that of N, K, and Ware given. Note that it depends on the o aM*DM # O  then A n B # 0 .  
which we take K and N. In actual examples it is difficult to determine 
correct orientation on K n N  from this discussion, but it usually does 
matter much. We will indicate a practical way of doing that later. Thus w 
have the formula ,-,(M, M - (A n B)) and so we could define 

h l 

(3) 
a*P = (D;(B)uD&(~))~CMIEH,+,-~(A~B) 

nd it is easy to see that the map H,+,-,(A n B) -t H,+,- ,(M), induced by 

Note that changing the orientation of W has the effect of changing th nclusion, takes a*P into so that the latter would have to be zero if 

of both Thom classes, and also changes the sign of the duality conv A n  B = a. This proves the open case. Unfortunately, one cannot define such 

the cup product of the Thom classes to the intersection class. Thus, in intersection products for arbitrary (or even closed) subsets, in general, in 

reversing the orientation of W reverses the signs of intersection prod singular theory. (That can be done in more advanced theories such as sheaf 

Now we are finally able to give the geometric interpretation of cohomology and Borel-Moore homology.) 

intersection product. However, if A and B are arbitrary and A n  B = then, since every singular 
ain is carried by a compact set, a and P are images of classes in some 

11.9. Theorem. With the assumptions above, including that K 6 N in W, we mpact subsets K c A and L c B. Then K and L have open neighborhoods 
and V with U n V= 0 since M is normal. Passage to the induced classes 

zg,, = z p J  7; the desired conclusion. C] 

and, equivalently, Implicit in the proof of Theorem 11.10, of course, is the statement that if 

CKnNI, = [N1wa[Klw. d B of M then a*/? is represented 
od of A n B. Figure VI-8 illustrates 

PROOF. We compute: neighborhood" cannot be deleted 
M is the 3-torus depicted as a 

CK n Nlw = (i,W,,)*L-K n N1 e faces identified. To explain the 
= (ir)*(i:,,)* CK n N1 

= (ir)*(~;,,,J n CNI (by (1)) 

= ($3. cci:,* (.,"in CNI) (by (3)) 
(by Theorem 5.2(4)) = T: n(ir), [N] s a nonzero 1-homology class 

= z,"n(z,Wn[W]) (by (1)) A, 4 B,.) The right side of the 
= ( z , " u ~ r ) n [ ~ ]  (by Theorem 5.2(3)) 

= CNlw*CKlw (by 

as claimed. 

What the theorem means is that one can compute the cup product 
cohomology classes of W (the z's) which are dual to the orientation class 
of submanifolds N and K (transverse) of W by looking at the intersec 
N and K. The cup product is the cohomology class dual to the orientation 
class of the intersection N n K. 

We have shown how to compute the Intersection product geometrical 
only for classes carried by submanifolds. However, some conclusions 
derived in" more generality. For example: Figure VI-8. Wild Intersection In 3-torus. 



diagram represents the torus A,; i.e., the square in the x-y-plane. Let C in 
this square be the union of the boundary of the square with a sin(l/ 
curve runnlng from (x, y) = (- 1,O) to (1,O) and contained in 1 y 1 < $. The 
C divides the square Into two pieces that we will call the left and right sid 
Define a function f(x, y) on the square by 

dist((x, y), C) on the left, 
f (x, Y) = { 

- dist((x, y), C) on the right. 

Let A = graph(f) as a subset of M. Then A is a torus that deform 
A,. Thus [A] [B] = [A,] [B,] # 0. However A n B is the sin(l/x) 
curve together with the segment ( $- 1) x [--+,+I x (0) with the f 1 
identified in M. Hence A n B is simply connected and so carries no nonze 
I-class, finishing the example. 

We now turn to some applications of these results on intersections. 

11.11. Example. Perhaps the simplest example is the product of s 
W = S" x Sm. Let K = S" x lye) and N = (x,) x Sm. Then [K], and 
generate H,(W) and Hm(W). Let ci = z: and /3 = zr be the dual classes. Th 
dropping the subscript " W," 

CN1 CK1= CK n N1= * [(XO, yo)], 

which is a generator of H,(W). Thus or UP is dual to f [(x,, yo) 
is a generator of Hn+"(S" x Sm). (Note that we don't even have to 
cr and p are generators of their respective cohomology classes, si 
were not, then their cup product could not possibly be a generator 

Similarly, [K] [K] = [K] [K'] = [Ja] =,0, where K' is a shifted 
K, and this implies that ci2 = 0. Similarly, P2 = 0. Thus, this obviou 
cal information about K and N completely determines the cohomolog 

Still in the example of a product of spheres, but looking at it 
other way around, the fact that we know there are the cohomol 
ci and whose cup product is nonzero (say, from PoincarC du 
product version) implies that the dual homology classes carried b 
folds must intersect. This gives a geometric consequence 
knowledge. 

11.12. Example. Here we discuss again the product of two spheres, but from 
a different perspective. We wish to determine the exact orientat~on on the 
intersection of the "factors." Choose an orientation on each sphere Sn by the 
choice of a generator [Sn]~H,(Sn). Orient W = Sn x Sk by the class [S" x Sk] = 
[S"] x [Sk] Let 0 denote the homology class of a 0-slmplex in any arcwise 
connected space. Let $,,E H"(Sn) be the unique class such that 8, n [S"] =a. 
We compute, using the formula in 5.4: 

(Y,, x I ) n [S" x Sk] = ($,, x 1) n ( [Sn] x [Sk]) 

= ($,n[S") x ( I  n[Sk]) =$ x [Sk], 

It follows that D([S:] x a) = (- 1yk(l x 8,) and D(G x [Sk]) = 8, x 1. Thus 

The implication of this is as follows. If N" and Kk are smooth, compact, 
connected manifolds meeting transversely in Mn+k then at each point x in 

n K, the sign of [x] in the class [N]*[K] is determined as 
at the order of writing N and K is important). Choose a 

nsistent with the orientation of N, follow it by such a 
compare it with such a frame in the total space W. If it 

ches, in the sense of defining the same orientation, then assign [x] a plus 
else give [x] a minus sign. (In a coordinate system about x, this can 

uct of spheres example, but 
tively plausible. A proof would require extending the range 

f definition of the intersection product to relative classes, and discussion of 
on't really need this, and since it is not very impor- 

details. The idea, however, is contained in the proof of 

the more general case of the product of three spheres is 
considered. That allows a general description of how the intersection is 
oriented. Here is the description of that (without proof): If Nn and Kk are 
compact, oriented manifolds in the compact oriented manifold Ww, then the 

ct [N] [K] = [K n N], where the component of K n N 
oriented as follows. Take a frame at x in K n N, then 

t with its orientation. By transversality, 
these give a full frame of W. If this frame is consistent with the orientation 
of W, then give the component of K n N containing x the orientation defined 
by the frame chosen in this procedure. If not, give it the opposite orientation. 
(It should be noted that this works out this nice way because of the reversal 
of order in the definition of the intersection product [N] [K] = (v, uv,)n 
[W]. Since some other authors do not reverse the order, there is a sign 
difference between our intersection product and theirs. Our intersection 
product does agree with that of most classical authors, e.g., Seifcrt and 

11.13. Example. Consider W = CP2. The two copies of CP' given In homo- 
geneous coordinates by ((2,: 2,: 0)) and { ( O :  z, : z,)) intersect in a single point 

one of these N and the other K, we deduce that [K] * [ N ]  = 

n K ] ,  which is a generator of H,(CP~). It follows, as if we dld not already 
now it, that both of these are generators of H,(cP,), so [N] = + [K] w ~ t h  
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sign depending on how one __chooses the orientations, and not mattering class since the difference is a bgundary, the boundary of the solid 
much. If a is the dual ciais to one of these, then we conclude that a2 generates r a much deeper exploration of this matter, see Thom [I]. 
H4(CP2). This completely characterizes the ring structure of H*(CP2). 

11.16. Theorem (Thom). If M" is a smooth, orientable, closed manifold then 
11.14. Example. Consider W =  P2, the real projective plane. This is not gy class in H,- ,(M) or in H ,  - ,(M) is represented by the fundamental 
orientable, but the results of this section still apply as long as we use (c mooth submanifold, possibly disconnected in the case of codimension 1. 
logy with coefficients in Z, exclusively. In the common picture of the proj 
plane as a disk with antipodal points on the boundary identified, we irst consider the case of a class ~ E H , -  ,(Mn) w H1(M"). By Hopf's 
that a curve going from a point on the boundary, through the middle Theorem 11.6 of Chapter V and Theorem 11.9 of Chapter V there is a map 
to the antipodal point on the boundary represents the nonzero element f:  M +S1 such that D,(a) = f *(u) where UEH'(S') is a generator. We can 
H,(P2; Z,), since it represents the generator of n,(P2). One can take two su assume that f is smooth. Let XES' be a regular value. Then u = D,,[x], the 
curves that intersect transversely in one point. It follows that the dual c Thom class of the normal bundle of (x} in S1. We claim that N"-' = f -'(x) 
homology class a€H1(P2; Z,) must have a2 # 0, an algebraic conclusion fro is the required manifold. Note that f gives a bundle map from the normal 
a simple geometric fact. bundle of N to that of (x}. It follows from this and Corollary 11.6 that f *(u) 

On the other hand, the fact that a2 # 0 implies that any two curves joini class of the normal bundle of N. That is, f *(u) = DMINIM, and 
antipodal points on the boundary of the disk must intersect, a geomet o D,(a) = f *(u) = D,[N],. Consequently, a = [N], as claimed. 
conclusion from an algebraic fact. The case of codimension 2 is similar but uses the fact from Section 12 of 

that H2(M") z [M; CPk] for k large; k > n is more than large 
11.15. Example. Suppose that N and K are submanifolds of W and in the correspondence is f *(a)++[ f]  where f: M -+ CPk and 
one, or any odd number of transverse intersection points. Then generator. Note that cr is dual to [CPk-']EH,,_ ,(CPk); see 
HJW; Z,) cannot be zero. For example, suppose that we have an emb stead of taking a regular value, one modifies f by a homotopy 
N" c W"+l that is one-sided. That is, one can follow a normal vector a o be a map transverse to CPk-' using Corollary 15.6 of Chapter 11. (Actually 
some curve in N and come back to the original point with the n he simpler Corollary 15.4 of Chapter I1 suffices, by moving cPk- '  instead.) 
reversed. Then the tip of the normal describes a path in the compl n, that f 4 CPk- l we put Nn-2 = f - '(CPk- l). Again f gives 
N and we can join its ends by an arc cutting through N at the single, or from the normal bundle of N in M to that of CPk-' in CPk. 
point. This gives a circle that intersects N transversely in a single poi of the argument is identical to that of codimension 1, and 
the circle defines a nonzero class in Hl(W; Z,). (Also [N] gives a 1, is dual to f *(a), which is an arbitrary class in H'(M) x 
class in H,(W;Z2).) Thus, we have shown that if H,(W;Z2)=0, then o 
cannot embed a codimension 1 surface in W so as to be one-sided. T 
condition H,(W, Z,) = 0 implies that W is orientable, and in that cas 
sided" is the same as N being nonorientable. So one could rephrase 
clusion to say that such a W cannot contain a codimension 1, nonori the product Sn x Sk x S. Orient such that [S" x Sk] = [Sn] x [Sk] ,  and 

manifold, a result we had previously by another method. so on, keeping the ordering of the three spheres as given. Also, for notational 
purposes, identify S" x Sk with Sn x Sk x e ,  etc. Then show that: 

The question arises as to which homology classes can be reali [S" x Sk] * [ S n  x S'-J = [S"] (meaning [S"] x Q x 01, 
embedded submanifolds. A general answer is that not all of them can be so [S" x Sk]  [Sk x Sr] = [ S k ] ,  
realized but enough to them can be realized so as to be useful. We conclude [ S  x S ] . [ S k  x SS] = [S'-J. 
this section by showing that all codimension 1 and 2 classes of a smooth mani- 
fold can be so realized as the fundamental classes of embedded smooth su 2. Discuss the lntersectlon theory of CP"#CPn. 
manifolds. The proof requires Hopf's Theorem from Section 11 of Chapter V. 3 Use lntersectlon theory to show that the fundamental class of C P ' c  C P n  
The proof for codimension 2 requires a result from Chapter VII and also generates H2'(CP") for all 0 5 i 2 n 
Section 15 of Chapter It. However, this material will not be used elsewhere. 
In the case of codimension 1, the submanifold must be allowed to be dis 4. For homology classes a, b of M n ,  show that a.h = (- l)"("-dega)d,(b x a), where 

connected as the example of S1 shows. (Also see Problem 6.) For highe d :  M -. M x M 1s the dragonal map. 

cod~mension, one can always connect components of the submanifold by 5. Prove the orn~tted homology case of Theorem 11.3 determining the appropriate 
running tubes from one to another. (This does not change the represented sign 



6. If M" is a smooth_closed orientable n-manifold and N n - '  c M" is a smoothly 
embedded dosed connected oriented (n - 1)-manifold with 0 # [ N ] , E H , _  , (M) 
then show that [NlM is indivisible; i.e., [N], # ka for any integer k > 1 and class 
aeH,-,(M). (This can be proved without smoothness, but is easier with it.) 

7. For a, ~EH,(M") and c,deH,(Nn) show that 
(aeb) x (c.d) = (- l)(m-dcea)(n-degd) (ax  c)*(b x d) 

and use this to rework Problem 1. 

8. Use intersection theory to determine the cohomology ring of a 2-sphere with k 
handles attached (i.e., the connected sum of k tori). 

12. The Euler Class, Lefschetz Numbers, 
and Vector Fields 0 

In this section we introduce the "Euler class" of a vector bundle over a 
manifold M, and, in particular, of the tangent bundle, or of the normal bundle 
of M when M is embedded in another manifold. This is closely related to 
the Thom class and also to the Euler characteristic, from which it derives 
its name. We use this to give a geometric version of the Lefschetz Fixed Point 
Theorem (in Theorem 12.6) which was the original viewpoint of Lefschetz. 
This is then applied to the study of vector fields, culminating in the classical 
theorem of Poincari: and Hopf concerning the "indices" of vector fields. 

Since a vector bundle over a manifold M is the normal bundle of M in 
the total space of the bundle, it suffices to treat normal bundles. 

12.1. Definition. Let Nn be a smoothly embedded submanifold of Ww, both 
oriented, and with N meeting aW transversely in aN, if there are boundaries. 
Then the Euler class of the normal bundle to N in W is 

= ( i r ) * ( r : ) ~ ~ ~ - ~ ( N ) .  

Since ~;EH"-"(W), the Euler class must vanish if this group is zero. This 
is a triviality, but it is useful enough to write down: 

12.2. Proposition. In the above situation, if Hw -"( W) = 0, then = 0. 

Let T be a closed tubular neighborhood of N in W. Then there is the 
commutative diagram 

The Thom class 7  is in Hw-"(T,aT) and maps into the class T , W E H " ' - ~ ( W ) .  

Both map into the Euler class X,W~Hw-n(N). 
Suppose, In this situation, that there is a nonzero section of the normal 

bundle, i.e., a map N -+dT such that the composition N j 8 T - t  N with 

the projection is the identity. Then the second map in the exact sequence - 
H*(T, aT) -+ H*(T) 4 H*(aT) is a monomorphism, and so the first map is 

o. But, by the above diagram, that implies that the Euler class is zero. 

12.3. Theorem. If there is a nonzero cross section of the normal bundle of N 
in W (both oriented) then the Euler class X: of the normal bundle of N in W 

CI 

Thus if the Euler class is not zero then there is no nonzero normal section. 
One speaks of the Euler class as an "obstruction" to having a nonzero normal 

We wish to study the Euler class of the tangent bundle. To do that we 
ote that the tangent bundle is realized as the normal bundle of the diagonal 
in N x N. To see this, note that the tangent bundle of N x N is just the 
oduct of the tangent bundle of N with itself. The tangent bundle of A sits 
this as the diagonal. Either one of the factors in the tangent bundle of 

N x N, restricted to A, meets the tangent bundle of A trivially, and thus 
projects isomorphically onto the quotient when we divide out by the tangent 
bundle of A. But that quotient is just the normal bundle of A in N x N by 
efinition, showing that the tangent bundle of N is isomorphic to this normal 

For the next few results, we are going to assume that Nn is a closed, 
ented n-manifold. At the end of the section we shall show how to generalize 
the bounded case. Put W = N x N and let d: N -+ A c W be the diagonal 

z = zf N ~ H n ( N  x N), 

which is the Thom class of the tangent bundle of N. Also put 

the "Euler class of the tangent bundle" of N. 
We wish to "compute" this class. Recall the properties of the Kronecker 

product given in Corollary 5.3. They will be used extensively in the remainder 
of this section. 

12.4. Theorem. Take coefficients of (co)homology in some field. Let B = (a) 
be a basis of H*(N). Let {a"} be the dual basis of H*(N). That is, 

< a" u B, EN1 > = s,,,. 

(Note that deg(aO) = n - deg(a).) Then 

z = 1 (- I)~'~ '" 'C~" x a E Hn(N x N). 
ael3 
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Therefore, also ~12.6. Theorem. The hfschetz number L( f )  = [T].[A], the intersection number. 

x = d*7 = x (- l)deg(a)aO y a. 
asB  

PROOF. Let y eHn(W)  be the Poincare dual to T, i.e., y n [ W ]  = [ r ] .  Let 
f *(a) = Ca fO,,,!3, where a, ,!3 run over a basis of H*(N; Q). As above, let z be 

PROOF. By the cohomology version of the Kiinneth the Thom class of the tangent bundle, i.e., the dual of the diagonal [A].  We 

we can write 

z = x Aa,,P.a'O x p'. C ~ I - C A I  = E , ( C ~ I * C A I )  = E , ( ( ~ u Y ) ~ c w I )  

Note that deg(a') = deg(p'). For the following computation, choose ba = ( ~ U Y , C W I >  = < ~ , Y ~ C W I >  

elements a, B of degree p. Then we shall compute ((a x p")uz ,  [W] ) in tw = ( T , c ~ I ) =  ( ~ ( 1  X ~ ) * C N I )  

ways: = ( (1 x f )*(7), P I )  

( ( a  x BO)u~,Cwl> = ( a  x B",znCWl> 
= C ( -  l)deg(a)((l x f)*(aO x a), [ N ]  ) 

a 

= ( a  x B",d*[NI> =C(- l)degfa'(aou f * (a) , [N])  
= (d*(a x B"), CNI ) 

= ( % ~ B o ,  C N I >  = i(- a 1 1 ~ ~ ' ' ~ )  ( a 0  u x / p , a ~ ,  [ N I  ) 
- ( - I ) P ( ~  - P I  

P 
- (B"ua ,CNl> 

= C(-  l)degCa) fa,a 
= ( - l)P(n - p)d 

a,#- a 

On the other hand = L ( f  1- 17 

<(a x P")u7 , [w]> = ( (a  x B " ) U ~ A ~ . , ~ . ( C ( ' O  x P ) , [ W ] )  From this, but just for manifolds, we again deduce that iff  has no fixed 

= ( - l)"-PAa,p ( (a u a') x (p" u B), [NI x CN1> 0, since T n A  = QI in that case. This holds even when f is 

(since one gets zero for a', /I' # a, #?, all of degree nd N is only a topological manifold since the dual classes y, 7 live 

= (- l)n-p+p(n-p)+n d H*(W, W - A), respectively, so that y u z € H * ( W ,  W) = 0 
Aa,,I("Oua, CNl)<BOuB,CN1> 

- - (- ~ ) P ( ~ - P ) - P A  
a,P- Note that Theorem 12.6 implies that L(f) can be computed from local 

Thus we conclude that = (- 1)P6a,P. 
data about the fixed points iff is in "general position," i.e., r 4 A .  In fact: 

2.7. Corollary. I f  N is a smooth, closed, orientable manifold and f :  N + N is 12.5. Corollary. The evaluation of the Euler class on the orientation class 
the Euler characteristic. That is, ( x ,  [ N ] )  = x(N).  smooth and such that the differential f,x does not have 1 as an eigenvalue at 

anyjixed point x o f f ,  then 

PROOF. We can use the rational field for calculation. Then we have 

( x , [ N ] )  = x(- l ) d e g ( a ) ( a O ~ ~ , [ N ] )  = C(- l ) d e g ( a ) =  
a a where the sum 1s over all 

since the sums are over a basis of cohomology. 
PROOF. The hypothesis can easily be seen to be equivalent to T +A. Thus, 
we need only determine the "orientation" (sign to be attached to) each point Suppose now that f :  N -+ N is a map of a clos 
of T n A  to give the proper intersection product [ r ] * [ A ]  According to manifold into itself. Let (1 x f ) :  N -+ N x N denote the composition ( I  x f )o  
Example 11.12, we just have to write down tangent vectors to r and then 

Then ( 1  x f ) (N)  = ((x, f ( x ) ) e N  x N )  = is the graph of f. Orient r by [r] 
to A and compute the sign of the resulting determinant. This gives the ( 1  x f), [ N ]  and W = N x N by [ W ]  = [ N ]  x [ N ] .  Define the "intersectio 

number" of [r] and [ A ]  as 
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as claimed. Even if one does not want to take advantage of Example 11.12, 
it is clear that the sign that should go with x is the one claimed up to a sign 
factor depending only on the dimension n of N .  Thus that sign can be 
determined just by working out one example in each dimension. The map 
of Sn to itself which is the reflection in the line through the poles, is an 
example that works to give the desired result. The reader can fill in the details 
of this. 0 

We remark that the hypothesis that f be smooth is stronger than necessary. 
It need only be smooth in a neighborhood of each fixed point since it can 
be approximated by a homotopic smooth map with no additional fixed points 
and identical to f in the neighborhood of each fixed point. 

Now consider the case of a k-disk bundle W n + k  over Nn. AS usual, its 
Thom class T is defined by T n [ W ]  = i z [ N ] .  Then the "self-intersection class" 
of N in W is defined to be [ N l W * [ N I w ~ H n - , ( W ) .  We compute: 

[ N l w * [ N l w  = ( z u z ) n [ W ]  = z n ( z n [ W ] ) = r n i , [ N ]  
= i , ( i*(z)n [ N ] )  = i , ( x n  [ N ] ) ,  

where is the Euler class of the bundle. Since i,: Hn - , (N) -+ Hn - ,(W) is an 
isomorphism, by the homotopy axiom, we may as well think of this as 
x n [ N ]  E H ,  -k(N).  Thus we have: 

12.8. Proposition. If W n + k  is an oriented k-disk bundle over the orientable 
closed man$old Nn, then the self-intersection class of N in W is the Poincari 
dual, in N ,  of the Euler class of the bundle. 17 

In case k = n then the augmentation of the self-intersection class is the 
"self-intersection number" [ N I w . [ N l w  = c , ( [NIW EN],) = (x, [ N ]  ), also 
called the "Euler number" of the bundle. Thus if x = 0 then the self-intersection 
number is zero. This can be realized geometrically by moving the zero section 
of the bundle so it is transverse to the zero section and then counting the 
finite number of intersections with signs as discussed previously for the 
Lefschetz number. It is possible to show that a positive intersection point 
can be cancelled against a negative one. (See Figure VI-9 for the suggestion 

Figure VI-9. Cancellation of opposite intersection points. 

of this). Thus, if the Euler number is zero, one can get rid of intersections 
altogether. That is, one can prove that if the Euler number is zero then the 
bundle has a nonzero section. In particular, when the bundle is the tangent 
disk bundle, then the Euler number is the Euler characteristic, and one has 
the result that a closed orientable manifold has a nonzero tangent vector 
field if and only if its Euler characteristic is zero. (A proof, but from a different 
perspective, is given in Corollary 14.5 of Chapter VII.) 

In Section 18 we give an important application of the use of the intersection 
product to a very interesting construction of differential topology. That section 
can be read at this point if so desired. 

We devote the remainder of this section to showing how to generalize 
Theorem 12.6 and Corollary 12.7 to the case of manifolds with boundary, 
and to some classical consequences of that generalization. To do this, we 
must generalize some of the material in the last section slightly. 

We are going to be concerned with W = N x N where N has a boundary. 
The "corner" on a W  will not cause any trouble. In this case, dW = 

x dN u aN x N = A u B naturally breaks up into these two pieces, and that 
11 be crucial to the discussion. 
Let us first look at the general case of a manifold W w  with boundary 

A u  B where A and B are (w - 1)-manifolds with common boundary A n  B. 
By Section 9, Problem 3, there is the duality isomorphism 

n [ W ] : H P ( W , A )  -% H,-,(W,B), 

whose inverse will be denoted by Dw. We depend on the context to distinguish 
is from its analogue with A and B reversed. Let Nn and K k  be manifolds 

boundary such that ( N ,  d N )  c (W,  A) and ( K ,  a K )  c (W,  B). Also assume 
N and K meet transversely in N n K c W - dW. Then, as in Definition 

1.8, there are the classes 

CNIWEH,(W, A), [Klrv~Hk(W, B), 

which dualize to the Thom classes 

T,W = D, [NI ,EH"-~(W,  B), T :  = D w [ ~ ] w ~ ~ w - k ( W ,  A). 

We still have the intersection class of these: 

CNlw*CKlw = ( T : ~ T , ~ ) ~ C W I ~ H ~ + , - . ( W ) .  

Since N n  K c W - aW, we can take [ K n  N] ,EH,+, - , , , (W)  with Thom class 

T : , ~  = D W [ K n  N ] , E H ~ ~ - " - ~  ( W ,  d  W) .  

The proof of Theorem 1 1.9 still applies to give [K n N ] ,  = [ N J W  [ K ] ,  and 
W W W  

T K n N  = T K  U T N .  
Now we specialize to W = N" x Nn as in the discussion below Theorem 

12.3, but now where N has a boundary. We regard (A,dA) c N x ( N , a N )  
and, consequently, z = zf: x N ~ H n ( ( N ,  d N )  x N).  
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h Theorem 12.4 take a to range over a basis B of H Y N )  and a0eH*( 
then denotes the corresponding element of the dual basis. There is no difficult 
in adapting the proof of Theorem 12.4 to show that 

t = (- l)deg(a)~o x CI E Hn((N, aN) x N). 
a d  

Now we consider the situation of Theorem 12.6. Thus let f :  N -+ N let y ~ i n t  Dn be a regular value of *. Then $-'Cy) = {x,, . . . , xk) is 
map. Here we assume, however, that f has no fixed points on the boun d there are disks Di about the x, mapping diffeomorphically to a 
aN. As before, put about y with N - UDi going to Dn - D. Each map H,(N,aN)-+ 

(N, N - {x,)) z Hn(D,, Di - {xi)) is an isomorphism, providing an orienta- 
I x f =(1 x f)od:(N,aN)-+(N,aN) x N n of Dl. The commutative diagram 

and let r = {(x, f ( x ) ) ~ N  x N) be the graph off. Note that (T, aT) c 
and so [rl aN) x N), [rl [A] EH,(N x N) and [r].[A] H,(N, a ~ )  * + H,(D", sn- 
are defined by the discussion above, since we took [A]EH,( 
Then the proofs of Theorem 12.6 and Corollary 12.7 go throu 
to give, finally, the following result. 

12.9. Theorem (Lefschetz). Let f: N -+ N be a map on the compact, orient v 

manifold N with boundary. Assume that f has nofixed points in 8N. Then, @H,(D,, D, - {x,)) - H,(D", Dn - {Y)) 
the above notation, 

Y f )  = Crl-CAI. 

If, moreover, f is smooth and f,x does not have eigenvalue 1 at any fixed poi ,EDi]. This means that deg I) is the sum of the local 
x off, then know the latter are the signs of the Jacobians of 

at xi. But IC/ = I - 4,  so that the differentials satisfy 
Yf = Csigndet(I- f*J, 

X **=I-4, .  

the sum ranging over thefixed points off. We conclude that sign(det($,*)) = sign(det(1- 6,x)) at each x = so that 

12.10. Definition. Let Nn c Rn be a compact smooth domain. F deg G = deg I) = Csign det(1- 4,X) = L(4) = L(1) = x(N) 
<,be the outward unit normal to a N  at x. Then XI--+(, is a map G: aN -+Sn- X 

called the Gauss map. by Theorem 12.9 and the interim results. 

12.11. Theorem (Lefschetz). In the situation of Definition 12.10, t The map $ in the proof of Theorem 12.11 can be thought of as a vector 
the Gauss map G equals the Euler characteristic x(N).  d on N and the latter part of the proof can be generalized a bit to the 

e of vector fields with isolated zeros, as follows. If 5 is a vector field on 
PROOF. Let T be a closed tubular neighborhood of dN and define a and x ~ i n t  N is an isolated zero then take a disk D about x containing no 
f: T n  N -+ (aT) n N projecting inward normal vectors to their heads. other zeros. Then the map 
that on aN we have f (x) = x - 5,. We can extend f by the ide 

aD -+sn+l remainder of N, so that f:  N -+ N and is homotopic to the identity. 
It follows that L( f )  = Y l )  = x(N) and it remains to show that L(f) = deg G. given by yw<(x)/11 r(x) 11 is defined. Its degree is called the "index" of 5: at x. 
We can approximate f by a smooth map & whlch coincides with f on See Figure VI-10. If one removes disks Dl about each zero of r then the 

aN and is a close enough approximation so that 4 maps N into N, and above map extends to N - U D, -+ Sn-' and essentially the same proof shows 
Ilx - b(x))I 5 1 for all XEN. that the sum of the indices equals the degree of thls map on dN-+Sn-'. If 

Put $(x) = x - &(x): N --+ Dn and note that $ 1  alv = G. From the commu- 5 points outward from N on i3N then this map is homotopic to the Gauss 
tatlve dlagram map and so its degree is x(N) Therefore, we have: 
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Figure VI-10. Indices of vector fields and index sum 

12.12. Proposition. If N" c Rn is a compact smooth domain and 5 is a vector 
Jeld on N having only isolated zeros, all in int N, then the sum of the indices 
of 5 at its zeros is equal to the degree of x~<(x ) / I l  t(x)II on aN  +Sn+'. I n  
particular, if5 always points outward on dN, then this is the Euler characteristic 
x(N). 

One can extend this result to vector fields on arbitrary smooth manifolds 
N, possibly with boundary, as follows: 

Let 5 be a vector field on N which points out of N on dN (if any), and 
has only isolated zeros. Then -5 induces a local flow (f,) on N defined 
only for te[O, E) ,  some E.  (Actually it is defined on all of R,, because of the 
compactness of N and the fact that - t: points inward on dN. However, we 
do not need that.) The program is to put f = f, for some sufficiently small 
t, relate the indices of 5 to local data for f near its fixed points and to apply 
Theorem 12.9. There are a few technical difficulties: 

(a) the index of 5 at a zero must be defined in the general case; 
(b) f may have more fixed points than the zeros of 5; 
(c) in a coordinate patch around a zero of 5, f is not quite the same as the 

displacement map x ~ x  - [(x); and 
(d) f may not be transverse to the diagonal; is., it may have eigenvalues 1. 

Using local coordinates U A Rn at a zero p of 5, one can define the 
index of 5 at p as the index of the induced field on Rn. It is not very hard 
to see this is independent of the choice of local coordinates. The idea of one 
method of doing this is in Lemma 16.3 of Chapter 11. We shall not detail that. 

c- 12. I lle buler Llass, Leiscnett Iuumoelb, itflu v cctor rlclub . I 0  1 

-Next, let p,, .  . . , p , € N  be the zeros of 5, fix local coordinates at each p, 
and take disjoint disks Di about pi as origin, in terms of the local coordinates 
there. Since - 5 has no zeros on N - UD,, there is an E > 0 SO that f, has no 
fixed points outside Uint Di for any 0 < t < E. (For, if not, there is a sequence 
of points x, such that ,f(xn, t) = ft(xn) = x,, for some 0 < t < l/n. By passing 
to a subsequence we can assume that xn + x with {(x) # 0. Then f (x,, t) = x, 
for t in a lln-dense set in [O,E) and continuity then implies that f(x, t) = x 
for all t, whence ((x) = 0, a contradiction.) Also, in the given local coordinates 
about p,, we have 

x - f,(x) - lim - - <(x), 
1-0 t 

and so we can also take E SO small that x - f,(x) and 5(x) are never antipodal 
on dD, for all i and 0 < t < E .  Now put f = f, for some such 0 < t < E.  Note 
that, although we have guaranteed that f has no fixed points outside the 
D ,  it may well have more than one fixed point in a given Di. 

Since, in the coordinates about pi, x - f (x) is never antipodal to r(x) on 
D ,  it follows that x w x  - f (xf = qi(x) has the same degree as does xwt (x )  
s maps dD,+ Rn - {O}. Therefore the index Ii of 5 at pi equals the degree 
f qilaD,. Of course, qi is defined only on the coordinate patch. 

Let F, c E, c Di be concentric disks about pi such that int Fi  contains all 
e zeros on qi and let I I :  Di + [0, I] be smooth, equal to 0 outside Ei and 
1 on F,. Let q€Fi  c Rn be a regular value of q, and consider 

On F,, this has only "nondegenerate" zeros (meaning the differential is 
nonsingular at the zero). Also, q can be taken so close to the origin that q' 
has no zeros on D, - F,. Also, on aD,u]: equals u],. Thus the index I, of < at 
pi, which equals the degree of u],laD,, also equals the index sum of q: on D, 
by Proposition 12.12. 

Put f '(XI = x - q;(x) on Di and f '(x) = f (x) on N - U D,. Note that 
f' N f N 1. NOW f '  does not have eigenvalue I at any fixed point, and so 
the sum of its local indices at fixed points in D, equals I,. By Theorem 12.9, 
we can now conclude that the index sum Eli of 5 equals the index sum (the 
right side of the second displayed equation in Theorem 12.9) of f '  which 
equals x(N) Because of the use of Theorem 12.9 we have implicitly assumed 
that Nn is onentable. Thls assumption can be avoided by the passage to the 
orientable double covering of Nn. This doubles both the ~ndex sum and the 
Euler charactcristic. (The doubling of the Euler characteristic can be proved 
via a triangulation of N or by appeal to the Smith exact sequence in Section 20 
of Chapter IV.) Summar~zing, we have: 

12.13. Theorem (Poincari-Hop@ If < is a tangent oc.ctor Jield on the compact 
rnunEfold N" whzch has only isolated zeros and points outwurd ulong the 
boundary dN, if any, then the sum ojthe indices oj 5 ut i r s  zeros equals the Euler 
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characteristic o j  N :  mall sphere (in appropriate coordinates) about any fixed point. A tangent 
n such a sphere is homotopic to the outward normal field and so has 

Eli = x(N). 1. By Theorem 12.13, the number of zeros is x(G/T), proving (a). A 
For another approach to this topic, see Milnor [3]. argument on GIN yields (b). For (c) let T' be some other maximal 

of G and consider the action of H on G/Tt. By a similar argument, the 
12-14. Corollary (Fundamental Theorem of Algebra). If is a comple er of fixed points is x(G/T') > 0 and so a fixed point exists. That is, 
polynomial of positive degree then p(z) has a zero. ere is a g s G  such that HgT' = gT'. This implies that g- l  T~ = T'. 

P ~ m ~ .  Let P(z)=zn+alz"- '+ -.. +a,,n>O. For zED2 define The finite group NIT is called the "Weyl group" of G. It, and its action 
n T, is known to characterize G up to "local isomorphism." 

( 1  = (1 - 1 1 2 ~ 1 (  - z ) )  = z + a - z 2  1 + - . . + an(l - lri2y. 

The last expression shows that 4 is defined and smooth on all of ~2 and equ 
zhzn on aD2. Therefore 5 gives a vector field on D 2  which has degree n onsider S3 as the unit quaternions. Let f: S3 + S3 be f (q) = q2. Use the n~ethods 
aD2- If P has no zeros then neither does r. By Proposition 12.12, the degre f the present section to find the Lefschetz number o f f .  
n>O of r on aD2 must equal the index sum of 5 on D2. Therefore r m 
have a zero. . Consider S3 as the unit quaternions. Let f: S3 -+ S3 be f (q) = q3. Use the methods 

of the present section to find the Lefschetz number off. 

As a more serious application we shall briefly discuss "maximal tori" 3. Consider S3 as the unit quaternions. Let f: S3 x S3 -+S3 X S3 be f (P, q) = pq2). 
compact connected Lie group G. We shall assume as known that a corn use the methods of the present section to find the Lefschetz number o f f .  Also 
~ ~ n n e c t e d  abelian Lie group is a torus; i.e., a product of circle groups. check your answer by computing it from its definition. 

proof of this is not hard but would lead us too far afield. We shall also assu A be a 2 x 2 matrix with integer entries. As a linear transformation of the 
as known that if a compact Lie group acts smoothly on a manifold t e, this induces a map f on the torus R x R/Z x Z to itself. Show that the 
there are coordinates about any fixed point in which the group acts umber of fixed points off is 11 - trace(A) + det(A)I unless the latter is zero. (Hint: 
orthogonal transformations. The proof of this is easy if one knows compute L( f )  two different ways.) Also verify this result on at least two nontrivial 
Riemannian geometry. In our case, the action considered is by conjug 
and this special case can be handled by the discussion at the end of section Let p&n be fixed. For q€Sn, map q to the point on the great circle from P to q 
of Chapter V. of twice the distance q is from p along the circle. (For example, - P maps to P and 

There is clearly a maximal compact connected abelian subgroup, hen the equator having p as a pole maps to - p.) Use Corollar~ 12.7 to find the degree 
a ''maximal torus," T of G. An automorphism of T is given by a unimodula of this map S" -+ S". 
matrix with integer entries. It follows that the normalizer N of T in G has 6. Let f :  M2 + M2 be a smooth self-map on the closed connected orientable 
finite, since otherwise there would be a one-parameter group in N ,  but 2-rnanifo]d ~ 2 .  Call a fixed point x off "elliptic" if the differential f, at x satisfies 
in T, which commutes with T, and the closure of this, together with T, ~ 0 ~ 1  the inequality 1 + det f, >trace f,. If f has only isolated fixed points, all elliptic, 
give a larger compact connected abelian subgroup of G. and has at least one of them, then show that M2 = S2. 

12-15. Corollary. Let T be a maximal torus of the compact connected Lie Then M is said to be "stably parallel~zable" lf z @ E  is trivial where 7 is the tangent 
group G and let N be its normalizer in G. Then: bundle  of^. show how to define a "Gauss map" on such a manifold that generalizes 
(a) x(G/T) = order NIT; the Gauss map M" -.sn on the boundary of a smooth domain in Rn+',  and which 

(b) x(G/N) = 1; and has degree zero lf M is parallelizable. (The map will depend on some arbltrar~ 

(c) any other maximal torus of G is conjugate to T. 
8. 1f K is a finite slmpliclal complex then ~t IS known that K can be embedded In 

I'ROOF. It is easy to see that there is a one-parameter subgroup H of T whose the interior of some compact smooth manlfold M" with boundary, with K as a 
closure is T. Consider the action of H on G/T by left translatton. We have deformation retract of M". Assuming thls, use Theorem 12.9 to rederlve Hopf's 

that H9T=  gTog-'HgT = T-+g-'Tg = T-geN and so the fixed point version, Theorem 23 4 of Chapter IV, of the Lefschetz Fixed Point Theorem. 

set of H is the finite set NIT. Thus H generates a vector field on G/T with Let T be a toral subgroup of the compact connected Lie group G and assume 
exactly these zeros. By the previous remarks, the vector field is tangent to a that Tis not a max~mal torus. Then show that x(G/T)=O. 



13. The Gysin Sequence a s 

Section 11 and the-definition of the Euler class from Section 12  
Let A be a compact space which is a neighborhood retract in som 

euclidean space. (These restrictions are stronger than necessary, but our 
applications are all compact smooth manifolds anyway.) Let 2: A" +A be a 

13.1. Lemma. There is the following commutative diagram of H*(A)-module 

PROOF. The module structure is via the cup product. For A" it is it* followed 
the cup product. The commutativity is by 

13.2. Theorem. For an oriented (k - 1)-sphere bundle n: X -+ A there is the ' 

= ( - f)"h(d*(/l) u %*(a)) (by Theorem 45) 
= (- ~),J+'(J+ "h(~*(ci)u d*B) 

In this section we discuss a useful exact sequence that relates the cohomo 
= (- l)'h(?c*(~)ud*P) 

of the base space of a sphere bundle to that of the total space. This sec 
assumes knowledge of the Thom class and Thom isomorphism from = (- 1)'au hS*B 

= (- l)'auo*/3, 

imate equation is from the fact that h is an H*(A)-module 

k-disk bundle. Then we have the Thom class ze~~(A",dA"). We will use t 13.3. Corollary. Ifa sphere bundle has a section then its Euler class x = 0. 
notation j*: H*(A", dA") -+ H*(A") and i*: H*(A")-+ H*(A). 

We define the Euler class x = i*j*(z)€Hk(A). This is a generalization of th F. We had this before. Here it follows from the fact that n* is a mono- 
notion of Euler class in the previous section. hism when there is a section s, since s*on* = (nos)* = l* = 1. Then apply 

displayed, with p = 0. 

homomorphisms: ppose S"+k- -+ Mn is a bundle with Sk- as fiber, k > I. 
ome integer r and M has cohomology ring 

HP(A) a H p + k ( ~ )  

-]%*(,". ,*I- 1%. H*(M") = ZCXI/(f+ 

HP+~(A", aA") __Lf__) HP+~(A"). ere XEH*(M) is the Euler class of the bundle. 

OOF. A portion of the Gysin sequence is 

~i+k-l(sn+k-~),HL(M) ~ i + k ( ~ ) - + ~ i + k  (S n + k - 1  1. 

uppose that 0 # ~ E H ' + ~ ( M )  for some i + k > 0. We have 0 < i + k I n < 
+ k - 1. Thus, the right end of the displayed sequence is zero. Hence ci = 

exact "Gysin sequence" H1(M). This cannot be repeated indefinitely and can only 
end when i becomes zero. This implies that 1, X, x', . . . , f ,  for some r, is an 
dditive basis for H*(M), which must be free abelian. 

It is known that the situation of Corollary 13.4 can happen only for 
= 1,2,4, or 8; see Section 15. 

13.5. Example. Let T2"+' be the unit tangent bundle to Sn. This is also 
called the real Stiefel manifold Vn+ ,,,, the space of 2-frames in R"+' (the 
first vector of the frame 1s the base position on the sphere, the second is 

r). This is an (n - 1)-sphere bundle over the n-sphere 
+S". The Euler class xeHn(S") is zero for n odd, and twice a 

generator for n even, because the Euler characteristic of S" is zero or two, 
homomorphism means that for cieHi(A)and /?€HJ(X) we have o * ( ~ * ( a ) ~ / j )  = respectively The critical parts of the Gysin sequence are 
( -  I)'aua*(8). TO see thls let k: X +A" and compute: 

o + H ~ + ~ ( T ) + H o ( s " ) % H ~ ( s " ) ~ H ~ ( T ) + o  

= (-  I)"hh*(fiu k*ii*(ct)) o-. H ~ " -  I(?-)-+ H"(s")+o. 

where all maps are H*(A)-module homomorphisms. 

PROOF. This comes from the associated k-disk bundle 5 :  A" -t A and the 
cohomology sequence of the pair (A", aA") = (A", X), by replacing the terms 
involving A" using Lemma 13.1. Thus 

a* =(E*(.)"Z)-l~d* =hod*, 

9 
where h =(?c*(.)uz)-': HP+kt l  (A",x) a HP+'(A). That a* is an H*(A)- 4 
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induction, the group on the right is free abelian, and hence the sequence 
Z for i=0,2n- 1, its, and the middle group is free abelian. 

Let x = x2,+, E H ' ~ + ~ ( V ~ , ~ - &  be such that a*(x) = 1 EH~(V~, , - , -  ,). Since Z fo rnoddand i=n ,n -1 ,  
H'(T) = an odd-dimensional class, 2x2 = 0. Since it is in a torsion free group, 

Z2 for n even and i = n, 
0 otherwise. ecall that a*(n*(y) u x) = (- l)deg(Y)y u a*(x) = ( - l)deg(y)y. Define the map 

13.6. Example, Consider an S1-bundle M3 over S2. The Gysin sequence is a>: H*(Vn,,-k-1)O A(x)+H*(Vn,n-k) 

0 -, H1(M) -+ H0(S2) 5 H ~ ( S ~ )  + H~(M) 4. by Q,(y O 1) = n*(y), and cD(y 8 x) = n*(y) u x. This is an algebra homomor- 
phism since x2 = 0. The map on y@x splits fa*, and so Q, is an additive 

It follows that if x = 0 then M has the cohomology ring of S1 x S2. If x is isomorphism. Hence it is an algebra isomorphism, as claimed. 
generator of H'(S~) then M has the homology of S3. If x is k times a generat Note that Vn,, = U(n), the unitary group in n variables. Therefore, we have 
then 

i Z for i = 0,3, 
H'(M) = Zk for i = 2, (k # O), 

0 otherwise. meaning it has the same cohomology ring as S1 x S3 x x s2"-'. The group 
isomorphic to S1. Also, U(2) w S' x S3, but not as a group. Although 

Consider M~ = D2 x S1 ufD2 x S1 where f :  S1 x S1 +S1 x S1 is f (z, as the cohomology ring of S1 x s3 x S5 it is not even of the same 
(2, zkw). Since f is a diffeomorphism, projection to the first coordi type. They can be distinguished, as we will see latter, by their 
M~ an s'-bundle over S2. Using the Seifert-Van Kampen T omotopy groups and also by the action of certain "cohomology operations" 
fundamental group of M is on them; see Section 8 of Chapter VII, Problems 1 and 3. 

nl(M) z {x, ylx = y, 1 = yk} w zk. 
(For k = 0, the fundamental group is Z and for k = + 1, it is t 
for Ikl> 1, H1(M) Zk. By Poincark duality, H,(M) = O. BY t 14. Lefschetz Coincidence Theory a 
Coefficient Theorem, H 2 ( ~ )  FZ Z,. Therefore, these examples realize all 
possible Euler classes. Incidentally, these manifolds M3 are our old frie 4 Yare two maps, then a "coincidence" off  and g is a point XEX 
the lens spaces y k ,  1). (x) = g(x). This is a generalization of the notion of a fixed point 

two ideas coincide when X = Y and g = 1,. In this section we 

13.7. Example. We will calculate the cohomology ring of the complex Stiefel cribe the Lefschetz theory of coincidences for maps f,g: N n - +  Mn of 
manifold Vn,,-,, the space of complex (n - k)-frames in Cn. Selecting the last nifolds of equal dimension. We could have treated this case in the 

n - k - 1 vectors in an (n - k)-frame gives a map Vn,n-k + which of fixed point theory in Section 12, deriving the results there as 

can be seen to be an S2k+'-bundle (see Section 8 of Chapter VII), We aim corollaries. We did not do that for two reasons. First, the coincidence theory 
to show that is somewhat more complicated and the Lefschetz coincidence number is 

much more difficult to compute than the fixed point number. Second, and 
most pertinent, the two most interesting classes of examples (1) coincidences 

f f,g where one o f f  and g is a homeomorphism and (2) maps to spheres, 
tudying fixed points or other methods. (If g is a homeomorphism, 

the exterior algebra on the x, where deg(x,) = i. That is, it is the same oincidences off  and g equal fixed points of g-'f. Two maps f, g: Nn -+ S" 
cohomology ring as for the product S Z k + l  x S2k+3 ncldence free up to homotopy o j-- - g o  deg(f) = (- lY+'deg(g).) 

The proof will be by induction on k. The Euler class X ~ H 2 k + 2 ( ~ n , n - k  - ,) = 0, However, the theory is quite interesting and clearly worthy of inclusion in 
by the inductive assumption. Thus, the Gysin sequence degenerates into short a book like this. 
exact sequences such as Let Nn and Mn be closed orientable manifolds and let f, g: N -+ M. Then 

N -+ M has graph Ti.= {(x, f (x))EN x M) and g: N-+M has graph r,. 
o-+HJ(Vn,n-k-  l ) L ~ ~ ( ~ n , n - k ) & ~ ~ - 2 k - 1  ( V n . n - k -  0th graphs are submanifolds of N x M. We define the Lefschetz coincidence 



number of f and g to be <- 

for N and M as long as we oriept N x M by the product orientation. -1 

- - 
of a coincidence; i.e., a point of intersection of r, and r,. Our task is 
give a formula for this number. 

First we must digress to establish some further formulas for the shri 
(transfer) maps f! and f! of Definition 1 1.2 and for the intersection product. 

14.1. Proposition. For f: N" -t Mm a map of oriented manifolds, we have: 

(1) f,(bn CNI) = f ! ( b ) n [ ~ ]  and A(an [MI) = f *(a)n [N]; 
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I ~ ~ ~ ) = c ~ , I . c ~ . I = J [ ~ , I ~ c ~ ~ I ) ~ ~ .  I 
where [r,] = (1 x f ), [N], [rg] = (1 x g),[N], and E,:  H,(N x M) -+ Z is t 
augmentation. Note that this does not depend on 'the orientations chos 

Also note that L( f , g ) ~ Z ,  can be defined if N or M is nonorientable. By 
Theorem 12.6 we have L( f )  = L( f, 1). 

It is immediate from the definition that L( f,g) # 0 implies the exist 

(2) f ! [ ~ ]  = [N]; 
(3) f!(a n b) = f *(a) nf!(b); 
(4) f,(a n f!(b)) = (- l)(m-dcg(b))(m-") j- !(a)n b; .. . L . 

(6) n = m -  f*f! =deg(f)= f'f*; 
(7) n=m*f!f,=deg(f)on im(J)and f*fl=deg(f)onim(f*); 
(8) ( f  g)! = g!f! and ( f  g)! = f !  g!. 

'. 

PROOF. Formulas (1) follow directly from the definitions. The case a = 
yields (2). For (3), 

f *(a)n f !(b) = f *(a)n D, ' f *DM@) 

= f *(a) n ( f  *(DM@)) n CNI) 
= f *(a u Ddb)) n [N] 

= f ! (b  u DM(b)) n [MI) 

= f !(a n (DM@) n [MI)) 
= fi(a n b). 

The reader can prove (4) and (5),  which we will not be using. For (6), 

f*f@) = f*D; lf *DM@) 

= f *(f *DM(~)  n CNI) 

= DM@) n f*CNI 

= DM(4 n deg(f )[MI 
= deg( f )a. 

For (7), f! f*f!(a) = f!(deg( f )  a) = deg( f)f!(a). The reader can prove the other 
half of (7). Formula (8) follows immediately from the definition of shrieking. 

.2. Proposition. Iff: Nn -t Mm is a map of oriented manifolds then 

f!(a*b) = f!(a)*f!(b). 

n = m then 

f*(a)*f*(b)=deg(f)f,(a*b) on im(f!). 

- PROOF. We compute 

fda)*f,(b) = Di'f *DM(a)o D;' f *DM(b) 

= DN1(f * D ~ ( b ) u f  *DM(a)) 

= D; 'f *(DM(@ uD,(a)) 
=DN1f*DM(a*b) 

= f!(a*b). 

e second formula is left to the reader. 

3. Proposition. For f :  Kk -t N", and g: L! -t Mm maps of oriented manifolds, 

(f g)!(a b) = ( - l)(n + k)degtb) +n(m - 1) f!(a) x &I 

(f x g)!(a x b) = (- l)(n+k)(m-deg(b)) f!(a) x g!(b)- 

PROOF. We compute 
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The second formula will not be ~ s e d  and is left for the reader to derive. implies that trg*fl = trg, f, and this, togther with (6)) gives (3). (The sign 
(- 1)" disappears because of the dimension shift between the rows of the . 

Now, finally, we return to the program of providing computatio above diagram.) Formula (3) is equivalent to (4) by tr(AB) = tr(BA). 
for the coincidence number L( f, g). It remains to prove formula (5). We will not use this formula but include 

it because of its intrinsic interest. To prove it, we compute 
14.4. Theorem. For f,g: N"-+Mn maps of closed oriented m 
Lefschetz coincidence number is given by each of the following formulas. ~ * ( 9  x f CAM1 =€*(Di1(9 x f )*D,wxMCAMI) 
are computed with coefficients in the rationals, or in Z, where L(f,g) = e*((g X f )*(TI n EN1 
reduced modp. The subscript i on tr indicates the trace on the ith 
(co)homoEogy.) = < (9 x f )*(TI> CNl ) 

= I ( - ( 9*(a0) u f *(a), CNI > 
(1) Yf, 9) = Xi(- 1)' tri(f *gt); a 

(2) Yf, 9) = Xi(- 1)' tri(gY*); = I ( -  l)dega<g*(ao),f * ( a h  CNI ) 
(3) Y f ,  9) = Xi(- 1)' tri(f*gf); 

a 

(4) Yf, 9) = I , ( -  lYtri(~tf*); and = I ( -  l)dega<aO,g*(f *(a)nCNI)) 
(5) L(f,g)=c*(gx f)t[AM] wheregx f :N-+M x M  is(gxf)od. 

4 

Also = I ( -  a l)dega(aO, glf*(a)n [MI) 
(6) YfY 9) = ( - l)"t(s,f ). 

= x(- (a0 u g'f*(a), [MI ) 
a 

PROOF. Let y = D, ,Cry] and y, = D, ,[r,]. Consider 1 x f: N -, N x 
= z(- 1)' tri(glf*) 

and 1 x g: N x N --+ N x M. Then, with notation from Theo i 

compute = Y f , s )  

L(f, $7) = ~ * ( E r / l  *Cr,l) = E * ( ( Y , ~ Y J ) ~ [ N  x MI) (2). Note that the a in the proof of (5) are for M and differ from the a in 
= E * ( Y ~ ~ ( Y ~  n [N x MI)) = ~ * ( ~ , n [ r f l )  proof of (1) which are for N. Also see Problem (10). 

= (Y,, Crfl > = (D, x MCl-,l, Crfl) 
=<DNxM(l x g)*CA1,(1 x f)*CNl) 

4.5. Theorem. If Nn and M" are smooth closed oriented n-manifolds and 
are smooth and such that the difference of differentials g, - f, is 

= ((1 x f)*DNxM(l x g) ,(~n[N x N]), CN3> nonsingular at each coincidence point off and g then 
= < (1 x f I*( 1 x g)'(z), CN1) 
= I ( -  l)de"((l x f)*(l x g)'(aO x a), [NI) Yfyg) = Es i i~de t (g ,  I- - f,),, 

a 

= z(- l)dega ((1 x f )*(a0 x gl(a)), EN] ) where the sum is over all coincidences xcNn off and g. 
a 

= I ( -  l)dega (ao u f *gl(a), [N] ) PROOF. That g, - f, be nonsingular is precisely the condition that Tf and 
a T, be transverse at a point of their intersection. The orientation & 1 attached 

= I (  - 1)' tr,(f *g') to an intersection point x is either signdet(g, - f,), or its negative depending 
1 

only on the dimension n. This must be consistent with the case g = 1 of 
because (a0 upy [N] ) = This proves (1). Corollary 12.7, and so the indicated sign is correct. 

Formula (2) is from the algebraic fact that tr(AB) = tr(BA). Formula (6) 
is immediate from the definition. The commutative diagram Now we will prove some immediate corollar~es and compute some 

H"-P(N) H " - P ( M )  --f--+ Hn-P(N) 

- IN1 1 -[.I 1 n 1 ~ 1  14.6. Corollary. For f, g: Nn -+ M" and h: K" -+ Nn then we have 

H,(N) A H,(M) A Hp(N) L(f h, 9h) = deg(h)L(f, 9). 



PROOF. This foll~ws from tr(( fh),(gh),) = tr( f,h,hlgt) = deg(h)tr(&g,) by In all our computations, we will take leHO(N) as the basis element and - 
Proposition 14.1(6). 9 = 1 "eHn(N) as the basis element. Then ( 9, [N] ) = 1. 

In homology, if one prefers to compute there, one could use a basis x, y, . . . 
14.7. Corollary. For f:  Nn + Mn we have L( f, f )  = deg( f)x(M). for H ,  and its intersection product dual xO, yo,. . . in the same way as indicated 

in the above remarks about cohomology. 

PROOF. We have L( f, f )  = L(l,f, 1 ,f) = deg(f )GIM, 1,) = deg(f )x(M). 
14.10. Example. Let f,g:S2 x S2-+S2 x S2. First we will compute L(f,g) 
using Theorem 14.9 assuming, then, that deg(g) # 0. We have 

14.8. Corollary. If g is homotopic to a homeomorphism with degre 
Yf,g) = k Z4fg-l). L(f,g) = deg(g)L( f *(g*)-') = deg(g) 1 + tr(FG-') + - ( deg(g) 

The following extraordinary result shows that Corollary 14.8 holds, in 

deg(f )) 

where F and G are the matrices off  and g on H2(S2 x S2). Thus 
fashion, even for many nonhomeomorphisms. If h* (resp., h,) is an end 
morphism of (co)homology groups, not necessarily induced by a map h, L(.L g) = deg(f + deg(g) + --- deg(g) t r ( ~  adj (~)) .  
shall still use the notation L(h*) = C,(- 1)' tr(hi) and similarly for h,. IGl 

t us use the matrix notation 

14.9. Theorem. Iff, g: N" -+ Mn are maps between closed oriente A B 
with the same Betti numbers in each dimension and with deg(g) # 0 F=(: i), G = ( ~  D), 
nonsingular and 

in the basis u = 9 x 1, v = 1 x 9 of H'(S2 x S2), where ( 9, [S2]) = 1. Then 
Y f ,  9) = deg(9)U.f *(g*)- '1 = deg(g)l(f*g, '). f *(uv) = (au + cv)(bu + dv) = (ad + bc)uv, so that 

PROOF. By Proposition l4.1(6) we have g,g!=deg(g), so deg( f )  = ad + be. 

deg(g)g, (over a field of coefficients). Hence L( f, g) = xi( -  1)' tri( 
deg(g)Ci(- 1)' tri( f*g; l )  = deg(g)l( f,g; ') and similarly for cohom deg(g) = AD + BC. 

What this means is that if g (or f )  has nonzero degree then the algeb L(f ,g)=ad+bc+AD+BC+ 
of computing L( f,g) is essentially the same as that for computing t 

AD + Bc tr[(: 3 ( - "c :)I AD - BC 

point number. 
=ad+bc+AD+BC+ 

AD + BC 
For doing direct computations with the formulas of Theorem 14.4 one (aD - bC - cB + dA). 

AD - BC 
needs a description of a convenient way to calculate the matrix of g' (o 
For this, start with a basis u, v,. . . of cohomology (for both N and M if lthough easy to compute, this looks very strange. It doesn't even look like 
differ). If one then takes the PoincarC dual basis x, y, . . . for homo1 , which it must be. However, maps S2 x S2-+S2 x S2 are very 
the duality isomorphisms D have the identity matrix and so the From the proof of Theorem 4. t 3 we must always have AC = 0 
g' is identical to that for g, in this basis. The basis of cohomology which i 0. For AD + BC = deg(g) # 0 we conclude that either A = 0 = D 
Kronecker product dual to x, y, . . . is just the basis uO, vO,. . . which is Poincar or B = 0 = C. In these cases the expression for L( f, g) simplifies to 
cup product dual to u, v,. . . . Since g* is Kronecker dual to g, it follows that 
the matrix for g, is the transpose of that for g* in the uO, vO,. . . basis. Thus A=O=D * L( f ,g )=ad+bc+BC-(-bC-cB)=ad+(b+B)(c+C) ,  
if F is the matrix of f * in the u, v,.  . . basis and Go is the matrix for g* i B = O = C  .=. L ( f , g ) = a d + b c + A D + ( a D + d A ) = ( a + A ) ( d + D ) + b c .  
the uO, vO,. . . basis then 

Note that both cases are covered by the nice formula 

I tr(J*gl) = tr(FGb). a + A  -(b+B) 
L( f, g) = (a + A)(d + D) + (b + B)(c + C) = 

c + C  d + D  
In the examples, we will use G for the matrix of g* in the orrginal u,v,. . . I. 
basis and w~ll use G' for the matrix of g'. Thus G' = Gb in the notation above. From such an attractive formula, it IS reasonable to expect that the formula 
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also holds in the general case in whichsdeg(g) may be zero. We shall sh 
that this is, indeed, the case by computing L(.f,g) from the formulas 
Theorem 14.4, which we wish to illustrate anyway. 

In general, tr,( f *g!) = deg(g) since f * = 1 in the standard basis {I} 
H0 and g! = Dg,DP1 is multiplication by deg(g) since g, is operating in 
top dimension. Similarly, in the top dimension, f *g! = deg(f)- 1 and so I 

trace is deg(f). It remains to compute tr2(f *g!) and, for this, we must 1 
down an explicit basis for H~ and its cup product dual basis. 

Start with the choice above of u = 8 x 1 and v = 1 x 8. Then u0 = v an 
vO = U. (Note that for odd-dimensional spheres we would have uO = - u an 
vO = u in order for uOu = 8 = vOv.) 

Using, as above,..the matrix G for g*, we have 

g*(u) = Au + Cv, 

g*(v) = Bu + Dv. 

Then we compute 

g*(uO) = g*(v) = Bu + Dv = Duo + BvO, 

g*(vO) = g*(u) = Au + Cv = CuO + Avo, 

so that the matrix for g, and hence for g! is 

D B  
G q C  A ) .  

We conclude that 

Y f ,  s )  = deg(g) + tr(FG!) + deg(f 
= A D + B C + ( a D + b C + c B + d A ) + a d + b c  

= (a + A)(d + D) + (b + B)(c + C) 
as claimed. 

14.11. Example. We will study the n-torus Tn = S1 x ... x S1 here. The coi 
cidence number will be computed in two completely different ways, fi 
algebraically based on Theorem 14.9, and then geometrically. 

The cohomology of Tn is an exterior algebra A (x,, . . . ,xn) on n ge 
erators of degree 1 and f * is determined by its action on the xi. The Lefsche 
fixed point number makes sense for any endomorphism A on Cn:L(A) 
x i ( -  l)'tr(AiA: A'(Cn)) and not only for those induced by maps of t 
torus. Assume, to begin, that A is diagonalizable over C. Then there are 
independent eigenvectors v , , .  .., vn with eigenvalues A ,,..., A,. The 
(v,, A ... A v,,ls, < < sk)  is a basis of A and each is an eigenvector 0 

A A since Av,, A . . - A Av,, = A,, . -. A,,v,, A . . - A v,,. Therefore, tr A A 
x(Arl . .vAskl~l < ... < sk}, SO that 

q A )  = (1 - Al)(l - A2)...(l - A n )  = 11 - Al. 

Since YA) and 11 - A/ are continuous functions of A and the diagonalizable 
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matrices are dense in the space of all complex n x n matrices, this formula 
*holds in general. 

F 

Now for maps f, g: Tn -+Tn with deg(g) # 0, and letting F and G be the 
matrices for f *,g* on H1(Tn), we have 

Since both sides of this equation are continuous functions in F and G, it 
follows that the formula 

is valid for all g, not just those of nonzero degree IGl. (Although we have 
not derived a formula for g!, it is clear that there is one which is a polynomial 
function of the entries of G.) 

Now we will show that the same formula can be derived from a purely 
geometric discussion. For any maps f, g: Tn + Tn, the induced endomorphisms 
F, G on H1(Tn; R) are identical to those induced on H1(Tn;R) = Rn by the 
maps F, c: Tn + T" induced from F, G. In fact, F -- f and - g, but we don't 
need that. This implies that I.(f,g) = c )  and we can concentrate on the 
latter. Assume, for the moment, that G - F is nonsingular. 

By Theorem 14.5 the local coincidence number of F, at any coincidence 
is sign1 G - F I and it remains to find the number of coincidences. But coinci- 
dences of F and are identical to the zeros of H = G - F; i.e., the points in 
a fundamental domain which map into lattice points by H = G - F: Rn + Rn. 
But I?:Tn+Tn is a covering map and so its number of zeros equals its 
number of sheets. This, in turn, is the factor by which I? increases volume, 
and that equals absl HI. Therefore, by Theorem 14.5, L( f,g) = L(F, c )  = 
signJHlabslHI=IHI=IG-FI. If H = G - F  is singular, then I? is onto a 
proper subtorus of Tn. If A6Rn is a suficiently small vector not in range(H) 
then F(x)  = F(x) + A induces a map F:Tn+Tn which is homotopic to 
and which has no coincidences with G since the similarly defined I?' has an 
image which is disjoint from that of H .  Hence L(f, g) = I@, G) = 0 = I G - FI 
in this case also. 

14.12. Example. In order to illustrate the case in which N # M, let us consider 
maps f,g: S2 x S2 -+ CP2. Here Theorem 14.9 is not available because the 
restriction on Betti numbers is not satisfied, and so we must use a formula 
from Theorem 14.4. Since we know the contribution in degrees 0 and 4 from 
the discussion in Example 14.10, it suffices to compute tr f *g' in degree 2. 
We will use the basis U,VIEH~(S~ x S2) as constructed in Example 14.10. 
Therefore uO = v and vO = u. Let t€H2(CP2) be a generator with Z coefficients 
and orient CP2 so that (t2, [CP2] ) = 1. Then t = to. Put 

f *(t) = au + bv, g*(t) = Au + Bv. 

Then j*(t2) = 2ahuv, so that deg( f )  = 2ab. Similarly, deg(g) = 2AB. Now 

g*(tO) = Au + Bv = Bu" + Avo 



so that g' has matrix (B, A).  Also, f * has matr~x (a, b)' and so 

L( f ,  g) = deg(g) + tr(a, b)'(B, A) + deg(f 
= 2AB + aB + bA + 2ab, 

finishing this example. 

Now let us briefly discuss the case of bounded manifolds. If one of th 
maps, say g, takes dN into dM then the proofs can be carried through as i 
the discussion above Theorem 12.9 where T, takes the place of A. There 
no difficulties with concluding the following generalization of Theorems 1 
and 14.5. 

14.13. Theorem. Let f:  Nn -+ Mn and g: (N, dN) -+ (M, dM) be maps. Assum 
that f and g have no coincidences on dN. Then with [T,]eH,((N,dN) x 
and [T,] E Hn(N x (M, BM)) 

Yf, g) = Cr,l.Er,l 
can be computed by 

Y f ,  g) = C (  - 1)' tr,(f *g') on H*(N) 
I 

or by 

Y f ,  s) = I ( -  l)ltr,(f*g1) on H*(M). 
I 

Moreover, iff and g are also smooth and ifthe differential g, - f, is nonsingu 
at each coincidence, then 

Yf? g) = C sign det(g* - f*), 
X 

where the sum ranges over all coincidences X E N "  off and g. 

For example, we have the following generalization of the Brouwer Fix 
Point Theorem: 

14.14. Corollary. I f  g: (Dn, dDn) -+ (Dn, dDn) has nonzero degree then any m 
f :  Dn -+ Dn has a coincidence with g. 

PROOF. The only nontrivial dimension for f*yl 1s dimension 0. There we 
have that gl = D-'cj*I) is multiplicat~on by deg(g). Hence f,g) = deg(g). 

In a sense, the bounded case reduces to the closed case by doubling both 
man~folds. Let N , ,  N, be the two coples of N In the doubled manifold and 
similarly for M, , M, Let f ,  , y , . N , -+ M I  be copies off, g. On N, let f ,: N ,  -+ 

M ,  also be a copy of f and 4,. N,-+ M, a copy of g. (See Figure IV-11.) 
Then the only cornc~dence of f ,  uJ, with y, ug, 1s between f ,  and gl .  

Figure VI-11. Coincidence doubling. 

Consequently 

L(f,g) = Yfl uf29g1 vg2). 

Of course, the doubled manifolds have more homology, so the computation 
of the coincidence numbers is potentially more difficult, although it can be 
shown that the situation in homology is analogous to Figure VI-11, so that 
the traces are all the same as in the bounded situation. 

PROBLEMS 

1. For maps f ,  g: M n  +S", compute L( f ,  g). 

2. If f, g: N" -+ M m  and f  is constant, show that L ( f , g )  = deg(g). 

3. Let f , g : S x S m + S n x S m  withn#m. 
(a) Compute L.f, 9) .  
(b) If n # m are both odd and f ,  # g,  on both Hn and Hm then show that f , g  

have a coincidence. 
(c) If n # rn are both even and f, # - g, on both H ,  and H ,  then show that 

f ,  g have a coincidence. 
(d) Show, by examples, that the conditions f ,  # g, in (b) and f ,  # - g ,  in (c) 

are necessary. 

4. For f ,g :  CP" + CP", find L(f ,g) .  Use this to show that, for n even, any two maps 
f ,  g :  C P  -+ CP of nonzero degree must have a coincidence. 

5. Using mod 2 homology, show that any two maps f , g :  PZ + PZ of nonzero degree 
have a coincidence. Give two proofs, one by coincidence theory mod 2 and one 
by other methods. 

6. Rederive Corollary 14.14 using the technique of doubling. 



404 V1. Products and Dualit 

7. Let N4 be CPZ with an open disk removed. Let f fl -+ N and g: (N, dN) -+ (N, d 
Iff and g have no coincidence then show that either deg(g) = 0 or f, = - g, 
H21N). 

8. Formulate and prove the generalizations of Corollary 14.6 through Theorem 14 
in the case of bounded manifolds. 

9. Let f :  Mm -+ Nn and g: N" -1 Mm be smooth. Let [r,] = (1 x f),[ 
H,((M, dM) x N)and [r,] = (g x ~),[NIEH,(M x (N, 8N)). Show that [r,]. 
L(f og) = q g o  f). (Hint: If zNeHn(N x (N,aN)) is the dual of the di 
[AN]€H,((N,aN) x N) then (f x l)*(zN) = y, where yJ~Hn(M x (N,aN)) 
to [r,] since f x l:rf-+AN extends to a bundle map of normal bun 
Similarly, with sM€Hm((M,aM) x M) and [A,]sH,(M x (M, aM)), one 
( I  x g)*(z,) = ( -  l)"'"+ "y,.) 

10. + For f,g: Nn + M", prove the geometric interpretation 

%(g X f )!CAM] = (9 x f )*[NI.[AM] 

of formula (5) of Theorem 14.4. 

15. Steenrod Operations 9 
In this section we describe certain "cohomology operations" discovered 
Steenrod, related to squaring at+a2. The definitive reference is S 
and Epstein [l] (also see Mosher and Tangora [I]) and we shall foll 
work by laying down axioms for the operations and discussing the-imme 
applications. The proof of the existence of the operations, i.e., their 
struction, is left to the following section. We shall not consider the 
difficult matter of uniqueness. 

The ith "Steenrod square," i 2 0, is a cohomology operation 

(meaning that it is a natural transformation of functors of (X, A)) which 
a homomorphism satisfying the following axioms: 

Axiom (1) Sqo = 1. 
Axiom (2) deg(x) = i Sqi(x) = x2. 
Axiom (3) i > deg(x) =- Sqi(x) = 0. 
Axiom (4) (Cartan formula.) Sqk(xy) = C:=, Sqi(x) u Sqk -'(y). 

We shall also assume the following two properties which can be shown 
to follow from the axioms: 

Property(5) Sq' is the Bockstein (connecting) homomorphism for th 
coefficient sequence 

o+z2+z ,+z , -+0 .  

15. Steenrod Operations 

Property (6) (Adem relations.) If 0 < a < 2b then 

where the binomial coefficient is taken mod 2. 

15.1. Proposition. For x€H*(X; Z,), yeH*(Y; Z,), and x x y€H*(X x Y; Z,) 
we have 

PROOF. From Axiom 4 we have Sqn(x x y) = Sqn((x x l ) u ( l  x y)) = 
CiSqi(xx l)Sqn-'(1 x y). But, if p,:X x Y - + X  is the projection then 
Sqi(x x 1) = Sqi( p:(x)) = pgSqi(x) = Sqi(x) x 1. Consequently Sqn(x x y) = 
Ci Sqi(x x 1) sqn - '(1 x y) = Ci(Sq'(x) x 1) u (1 x sqn - '(y)) = xi Sqi(x) x sqn - '0. 

15.2. Proposition. Sqi commutes with 6*. That is, the following diagram 
commutes: 

s* 
H"(A; Z;) - Hn+ ' ( X ,  A; Z,) 

I S¶' 
1 6* 

Hn+  '(A; Z,) - Hn+'+'(x, A; Z,). 

PROOF. Let Y = X x (0) u A x I. Then, by naturality, it suffices to prove the 
result for the pair (Y, A x I). Another naturality argument implies that it 
suffices to prove it for the pair (Y, A x (1)). Put C = A x (1) and 
B = A x [O,;] U X  x (0) c Y. In the diagram 

the map on top is onto and it follows that it suffices to prove the result for 
the pair (Y, B u C). By the excision (and homotopy) isomorphisms, it suffices 
to prove the result for the pair (A x [i, 11, A x ($1 u A x {I)), which is 
equivalent to the pair (A x I, A x dl). Now an element of H*(A x al; Z,) has 
the form x x y for xeH*(A; Z,) and yeHO(aI). Then 6*(x x y) = x x d*y. 
(There is a sign (- l)deg(x), which can be dropped since coefficients are in Z,.) 
Therefore 

Sqi(G*(x x y)) = Sqi(x x 6*y) 

= sqi(x) x Sq0(6*(y)) (by Proposition 15.1) 

= Sqi(x) x 6*(y) (by Axiom (1)) 
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= 6*(Sqi(x) x y) 

= 6*(Sqi(x x y)) (by Proposition 15.1, 
Axioms (1) and (3)) 

finishing the proof. 1 
15.3. Proposition. Sqi commutes with (unreduced) suspension. That is, t 
following diagram commutes: 

I: 
E?"(x;z,)- E?"+'(cx; z,) 

PROOF. The susoension can be defined as the composition 4 

and so the result follows from Proposition 15.2 and the naturality of Sqi. 

For example. consider CP2. We know that H*(CP2;Z,) has (only 
L ,  

nonzero elements 1 gH0(CP2; Z2), X E H ~ ( C P ~ ;  Z2) and 
have Sq2(x) = x2 # 0. Recall that 

CP2 x SZ uhD4 

where h: S3 +S2 is the Hopf map. This implies that 

CCP2 x S3uZhD5, 

Z2CP2 z S4 u,+,D6, 

and so on. It follows from Proposition 15.3 that Sq2: H3(ZCP2;Z2) 
H5(CCP2; Z2) is nonzero. 

This implies that Ch is not homotopically trivial, 
CCP2 cz S3 v S5. But the commutative diagram 

H 3(S3) Sq2 r H5(S3) = 0 

= proj* I 
H3(S3 v S5) 

1 "' , H5(S3 v S5) 

for. 

-iir 
shows that Sq2 = O  on H3(S3 v S5;Z2) contrary to its being nonzero on 
H3(CCP2; Z,). Similarly, none of the suspensions C n h  of h are homotopically 

*q 

trivial. Thus we have: a 3 
15.4. Corollary. n, + , (Sn) # 0 for all n 2 2. 0 3 .1 

3x2 

Similar considerations apply to the other Hopf maps. 4 
% 

It is convenient to put H(X) = @,H1(X; &) and to define 

Sq: H(X) -+ H(X) 

to be Sq = SqO + Sq' + Sq2 + . . . . This makes sense by Axiom (3). Then the 
Cartan formula becomes 

Sq(xy) = Sq@)SqQ. 

Sq(xk) = (S~(X))~-  

If deg(x) = 1 then we compute Sq(xk) = ( S ~ ( X ) ) ~  = (x + x2r  = xk(l + xlk = 
c,(:)x~+'. Thus we have: 

155. Proposition. For deg(x) = 1 we have Sqi(xk) = (:)xk+'. 

Because of this result and the Adem relations, it is helpful to have a 
convenient way to compute the mod 2 binomial coefficients. 

15.6. Proposition. If a = Gaj2 j  and b = xjbj2j then 

X (l:) (mod 2). 

F. Consider the polynomial ring Z,[x]. We compute 

(1 + x)" = (1 + x)=j2j 
= X (1 + xpZ' 

= X (1 + x2')"j (since (1 + x)' = 1 + 2x + x2 = 1 + x2) 

But the coefficient of xb in (1 + x)" is (",), while its coefficient in the last 

Note that (:) = 0 while (A) = (:) = (:) = 1. Thus ( i)  = 1 o ( b ,  = 1 e a, = 1 ) .  

15.7. Corollary. If deg(x) = 1 then 

xZk for i = 0, 
sqi(x2k) = x2k+  ' 

{o 
for i = 2k, 
otherwise. 

15.8. Theorem. l f i  is not a power of 2 then Sq' is decomposable, meanlng that 
it is a sum of compositions of Steenrod squaring operations of smaller degree 
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PROOF. The Adem relations can be rewritten in the farm Let f :SZn- ' ;, Sn be any map, n 2 2. Put X = Cf = Sn ufDZn. Then X is 
[a121 b - 1 - ' a CW-complex with three cells, in dimensions 0, n, and 2n. The inclusion (bi l)Sqaib=SqaSq'+ j =  1 ( a - 2j J ) ~ Q a ' b - ~ ~ q ~  " c, X induces an isomorphism Hn(X) 2 Hn(Sn), so take 0 # XE Hn(X; Z) 

to correspond to the orientation class of Sn. Similarly, the collapse X -+SZn 
where 0 < a < 2b. Thus if (*;I) E 1 (mod 2) then Sqa+b is decomposable. 
if i is not a power of 2 we can write i = a + b where b = 2k and 0 < a < nduces an isomorphism HZn(SZn) 5 H'"(x), so take 0 # y~H2n(X;  Z) to 

Sinceb-1= 1 + 2 + 2 2 + - . . + 2 k - 1  a n d a s b - 1  wesee from Propo orrespond to the orientation class of SZn. Then 
15.6 that (b;l) = 1 (mod 2). 

For example, there are the relations 
r some integer hf. This integer hf is called the '"Hopf invariant" off. For 

Sq3 = Sq'Sq2, e Hopf maps S3 -+ S2, S7 -+ S4, and S15 -+ SS, C is a manifold and so 
Sq5 = Sq'Sq4, = + 1 in those cases by Poincark duality. 
Sq6 = Sq2Sq4 + Sq5Sq1. 

5.14. Corollary. Let f: SZn- ' -+ Sn. If the Hopf invariant hf is odd then n is 
Also note the relations power of 2 (n = 1,2,4, or 8 by Adams). 

Sq' Sq2" = Sq2" + 1, 

sqlsqZn+'  = 0, Now suppose we have a map f: SP x Sq +Sr. Then f induces a map 
+' x Sq -+ D:+ by coning off. Similarly, it induces SP x Dq+ ' -+ D'_+ and 

sqzn - ' sqn = 0, there is an induced map 
sqZ sq2 = sq3 sql. 

f-fjSPf9+1 = D P + ~  x S4 u SP x ~ 4 + + ' - + ~ ' , + 1 ~ ~ ' _ + 1  =s+l. 

15.9. Corollary. If i is not a power of 2 and if X is a space such ompare Definition 8.6 of Chapter VII.) Specialize to the case f: Sn- ' x Sn- '-+ 
Hk(X; Z,) = 0 for all n < k < n + i then Sqi: Hn(X; Z,) -+ Hn+'(X; Z,) is -I.  If the restriction of f to Sn-' x {*} -+Sn-' has degree p and the 

triction to ( * } x Sn- ' -, Sn- ' has degree q then we say that f has "bidegree" 
4). 

15.10. Corollary. If XEHYX; Z,) and xZ # 0 then SqZ'(x) # 0 for some i wi 
0 < 2' I n. 15. Proposition. If f: 9-' x Sn- ' -+ Sn- ' has bidegree (p,q) then the 

uced map f: SZn- -+ Sn has Hopf invariant & pq. 
15.1 1. Corollary. If H *(X; Z,) = Z, [x] or Zz [x]/(x4) for some q > 2 t 
n = deg(x) is a power of 2. OOF. We shall use integer coefficients for cohomology throughout this 

roof, which is based on that in Steenrod-Epstein [I]. The mapping cone 
It has been shown by Adams, using a much deeper study of Steenr can be regarded as the space 

squares, that n = 1,2,4, or 8 are the only possibilities in the situation C = (Dn+ u DT) u,(Dn x Dn) 
Corollary 15.1 1. See Atiyah [I]. 

since 8(Dn x Dn) = Dn x Sn- u Sn- ' x Dn. Thus we have a map 
15.12. Corollary. If MZn is a closed 2n-manifold with H,(M; Z,) = 0 
0 < i < n and with Hn(M; Z,) z Z, then n is a power of 2 (in fact, n = 1, g: (Dn x Dn, Dn x Sn- ', Sn- ' x Dn) -+ (C, D:, D"_. 

or 8 by Adams). There is the commutat~ve diagram 

15.13. Corollary. ~f SZn-I is afiber bundle over Sn wlthfiber S"-' then n Hn(C, D"+ ) x Hn(C, D"_ ) HZn(C, 9- ') 
a power of 2 (n = 1,2,4, or 8 by Adams). 

PROOF. If f:SZn-I --+Sn is a bundle projection with fiber S"-' then Mf i I - I - 
Hn(C) x Hn(C) A H'"(C) 

2n-manifold with boundary SZn- and so Cf is a closed 2n-man~fold and 
homology as in Corollary 15.12. and so if we let x _ EH"(C, D:) and x + E Hn(C, DY) correspond to the generator 



xeHn(C) then x+ u x -  corresponds to x2. Tbe commutative diagram 

Hn(C) 
X 

Hn(C, D? ) 

I - 1 %  
Hn(Sn) Hn(Sn, D t  ) 5 Hn(D: , Sn - ') 

% i s *  

Hn - - t Hn-l(Sn-l x (*I) 
shows that g*(x+) = + pw x 1 where WEH"(D",S"-') is a generator 
w x 1 .sHn(Dn x Dn, Sn- x Dn) is a generator. Similarly, we 
g*(x-) = + ql x w. But g*: HZn(C, Sn) -+ Hz 
morphism and carries x+  u x- to + pq(w x 
x+  u x -  = pq(generator). Since x + and x- each map to xeH"(C) we con 
that x2 = pqy for some generator yeHZn(C). 

15.16. Corollary. If Sn-' is parallelizable then n is a power of 2 (n = 1,2 
or 8 by Adams). 

PROOF. If 9-' is parallelizable then there is 
to x ~ S " - l  a matrix with first column x and 
orthogonal to x. Then +(x)el = x if el is the 
f : s n - 1  s n - 1  + s n - l  by f(x,y) = +(x).y. f(e17y) = 4(e1)-y has 
1 as a function of y. Also f(x,el) = &).el = x has degree 1. There 
3 SZn- ' -+ Sn has Hopf invariant 1. 

We conclude this section by briefly introducing the "Steenrod 
reduced powers" which are the analogues of the squares for odd prim 

Let 8: Hi(X; Zp) -+ H'+'(X; 2,) be the Bockstein associated with 
coefficient sequence 0 4 Zp -+ Zp2 -+ Zp -+ 0. 

For an odd prime p, the Steenrod cyclic reduced power operation 
k 2 0, is a natural transformation 

which is a homomorphism satisfying the following axioms: 

Axiom (1,) B0 = 1. 
Axiom (2,) deg(x) = 2k = Yk(x) = xp. 
Axlom (3,) 2k > deg(x) 3 Bk(x) = 0. 
Axiom (4,) (Cartan formula.) Bk(x u y) = 1 9'(x) u 9*-'(y). 

r = O  

In addition, we will assume the following fact that can be shown to follo 
from the axioms: 

Property (5,) (Adem relations.) 
(a) If 0 < a < pb then 

(b) If 0 < a _< pb then 

Our first application uses the simplest Adem relation BIB1 = 28' (since 
- ((P- :)- ' ) = - ( p - 2) 2 (mod p)). 

15.17. Proposition. Let ~EH~(QP",Z,). Then B1(a) = f 2a(P+1)12. 

PROOF. Note that this says nothing unless 2 ( p  + 1) 2 4n since otherwise 
B1(a) is in a trivial group. By naturality, it suffices to prove the formula 
for n 2 p, and for a generator a. In that case B2(a) = up # 0. Now B1(a)e 
Hz@+ l)(QPn; Zp) and so B1(a) = ka(P+1)12 for some k.sZ,,. Then 

2aP = 2B2(a) = BIB1(a) = B1(ka(P+1'12) 
- - k9'(a-a-....a) ((p + 1)/2 times) 
= k[gl(a).cc. --..a + a-.@(a). ...-a + .. . + a .  .... a.p1(a)] 

= k(( p + 1)/2)(ka(P+ 1)12)a(p- ')I2 

= k2(( p + 1)/2)aP. 

Therefore k2(p + 1)/2 r 2 (mod p) so that k2 r k2(p + 1) r 4 (mod p). 
Consequently, k = + 2 (mod p). 

15.18. Corollary. If n 2 2 and f:QPn-+QPn then f *(a) is either 0 or a for 
LIE H4(QP", Z,). 

PROOF. Of course, the only other possibility is that f *(a) = -a and so what 
we are claiming is that that is impossible. Suppose that f*(a) = -a. 
By Proposition 15.1 7, B1(cl) = ka2 # 0, where k = 5- 2. Then 

B1f *(a) = B1(-a) = -B1(a) = -ku2. 

But this equals 

f *sl(a)  = f *(ka2) = k f *(a)' = ka2, 

a contradiction since - 1 f. 1 (mod 3). 
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15.19. Corollfiry. QP" has thefixed point property for n 2 2. - 
PROOF. If a€H4(QP"; Z) is a generator and f:  QP" 4 QPn is a map, 
f *(a) # -a by Corollary 15.18. It follows as in Section 23 of Chapter IV 
the Lefschetz number L( f )  # 0. 

15.20. Theorem. There is no "Cayley projective 3-space," i.e., there is no 
X with H*(X; Z,) z Z3 [a]/(a4) where deg(a) = 8. 

PROOF. For p = 3, we use the Adem relation P'P3 = P4.  If X exists th 
this shows that P4(a) = 0. But P4(a) = a3 # 0 by Axiom (2,). 

15.21. Corollary. The 7-sphere does not carry the structure of a topologica 
group. 

PROBLEMS 

1. For xcSn-' let T,:Rn-+Rn be the reflection through the line Rx; i 
T,(y) = 2(x, y)x - y. Forneven,show that themap f:Sn-' x Sn-'+Sn-'given 
f(x, y) = T,(y) has bidegree (2, - 1). Conclude that for n even, there exists a m 
SZn-' -+Sn of Hopf invariant - 2. 

2. For maps S2"- ' A S "  -% Sn show that hgOj = deg(g)2hj. 

3. For maps SZn-I Lszn-  A S n  show that hgOj = deg(f)h,. 

4. (a) Show that CP2"+' is an S2-bundle over QPn. 
(b) Use (a) to give another proof of Proposition 15.17 showing that the sign ther 

is + if cc 1s the reduction of a generator of H4(QP"; Z) mapping to the squar 
of a generator of H2(CPZn+'. , z). 

5. Read Definition 3.1 of Chapter VII for the definition of an "H-space." 
(a) If S"-' is an H-space, show that n is a power of 2 (n = 1,2,4,8 by Adams 
(b) If X is an H-space wlth unlty e and A c X is a retract of X with ~ E A  the 

show that A is an H-space. 
(c) If X x Y is an H-space then show that both X and Yare H-spaces. 
(d) Show that S' x S3 x S5 is not homotopy equivalent to U(3) even though the 

have the same cohomology rlngs by Example 13.7. 

16. Construction of the Steenrod Squares 0 
In this sectlon we shall construct the Steenrod squaring operations. We shal 
not construct the cyclic reduced powers, but that can be done in essential] 
the same way. We shall prove the axioms for the squares but the proof 
the Adem relations is beyond our present capabilities and so the applicatlo 
given in the previous section are not completely proved In this book. Fo 
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proofs of the Adem relations, see Bullett and MacDonald [I], Steenrod and 
Epstein [I], or Mosher and Tangora [I]. 

We will carry the development as far as conveniently possible using 
coefficients in an arbitrary commutative ring with unity. We could simplify 
the formulas by taking Z2 coefficients throughout, but the more general 
outlook indicates much better how to convert the arguments to the case of 
the cyclic reduced powers for odd primes. (In the latter case, keep our present 
T - 1 but the substitute TP-I + ..- + T2 + T + 1 for our present T + 1.) 

As we hinted at previously, the squares owe their existence to the fact 
that the cup product is not (signed) commutative at the cochain level. 

Consider any diagonal approximation 

Define the chain map 

T:A,(X) Q A,(X) + A,(X) Q A,(X) 

by T(a,Q a,) = (- l)Pqoq @ a,, i.e., the signed interchange of factors. Then 
To A, is another diagonal approximation. Since any two diagonal approxima- 
tions are naturally chain homotopic there is a natural chain homotopy 

A1:A*tX)+A*(X)@A*(rn 

which is a map of degree + 1 such that 

( T  - l)Ao = TAo - A, = aAl + Ala. 

If A, could be taken to be signed commutative, then we could take A, = 0 
and the subsequent development would be trivial and would imply that 
Sqi(a) = 0 unless i = deg(a). Since that is not the case, A, cannot be signed 
commutative. Note that 

so that 

a[(T + l)A1] + [(T + l)A,]a = (T  + l)[aAl + A'a] = 0. 

This means that (T  + l)A1 (with the usual sign conventions) is a natural 
chain map of degree 1. The zero mapping 0: A.(X) + (A*(X) Q A*(X)),+ is 
another such map and the method of acyclic models shows easily that there 
is a natural chain homotopy A, between them. That is 

Applying the operator (T - 1) to this gives 

0 = (T  - 1)(T + 1)A1 = a(T - 1)A2 - (T  - l)A2a 

which means that (T - l)A, is a chain map of degree +2. Again 0 is also 
such a natural chain map and the method of acyclic models provides a chain 
homotopy A, between them. One can continue this ad infinitum, constructing 



a sequence of natural chain homotopies A, of degree n such that 

Now we pass to the cochain complexes. For any commutative ring A 
unity, the maps A, induce maps 

Hom(A,(X), A )  Q Hom(A,(X), A )  -+ Hom(A,(X) Q A,(X), A) 

k .  1) . . . . . -7, . . 
that is, 

The usua 
of degree 

sign convention is in use, giving hk(cn) = (- 1 
- k; i.e., hk( f * @I g4) has degree p + q - k. Define 

),"cn 0 Ak. 
the "cup 

Then h, is 
1-1"' product 

of cochains f and g by 3 
d 
8 
9 

f u i ~ = h i ( f @ g ) .  9 

4 
Then u0 is the usual cup product u. We shall use the same letter T to denote j 
Hom(T, 1). Then note that h,TP =(- l)knc"TA,. Then we have the dual 

16.1. Proposition. Zfdeg(a) = q and i f n  - q is odd, or i f 2 A  = 0, then 

hn+,(6a@6a) =(- 1)"+'6hn+,(a@6a) - 6h,(a@a). 

PROOF. We compute 

h,+ ,(6a@6a)= hn+,6(a@16a) 

=(-1)"+'6hn+,(a@Sa)+ h,(aQ6a +(-1)"+'6a@a) 

= (- 1)"+'Ghn+,(a@6a) + hn(a@6a + (- 1 ) 4 6 a ~ a )  

=(-1)"+'6hn+,(a@6a)+ h,(-l)q6(a@a) 

= (- 1)"+'6hn+,(aQ6a) + (- 1)"+'hn6(a@a) 

=(-1)"~16h,+l(a@6a)-(-1)"+1(-1)"-'6h,(a@a)+0 

=(-1)"+'6hn+,(a@6a)-6hn(a@a).  0 

16.2. Proposition. Let deg(a) = q = deg(b). Assume that n - q is odd or that 
2A = 0. Then 

h,((a+b)Q(a+b))=h,(aOa)thn(b@b)th,+,6(aQb)+(-1)"6h,+l(a8b). 

PROOF. This follows from the identity (true under the stated conditions) 

16.3. Theorem. If q - n is odd or $212 = 0 then at+h,(a @ a)  induces a natural 
homomorphism 

Sq,: Hq(X; A)  -, Hzq -" ( X ;  A). 

PROOF. If a is a cocycle then hn(a@ a) is a cocycle by Proposition 16.1. By 
Proposition 16.2, h,((a + 6b) @ (a + Sb)) - h,(a @ a)  + hn(6b 8 6b) - h,(a @a), 
the latter homology by Proposition 16.1. Thus Sq, is defined. The formula 
of Proposition 16.2 shows that S e ,  is additive. D 

Now put j = q - n and define Sqj = Sq, = Sq,-,. Then we have a natural 
homomorphism 

Sqj: Hq(X; A )  -+ H4+ ' (X;  A )  

defined when j is odd or when 211 = 0. 

16.4. Theorem. If a €Hq(X; A )  then Sqq(a) = a2 when it is defined. 

PROOF. On Hq(X; A), Sqq = Sq, which is induced by h, = u. 

165. Theorem. The operations Sqj are independent of the choice of the hi. 

PROOF. Suppose we are given another natural sequence AJ satisfying 

Then A, - 4: A,(X) + A,(X) @ A,(X) is a natural chain map inducing zero 
in homology. The method of acyclic models then provides a chain homotopy 
Dl such that 

A, -Ah = aD1 + Dla. 

Multiplying this by ( T  - 1) gives 

~(T-1)Dl+(T-l)Dla=(T-1)Ao-(T-l)A'o=(aAl+Ala)-(~A~+A?ll,~).  

This is the same as 

(A, - A', - ( T -  l )Dl)a + a(A, - 4 - ( T  - l ) D 1 )  = O 

which means that A,  - A', - ( T  - l)D1 is a natural chain map of degree + 1.  
Therefore there exists a map D2 with 
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Multiplying this by (T + 1) and going through the analogous argument sho - 
that there is a D, with 

{ ( -1)""hncl(b@6b)-h,(b@b))  =(-l)"+1h,+l(iAb@6iAb)-h,(iAb@iAb) 
A, - A; - (T + 1)D2 = D,a + aD,. = ( - I ) " +  'hn+,(a@6a)-h,(a@a) 

Continuing with this and dualizing Ai and A: to hi and hf and the D, to E = - hn(a @ a) - h,(a @ a)  
gives the formulas 

h i - h ~ - E i ( T + ( - 1 ) i ) = ~ i + , 6 + ( - 1 ) ' 6 ~ i + l .  by Theorem 16.6) and so h,+ ,(c@c) represents 6*Sqq-"[[a]. 

For a cocycle a, and for the conditions which Sqi(a) is defined, we see tha 
16.8. Corollary. Sqj commutes with suspension. 

hi(a@a)--hi(a@a)= _+6Ei+,(a@a). 
PROOF. The same argument as in Proposition 15.3 applies. 

16.6. Theorem. For all a and j we have 2 Sqi(a) = 0 when it is defined. 
We shall now specialize to the cases A = Z or A = Z,. Then Sqj is defined 

PROOF. If 2 A  = 0 then this is clear. If j = n - q is odd and 6a = 0 then on Hq(X; Z )  for j odd, and on Hq(X; Z,) for all j. Let 

2h,(a@a)= h,(a@a+a@a) 

= h,(l + (- l )qT)(a @ a) 

= h,(l + ( - l )"+'T)(a@a) e reduction mod 2; i.e., the map induced by the epimorphism Z-+Z,. By 
naturality of the construction of the h,, p commutes with the h,. 

= h,+16(a@a) +(- 1)"6hn+,(a@a) 

=(- 1)"6hn+,(a@a). 16.9. Lemma. If q - n is even and if aeAq(X)  then 

Now if A c X and a is a cocycle of X which vanishes on A then h,+l(6a@6a)=(-1)"+16h,+l(aQ6a) + 2hn(a@6a) 
naturality of h, we have that h,(a) vanishes on A. Therefore the operati - 6h,(a@a) + (- 1)"+'2h,-,(a@a). 
h, are defined on A*(X, A )  and satisfy all the formulas given for the 
Consequently, the squaring operation Sqj is defined on Hq(X, A; A) when PROOF. We compute 

is odd or when j is arbitrary and 2 A  = 0. h,+l(6a@6a)=(-1)"+16hn+l(a@6a)+ hn(a@6a+(-1)"+'6a@a) 
=(- 1)"+'6h,+l(a@6a) + h,((- 1)"+'6(a@a) + 2 a 8 6 a )  

16.7. Theorem. If A c X and j is odd or 2A = 0 then the following diagra = (- 1)"+'6hn+,(a@6a) + 2hn(a@6a) - 6h,(a@a) 
commutes: +(- l )"+lhn-l (a@a +(- l )"+qa@a) 

6* =(-1)"+16h,+l(a@6a)+2h,(a@6a)-6h,(a@a) 
Hq(A; A )  - Hq+ ' ( X ,  A; A)  +(-l)"+12h,-l(a@a). 

lSqJ  I SqJ Putting a = b in Lemma 16.9 and solving for 6h,(b @ b) gives: 
6* Hq+ j(A; A)  - H ~ + ~ +  ' ( X ,  A; A). 

16.10. Corollary. If beAq(X), q - n is even, and 6b = 2c, then 

PROOF. Assume either that 2 A  = 0 or that n - q is odd. Let aeAq(A) with 6h,(b@b)=2[(-1)"+'h,-l(b@b)+6h,+l(b@c) 
6a = 0. Let a = iA(b) for a cochain b on X and let 6b =jdjc) so that c~ + 2(h,(b@c)- h,+l(c@c))l .  
Aq+'(X,A;A)  represents 6*[aI]. Then h,+,(c@c) represents Sqq-"[[c] = 
Sqq-"6*[[al]. Now Now let a€Aq(X; Z,) with 6a = 0 and let a = p(b). Then 6b = 2c for some 

integral cochain c and [el] = P[a] where P: Hq(X; Z2)-+Hq+'(X;Z)  is the 
jAh,+ I ( C @ C )  = h,+l(jAc@jAc) = hn+,(6b@6b) Bockstein. (This is the definition of P.) 

= (- 1)"+'6hn+ ,(b@ 66) - 6hn(b@ b) Then ph,(b @ b) = h,(a@ a) represents Sq,[a]. By Corollary 16.10, 

= 6 { ( -  l)"+1h,+l(b@6b)-h,(b@b)) Sh,(h Q b) = 2( + h, - ,(b @ b) f a(?) + 2(?)), and so f h, - @ b) + 2(?) repre- 
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sents flSq,[a]. Hence p(h,-,(bQb)) = h,-,(aQa) represents ~fl%,%a] 
/32Sq,[a] where 8, = pop. But h, - , (a @ a) also represents Sq, -, [a] E Hq(X; Z,). 

Put q - n = 2i so that Sq, = Sq2' and Sq,-, = Sq2'+ '. Then for 
acHq(X; Z,) we have just shown that SqZi+ '(a) = f12 Sq2'(a). 

The coefficient diagram 

2 0 - z - z ----+ z, - 0 

1 1 1  
0 - z 2 - z 4 - z 2 - 0  

shows that f12 is the Bockstein for the lower sequence. 
Also, if 6b = 0 then h, - ,(b Q b) represents Sq,-, [blj and also repres 

jlSq,(p[blj) by Corollary 16.10. That is, on H*(X;Z) we have 
Sq2'+ ' = fl0Sq2'op. Thus we have shown that the following diagra 
commutes: 

sq2'+' ~ q + 2 i +  1 
Hq(X; Z) 

H ~ +  2i(X; Z,) 

s/ \ 
Hq(X; Z,) sq21+ I' <(r ~ q + 2 i +  1 (x; z2)- 

16.11. Theorem. (1) j < 0 Sqj = 0. (2) SqO = 1. 

PROOF. Both of these are true for a point, (1) trivially, and (2) since 
SqO(x) = x2 = x for a zero-dimensional class x by Theorem 16.4. It follows 
that they hold, in general, on HO(X; Z,) for any space X. By naturality, they 
hold on I?O(sO). By Corollary 16.8 they hold on Hn(S";Z2). Let K be a 
CW-complex and let aeHn(K("); Z,). Since Hn(K("); Z) + Hn(K("); Z,) is onto, 
it follows from Theorems 11.6 and 11.9 of Chapter V that there is a map 
4: Kt")-* Sn and an element LkHn(Sn; Z,) such that 4*(9) = a. Thus SqO(a) = 
Sq0(4*(q) = 4*(Sqo(@) = 4*(3 = a, and hence the result is true on 
Hn(K'"); Z,). Since Hn(K; Z,) -+ Hn(K("); Z,) is monomorphic, it follows that 
the result is true on Hn(K; Z,) for any CW-complex K and all n. 

To extend the proof to arbitrary spaces requires sope material from the 
next chapter. For any space X one can find a CW-complex K and a map 
K - + X  which induces an isomorphism on homotopy groups. (One does this 
by induction: killing homotopy classes in the kernel and adding cells to 
make the mapping onto in homotopy.) Whitehead's Theorem (Theorem 11.2 
of Chapter VII) implies that the map induces an isomorphism on homology 
and hence on cohomoiogy. The present result for X then follows from that 
for K by naturahty. 

Since Sqi = /12Sq0 we hiwe Sq' = /I2 which is Property (5) of Section 15. 
We have now proved all the axioms (at least on CW-complexes) except 

far the Cartan formula. We will now restrict attention to coefficients in Z,. 
b particular, the formulas for the A, simplify to (1 + T)Ai = Air ' 6  + 6Ai + ,. 

For spaces X and Y define the "shuUle" map 

i;A*(X)@A*(X)@A.(u)@A*(Y)-.A.(X)@A.(Y)QA*(X)@A.(Y) 

by L(a @ b Q c @ d)  = a @ c @ b Q d, where we do not need a sign because of 
the mod 2 coefficients which are understood. Define 

D,: AJX) @ A,(V -+ A*(X)@ A,(X) Q A,(Y) Q M Y )  

by Dn==i(A2i@Am-2i+A2i-lQTAn-2i+~)=Aeven@A+A~d@TA~ We 
claim that 

a D n + , + D n + , a = ( 1 Q 1 + T @ T ) D , .  

We shall compute both sides and compare: 

lhs = (aA,,,,) @ A + A,,,, @ + (ah,,) @ TA + A,, @ TaA 

+(Aev,,a)@A + A,,,,@Aa+(A,,a)@ TA +A,dQTA8 
= (aA,,,, + A,,,,a)@ A + A,,,,Q(aA + Aa) 

+ @A,, + A,,d) @ TA + A,, Q T(aA + Aa) 
= ( I +  Z-)A,,@A+ Aevcn@(l + T)A 

+ (1 + T)A,,,, @ TA + Add @ T(1+ T)A. 

Note that T(1+ 7') = 1 + T. Now for the right-hand side: 

rhs=(1@1+ T@T)D, 
=[(I + V @ T +  1@(1+ T)I(A,,,,@A+A,,QTA) 
= (I + T)AeV,, @ TA + A,,,, Q (1 + T)A 

+ ( I +  T)A,,Q TTA +A,,Q(l+ T)TA 

and so the contention follows since TT = 1 and (1 + T)T = (1 + 7'). 
By the Eilenberg-Zilber Theorem and Theorem 16.5 we can replace 

A,(X x Y) by A,(X)@A,(Y) and A*(X x Y) by Hpm(A,(X)QA,(Y), Z,) = 
(A(X)@A(Y))*, so we can define the squares on X x Y by means of the 
redefined maps 

An = AoD,: A,(X)Q A,(Y)-+A,(X)Q A,(X)Q A,(Y)@A,(Y) 

+(A*(X)@ A*(Y))@(A*(X)QA(Y)) 

which dualize to 

by h,(u @ B(c) = (a x B)(A,(c)) = (a x B)LD,(c) since we are using mod 2 co- 
efficients 
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We compute: - We can also treat general vector bundles Waver N either by passing 

hn((a x B) Q (Y x 4 )  an associated disk bundle or, directly, by taking TEH,(W, W - N) and 
. HP(N) -+ Hp+,(W, W - N). It will be convenient to use that setting in this 

=((a x /?) x (y x o))oloDn 

= ( a x 7  x P x o ) ~ ( A 2 i @ A n - 2 i + A 2 i - l @ T A n - 2 i + l )  
Definition. For a k-plane bundle 5, as above, the 9th Stiefel- Whitney 

=CC(a X YM21 X (P X w)An-zi +(a x y)Azi-1 x (@ x UI)TA~-~~+ ,] 
I w,eHq(N, ZZ) is defined by 

=CCh2t('Qy) x hn-zi(P@~) + hzl-l(~Qy) x hn-2,+l(~@/?)]. w, = @ - ' Sq4(z). 
1 

Putting Y = a and o = P we deduce that It is sometimes useful to deal with the "total" Stiefel-Whitney class 

hn((a x @(a x B)) = C(hzi(a @ a) x h n - 2 i ( j ? ~  /?) w = w ~ + w ~ + w ~ + - . -  
i 

+h2i-l(a@a) x hn-z,+l(BOP)) 

=Chi(aOa) x hn-i(B@P) 
i 

zind so x @) = xi Sqi(a) x Sqn-i(/?). This translates to SqP+¶-"(a x 8) = Note that wo = 1 since T =@(I). Also note that w, = 0 for q > k since 
XI %'-'(a) x Sqq-"+'(/?). By reindexing, this becomes deg(z) = k and by Section 15, Axiom 3. 

n The classes w, and w, have immediate interpretations: 
Sqn(a x B) = C Sqi(a) x sqn - '(8). 

i = O  

Letting d: X -+ X x X be the diagonal map, we get 2. Proposition. For a k-plane bundle, 

n 1) w, = O o  the vector bundle is orientable; and 
u p )  = Sqnd*(a x P) = d * Sqn(a x B) = C d*(Sqi(a) x Sqn-'(B)) ) w, is the mod 2 reduction of the Euler class X. 

i = O  
n 

= c Sqi(a)uSqfl-i(/?) OOF. We have w, = @ - I  Sql(z) = @-'p(z) where P is the Bockstein in the 
1=0 

which is the Cartan formula. 
Hk(W, W- N;z,)-+H'(w, W- N;z,) 4 Hk+l(W, w - N ; z ~ )  

17. S tiefel- Whitney Classes .#J nd so D(T) = 0 if and only if z is the mod2 reduction of a Z4 class. But the 
existence of a mod4 Thom class is equivalent to having an orientation on 

In this section we apply Steenrod squares and the Thorn isomorphism t For part (2) we note that @(w,) = Sqk(z) = T~ = n*i*(z)ur, but it is also introduce certain important "characteristic classes" which are invariants 
~*(w,) u z and so wk = i*(z) = x (mod 2) by definition. vector bundles and of manifolds (via the tangent bundle). These classes wil 

in turn, be applied to derive some interesting nonembedd~ng results for mani- 
folds. The following fact is immediate from the naturality of the definition of 

All cohomology in this section is taken with Z, coefficients. In particular, 
there are no orientation requirements. 

17.3. Proposition. If 5 and q are vector bundles and f:  5 -+ II is a bundle map Suppose that n Wn+* -+ Nn is a k-disk bundle and let i: N -+ W be the zero 

section. As in Section 11, let z~H*(w,i?W) be the Thom class. By Theorem then ~ ( 5 )  = f *(w,(rl)). 
11.3 the Thorn isomorphism 

It follows that W(E) = 1 for any trivial vector bundle E, since E is induced 

@:HP(N) - H P + ~ ( W , ~ W )  om the trivial bundle over a point. 
If 5 and q are vector bundles over Bg and B,, respectively, then one can 

is given by @(u) = n*(u) u z. form the product bundle 5 x q over Bt x B,. It is clear that the Thom class 



.-- 

z for the product bundle is= rc x 7,. Thus 

Sq(4 = Sq(zc) x Sq(7,). 
Also 

(w(t) x w(rl)) u(zy x z,) = (w(t) u TS x (w(fl) u z4) = Sq(75) x Sq(zs) 

and it follows that 

w(5 x rl) = w(t) x w(d. 

If Bc = B, = B and we apply the diagonal map d: B-, B x B to this, we get 

17.4. Theorem (Whitney Duality). 

w(5 0 rl) = w(C)w(rl). 

In particular, w(t OE) = ~ ( 5 )  for a trivial bundle E. 

Now let Nn be a closed manifold. We define the Stiefel-Whitney class 
wq(N) to be the Stiefel-Whitney cIass wq of the tangent bundle of N. Recall t 
the tangent bundle of N is the pullback, via the diagonal mapd: N -+ N x 
of the normal bundle rl of the diagonal A c N x N. Hence wq(N) = d*wq 
The Thom class of q maps to zeHn(N x N), the dual of [A], as in Section 
We have 

w,(fl) u 7 = Sq4(7) 

by definition of the wq and the naturality of this equation. Dualizing this give 

Sqy(t) n [N x N] = (w,(q) u z) n [N x N] 

= wq(fl) n (7 n [N x N1) 

= ~q(?)  n d* CNI 

= d*(d*(w,(rt)) n CNI 

= d* (wq(N) n CNI 1. 
Therefore we have the formula 

which characterizes the w,(N). This is equivalent to the nice formula 

We would like to convert this formula into one more easily computable. To 
this aim, consider the homomorphism ui-+ ( Sqi(u), EN]) of Hn-'(N; Z,) -, Z,. 
By cup product duality (Theorem 9.4), the map 

Hi(N; Z,) -+ Hom(Hn-'(N; Z,), Z,) 

given by ~ ~ ( u u v ,  [N]), is an isomorphism. Therefore there is an element 
uieHi(N; 2,) taken by this into the homomorphism u++(Sqi(u), [N]). That 

is, there exists a unique class vicHi(N; Z,) such that 

all UGH"-'(N; Z,). These classes vi are called Wu classes and we can form 
total Wu class 

v=1+v ,+u2+ . . .  

(note that v, = 1). 

17.5. Theorem (Wu). The total Stiefel- Whitney class w and total Wu class v 
of a manifold Nn satisfy 

w = Sq(v). 

That is, 

PROOF. Let p: N x N + N be the projection to the second factor. With the 
notation from Theorem 12.4, we compute 

= z a C i (Sqj(aO), [N] ) Sqq -'(a) n [N]. 

Therefore, letting nj,, be the uth component of vj in the basis of H*(N; Z,) 
formed by the a's, 

wq = xx (Sqj(aO), CN1) Sqq-'(a) 
a i 

= C x ( a O  uvj, [N]) Sqq-j(a) 
a j 

= zxnj,,(ccO a i u a ,  [N] ) sqq-j(a) 
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..-In principle, this provides a method of computing the wi by knowled 
of the action of the SqJ on H*(N; Z,) since the vi can be computed from t 
information. 

For example, on CP2, with a being the generator of H2(CP2; Z,), we hav 
Sq2(a)=aZ a n d s o v 2 = a a n d u = 1 + a . T h e n w = S q ( v ) = 1 + a + a 2  ands  
w2 = a and w4 = a'. 

Now we wish to compute the Stiefel-Whitney classes of real project 
space Pn. This could, in principle, be done using Theorem 17.5 but there 
a better way as follows. We will prove, by induction, that w(Pn) = (1 + a)" 
where aeH'(Pn; Z,) is the generator, If T, is the tangent bundle of Pn th 
T, 1 p,, - x rn- O y where y is the normal line bundle to Pn- ' in Pn. Now 
not orientable since exactly one of Pn and Pn-' is orientable. Therefore, 
Proposition 17.2, w(y) = 1 + a. By induction, W(T,)~,,.. , = w 
(1 + a)"(l + a) = (1 + a)"+'. Since Hi(P"; Z,) + Hi(Pn-'; Z,) is an i 
for i + n, this shows that (1 +a)"+' is correct for w(P") except 
wn(Pn). By Proposition 17.2, wn(Pn) = x(Pn)a" = (n + l)an (mod 2), completi 
the induction. Using the identity (1 + a)' = 1 + a2 over Z,, and hence (1 + a)2i 
1 + aZi, we have: 

17.6. Theorem. Let n + 1 = Cni2' be the binary representation of n + 1. Th 

w(P") = (1 + a)"+ ' = X (1 + a2') 
n r = l  

where a is the nonzero class in H'(Pn;Z2). 

For example, since 11 = 1 + 2 + 8 we have 

w(PlO) = (1 + a)(l + a2)(1 + a8) = 1 + a + a2 + a3 + a* + a9 + a'' 

since a" = 0. 
Now suppose that Nn is embedded, or just immersed, in some Rk. L 

denote its tangent bundle (not to be confused with the Thom class, w 
will not be needed below) and v its normal bundle. Then z 
wi = wi(r) = wi(N) and Gi = wi(v), and put @ = 1 + Gl + K7, + . . .. Then, b 
Whitney duality, 

w@ = 1. 

It is not hard to see from this that G can be computed from w. In particula 
it does not depend on the particular immersion. 

For Pn we have 
w(pn)=(l +a)-"-' =(I +a)2"-"-', 

where 2" is the smallest power of 2 for which 2 2  n + 1 (actually, for any 
2" 2 n i- 1). For example, *(PI0) = (1 + a)16- '' = (1 + a)' = (1 + a)(.l + a4) = 
1 + a + a4 + a'. It follows that dim(v) 2 5, so that PI0 cannot be immers 
in R14. 

For pZk we have G(p2") =(I  + a)2kt1-2k-1 =(1 = 1 + a + a 2 +  . a  

+ @ 2 k -  I . Consequently: 
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17.7. Theorem. For n = 2k,Pn cannot be immersed in R2"-'. . 

It is a theorem of Whitney that any closed n-manifold, n > I, admits an 
immersion into R2"-' and so Theorem 17.7 is best possible. 

One can generalize Theorem 17.6 to complex and quaternionic projective 
spaces: 

17.8. Theorem. Let N be a closed manifold with H*(N; Z,) x Z, [a]/(am+ ') 
for some aeHr(N; Z,). Then w(N) = (1 + a)*+ ' and G(N) = (I + for 
any 2" 1 m + 1. 

PROOF. Our proof follows Milnor-Stasheff [I], an excellent reference for 
continuing study in the direction of this section. We have Sq(a)  = a + a2 and 
so, from the Cartan formula, 

Sq(ak) = (Sq(~l))~ = ak(l + 
Therefore, for the Wu class vri we have that 

(am-ivv,i, [N] > = (Sqri(am-i), [N]) 

is the coefficient of am in Sq(amWi) = am-'(1 + which is (m i ) .  There- 

m-1 
fore v, = ( ) a' and so 

In principle this can be computed. But the computation is independent of 
r = deg(a) and so it would come out the same as the computation for Pm. 
For Pm we know this gives 

Consequently, this formula persists in the general case. 0 

For example, for the Cayley projective plane K we have w ( K )  = 1 + a + cr2 
and G(K) = 1 + a where deg(a) = 8. In particular, K does not immerse in 
Rl6+7 = ~ 2 3  

Finally we state, without proof, the following deep and fundamental result 
of Thom. (The "only if" part is due to Pontryagin and is not hard; the reader 
may wish to try proving it.) 



17.9. Theorem (Thom). A smooth closed eonnected mangold M" is the boundary 
of a smooth compact (n + 1)-manifold if and only if its fundamental class 
9eHn(Mn; 2,) is not a product of Stiefel- Whitney classes of M". Cl 

1. For the Klein bottle K2 compute w(K2)  and *(K2) .  

2. For an orientable 3-manifold M3 show that Sq = 1 on M 3  and deduce that w(M)  = 1. 

3 .  For M 3  = P 2  x S' show that w ( M )  = 1 + a  + a2 and *(M)  = 1 + a  for some 
0 # a e H 1 ( M ;  Z,). 

4. If M 3  is the nonorientable S2-bundle over S1 show that w(M)  = 1 + a  and w ( M )  = 
1 + a  for some 0 # a e H 1 ( M ;  Z,).  

5. + Recall from Problem 4 of Section 15 that CP2"+' is fibered by 2-spheres with 
base space QP". The tangent vectors to the fibers give a 2-plane bundle { over 
CP2"+' .  Show that w(<) = 1. 

6. + For the canonical line bundle over RPm, show that w({ )  = 1 + a  where 
0 # a e H ' ( R P W ; Z 2 ) .  Use this to show that there is no vector bundle q over RPm 
such that { @ v] is trivial. 

7. + Let Nn be a given manifold with w ( N )  # 1. If i > 0 is minimal such that wi(N)  # 0 
then show that i is a power of two. 

18. Plumbing 0 
The purpose of this section is to illustrate the method of intersection theory 
in doing a homology calculation in an important and nontrivial situation, 
and to discuss some interesting consequences for differential topology. This 
section can be read after the material on intersection theory up to and 
including Proposition 12.8. 

Suppose that 5 and q are two smooth n-disk bundles over smooth n- 
manifolds M" and N". Around any given point of M there is a neighborhood 
A x D" and a trivialization 

i.e., a diffeomorphism commuting with the projections pg: E(< lA) -+  A and 
p,: Dn x D" -+ D", where p,(x, y) = x. Similarly, let B z Dn be a neighborhood 
of a point in N and take a trivialization 

- 
$: E(vlB) A Dn x D". 

Let 8: E(v 1 ,) - E(5 1 ,) be 6 = 4) - ' ~ t + h  where X: Dn x D" -+ Dn x D" is the 
exchange of factors ~ ( x ,  y) = (y, x). Then define 

Figure VI-12. Simple plumbing. 

called the "plumbing" of E(<) knd E(q). See Figure VI-12. Note that the 
identification 8 matches the base of one bundle with the fiber of the other. 

The space P2" is a topological 2n-manifold with boundary and is close to 
being a smooth manifold, but it has "corners." There is a canonical way to 
"straighten" these corners and so to produce P2" as a smooth manifold, or 
one can modify the construction to do that. We will not detail that, but we 
will wish to discuss P2" as a smooth manifold later in this section. 

There are obvious generalizations of this construction. For instance, one 
can plumb several disk bundles to a given one using disjoint coordinate 
patches to carry the identifications. 

We will now restrict attention to the case in which the manifolds M", Nn 
are both S" and the disk bundles are each the tangent disk bundle of Sn. If 
one is given a finite tree (or, more generally, a connected graph) T, let PZn(7') 
be the 2n-manifold with boundary obtained by taking a copy of S" for each 
vertex of T and plumbing the tangent disk bundles of two of these if there 
is an edge in T joining the corresponding vertices. This is illustrated in Figure 
VI-13 for an important tree named E,. 

We wish to compute the homology of Q = Q2"-'(T) = aPZn(T). Note that 
P2" = P~"(T) is homotopy equivalent to the one-point union of copies of S", 
one copy for each vertex of T. (These spheres are the "cores7' of the various 
disk bundles, and two cores meet in exactly one point at any plumbing.) 
Thus H,(P2") is nonzero in exactly one nonzero dimension, i = n. In that 
dimension, H,(P'") is free abelian on k generators where k is the number of 
vertices of the tree T. We have the duality diagram 

Other parts of this diagram show that Q can have no homology In dimensions 
other than 0,n - 1,n and 2n - 1. To compute H,(Q) it suffices to know the 
map j,: Hn(P) -+  H,(P,Q). Equivalently, i t  suffices to know the composition 
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< @+p$-JJ and only if the intersection matrix I(T) is unimodular, i.e., has determipant 

For n odd, say n = 2m + 1, the case of the connected graph A, with two 
ertices (i.e., a single plumbing) yields the matrix 

- 3 
ich is unimodular. Hence dP4"+2(A,) is a homology sphere. In fact, it 
lows from the Generalized Poincare Conjecture, proved by Smale [I], 

1 at this is homeomorphic to S4"+' for m 2 1. It was proved by Kervaire 
e Kervaire and Milnor [I]) that this is not diffeomorphic to S4"+' for 
able values of m; e.g., for m = 2. This "exotic sphere," a smooth manifold 

Figure VI-13. The Milnor plumbing. ich is a topological sphere but is not diffeomorphic to the standard sphere, 
nown as the "Kervaire sphere." 
or n even, say n = 2m, and for the tree E, of Figure VI-13, the intersection 

of j ,  with the isomorphisms D: H,(P, Q) - Hn(P) (the inverse of (-) n [P bering the "bottom" vertex last) is 

and /?: Hn(P) Hom(H,(P), 2) (the evaluation, which is isomorphic since 
H,(P) is free abelian). This composition takes a€H,(P) to the homomorphis 
BDj*(a) where, for b€H,(P), we have 

(/?Dj,(a) 1 (b) = < Dj,(a), b ) 

= ( j *  D(a), b ) (by the diagram) 

= < D(a),j,(b) ) 
= ( D(a), j* D(b) n [PI ) (by the diagram) 

- 
2 1 0 0 0 0 0 0  
1 2 1 0 0 0 0 0  
0 1 2 1 0 0 0 1  
0 0 1 2 1 0 0 0  
0 0 0 1 2 1 0 0  
0 0 0 0 1 2 1 0  
0 0 0 0 0 1 2 0  

~ 0 0 1 0 0 0 0 2  
= < D(a) uj*D(b), [PI ) 

= ( D(a) u D(b), [PI ) 

I 
this turns out to be unimodular. Hence C4"- = ~ P ~ ~ ( E ~ )  is a homology 

sphere for all m 2 1. For m = 1 it is not simply connected and, in fact, can 
= ~*(b*a) be seen to be the Poincart dodecahedra1 space of Theorem 8.10. For m > 1, 
= b-a, Z4"-l is homeomorphic to S4"-l. Milnor has shown that C4"-' is not 

diffeomorphic to S4"- form 2 2. This manifold is called the "Milnor sphere." 
the "intersection number" of b and a. Therefore, the matrix of j, is equiva ee Kervaire and Milnor [I], Hirzebruch and Mayer [I], and Kosinski [I] 
to the intersection matrix I(T) on Hn(P). Note that I(T) is symmetric if r much more on this topic. 
even and skew symmetric if n is odd. Addition of a cone over the boundary sphere of p4"(~,),m > 1, ~rovides 

Let a,, . . ., a, be the basis of Hn(P) represented by the k core n-s opological manifold which cannot be smoothed. 
Since the disk bundles are the tangent bundles of Sn we have a;a, = 

1 + (- 1)" by Proposition 12.8. Also, two core spheres meet transverse1 
exactly one point if they correspond to an edge of T. For n even, a;a, 
if (i, j) is an edge of T Otherwise ai.aj = 0. For n odd, a;aJ = + 1 an Compute H,(~P~*(A,))  where A, =tee...--, (k vertices). 
a;a, = f 1 for an edge (i, j). The sign depends on how we orient things an 
is not Important. (A change of basis a i + +  -a, just changes the sign in the i . Compute H,(~P~"(D,))  where D, =>--...-+ (k vertices). 

row and column and, since Tis a tree, it is easily seen that all arrangements 
signs are possible.) 

We are particularly interested in cases where Q is a homology sphere. (Also 
note that Q is simply connected for n 2 3, an easy consequence of the Seifert- 
Van Kampen Theorem.) By the discussion above, Q is a homology sph 



If ( X , q )  has the homotopy extension property with re_spect to Y then 
CHAPTER VII extensibility of maps g: A + Y clearly depends only on the homotopy class 

Hornotopy Theory 
1.2. Definition. Let f :  A + X  be a map. Then f is called a cofibration if one 
can always fill in the following commutative diagram: 

A  x ( 0 )  ----------+ A x I  
/ 

I  believe that we lack another analysis p 1 , YK.-. I l x l  
geometric or linear which expresses loca X  x  ( 0 ) - - - - - - X  x  I 

directly as algebra expresses magnit 

(letter to Huygens, Note that i f f  is an inclusion then this is the same as the homotopy 
extension property for all l! That attribute is sometimes referred to as the 
"absolute homotopy extension property." 

1.3. Theorem. For an inclusion A  c X  the following are equivalent: 

1. Cofibrations The inclusion map A  + X  is a cofibration. 
A x I u X  x  ( 0 )  is a retract of X  x I. t 

One of the fundamental questions in topology is the "extension proble 
This asks for criteria for being able to extend a map g: A +  Y defined on (2), consider the diagram of Definition 1.2 with Y = A  x I u 
subspace A of X  to all of X .  Of course, this cannot always be done x (0 ) .  The filled-in map is the desired retraction. 
shown by the case A = Y = Sn, X = Dm+'. For (2) 3 (I ) ,  composing the retraction of (2)  with a map A x  I u X  x ( 0 )  + 

It is natural to ask whether or not this is a homotopy-theoretic proble ves the homotopy extension property for all Y, which, as mentioned, is 
That is, does the answer depend only on the homotopy class of g? The ans 
to this is "not generally" as is shown by the space X  = [O, 11, A = ( 0 )  u (l/nJ 
1,2,. . . ), and Y = CA, the cone on A. The map g which is the can .4. Corollary. If A  is a subcomplex of a CW-complex X ,  then the inclusion 
inclusion of A  in Y cannot be extended to X ,  since the extension would ha A c X  is a cofibration. 
to be discontinuous at ( O f .  However, g 1: g', where g' is the constant map 
A to the vertex of the cone, and g' obviously extends to X. structs a retraction ((Aux")) x I ) u ( X  x  ( 0 ) )  +(A x  I ) u  

However, it turns out that some very mild conditions on the spaces w ( 0 ) )  by induction on r. If it has been defined for the (r - 1)-skeleton 
ensure that this problem is homotopy theoretic, as we now discuss. over an r-cell is simply a matter of extending a map on 

x l u D r  x  ( 0 )  over Dr x I, which can always be done because the pair 
1.1. Definition. Let (X, A) and Y be given spaces. Then (X, A) is said t I , S - '  x  I uD' x  ( 0 ) )  is homeomorphic to (Dr x  I, Dr x  { O ) ) ,  see 
the homotopy extension property with respect to Y if the following diagra 
can always be completed to be commutative: se maps for each cell fit together to give a map on the r-skeleton 

e of the weak topology on X  x  I. The union of these maps for all r 
A x  I u X  x  10) -- Y 

, es a map on X x I, again because of the weak topology of X  x  I. r /,, 

' 
, 

X  x  I.' The main technical result for proving that particular inclusions are 

Note that one can also depict this with the following type of diagram: ing. Note that conditions (1) and (2)  always hold if 

A x ( 0 )  - A x 1  
t A c X is closed and that there exists u neighborhood 

A and a map 4: X -+ 1, such that: 
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(1) A = l ( 0 ) ;  - he inclusion i:X + M f  5Iearly satisfies Theorem 1.5 and hence is a 

(2) 4(X - U) = (1); and fibration. Also, the retraction r: MJ -+ Y is a homotopy equivalence with 
(3) U deforms to A through X with AJixed. That is, there is a map H: U x 1 rse being the inclusion Y c, M f .  The diagram 

such that H(a, t) = a for all aeA, H(u,O) = u, and H(u, 1)eA for all u x- 
Then the inclusion A c + X  is a cofibration. The converse also holds. 

PROOF. We can assume that 4 = 1 on a neighborhood of X - U ,  by replaci 

\ $"' 
Y 

4 with rnin(24,l). It suffices to show that there exists a map commutes. This shows that any map f is a cofibration, up to a homotopy 
@ : U x I + X x { O ) u A x I  equivalence of spaces. 

Also recall the definition of the "mapping cone" off: X +  Y as the quotient 
such that @(x, 0) = (x, 0) for X E  U and @(a, t )  = (a, t) for atz A and a 
then the map r(x, t) = @(x, t(l - $(x))) for XE U and r(x9 t) = (x, 0) 
gives the desired retraction X x I + A x I U X  x (0). Cf = M,/X x ( 1 )  z M f u  CX. 

We define @ by In the case of an inclusion i: A c, X, we have Ci = X u  CA. There is the map 

@(u, t) = { H(u, t/4(u)) x (0) for 4(u) > t, 
Ci A X/A, 

H(u, 1) x (t - &u)) for 4(u) S t. 

We need only show that @ is continuous at those points (u,O) such 
defined as the quotient map X u CA -r X u CAJCA composed with the inverse 

4(u) = 0, i.e., at points (a,O) for aeA. of the homeomorphism XJA -,Xu CAJCA. It is natural to ask whether h is 

Note that H(a, t) = a for all ~ E I .  Thus, for W a neighborhood of a, 
a homotopy equivalence. This is not always the case, but the following gives 

is a neighborhood V c W of a such that H(V x I) c W. Therefore, t < a sufficient condition for it to be so. 

utzV imply that @(u, t)tz W x [0, €1, and hence that @ is continuous. 1.6. Theorem. If A c X is closed and the inclusion i: A CL, X is a coJibration 
We will now prove the converse. 
Let r: X x I -+A x I u X x (0) be a retraction, let s(x) = r(x, 1) and 

then h: Ci + X/A is a homotopy equivalence. In fact, it is a homotopy equivalence 

U = s-'(A x (O,l]). Let p,, p, be the projections of X x I to its factors. T 
put H = p,or: U x I + X .  This satisfies (3). For (1) and (2), pu (XI4  *) - (ci, CA) N (ci, 01, 
max,,, I t - p,r(x, t)l which makes sense since I is compact. That thi 
(1) and (2) is clear and it remains to show that 4 is continuous. Let f (x, 

where v is the vertex of the cone. 

it - p,r(x, t)l and ft(x) = f (x, t), all of which are continuous. Then pping cone Ci = X u  CA consists of three different types of 
x v = {A x (I)) ,  the rest of the cone {(a,t)JO I t < 1) where 

4-I((-oo,b])= (XI f(x,t)< b for all t) = of;'((-.o,b]) , and points in X itself, which we identify with X x (0) to 
to1 lify definitions of maps. 

is an intersection of closed sets and so is closed. Similarly 
efine f:  A x I U X  x (0) -+ Ci as the collapsing map and extend f to 

y the definition of cofibration. Then f(a, 1) = v, f(a, t) = (a, t )  

$-'([a, a)) = (XI f(x,t) 2 a for some t} = px(f -'([a, a))) 
{ f ~ .  ~ i n c e f , ( ~ )  = (v}, there is the factori~ationf~ = goj, where 

is closed since p, is closed by Proposition 8.2 of Chapter I. Since e quotient map and g: X/A+ Ci. (g is continuous by definition 
complements of the intervals of the form [a, m) and (-a, b] give a of the quotient topology.) 
for the topology of R, the contention follows. We claim that g is a homotopy equivalence and a homotopy inverse to h. 

First we will prove that hg N 1. There is the homotopy hf,:X-+X/A. For 
It can be shown that, in the situation of Theorem 1.5, X x (0) u all t, this takes A into the point {A}. Thus it factors to give the homotopy 

a deformation retract of X x I. See Dugundji El], pp. 327-328. 
Suppose that f :  X -+ Y is any map. Recall that the "mapping cylinder" hg N { h T , )  N {hfo} = { j} = 1. 

off is defined to be the quotient space Next we will show that gh - 1. For this, consider W = (X x I)/(A x (1)) 

Mf = ( ( X  x 1) + Y)/((x,O) -f(x)). 'and the maps illustrated in Figure VII-1. The map f is induced.by $ The 



A ,- { A }  X / A  

c, W 

Flgure VII-I. A homotopy equivalence and homotopy inverse. 

map k is the "top face" map. We see that 

7.1 = 1, 

7c 0 k = 1 (which we don't need), 

ken _N 1, 
- 
f'ok = g (definition of g), 

no1 = h. 
- 

Hence goh =f'o(k07c)ol= f ' o l=  1, as claimed. 

A nonexample of Theorem 1.6 is A = (0) u (llnln = 1,2,. . . ), and X 
LO, 11, Here Ci is not homotopy equivalent to XJA, which is a one-poi 
union of an infinite sequence of circles with radii going to zero. (Ci h 
homeomorphs of circles joined along edges, but the circles do not tend t 
point and so any prospective horfiotopy equivalence X/A+ C, would 
discontinuous at the image of (0) in X/A.) 

1.7. Corollary. If A c X is closed and the inclusion A c, X is a cofibra 
then the map j: (X, A) -+ (XJA, *) induces isomorphisms 

HJX, A) 2 H,(X/A, *) w Z?,(X/A), 

and 

I?*(x/A) x H*(X/A, *) -% H*(x, A). 

PROOF. H,(X/A,*)z H,(C,,CA)x H,(XuA x [O,$],A x [O,i])!z H,(X,A). 

A nonexample is X = S2 with A c X the "sin(l/x)" subspace pictured in 
Figure VII-2. Here X/A z SZ v SZ, so that ~?,(x/A) x Z@ 2. But H,(A) = 
0 = H2(A), so that Hz(X, A) x H,(X) x Z. It follows that the inclusion A 4 S Z  
is not a cofibration. 

Let us recall the notion of the pointed category and sdme notational 
items. The pointed category has, as objects, spaces with a b a ~ e  point *, and 

Figure VII-2. A pseudo-circle 

as maps, those maps of spaces preserving the base point. There is also the 
category of pairs of pointed spaces. There is also the notion of homotopies 
in this category, those homotopies which preserve the base point. 

Iff: X-+ Y is a pointed map then the reduced mapping cylinder off is 
the quotient space M, of (X x I) u Y modulo the relations identifying (x, 0) 
with f (x) and identifying the set {*) x I to the base point of M,. 

The reduced mapping cone is the quotient of the reduced mapping cylinder 
M, gotten by identifying the image of X x (1) to a point, the base point. 

The one-point union of pointed spaces X and Y is the quotient X v Y of 
the disjoint union X + Y obtained by identifying the two base points. 

The wedge, or smash, product is the pointed space X A Y = X x Y/X v Y. 
The circle S1 is defined as I/dl with base point (81). 
The reduced suspension of a pointed space X is SX = X A S1. It can also 

be considered as the quotient space X x I/(X x aIu (*) x I). 
As remarked before, S" A Sm is the one-point compactification of Rn x Rm 

and hence is homeomorphic to Sn+m. Thus we can, and will in this chapter, 
redefine Sn inductively by letting Sn+' = SSn. Also note that 

S(SX) = (SX) A S' = (X A S') A S1 = X A S2, etc. 

The preceding results of this section can all be rephrased in terms of the 
pointed category. Extending the proofs is elementary, mostly a matter of 
seeing that the unreduced versions become the reduced versions by taking 
the quotient of spaces by sets involving the base point. For example, 
Theorem 1.6 would say that if A is a closed, pointed, subspace of the pointed 
space X and if the inclusion i: A -+ X is a cofibration (same definition since 
the base point is automatically taken care of) then X/A = C,, where the latter 
is now the reduced mapping cone, and the homotopies involved must preserve 
the base points. 

1.8. Definition. A base point X ~ E X  is said to be nondegenerate if the inclusion 
x }  c-, X is a cofibration. A pointed Hausdorff space X with nondegenerate 
base point is said to be well-pointed. 

Any pointed manifold or CW-complex is clearly well-pointed. A pointed 
space that is not well-pointed is {O) w { l / n ( n  2 1 )  with 0 as base point. The 
reduced suspensions of this also fail to be well-pointed. 
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If A c, X is a cofibration t?len XIA, with base point ( A ) ,  is well-pointe 
as follows easily from Theorem 1.5. 

If a whisker is appended at the base point of any pointed space X, then 
changing the base point to the other end of the whisker provides a well 
pointed space. (This is, of course, just the mapping cylinder of the inclusi 
of the base point into X.) 

1.9. Theorem. If X is well-pointed then so are the reduced cone C X  a 
reduced suspension SX .  Moreover, the collapsing map CX-+SX,  
unreduced suspension to the reduced suspension, is a homotopy equivalence. 

PROOF. Denote the base point of X by *. Consider a homeomorphism 

h : ( ~  x I , I  x { o } ~ a r  x I);(I x I , I  ~ ( o ) )  
which clearly exists. Then the induced homeomorphism 

I X ~ : X X I X I L X X I X I  

carriesXxIx{O}uXxaIxItoXxIx(O).Hencei t takesA=XxIx 
u X x d I  x I u { * }  x I X I  to X x I x  fO}u(*> X I X I .  Therefore, the p 
(X  x I x I, A)  is homeomorphic to the pair I x (X x I, X x ( 0 )  u { *  
Since X x (0 )  u { *) x I is a retract of X x I by the definition of "well-po 
it follows that A is a retract of X x I x I. This implies that the inc 
X x aI u ( * )  x I Q X  x I is a cofibration. Therefore, SX = X x I / (X 
u (*)  x I )  is well-pointed. A similar argument using a homeomorp 
(I x I, I x ( 0 )  u (1)  x I )  --%(I x I, I x 10)) shows that the inclusion X x f 
(* )  x I c , X  x I isacofibrationand so C X = X  x I N X x  { l ) u { * )  x 
well-pointed. 

The fact that X x a I u ( * }  x I c , X  x I is a cofibration implies that t 
induced inclusion I w ( * )  x I % X  x I / {X  x (O),X x ( 1 ) )  = E X  is a co 
bration by an easy application of Theorem 1.5. By Theorem 1.6, CX 
C X u C I  -CX/I = SX via the collapsing map. 

PROBLEMS 

1. Find H , ( P 2 , P 1 )  using methods or results from thls section. (If P Z  IS thought 
as the unit disk in the plane with antipodal points on the boundary identifie 
then P' corresponds to the "boundary" circle ) 

2. Find H,(T2,  { * )  x S '  US' x { * } )  using methods or results from this section. ;@ 

3 For a space X  consider the palr ( C X , X )  What d o  the results of this sectlon tel 
you about the homology of these, and related, spaces? 

4 I f f :  A  --+ X  is a cofibratlon then show that f 1s an embedding If X  is also Hausdor 
then show that f ( A )  1s closed In X .  (Hlnt Cons~der Mf.) 

5 If A  c X  is closed and r. A c, X  1s a cofibrat~on and A is contractible, show tha 
the collapse X  -, X / A  I? a homotopy equivalence 
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2. The Compact-Open Topology 

Let X be a locally compact Hausdorff space, and Y any Hausdorff space. 
By YX we mean the set of continuous functions X -+ Y. 

2.1. Definition. The compact-open topology on YX is the topology generated 
by the sets M(K, U )  = { f E YXl f ( K )  c U ) ,  where K c X is compact and U c Y 
is open. 

Recall that "generated" here means that these sets form a subbasis for the 
open sets. In the remainder of this book, unless otherwise noted, YX will 
always be given the compact-open topology. 

2.2. Lemma. Let K be a collection of compact subsets of X containing a 
neighborhood base at each point of X .  Let B be a subbasis for the open sets 
of Y. Then the sets M(K, U), for KEK and U E B ,  form a subbasis for the 
compact-open topology. 

PROOF. Note that M(K, U ) n  M(K,  V )  = M(K,  U n V) ,  which implies that it 
suffices to consider the case in which B is a basis. We need to show that the 
indicated sets form a neighborhood basis at each point f E YX. Thus it suffices 
to show that if K c X is compact and U c Y is open, and f EM(K,  U), then 
there exist K ,,. . . , K,EK and U ,  ,.. .,U,EB such that f G n M ( K i ,  Ui )  c M(K,  U). 

For each X E K ,  there is an open set U,EB with f ( x ) ~ U ,  c U ,  and there 
exists a K,EK which is a neighborhood of x such that f(K,) c U,. Thus 
f EM(KX, Ux). 

By the compactness of K there exist points x,, . . .,x, such that 
K c K , , v - . - u K , , .  Then ~ E ~ M ( K , , , U , , ) ~ M ( K , U ) .  • 

2.3. Proposition. For X locally compact Hausdorff, the "evaluation map" 
e: YX x X -+ Y, defined by e( f ,  x) = f (x),  is continuous. 

PROOF. Iff and x are given, let U be an open neighborhood off (x). Since 
f is continuous, there is a compact neighborhood K of x such that f ( K )  c U. 
Thus f EM(K,  U )  and M(K, U )  x K is taken into U by the evaluation e. Since 
M(K, U )  x K is a neighborhood of ( f ,  x )  in YX x X ,  we are done. 

2.4. Theorem. Let X be locally compact Hausdorff and Y and T arbitrary 
Hausdorff spaces. Given a function f :  X x T -+ Y, define, for each ~ E T ,  the 
function f,: X -+ Y by f,(x) = f ( x ,  t). Then f is continuous o both of the following 
conditions hold: 

(a) each f, is continuous; and 
(b) the function T -+ YX taking t to f ,  is continuous. 

PROOF. The implication e follows from the fact that f is the composition of 
the map X x T -+ YX x X taking (x ,  t )  to ( f , , x ) ,  with the evaluation 
YX x x-t  Y. 



For the implication a, (a) follows from the fact that f, is the composition 
X + X x T -+ Y of the inclusion x-(x, t) with$ To prove (b), let t~ T be given 
and let .f,eM(K, U). It suffices to show that there exists a neighborhood W 
of t in T such that ~ ' E W *  f,.eM(K, U). (That is, it suffices to prove the 
conditions for continuity for a subbasis only.) 

For ~ E K ,  there are open neighborhoods Vx c X of x and W, c Tof t such 
that f (V, x W,) c U. By compactness, K c Vx,u..- u Vx, = V say. Put 
W=Wx,n.--nW,,. Then f(K x W ) c  f (Vx  W)cU,  so that ~ 'EW=+ 
f,,eM(K, U) as claimed. 0 

This theorem implies that a homotopy X x I -+ Y, with X locally compact, 
is the same thing as a path I-, YX in YX. 

An often used consequence of Theorem 2.4 is that in order to show a 
function T-+ YX to be continuous, it suffices to show that the associated 
function X x T -+ Y is continuous. 

25. Theorem (The Exponential Law). Let X and T be locally compact 
Hausdorffspaces and let Ybe an arbitrary Hausdorfspace. Then there is the 
homeomorphism 

yX x T &(yX)T 

taking f to f *, where f *(t)(x) = f (x, t) = f,(x). 

PROOF. Theorem 2.4 says that the assignment f wf * is a bijection. We must 
show it and its inverse to be continuous. Let U c Y be open, and K c X, 
K' c T compact. Then 

feM(KxK1,U) o ( t e K 1 , x ~ K - f , ( x ) = f ( x , t ) ~ U )  - ( ~ E K '  ~ ,EM(K,  U)) 

o f * E M(K', M(K, U)). 

Now the K x K' give a neighborhood basis for X x T. Therefore the 
M(K x K', U) form a subbasis for the topology of YX " T. 

Also, the M(K, U) give a subbasis for YX and therefore the M(K1, M(K, U)) 
give a subbasis for the topology of (YX)T. 

Since these subbases correspond to one another under the exponential 
correspondence, the theorem is proved. El 

2.6. Proposition. If X is locally compact Hausdorffand Yand Ware Hausdorfl 
then there is the homeomorphism 

YX x wx A(Y x W)X 

given by (f ,  y)-f x g. 

PROOF. This is clearly a bijection. If K ,  K' c X are compact, and U c Y and 

V c W are open then we have 

(S,~)EM(K,U)X M(K1,V) o (xEK* f ( x ) ~ U )  and (x~K'=sg(x)~V) 
o ( x ~ K = > ( f  x g)(x)~U x W) and 

(x€K'-(f x ~)(x)EYx V) - (f x Q)E M(K, U x W) n M(K1, Y x V). 

Thus (f, g ) ~  f x g is open. 
Also, (f, g)cM(K, U) x M(K, V) *( f x g)eM(K, U x V), which implies 

that the function in question is continuous. 

2.7. Proposition. ZfX  and Tare locally compact Hausdovff spaces and Yis an 
arbitrary Hausdorffspace then there is the homeomorphism 

yX+T&yX yT 

taking f to (f oi,, f oi,). 

PROOF. This is an easy exercise left to the reader. 

2.8. Theorem. For X locally compact and both X and Y Hausdorf, YX is a 
covariant functor of Y and a contravariant functor of X. 

PROOF. A map 4: Y -+Z induces 4,: YX -+ ZX, by 4'( f )  = 40 f. We must show 
that 4' is continuous. By Theorem 2.4 it suffices to show that YX x X-+Z, 
taking (f,x) to 4( f (x)), is continuous. But this is the composition 4.e of 4 
with the evaluation, which is continuous. 

Next, for $:X--+ T, both spaces locally compact, we must show that 
Y$: YT+ yx, taking f to f o$, is continuous. It suffices, by Theorem 2.4, to 
show that y T  x X + Y ,  taking (f, x) to f (il/(x)), is continuous. But this is just 
the composition eo(1 x $), which is continuous. 

2.9. Corollary. For A c X both locally compact and X, Y Hausdor- the 
restriction YX -, YA is continuous. a 
2.10. Theorem. For X, Y locally compact, and X, Y,Z Hausdorff, the 
function 

ZY x YX-+ZX 

taking (f, g) to fog, is continuous. 

PROOF. It suffices, by Theorem 2.4, to show that the function ZY x YX x X -+ 

Z, taking (f,g, x) to (f og)(x), is continuous. But this is the composition 
eo(1 x e). 

All of these things, and the ones following, have versions in the pointed 
category, the verification of which is trivial. 
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We finish this section by showing that, for Y metric, the compact-open 
topology is identical to a more familiar concept. 

2.11. Lemma. Let Y be a metric space, let C be a compact subset of Y, an 
let U 3 C be open. Then there is an E > 0 such that B,(C) c U.  

PROOF. Cover C by a finite number of balls of the form B,(,,,(x,) such 
B2,(,,)(xi) c U.  Put E = min(e(xi)). Suppose xeB,(C). Then there is a CEC 
dist(x, c) < E and an i such that dist(c, x,) < ~(x,).  Thus x~B~,(,,,(x,) c U. 

2.12. Theorem. If X is compact Hausdorff and Y is metric then the compa 
open topology is induced by the uniform metric on yX, i.e., the metric given 
dist( f, g) = sup{dist( f (x), g(x))I XEX). 

PROOF. For f E YX, it suffices to show that a basic neighborhood off in eac 
of these topologies contains a neighborhood off in the other topology. 

Let E > 0 be given. Let N = B,( f )  = { g ~  YXIdist( f (x), g(x)) < E for all X E  

Given x, there is a compact neighborhood N ,  of x such that PEN, 
f (P)EB,/~( f (x)). Cover X by N,, u -.. u N,,. We claim that 

v = M(Nx,,B,,z(f(xl)))n ... nM(N,,,B€/z(f(xk))) N .  

To see this, let ~ E V ,  i.e., XEN,, - g(x)~B,/,(f (x,)). But f ( x ) ~ B , , ~ (  f (xi)) a 
so it follows that g~ V => dist( f (x), g(x)) < E for all x. That is, V c N. 

Conversely, suppose that f EM(K ,, U,) n ... n M(K,, U,), i.e., f (K,) c 
for i = 1,. . . , r. By Lemma 2.1 1, there is an E > 0 such that Be( f (K,)) c Ui 
all i =  1 ,..., r. If XEK, then B,(f(x))c B,(f(K,))c Ui. Therefore, if g€B,( 
and xeKi  then g(x)~B,(f(x)) c Ui. Thus g€M(K,,U,) for all i and 
B,(f c n M(Ki, Ui). 

2.13. Corollary. If X is locally compact Hausdorff and Y is metric then th 
compact-open topology on yX is the topology of uniform convergence o 
compact sets. That is, a net f a €  YX converges to f E YX in the compact-ope 
topology s f , l K  converges uniformly to f I K  for each compact set K c X. 

PROOF. For * recall from Corollary 2.9 that YX + YK is continuous. Th 
f a t K  + f l K  in the compact-open topology. But YK has the topology of th 
uniform metric and so fa[, converges to f 1, uniformly. 

For e, suppose that f,l, converges uniformly to f 1, for each compact 
K c X. Let f EM(K, U). Then there exists an E > 0 so that Be( f (K)) c U. There 
is an a such that p>  cl=dist(fp(x), f ( x ) ) < ~  for all ~ E K .  That is, 
,fP(x)eB,( f (K)) c U. Thus P > cr - .fP€ M ( K ,  U). This implies that fa 

converges to f in the compact-open topology. 0 

PROBLEMS 

1. Consider the Tychonoff topology on the set Y X  of continuous functions from X 
to Y, i.e., the subspace topology as a subspace of the space of all functions X -t Y 

.it 3. H-Spaces, H-Groups, and H-Cogroups 44 1 
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with the product topology. Which parts, if any, of Theorem 2.4 hold in this 
topology? Give either proofs or counterexamples. 

2. Describe the Tychonoff topology on YX in a manner similar to the description in 
Corollary 2.13 of the compact-open topology. 

3. Prove Proposition 2.7. 

4. Show that I' is not compact in the compact-open topology. 

3. H-Spaces, H-Groups, and H-Cogroups 

An H-space or H-group is a space with a product that satisfies some of the 
laws of a group but only up to homotopy. An H-cogroup is a dual notion. 
The "H" stands for "Hopf" or for "Homotopy." 

3.1. Definition. An H-space is a pointed space X with base point e, together 
with a map 

sending (x, y) to xey, such that e*e=e, and the maps X-+X taking x to 
x*e and x to e*x are each homotopic rel{e} to the identity. 

It is homotopy associative if the maps X x X x X + X taking (x, y, z) to 
(x*y)*z and to xe(y*z) are homotopic rel{(e, e,e)). 

It has a homotopy inverse *: X + X  if t? = e and the maps X -+ X taking x 
to x.2 and to 2.x are each homotopic rel{e} to the constant map to {e). 

An H-group is a homotopy associative H-space with a given homotopy 
inverse. 

There are two main classes of examples. The first is the class of topological 
groups. The second is the class of "loop spaces." The loop space on a space 
X is the space 

QX = (X, *)(S1,*), 

i.e., xS1 in the pointed category. The product is concatenation of loops, and 
the homotopy inverse is loop reversal. QX is a pointed space with base point 
being the constant loop at *. 

I f f :X+Zandg:Y-+Waremaps thenle t f  v g : X v  Y + Z v  Wbethe  
induced map on the one-point union. Also let V: Z v Z -+ Z be the codiagonal; 
i.e., the identity on both factors. If f :  X +Z and g: Y +Z then let 
f y g: X v Y -+ Z be the composition f y g = Vo( f v g); i.e., the map which 
is f on X and g on Y. 

3.2. Definition. An H-cogroup is a pointed space Y and a map y :  Y -+ Y v Y 
such that the following three conditions are satisfied: 



( 1 )  The constant map *: Y,-+ Y to the base point is a homotopy identity. 
That is, the compositions (* y 1 ) o y  and ( 1  y *)oy of Y Y v Y -+ Yare 
both homotopic to the identity re1 base point. 

(2) It is homotopy associative. That is, the compositions ( y  v 1)oy and 
( 1  v y)oy of Y & Y v Y -+ Y v Y v Yare homotopic to one another re1 
base point. 

(3) There is a homotopy inverse i: Y -+ Y. That is, (1 y i)oy and ( i  y 1)oy of 
Y ---L Y v Y -+ Yare both homotopic to the constant map to the base 
point re1 base point. 

There is one important class of examples, the reduced suspensions. The 
"coproduct" y: SX -+ S X  v SX is given by 

where the subscripts indicate in which copy of SX in the one-point union 
the indicated point lies. The homotopy inverse is just reversal of the t 
parameter. 

3.3. Theorem. In the pointed category: 

( 1 )  Y a n  H-group [X; Yl  is a group with multiplication induced by ( f  ag)(x) = 

f ( x )  g(x); 
(2) X an H-cogroup [ X ;  Y] is a group with multiplication induced by f *g = 

( f  v S)"Y; and 
(3)  X an H-cogroup and Y an H-space * the two multiplications above on 

[X, Y] coincide and are abelian. 

PROOF. Part (1) is obvious. Part (2) is nearly as obvious. For example, to 
show associativity in part (2) note that ( f  *g)* h = [(( f y g)oy) y h]o y which 
equals the composition 

The first composition is homotopic to ( 1  v y ) o y ,  and the last map is equal 
to f y (g y h). This provides the homotopy to f *(y*h). The other parts of 
(2) are no harder. 

For (3) we need the following lemma: 

3.4. Lemma. In the situation of Theorem 3.3(3), and for f,g: X -+ Y, we have 

PROOF. For a particular point X E X  suppose that y(x) = (w,  * ) E X  v X. Then 

Also c 

The case y(x) = (*, w') is similar and will be omitted. 

Returning to the proof of (3) in Theorem 3.3, note that for both products, 
the identity 1 is given by the constant map to the base point. Operating in 
[X; Y], we have 

(.*/?)*(Y *a) = (a*y)*(/?*8). 

Thus 

a*/? =(l*a)*(/?. 1) = (l*/?).(a*l) = pas 
and 

a*/? = (a*l)*( l  a/?) = (a* 1)*(1 */?) = a*/?. 

Therefore, a*/? = /?.a = a*/?. 

4. Homotopy Groups 

For now on, unless otherwise indicated, we regard the n-sphere Sn as having 
the cogroup structure as the reduced suspension Sn = SSn- ' = Sn- ' A S1. The 
0-sphere So is (0,l) with base point (0). 

Then, for a space X with base point x,, we define the nth homotopy group 

This is a group for n 2 1 with the product defined by Theorem 3.3(2). 
Note that Sn = Sn-' A S1 = S1 A ..- A S 1  = In/dI". Thus we can regard 

K,(x, x,) = [ ln ,  arn; x, ~ ~ 1 .  

In this context, iff,  g: In-+X are maps taking dln to x,, then the group 
structure is induced by 

{ f ( t l . 2 t )  for t n < &  
( f  *9)(t l , . . . , tn)= g(tl ,..., 2tn- 1 )  for tnri. 

4.1. Theorem. If X is an H-space then the multiplication in nn(X, x,) is induced 
by the H-space multiplication and is abelian for n 2 1 .  

PROOF. This is a direct corollary of Theorem 3.3. 

4.2. Lemma. In the pointed category [ S X ;  Y] x [ X ;  R Y ]  as groups. 
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PROOF. Recall the correspondence 

f : X x S 1 - + Y  - f ' : x + y S 1 ,  

given by f ' (x)(t)  = f (x ,  t). The map g: X A S1 -+ Y, using the composition f of 
g with the quotient map X x S' -+X A S1, corresponds to f ': X + yS' wh 
f ' ( x ) (*)  = f (x,  *) = * and f ' (*)(t)  = *, i.e., f'(*) = *, the base point of 
Thus the correspondence induces a one-one correspondence between poin 
maps S X - t  Y and pointed maps X-tQY.  Also pointed homotopies c 
respond. For f ,  g: SX-+  Y the product in [SX;  Y ]  is induced by 

( f  *g)(x,t)= { f ( x '2 t )  for t +, 
g(x, 22 - 1) for t 2 $. 

This is equal to ( f  *g)'(x)(t). The multiplication in [X;QY]  is ( f '*g f ) (x )  
f'(x)*gr(x), where * is loop concatenation. At t this is f'(x)(2t) for t s $  a 
is g1(x)(2t - 1) for t 24. Thus ( f  *g)'= flog'. 

Remark. For X compact we have ySX z (QY)' by the exponential law. T 
proof of Lemma 4.2 shows that the H-space operations on these spa 
correspond. Therefore there are the group isomorphisms [SX;  Y ]  = no(YSX) 
no((Q Y)X) = [ X ;  Q Y ] .  

All we have done goes over immediately to the case of pointed pairs 
with base point in A. For example, [SX,  SA; Y ,  B] is a group and is can0 
isomorphic to [ X ,  A; QY ,  QB]. 

In particular, consider D" = D1 A Sn- ' 3 So A Sn- ' = Sn- ' .  Then 
Sn-') = Sn-'(D1,SO), the (n - 1)-fold reduced suspension. Hence we de 
the relative homotopy group by 

This is a group for n 2 2. Under composition with the projection 
In -+ Dl A S1  A -.. A S' = Dn, aIn corresponds to (is the inverse image of) Sn- ' 
and the inverse image of the base point is the set Jn-l = ( I  x 81"-')u 
((0) x In-'). Thus 

x,,(Y, B, *) x [I", aIn, J"-'; Y, B, * ] .  

4.3. Corollary. nn(Y, *) is abelian for n 2 2 and nn(Y, B, *) is abellan for n 2 3. 
Moreover, the group structure is independent of the suspension coordinate used 
to define it. 

PROOF. Consider the correspondence of Lemma 4.2: [S1  A .. . A S1;  Y ]  m 
[S"-'; QY] .  The loop structure corresponds, by definition, to the suspension 
in the last coordinate. These yield identical group operat~ons by Lemma 4.2. 
The product from the loop space in [S"-'; R Y ]  is the same as that from any 
of the suspension coordinates by Theorem 3.3(3). But the latter clearly is 
  den tical to the product on [S1  A ... A S1;  Y ]  using the same factor S1 as the 
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suspension coordinate used for [Sn- '; i2q, and this is arbitrary. The product 
in [Sn- ' ;RY)  is abelian for n - 1 2 1 by Theorem 4.1. The relative case is 
similar. 

4.4. Corollary. nn(Y,*)~nn-l(QY,*)x~~~~nl(Qn-'Y,*)~no(Q"~*) and 
similarly in the relative case. 

4.5. Theorem. Let A be a closed subspace of X containing the base point *. 
Suppose that F: X x I +X is a deformation of X contracting A to *; i.e., 

Then the quotient map 4: X-+X/A  is a homotopy equivalence. Similarly for 
pairs ( X ,  X')  with A c X'. 

PROOF. Let $:X/A-+X be induced by Flxx{ , ) .  Then $ 0 4 ~  1 ,  via F. The 
homotopy F induces F': (X /A)  x I -t X / A  and this is a homotopy between 
4"$ and 1x1,. 

5. The Homotopy Sequence of a Pair 

In this section we develop an exact sequence of homotopy groups analogous 
to the exact homology sequence of a pair. It is, of course, an indispensable 
tool in the study of homotopy groups. Everything in this section is in the 
pointed category. In particular, mapping cones and suspensions are reduced. 

5.1. Definition. A sequence 

of pointed spaces (or pointed pairs) is called coexact if, for each pointed 
space (or pair) Y, the sequence of sets (pointed homotopy classes) 

[c; Y I  2 [B; Y ]  L [A; Y ]  

is exact, i.e., im(y#) = ( f  # ) - I (*) .  

5.2. Theorem. For any map f :  A+ X and for the inclusion i: X c, CJ the 
sequence 

I A-X-LC, 

is coexact. 
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PROOF. Clearly io f 1. *, the constant map to the base point, so the sequence 
is of "order two." Suppose given 4: X -+ Y with 40 f sl. * via the homot 
F. Then F on A x I and 4 on X fit together to give a map CJ -, Yextending 

5.3. Corollary. I f f :  A CL, X is a cofibration, where A c X is closed, then 

A - + X - + X / A  

is coexact. 

PROOF. This follows from Theorem 5.2 and the fact that we can replace 
by its homotopy equivalent space X / A  (by Theorem 1.6). 

5.4. Corollary. Let f :  A -+ X be any map. Then the sequence 

k A - I - , x - ~ , c , ~ c ~ - - c ,  

is coexact, where j and k are the obvious inclusions. 

Now we will replace, in this sequence, C, and C j  by simpler things. No 
that C, = Cf U, CX. (See Figure VII-I) 

By pulling the cone CX towards its vertex and stretching the mappin 
cylinder off to accommodate it, we see that Ci has a deformation can  
CX to the base point through itself. Thus, Theorem 4.5 implies that 
collapsing map Ci + CJCX = C ,/X = SA is a homotopy equivalen 
Similarly, C j  2: SX. Under these homotopy equivalences we wish to show th 
k becomes S f .  Consider Figure VII-4. 

The map 1 stretches the top cone of SA to the cylinder part of C, c Ci a 
is C f  on the bottom cone. The map coll, is the collapse of the bottom 
the picture and gives the homotopy equivalence Ci 2: S A  obtained abo 
The map coll, is the collapse of the top of C j  in the picture (the dashed line 
and is the homotopy equivalence C j  2: SX.  

Clearly, coll, 01 1.1, so that 1 is a homotopy inverse of coll,, i.e., locoll, 
as well. Also, col l ,~  kol = S f  og 1. S f ,  where g is the collapse of the top cone of 
SA. Composing this with coll, on the right gives col1,ok -- c ~ l l , ~ k ~ l ~ c o l l ,  2: 

Figure VII-3. The mapping cone C,. 

Figure VII-4. Homotopy equivalences of mapping cones. 

Sf ocoll,. This shows that the diagram 

is homotopy commutative, as we wished to show. We have shown: 

5.5. Corollary. Given any map f: A  + X of pointed spaces, the sequence 

is coexact, where g:Cf -, SA is the composition of the collapse C f  -, C,/X with 
the homotopy equivalence SA z C,/X induced by the inclusion of A x I in 
( A  x I )  + X followed by the quotient map to C,  and then the collapsing of the 
subspace X of C ,. I7 

5.6. Lemma. Coexactness is preserved by suspension. 

PROOF. Suppose A -+ B + C is coexact. Then the sequence 

[SC; Y] + [SB; Y] -t [SA; Y ]  

is equivalent to the sequence 

[C;QY] -+[B;QY] -+ [A;QY] 

which is exact. 

5.7. Corollary (Barratt-Puppe). I f f :  A -, X is any map then the sequence 

Sf S, S'J A --Lx--i,c, LSA-sx -SC, -%s2~-.. .  
is coexact. Also SC, x Cs,, etc. Similarly for maps of pairs of pointed spaces. 



448 V11. Homotopy Theory 

PROOF. This follows from the preceding results except for the statement 
SC, z C,,. That is easy to see and is left to the reader since we do not need 
it. It would not quite be true if the suspension and mapping cones were not 
reduced. fl 

Thus a map of pairs f:  (A, A')-+(X, X') with f '  = f l K ,  gives the pair of 
mapping cones (Cf,Cf1), and, for a pointed pair (Y, B), there is the exact 
sequence of sets 

..- -+ [S2X, S2X'; Y, B] -+ [S2A, S2A'; Y, B] -+ [SC, ,SCy; Y, B] 

-+ fSX, SXf; Y, B] -+ [SA, SA'; Y, B] -+[Cf, C,-; Y, B] -+ [X, X'; Y ,  B] 

-t [A, A'; Y ,  Bl, 

where the terms involving suspensions consist of groups and homomorphisms. 
The rest contains only pointed sets and maps. 

Consider the special case of the inclusion f: (So, So) c, (Dl, So). The pair 
of reduced mapping cones Cf is a triangle with one side collapsed (because 
of the reduction) with the subspace consisting of two sides of the triangle with 
one of those collapsed. Clearly this is homotopy equivalent to the pair (S1, *). 
Thus we have the coexact sequence 

where the second map is the result of collapsing So to the base point. 
By suspending this r - 1 times, we get the coexact sequence (pointed) 

All these fit together to give a long coexact sequence. Now 

[s', Sr; Y ,  B] = [Sr; B] = n,(B), 

[s', *; Y, B] = [S'; Y ]  = zr(Y), 
[Dr,S-';Y,B]=~,(Y,B). 

Thus we obtain the "exact homotopy sequence" of the pair (Y, B): 

where all are groups and homomorphisms until the last three, which are 
only pointed sets and maps. Tracing through the definitions shows easily 
that i# is induced by the inclusion B Q Y,j# is induced by the inclusion 
(Y, *) c , ( Y ,  B), and a# is induced by the restriction to S- ' c Dr. 

Given a map f:(Dn,Sn-',*)+(Y,B,*), it is important to know when 
[ . f ]  = 0 in n,(Y, B, *). The following gives one such criterion. 

5.8. Theorem. For a map f :  (Dn, S"- ', *) -+ (Y, B, *), [ f ] = 0 in nn( Y, B, *) o 
f is homotopic, re1 Sn- ', to a map into B. 
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Figure VII-5. A relative homotopy. 

PROOF. For .= , let f cz g re1 Sn- ', where g: Dn -+ B. Then g is homotopic 
within B to the constant map to the base point since Dn is contractible. 

For =>, suppose we have a homotopy F: Dn x 1 -+ Y, re1 base point, 
keeping Sn-' going into B and ending with the constant map to the base 
point. Think of Dn x I, not as a cylinder but as a frustum of a cone as in 
Figure VII-5. Consider a cylinder circumscribed about the cone as in the 
figure. Extend the map F to be constant along verticals on the outside of 
the cone. This gives the desired homotopy re1 Sn-' to a map into B. 

5.9. Definition. A pair (X, A) is said to be n-connected if, for each 0 I r 5 n, 
every map (Dr, 9- ') + (X, A) is homotopic re1 S- ' to a map into A. (Here 
S0-' = 125.) That is, each path component of X touches A and n,(X, A, a )  = 0 
for all a €  A, and all 1 I r < n. 

5.10. Proposition. nr(S") = 0 for all r < n. 

PROOF. Of course, we have already proved this in a previous chapter. One 
uses either smooth or simplicia1 approximation to change a map Sr-+Sn to 
a homotopic map which misses a point and then uses that the complement 
of a point in S" is contractible. 

5.11. Proposition. The pair (D"+',S") is n-connected. 

PROOF. This follows from the exact sequence z,(Dn+ ') -+ zr(Dn+ ', S") -+ 

xr -, (Sn) for r 5 n. 

Recall that for a map f: S" -+ S", deg( f )  is defined to be that integer such 
that f,: H,(Sn) -t H,(S") z Z is multiplication by deg( f). 

5.12. Theorem. The function deg: zn(S") -+ Z is an isomorphism. 

PROOF. This was proved by Thom-Pontryagin Theory in Corollary 16.4 of 
Chapter 11, An alternative proof of this is given by Theorem 7.4 of Chapter IV 
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which implies that deg is a homomorphism, together with Lemma 11.13 
Chapter V whlch shows that the kernel is zero (and which is independent 
the remainder of that section). 

PROBLEMS 

1. Let X be the "figure 8" space embedded in S2. Find n2(S2,X) .  

2. Let M be the quotient space of I x D 2  obtained by the identification (0, z)  = (1 
where the disk a regarded as the unit disk in C. Denote the boundary (a K1 
bottle) of thls 3-manifold by K. Find q ( M ,  K) .  

3. If A c X and n , ( A ) - + n , ( X )  is a monomorphism, shoy that n2(X,  A) is abelia 

6. Fiber Spaces 

The notion of a fibration is a generalization of that of a fiber bundle and 
of central impqrtance in homotopy theory. We study it here. One 
major results is an exact sequence (Theorem 6.7) of hornotopy groups 
is crucial for many calculations. 

6.1. Definition. A map p: Y + B  has the homotopy lifting property with respe 
to the space X if the following commutative diagram can always be complet 
as indicated: 

x x  (0) - 
/T 

,**' r ,.,****- 
X x I -  B. 

6.2. Definition. A map p: Y -, B is a Hurewiczfiber space if it has the homotop 
lifting property with respect to all spaces X. It is a Serrefibration, or simp1 
fibration, if it has the homotopy lifting property with respect to X  = Dn, for 
all n. 

The simplest example of a fibration is the projection Y = B x F -+ B, since, 
given the two maps f :  X  x I - t B  and g: X x (0) -+ B  x F  such that f (x ,  0) = 
pg(x, O), the d~agram can be completed by the llft f'(x, t )  = f ( x ,  t )  x qg(x, 0) 
off,  where q: B x F -t F is the projection. 

A common notation for a fibration p with "fiber" F = p - I ( * ) ,  is 

F+YP.B. 

6.3. Proposition. If p: Y -t B is a fibration and ( K ,  L) is a C W pair (a  C W -  
complex K and subcomplex L), then the following commutatzue diagram 
can be completed as indicated: 

PROOF. By induction on the skeletons of K - L we need only prove this for 
the case 

But the left-hand side of this diagram, as a pair, is homeomorphic to the 
pair (Dn x I,Dn x (0)), so the completion of the diagram is direct from 
Definition 6.2. (See Figure VII-6.) 

64. Theorem. Let p: Y -, B be afibration and ( K ,  L) a CW pair such that L is 
a strong deformation retract of K. Then the following commutative diagram 
can be completed as indicated: 

L r\ g b Y  /* I 

PROOF. C~nsider  the commptative diagram 

Lx{O) - L x I u K x ( 1 )  
proj u r + L  _+---- .L Y 

r r __---- _--- 4 - - - -  
K x (0) - K x  1 "--- * K  - B 

F f 

where F is the hypothesized deformation. Thus F(k,O) = k, F(k, I)EL and 
F(1, t )  = I ,  for all ~ E K ,  /€Land t ~ l .  The map 4 exists by Proposition 6.3. We 

Figure VII-6. A homeomorphism of pairs. 



452 VII. Homotopy Theory 

have v 

P04(k,0) = f(F(k,O)) = f ( k )  
and 

4(I,O) = (go proj)(l, 0) = dl). 
Hence the restriction of 4 to K x ( 0 )  gives the desired completion. 0 

For example, K could be Dn and L a single point in Dn, and then the 
theorem implies that a map of a disk to the base space can always be lifted 
with the lift already specified at one point of the disk. 

6.5. Lemma. I f p ~ s " - '  then Dn x a1 u {p )  x I is a strong ddormation retract 
of Dn x I. 

PROOF. This follows from Problem 3 of Section 11 of Chapter IV. 

6.6. Theorem. Let p: Y -+ B be a fibration, and suppose pb, )  = b,. Suppose 
that b,cB' c B and put Y' = p- '(B'). Then 

P#: nn(Y, Y', yo)-+nn(B, B', bo) 

is an isomorphism for all n. 

PROOF. TO show that p# is onto let f:(Dn,Sn-', *)+(B,B', b,). Apply 
Theorem 6.4 to the diagram 

* --Y 

where the top map sends the base point to yo. The completion g exists by 
Theorem 6.4 and, necessarily, g: (D", Sn- ', *) -, (Y, Y', yo). Since f = pOg we 
have Cf1= P # C ~ I .  

To show that p# is one-one, let go, g l :  (Dn, Sn- ', *) -+ (Y, Y', yo) and suppose 
that pg, e pg, via the homotopy F: (D", Sn- ', *) x I +(B, B', b,). Then 
consider the diagram 

By Lemma 6.5 and Theorem 6.4, the homotopy can be lifted to a homotopy 
between g,  and g,. 0 

Now consider the homotopy sequence of the pair (Y, F)  where p: Y -+ B is 
a fibration and F = p-I(*) is the fiber. The term 7cn(Y, F)  may be replaced, 
by Theorem 6.6, with zn(B). The resulting homomorphism n,(Y)-+z,(B) is 
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clearly induced by p and so wig continue to be denoted by p#. The resulting 
homomorphism 

a # ~ p # l :  nn(B) -+ nn- , (F) 

described as follows: Let f :  S" -+B represent an element of 7cn(B). 
se it with the collapsing map Dn -+ Sn to give a map Dn -+ B, then lift 

to a map into Y, with base points corresponding. This represents 
p G 1 ( [ f ] ) ~ n n ( Y ,  F). Restricting this map to S"-' gives a map Sn-' -+ F rep- 
resenting an element of z,,-'(F). It is reasonable to still call this 
homomorphism a#: 7cn(B) -+ 7cn - (F). Thus we have: 

6.7. Theorem. If p: Y -+ B is afibration and i f y , ~  I: b, = p(yo), and F = p-'(b,), 
then taking yo as the base point of Y and of F and b, as the base point of B, 
we have the exact sequence: 

For example, a covering map is clearly a fibration. In that case the fiber 
F is discrete and so 7cn(F) = 0 for n 2- 1. Thus the exact sequence implies that 
p#: 7cn(Y) -+ 7cn(B) is an isomorphism for n 2 2 and a monomorphism for n = 1. 
Of course, it is easy to deduce this directly. In particular 7cn(S1) x nn(R1) = 0 

Later we will show that the Hopf map S3 -+ S2 is a fibration with fiber S'. 
For this example the exact sequence looks like 

7cn(S1) -+ 7cn(S3) -+ 7cn(S2) -+ nn -, (S'). 

The groups on the ends are trivial for n 2 3. Therefore 7cn(S3) x zn(S2) for 
n 2 3. In particular, we deduce the interesting fact that n3(S2) x Z. In fact, 
by looking closely at the homomorphism we see that the Hopf map itself 
represents the generator of 7c3(S2). 

6.8. Theorem. If p: Y -+ B is afibration withfiber F and if there is a homotopy 
H: F x I 4 Y between the inclusion and a constant map, then the sequence 

is split exact for n 2- 2. Thus z,(B) x zn(Y)  x z n _  l(F ). In particular, 7cl(F) is 
abelian. 

PROOF. For any map f :  9- ' -+ F c Y, the homotopy gives a construction 
of an extensiony: Dn -+ Y. The composition po f ': (Dn, 9-') -+ (B, *) represents 
an element A ( [ f l ) ~ z , ( B ) .  It is clear that kzn-,(F)-+7cn(B) is a 
homomorphism and that a # o 1 =  1. 

We will show later (in Section 8) that, besides the Hopf fibration S' -+ S" 
S2, there are Hopf fibrations S3 -+S7 -+ S4 and S7 4 S t 5  -+S8. In all these, the 



fiber k homotopically trivial in the total space. Thus Theorem 6.8 provides 
the isomorphisms 

for n 2 2. (These are written additively since these groups are all abelian.) 

6.9. Theorem. If p: Y -+ B is afibration with fiber F and if F is a retract of Y 
then the sequence 

2 0 -+ an(F) -* nn(Y) -+ nn(B) -+ 0 

is split exact for n 2 1. Thus nn(Y) w nn(B) x nn(F). 

PROOF. The retraction r: Y -+ F gives a homomorphism r#: nn(Y) -+ nn(F) with 
r#oi# = 1. [7 

6.10. Corollary. nn(X x Y )  x nn(X) x %(Y) via the projections. 

6.11. Theorem. For a map p: Y -+ B, the property of being afibration is a local 
property in B. 

PROOF. The theorem means that p is a fibration if each point ~ E B  has a 
neighborhood U such that p:p-'(U)-,  U is a fibration. 

Suppose we are given the commutative diagram 

Take a triangulation of Dn, e.g., regard D" as lAnl. Pull back the covering 
of B by the open sets U to a covering of Dn. We can then subdivide Dn 
sufficiently finely and take an integer k sufficiently large so that for all 
0 I i < k, and all simplices a in the subdivision of D", we have that F(a x 
[i/k,(i + l)/k]) is contained in some open set U over which p is a fibration. 

Let K be the subdivided Dn. Suppose we have lifted the homotopy F to 
F', keeping the diagram commutative, over the subspace K'J) x [O,(i + l)/k] u 
K x [0, ilk] for some j and i. If a is a (j + 1)-cell of K and f ,  is its characteristic 
map, then we get, by composition, the commutative diagram 

(Sj x [ilk, ( i  + l)/k] ) u (D" ' x {ilk)) p - '(U) 
f 

.T 

/ /  I 

where U is an epen set containing a and over which p is a fibrgion. This 
diagram can be completed by Proposition 6.3. These lifts fit together to give 
a lift over K'" +" x [0, ( i  + l)/k] u(K x [0, ilk]). By induction on j, and because 
of the weak topology on K x I we finally get a lift over K x [O,(i + l)/k]. 
This is just our assumption with - 1 replacing j and i + 1 replacing i .  An 
induction on i finishes the proof. 

6.12. Corollary. A bundle projection is ajbration. 

We finish this section by giving some constructions of important fibrations. 

6.13. Theorem. Let X be locally compact and A c X closed. If the inclusion 
of A in X is a cofibration then the restriction map YX+ YA is a Hurewicz 
fibration for all Y. 

PROOF. The commutative diagram 

corresponds, via the exponential law, to the commutative diagram 

Thus it suffices to show that the inclusion W x A W x X is a cofibration. 
By Theorem 1.3 this is equivalent to showing that (W x A x I )u(W x X x 
(0)) is a retract of W x X x I. But the product of the identity on Wand a 
retraction of X x I to A x I u X  x (0) does this. 

Our next result in this direction concerns "pullbacks." If p: Y -+ B and 
f:X-+B are maps then the "pullback" p' of p via f is the projection 
p': f * Y -+ X where 

It is easy to see that the pullback satisfies the universal property that, given 
any commutative diagram 

W A Y  

there exists a unique map W -+ f * Ycompatible with the maps to X and Y. 
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6.14. Theorem. If p: Y -+B is a fibration and f: X -+ B is any map then 
p':S* Y -+ X is a fibration. This is also true for Hurewicz fibrations. 

PROOF. Consider the commutative diagram (with W = D" in the case of Serre 
fibrations): 

The prospective map marked (1) exists, maintaining commutativity, since p 
is a fibration. Then the map marked (2) exists by the universal property of 
pullbacks. 

6.15. Corollary. If p: Y -+ B is a fibration and B ' c  B then the restriction 
pl:p-'(B')-+ B' of p is afibration. This is also true for Hurewiczfibrations. 

PROOF. This is just a matter of noting that the pullback to a subspace is the 
same as the restriction to it. 0 

6.16. Corollary. Theorem 6.13 also holds in the pointed category and for pairs, 
etc. 

PROOF. This is the application of Corollary6.15 to the inclusion 
(Y, *)(*,*) c YAY etc. 

For a pointed space X, we define the "path space" of X to be P X =  
(X, *)(Is0). Similarly, we can regard the loop space a X  as (x, *)"9{0*1)) = 
( X ,  

6.17. Corollary. For a pointed space X the map PX -+ X taking 1 to 1(1) is a 
fibration with fiber QX. This is called the "path-loop fibration of X." 

PROOF. In the pointed category this is the restriction map X I +  xa', which 
is a fibration by Theorem 6.13, and the latter space, the base, is homeomorphic 
to X via the evaluation at I. 

6.18. Proposition. In the pointed category, the path space PX is contractible. 

PROOF. Define F: PX x I -t PX by F(l ,  t)(s) = A(ts). To see that this is 
continuous, note that it is the restriction of the same thing on XI  x I -+X1.  
By Theorem 2.4, it sufices to show that the map X' x I x I -+ X taking (A, t ,s)  
to A(ts) is continuous, but that is clear. 0 

6.19. Corollary. a#: n i ( X )  5 xi - , ( ax ) .  
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PROOF. Of course, we already had this. Here, it is a consequence of the exact 
sequence of the fibration QX+ PX+ X and the fact that the homotopy 
groups of PX are trivial since it is contractible. 

1. Let M3 be the 3-manifold defined as the quotient space of 1 x SZ by the identifica- 
tion (0) x (x) - (1) x {Tx}, where T:S2 +SZ is a reflection through a plane in 
R3. Find n,(M) and nz(M). 

2. + Let f :  X + Y be a map and M, its mapping cylinder. Let k: X x I -+ M, be the 
canonical map. Put 

P, =(M,, Y,x)('~{O)~{')). 

Define maps s: X -+ P,, p: P, -+ X, and n: P f - +  Y by 

Show that x and p are fibrations. Also show that p o s  = 1, and sop -- l,, via a 
homotopy that preserves each fiber of p (called a "fiber homotopy"). Also show 
that f  =nos. Thus any map f : X - +  Y is homotopy equivalent to a fibration 
n: P , 4  Y. 

3. Find xi(CPn) for 1 5 i _< 2n + 1. 

4. Let p: X -+ Y be a fibration and suppose that s: X -+ W and t: W -+ Y are maps with 
p = t 0s. If t is injective, show that s is a fibration. If s is onto, show that t is a fibration. 

5. Consider the path-loop fibration p: PX -+ X .  Let W be the set of homotopy classes 
re1 a1 of paths I -+X.  Give W the quotient topology from the canonical map 
PX + W. Rederive Theorem 8.4 of Chapter 111 (existence of universal covering 
spaces) in this context. 

6. Let X be the "figure 8" space embedded in S2. Find n2(S2/X). Compare Problem 
1 of Section 5. 

7 .  If X is well-pointed, show that PX and QX are well-pointed. 

8. Show that n2(S1 v S2) is not finitely generated. 

7. Free Homotopy 

In this section we will study "free homotopies" Sn x I +X, i.e., homotopies 
not respecting the base point. We will also derive the effect that changing 
the base point has on homotopy groups. 

Let * be a base point in Sn and consider the space xSn of nonpointed maps 
from Sn to X. The map p: xS" -+ X ,  defined by p( f )  = f (*), is a fibration since 
it is just restriction to (*). 

7.1. Definition. f e x S n  is freely homotopic to g ~ ~ S "  along  EX', ( f  - ,g) if 



there exists a path a: I -+ xSn such that pea = a and 6(0) = f and C( l )  = g; 
that is, if there is a homotopy I x Sn -+ X between f and g such that on 
I x (*) -+X it is a. 

We note some, mostly elementary, properties of this definition: 

(1) o: I -+ X ,  g ~ ~ S "  3 g(*) = a(1) + 3 f 3 f z a g .  

To prove this, just lift the path o to (5: I +xS" so that a(1) = g, and let 
f = a(0). 

(2) f -,g =,h*f =,.,h+ 
(3) f =og*g=a-* f -  
(4) f z g rel* * f --, g where e is the constant path at p( f ). 
(5) f ~ ~ g , a = z  re1 d l =  f =,g. 

To see this, use Theorem 6.4 to complete the following diagram: 

This follows from (2) through (5). 

This follows from several of the preceding facts. 

To see this, consider the diagram induced by the comultiplication 
y: sn -, sn v sn: 

The ma? on top takes ( f ,  g) to f *g. The vertical maps are evaluation at the 
base point. The inclusion on the lower left is as the diagonal. The free 
homotopy from f to f '  is just a path a' from f to f' over a. The other free 
homotopy is a path a" from g to g' over a. This pair (a', a") of paths gives a 
path in xS" " Sn over (a, a). Thus ,u(al, a") is a path in xS" from f *g to f ' *g f ,  
proving (9). 

These facts imply the following: 

7.2. Theorem. For each path a: I +X, there is an isomo~phism 

a,: nn(X, 4 1  1) --% nn(X, 4 0 ) )  

such that 

(a) C f  I = anCsl - f  -, 9; 
(b) a--zrelaI*a,=z,; 
(c) a(1) = Z(0) = (a  * z), = 0 ,o  z,; 
(d) o constant => on = 1; and 
(e) (naturality) 4 :  X -+ Y and z = 4.a the following diagram commutes: 

73. Corollary. I f f :  (Sn, *) +(X,  x,), then [ f ] = 0 in nn(X, x,) o f is freely 
homotopic to a constant map. 

PROOF. I f f  =,ex, then [ f ]  =an([ex,])=on(0)=O. 

7.4. Corollary. The group nl(X,xo)  acts as a group of automorphisms on 
nn(X, x,). Moreover, for n = 1, the automorphisms are inner. More precisely, 
for a ~ n , ( X ) ,  Penn(X), let a@) = on(/?) where o is a loop representing a. Then: 

Also, for n = 1, a(P) = aha-'. 

7.5. Definition. A space X is called n-simple if nl(X,x,) acts trivially on 
nn(X,xo) for all xo€X .  It is called simple if it is n-simple for all t~ 2 1. 

For X arcwise connected, one needs the condition of ~egni t ion  7.5 only 
for one x,. Evidently, X being 1-simple is the same as nl(X,xo)  being abelian 
for all x,. 

7.6. Example. Let n 2 2 and let X be the nonorientable Sn-bundle over S1. 
That is, 

x=(sn I ) / -  -+r/ar=sl, 
where - is the equivalence relation (x,O) - (Tx ,  1) for all XES", where T is 
the reflection of Sn through Sn-' (or any homeomorphism of degree - 1). 
The exact sequence for this fibration yields the exact sequences 
O-+nl(~)+nl(S1)-+Oand O-+nn(Sn)-+nn(X)-+O, since n 2 2. Thus n, (X)  z Z 
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and n,(X) z Z. The image of (*) & I gives a loop in X representing the 
generator c r ~ n , ( X ) .  The sphere Sn (the fiber) represents the generator Pen,(X), 
and it "travels" along this loop and comes back as the map T :  S" -+ S". This 
shows that a@) = - p, so this space X is not n-simple. 

Now we shall briefly discuss the case of the relative homotopy groups. 
Consider the map 

p: ( X ,  A ) ( ~ " * ~ ~ " )  -+ A 

which is the evaluation at the base point *€aDn.  To see that this is a fibration 
note that it is the composition noq' in the diagram 

(x ,  A)(D".~D") - x D n  

The map q is the restriction and so is a fibration. The map?' is a pullback 
of q and so is a fibration. The map n is a restriction and so is a fibration. 
Finally, the composition p = noq' of fibrations is a fibration. 

Thus, just as in the absolute case, paths in A operate on nn(X, A)  with 
base points running along the paths. The following consequence is clear. 

7.7. Theorem. n,(A, *) acts as a group of automorphisms on nn(X, A, *), nn(A, *) 
and n,(X, *), the latter via i#: n,(A,  *) -+ n, (X ,  *). These actions commute with 
i#, j#, and a#. 

There is more to say in the case n = 2: 

7.8. Theorem. Consider a#: n2(X ,  A, *) -+ nl(A,  *). For u, p ~ n , ( X ,  A, *) we have 

PROOF. A representative D 2  -+ X of /3 can be taken so that everything maps 
into the base point except for a small disk, and this disk can be placed 
anywhere. Thus, we see that a representative of afla-' can be taken as in 
the first part of Figure VII-7. 

In the figure, (T represents d#(a). In the first part, the "pie slice" represents 
p. The parts marked a and a-'  are mirror images. The second part of the 
figure is the same map, and only the division lines have changed. The third 
part represents a stage of a homotopy; the map changes only inside the 
portion with the vertical rulings, and that part is constant along verticals. 
The fourth part is the final result of that homotopy, and the map on the left 
portion of the disk is constant along verticals. The fifth part of the figure 
represents a free homotopy along a. The map changes only in the extreme 

7. Free Homotopy 

t 

Figure VII-7. Relative action of the fundamental group. 

left-hand portion of the disk, and there it is constant equal to a(t), where t 
is the parameter running from 0 at the leftmost point of the disk and 1 at 
the vertical separating the j? part. The sixth and last part of the figure 
represents the final result of this free homotopy. It clearly represents P. Thus, 
the figure gives a free homotopy spa-' z a p .  Since cr represents a#@), this 
shows that (&(a))(/?) = spa-'. 

We conclude this section with a brief discussion of the (J.H.C.) "Whitehead 
product." This material is not used elsewhere in the book. From our 
conventions in this chapter, S" is represented as the quotient space of In 
collapsing the boundary to a point. The collapsing map fan: In -t S" provides 
the characteristic map for a CW-complex structure on S" with one n-cell 0,. 
Regard S" x Sm as the product complex as in Section 12 of Chapter IV. Then 
fan am = f a n  x fam: In  x Im -+ S" x Sm is the characteristic map for the 

d(In x Im) -+ S" v Sm denote the (n + m)-cell of the product. Let g = facan ,,). 
corresponding attaching map. Then g defines an element 

If 4: S" -+ X and $: Sm -+X are maps representing a = [ ~ ] E T c , ( X )  and 
p = [ $ l ~ n , ( X ) ,  then there is the map 

and so we get an element 

called the "Whitehead product" of cr and fl. 



Clearly, for n = m = 1, we have 

For n = 1 and m 2 2, [a, 81 is represented by the map (ai) x I m u  I x aIm = 
$ a(I x Im)-+X given by 4op,:I x alm+l-f--+~ and $op,:dI x Im-+Im-X, 

where p, and p, are the projections from I x I" to I and to I", respectively. 
The homotopy class in n,(X) represented by this map is the sum of the 
classes represented by the restrictions of it to I x aImu (1)  x I" and to 
(0) x I". The first of these is freely homotopic along 4 to $ given by the 
parametrized family of restrictions to [ t ,  I] x 81" u ( 1 )  x I"-+ X, and so it 
represents a@). The second represents - /3 by our orientation conventions. 
Therefore 

for a ~ n , ( X )  and P€z,(X), m 2 2. Thus X is m-simple- [a, 81 = 0 for all 
a ~ x , ( X )  and p~n,(X). 

Clearly 

when n + m > 3 .  
It is not hard to see that 

when m 2 2. 
It is also known that the Whitehead product satisfies the following "Jacobi 

identity" for a~n,(X),  Qenm(X), and y EZ,(X) for n, m, p 2 2: 

1. Let M3 be the 3-manifold with boundary resulting from I x DZ by the identification 
(1) x {z) = {0} x (2 )  and let K be its boundary, a Klein bottle. Completely describe 
the action of n l ( K )  on n2(M,  K).  

2. -+ If F-+ X -t B is a fibration with F, X ,  and B arcwise connected, define an action 
of n , (B)  on each n,(F) and derive as many properties of it you can. 

3. Let * € A  c X .  Define an action of n I ( X )  on the set n , (X ,  A),  denoted by (a,/j)++gp 
of n , ( X )  x n , ( X ,  A)-+ n , ( X ,  A), such that: 
(a) a(alD) = (aai)/3' for all a, a l ~ n l ( X ) ,  /?en, (X,  A); 
(b) a,/J = a&--a/]= /Y for some a e n , ( X ) ;  
(c) C ( E K , ( X ) , ~ ~ E ~ ~ ( X , A ) = ( ~ ~ ~ = ~ O ~  = 1); 

(d) a ~ n , ( X )  =. a1 = j#a; and 
(e) a e n , ( X )  * (at = 1 9 (a = i#(y) for some y €n, (A))) .  
(Here we use the notation 

a# 
n l ( A )  -%z,(x) ~ X , ( X ,  A) -no(A).) 

4. If B c A c X ,  derive the "exact sequence of the triple ( X ,  A ,  B)": 

5. If X is an H-space then show that all Whitehead products vanish on X 

6. Show that Sn is an H-spaces the Whitehead product [ I , ,  t ,]  = 0, where ~,ca,(S") 
is represented by the identity map. 

7. Prove the identity [a,/?, + j 2 ]  = [a, P I ]  + [a, j 2 ]  for all a ~ n , , ( X )  and p , ~ n , ( X ) ,  
m 2 2. 

8. Classical Groups and Associated Manifolds 

Recall from Section 12 of Chapter I1 that a "Lie group" is a topological 
group G which is also a smooth manifold such that the product G x G -+ G, 
(g, h)++gh and the inverse G + G, g w g - '  are smooth. 

The classical groups are by far the most important examples, and the only 
ones we will deal with here. 

Also recall from Section 12 of Chapter I1 that if G is a closed subgroup 
of Gl(n, C) then it is a Lie group, and, from Section 13 of Chapter 11, that if 
K c H c G are closed subgroups then the canonical map G/K -+ G/H is a 
fiber bundle map with fiber H/K.  

In this section we are going to calculate a number of homotopy groups 
for spaces related to the classical groups. 

8.1. Example. Consider the determinant homomorphism det: U(n) -+ S1. Its 
kernel is SU(n) and so there is the fibration SU(n) r, U(n) -t S1. 

If A€U(n) then there is the unique decomposition A = BC where B€SU(n) 
and C is a diagonal matrix of the form 

Thus U(n) z SU(n) x S' as a space, but not as a group. 
Either from the fibration or the homeomorphism, one concludes that 

ni(U(n)) xi(SU(n)) for i 2 2. 

8.2. Example. Consider the "Grassmann manifold" G , ,  of k-planes through 
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the origin in Rn. For g~O(n)  and VEG,,,, g(V) is anojher k-plane. Any k-fram one-point compactification of C. Let h(u, o) = uv- ' denote this (compactified) 
is taken into any other by some g~O(n), so the same is aiso true of k-plane map. Let g(u, vf = (G, 17) of S3 -+ S3 and r(u) = G of S2 -+ S2. fhen hog = roh. 
Thus O(n) acts transitively on G,,,. The isotropy group of the standar However, g is a reflection in a 2-plane in C x C, which is the same as a 
Rk c Rn is clearly O(k) x O(n - k). It follows that rotation in the orthogonal plane through an angle a. Therefore h - hog = ro h. 

G,k 25 O(n)l(O(k) x O(n - k)). Note that r is a reflection in a plane of S2 and hence has degree - 1. 
Now consider the suspensions of h and r. We get Sh - SroSh. But Sr, 

Similar considerations apply to complex and quaternionic k-planes having degree - 1, is homotopic to any other map of degree - 1, and so is 
Grassmann manifold for k =  1 is just projective n-space, in all three homotopic to the reversal T of the suspension parameter. Thus we have that 
Therefore, one gets the homeomorphisms Sh - ToSh. But ToSh = Sho T, using T for the reversal of the suspension 

O(n)/(O(l) x O(n - 1)) w RPn- ', 
parameter in SS3 as well as in SS2. Hence [Sh] = [ToSh] = [Sho TI = - [Sh] 
in n4(S3) by definition of the inverse in homotopy groups. Consequently, for 

U(n)/(U(l) x U(n - 1)) w CPn-', a = [h]~n,(S~), and Saen4(S3), we have that 2Sa = 0. But a generates 7c3(S2) 
Sp(n)/(Sp(l) x Sp(n - 1)) w QP"- '. because of the exact sequence 

Recall the similar Stiefel manifold V,,, of k-frames in n-space. In Sectio h, 
0 = n,(S1) + n3(S3) - n3(S2) -+ nz(S1) = 0 

15 of Chapter I we had that V,, z O(n)/O(n - k). Thus we have the fibration 
which shows that a = h#[ls3f. By Theorem 16.7 of Chapter 11, S: n3(S2)-+ 

O(k)-+ Vn,k -+ Gn,k. n4(S3) is onto and so Sa generates 7c4(S3). Thus n4(S3) is either Z2 generated 
The case k = 1 gives the fibrations by Sa or it is zero. By Corollary 15.4 of Chapter VI, it is not zero. By Theorem 

16.7 of Chapter 11, the suspensions give isomorphisms 
SO-+Sn-l +Rp"-l, 

~ 1 - + ~ 2 n - 1  --, CP" - z, w n4(S3) -5. 7c,(S4) 2 7c6(S5) 2 . . . 
~ 3 , ~ 4 n - 1  -+ QPn-l. 

and so we are finished. 

The case n = 2 gives the Hopf fibrations 
From the Hopf fibration S1 -+S3 -+SZ it follows that nn(S2) w nn(S3) for all 

SO+S1-+S1, n 2 3. Thus we have that n4(SZ) w %(S3) w Z,, and one sees easily that the 

S1+S3-+S2, nonzero element is the class of the composition hoSh of the Hopf map with 

S3-+S7-+S4. 
its suspension. The suspensions of this are also nontrivial as we now show 
with the aid of the optional Section 15 of Chapter VI. 

Since, in the fibration S1 -+S2"+' -+ CPn, the fiber is null homotopic in t 
total space, we have the isomorphism 8.4. Proposition. The element [S" - '(ho Sh)] ~n,, + ,(Sn) is nontrivial for all 

n 2 2. 
n,(CPn) w x , ( S ~ ~  + l) 0 n, (S1). 

PROOF. Let f =Sn-1h:Sn+2-+Sn+1 and g=Sn-2h:Sn+1-+S". Suppose that 
This is Z for r = 2 and nr(S2"+ l) for r # 2. In particular, n,(CPm) = Z fo go f zz *. Then the map g: Sn+' -+Sn extends to 4: Cf -+Sn. Note that the 
r = 2 and is trivial otherwise. The case n = 1 and r = 3 gives that n3(S2) w Z. mapping cone Cg of 4 is a three cell complex 

8.3. Theorem. For n 2 3, n, + , (Sn) w Z,, generated by a suspension of the Hopf c4 = S " U ~ D " + ~ U D " + ~  
mup S3 -+ S2. 

and that the quotient space 
PROOF. This proof requires two items from the optional Section 16 of c~/s. = f ?+2~SJDn+4  
Chapter I1 and Section 15 of Chapter VI. First, note that the Hopf fibration 
S3-+S2 is the projection {(u,v)EC x CI (u12 + lv12 = I )  -+CP1 = {(u: is the suspension SC, - snCP2. Also, the subcomplex C, = S"U,D"+~ of C4 
taking nonhomogeneous coordinates to homogeneous ones. But (u:v is homotopy equivalent to s " - ~ C P ~ .  By the results in Section 15 of Chapter 
(uv-': I), so that the map can be considered as (u, v ) + + u v - ' ~ C +  z s2,  th VI we know that Sq2: Hn(C,; Z2) + H"+'(c,; Z,) and sq2: H"+~(SC/; Z2) -+ 



H " + ~ ( S C ~ ;  Z,) are isomorphisms. From the cpmmutative diagram 

It is known that nn+,(Sn) z Z, for n 2 2 and so the elements given by 
Proposition 8.4 are the only nonzero classes in this group. 

The exact sequence of this fibration looks like 

nn-l(Sn-l)+xn-z(O(n- l ))+nn-,(d(n))ro+--- .  

It follows that 

isomorphism for r < n - 2, 
x,(O(n - 1)) -+ x,(O(n)) is an 

epimorphism for r = n - 2. 

Similarly, the complex and quaternionic cases yield that 

isomorphism for r < 2n - 2, 
n,(U(n - 1)) + n,(U(n)) is an 

epimorphism for r = 2n - 2. 

4 - 

H"(Cg; Zz) % H" '(Cg; Z,) 

T -  T  - 
Hn(CI; Z,) 

Sq2 , H" + '(C4; Z,) Sq2 H"+I(c+; 2,) 

T =  T =  
H" "(CJS"; 2,) Wt4(CI/S"; 25,) 

X 

it follows that SqzSq2 is nontrivial on Hn(C+;ZZ). But there is the A 
relation sq2Sq2 = Sq3Sq1 and the latter is zero on Hn(C4;Z2) s 
Hn+ '(C+; Zz) = 0. 

85. Example. In this example we compute the homotopy groups of t 
classical groups as far as we can do it at this stage of our knowledge. Fir 
consider the fibration 

isomorphism for r < 4n - 2, 
nr(Sp(n - I))  -, z,(Sp(n)) is an 

epimorphism for r = 4n - 2. 1 
Thus, for r fixed and n increasing, these groups stabilize at some point. 

The stable values are denbted by n,(O), nr(U), and n,(Sp), respectively. (There 
are spaces 0, U, and Sp which have these homotopy groups but this is not 
of concern to us here.) Therefore, we have 

zr(0)  = n,(SO) = n,(O(n)) for n 2 r + 2, 3 
&:fg 

nr(U) = nr(U(n)) for n 2 [(r + 2)/2], 
g 

~ , (SP)  = %(SP(~)) for n 2 [(r + 2)/4]. 

One can also use the same method to calculate no a_nd the dimensions of 
these manifolds. We leave this to the reader, but will use the results. 

Now consider the action of Sp(l), the unit quaternions, on the quaternions 
by conjugation. This preserves the norm and leaves the real axis fixed. Thus 
it operates on the orthogonal complement of the real axis. This gives a 
homomorphism +:Sp(l)+S0(3). The kernel of + is the center of Sp(1) 
which is easily seen to be (1, - 1) z Z,. Thus there is the monomorphism 
Sp(l)/Zz + SO(3). Since these ark both connected compact 3-manifolds, 
Invariance of Domain implies that + is onto. Thus SO(3) M Sp(l)/Zz z RP3. 

This, plus the fibration S' + U(2) -+ S3, allows us to make the following 
computations: 

Now, using S3 for the group Sp(l), consider the homomorphism 
S3 x S3 +S0(4) given by the action of this group on the quaternions given 
by (q,,q,)(q) = qlqq;'. The kernel of this is the set of (ql,q2) such that 
qlqq;' = q for all quaternions q. Looking at this for q = 1 gives qlq;' = 1, 
i.e., q, = 9,. Then the equation becomes q,qqT1 = q for all q, i.e., that q, is 
in the center. Thus the kernel has only the two elements (1,l) and (- 1, - 1). 
Thus there is the monomorphism S3 x S3/Zz +S0(4). But these are both 
compact connected 6-manifolds and so this is onto. It follows that 
.rri(S0(4)) x ni(S3) 0 ni(S3) for i 2 2. Thus nz(0) = nz(SO) = n2(S0(4)) = 0. 

The reader might note that all the groups n2(G) we have computed for a 
Lie group G have been zero. It turns out that this is no accident, but that is 
all we can say about it at this point of our knowledge. 

Finally, consider the action ofSp(2) by conjugation on 2 x 2 (quaternionic) 
Hermitian matrices of trace 0. (We leave it to the reader to show that there 
is such an action; it is not completely trivial.) This is a real euclidean space 
of dimension 5. Thus, this gives a homomorphism Sp(2) +S0(5), and the 
kernel can be seen to be Z,. It follows that n3(0) = n3(SO) = n3(S0(5)) z 
n3(Sp(2)) = n3(Sp) z Z. 

All of these stable groups are known. A striking result known as "Bott 
periodicity" says that X , + ~ ( U )  M ni(U), i 2 0. Also ni+,(0) % ni(Sp), and 
7~;+~(Sp) z n,(0) for i 2 0. Granting this, and the computations we have 
mentioned, gives the following table: 

Now we wish to construct the last of the "Hopf fibrations." To do this 
we need the following construction: 
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8.6. Definition. If X and Y are spaces then the join X * Y is the spacepbtained 
from X x Y x I by identifying {x) x Y x (0) to a point for each XEX, and 
identifying X x {y) x (1) to a point for each yeY. 

When talking about the join X *  Y we can use "coordinates" (x, y, t), but 
remember that the point represented by these coordinates is independent of 
y when t = O  and o f x  when t = 1 .  

The join X *  Y can be regarded as a subset of the product CY x CX of 
cones. It  is the inverse image of the set ((t,s)Js + t = 1) under the mapping 
CY x CX -+ I x I, the map to the cone parameter values. 

The join X * Y can also be thought of as the union (X x C Y) u (CX x Y), 
which is the union of the mapping cylinders of the projections X +- X x Y -+ Y. 

8.7. Proposition. 
Sn*Sm s n + m +  1 

PROOF. Consider the map 4: Sn*Sm Sn+"+' induced by the map rl/: Sn x 
Sm x 1 -+Sn+m+l given by +(x, y, t) = x cos(nt/2) 4- ysin(nt/2), where x€Rn+' 
and ycRm+l. It is clear that this does induce a one-one onto map on the 
join. Since the join is compact and the sphere is Hausdorff, 4 must be a 
homeomorphism by Theorem 7.8 of Chapter I. 

As usual, we shall use ZW to denote the unreduced suspension of W. 
Then a map 4: X x Y -, W induces a map h,: X*  Y -+ C W by h4(x, y, t) = 

(4x9 Y), t). 
Suppose we are given a map 4: X x X -+X, denoted by (x, y ) ~ x y  just as 

if this were a group. Then the left translation L,@) = xy and right translation 
R,(y) = yx are defined. 

8.8. Proposition. Let 4:X x X-+X be a map such that L, and R, are 
homeomorphisms for each XEX. Then h4: X * X 4 C X is a fiber bundle with 
fiber X. 

PROOF. Let C = X x [0, 1)/X x (0) c C X, the open cone. Consider the map 

X x (X x [O, I))-+X x X x I 

given by (x, y, t)t-+(x, L; t). This clearly induces a map $: X x C + X * X, 
given by the same "coordinate formula." 

The following diagram 

* x x c  - x * x  (x,y,t)-(x,L;l(y),t) 1 proJ 1% 1 
C ------+ C X 

I 
(Y, t) - ( Y ,  t) = (x.L, ' (Y) ,  t )  
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provides a triviali~ation~ of ho over the open set where t f 1. Similay. 
constructions yield a trivialization over the open set where t # 0. 

We define the Cayley numbers to be pairs (a, b) of quaternions with the 
product 

(a, b)(c, d )  = (ac - zb, da + bbE). 

If x =(a, b) then we put 2 = (5, - b). It is easy to compute that x% = 

J a J 2  + J b J 2  = Zxand that J x y J =  1x1 lyl where 1x1 = (x%)lJ2. (Use that Re(pq) = 
Re(qp) for quaternions p, q.) It is also easy to see that this product is distributive 
over addition on both sides. (It is not, however, associative.) 

Thus this product gives a map S7 x S7 --+S7. We claim that the maps L, 
and R, are homeomorphisms. By invariance of domain it suffices to show 
that they are one-one into. 

Suppose that L,(y) = L,(yl). That is, xy = xy'. Then x(y - y') = 0 and so 
Iy-ylI=lxl (y-yfI=Ixy-xy')=10)=0. Thus y=yl .  A similar argument 
holds for R,. 

Thus we have proved that there is a fiber bundle 

with fiber S7, as we promised. 

1. + Show that n4(U) FZ a,(U(3))= 0 without using Bott periodicity. (Hint: Use 
Section 13 of Chapter 11, Problem 4 and Section 15 of Chapter VI, Problem 5.) 

2. Show that a,(O) = 0 without using Bott periodicity. (Hint: Consider the fibration 
S0(5)+S0(6)-+S5 and use the fact from Corollary 15.16 of Chapter VI that S5 
is not parallelizable.) 

3. + Show that SU(3) has a CW-structure with single cells in dimensions 0, 3, 5, 
and 8 (only). Show that the attaching map for the 5-cell cannot be homotopically 
trivial. Deduce that Sq2:H3(SU(n); Z2)+H5(SU(n);Z2) is nonzero for all n 2 3. 
(Hint: Consider the fibration SU(2) -, SU(3) -, S5.) 

4. Use Bott periodicity to show that rr,(Sz) x Z,. 

9. The Homotopy Addition Theorem 

In this section we aim to prove a result that says that if Bn is an n-disk and 
we have a map f: (Bn, dBn) -+ (X, A) and if there are disjoint n-disks a in Bn 
such that f takes the complement of the small disks to A, then the element 
of nn(X, A) represented by f is the sum of the elements represented by the 
restriction of f  to the small disks CT. 

There are some technicalities to clear up, even with having this make 
sense. We have to take care of base points and we have to make clear what 1s 



meant by the homotopy class represented by such a m2p. We shall use * 
denote base points in cases where this will not cause confusion. It is n 
meant to denote the same point in different spaces. 

This result will be used in the proof of the Hurewicz Theorem in the next 
section. There it is applied only to a nice situation, the standard simplex and 
its faces. Thus most of the complications of the proof of the general case 
could be avoided. We prefer to do it in full generality, however. 

9.1. Lemma. If f: (Dn, Sn- ', *) -+ (Dn, Sn- ', *) induces the identity homo- 
morphism 

f, = 1: Hn(Dn, Sn- ') -+ Hn(Dn, S"- ') 

then f 2 1. 

PROOF. There is the following commutative diagram, part of the homolo 
sequence of the pair (D", S" - '): 

Hn(Dn, Sn- ') A H,- ,(Sn- ') 

I f * = 1  1 r* 
Hn(Dn, Sn-I) 'Xt H,- '(Sn- l) 

where f '  denotes the restriction o f f  to Sn-'. It follows that f k  is also th 
identity on Hn-,(Sn-I). By Theorem 5.12 it follows that f '  is homoto 
to the identity. Thus [ f '1 = 1 in an- ,(Sn- ', *). Since a#: 7tn(Dn, Sn- ', *) 
nn- ,(Sn-', *) is an isomorphism taking the class of the identity to the clas 
of the identity, it follows that [f] = 1. 

Now let a be an n-cell (i.e., homeomorphic to Dn) with a base point in i 
boundary. An "anchoring" of o is a choice of a pointed homeomorphism 
9,: Dn -+ a. An "anchored" n-cell is such a a together with its anchoring 
(This is temporary terminology that will be discarded after Corollary 9. 

Choose, once and for all, a generator [Dn]~Hn(Dn,Sn-') w Z. L 
Cal = $,*(CDnl). 

For two anchored n-cells a and T, a "map of degree one" from a to T I 

a map g: (a, 80, *) -+ (z, dr, *) such that g,[a] = [TI. 

9.2. Corollary. If a and T are anchored n-cells then any two maps f ,  g: a - + ~  
of degree one are homotopic rel* as maps of pairs (a, aa) -+ (T, az). 

PROOF. The map 9; ' 0 . f  09,: (Dn, Sn- ', *) 4(Dn,  S"-', *) induces the identity 
in homology and hence is homotopic to the identity by Lemma 9.1. The same 
is true for g replacing f and the result follows. 0 

Suppose that a is an anchored n-cell and that f :  (a, do, *) -+ (X, A, *) is a 
map. Then f 0 9, represents a class [f 09,]~n,(X, A, *). We shall denote this 

class simply by [fl. The following corollary shows that thereis no danger 
doing so. 

93. Corollary. If a and T are anchored n-cells, g: (T, az, *)-+(a, aa, *) is of 
degree one and f :  (a, 80, *) 4 (X, A, *), then [ f 0 g] = [ f 1. 

PROOF. In homology we have (go9,), =(9,),. By Corollary 9.2 it follows 
that go$,= 9,. Therefore [ f] = [ f 09,]= [f og09~1 = [fog]. 

An "orientation" of an n-cell o is a choice of a generator [a]eHn(a, aa). 
An anchoring 9,: Dn + a induces an orientation [a] = $,[Dn] as above. It 
follows from Corollaries 9.2 and 9.3 that [a] determines 9, up to homotopy. 
Therefore Corollaries 9.2 and 9.3 hold with "'anchored" replaced by 
"oriented." 

Now suppose that Bn is an oriented n-cell and that a c Bn is another 
oriented n-cell. We do not assume that aa c aBn. We say that these cells 
are "oriented coherently" if, for some point x~int(a), the orientations 
[o]eHn(o, aa) and [Bn]eH,(Bn, aBn) correspond under the isomorphisms 

Hn(a, aa) x Hn(a, a - (x)) w Hn(Bn, Bn - (x}) x Hn(B", aBn). 

It is easy to see, by replacing the point x by a small disk about it, that 
this concept does not depend on the choice of the point x. 

9.4. Lemma. For n 2 2, the complement of the interiors of afinite number of 
disjoint n-disks in int(Bn) is arcwise connected. For n 2 3 it is simply connected. 

m. Selected a point from the interior of each disk. Then there is a strong 
deformation retraction of the complement of those points to the complement 
of the interiors of the disks, so it suffices to treat the complement of a finite 
number of points. This complement is of the homotopy type of the one-point 
union of some (n - 1)-spheres. This is arcwise connected (an invariant of 
homotopy type). For n 2 3, this is a CW-complex with one 0-cell and some 
(n - 1)-cells. Any map from S1 to it is homotopic to a cellular map, and that 
must be a constant map to the 0-cell. (An easy proof for the complement of 
a finite number of points can also be given using smooth approximation and 

Now suppose that n 2 2 and that Bn is an oriented n-cell. Let a,, . . . , a, c Bn 
be n-cells with disjoint interiors oriented coherently with Bn. 

Let f :  (B", Bn - U int(a,), *) -+ (X, A, *). Then f I,, represents an element of 
nn(X, A,?), where ? is the point of A to which the base point of a goes. We 
wish to replace this with an element of an(X, A, *). To do this, choose a path 
in Bn - 0 int(aj) from the base point *€dBn to the base point of a,, which is 
in da,. Use this path to produce, as in Section 7, an element a,~n,(X, A, *). 

If n 2 3 then the class ai is independent of the path used to define it since 
any two of those paths are homotopic. In the case n = 2, a, is determined 



472 VII. Homotopy Theory 

only up to operation by ag element of 

f#(zl(Bn - Uint(o,))) = f#d#z2(Bn, Bn - 0 int(o,)) c d#z,(X, A ,  *). 

The operation by the latter group is by conjugacy by Theorem 7.8. Thus the 
image of ai is unique in the abelianized group 

' 2 ( X 7  *) = n2/[712, n21. 

For consistency of notation we define, for use in this section, it, = nn fo 
n 2 3. These considerations allow us to state the main result. 

9.5. Theorem (The Relative Homotopy Addition Theorem). Let n 2 2. Le 
Bn be an oriented n-cell. Let a,, . . . , a, be n-cells in Bn with disjoint inter 
and oriented coherently with Bn. Let 

f: (Bn, Bn - U int(a,), *) -+ ( X ,  A, *). 

Let a~fi,(X, A, *) be represented by f ,  and let a,~it,(X, A, *) be represented by 
f I,, as above. Then a = C:=, ai. 

PROOF. Before starting let us stress that all we know about the disks 
what comes from invariance of domain: their interiors as disks are the s 
as their interiors as subspaces of Bn. We do not know anything about t 
shapes. They could look like amoebas, and continuous amoebas instead o 
smooth ones at that. Indeed, we shall picture them that way. 

The proof will be by induction on the number k of the cells a,. Firs 
give the inductive step. Note that we can shrink the disks a, using 
internal coordinates. By this we mean a homotopy which does no 
outside the disks but changes the map on the disks themselves so that ~t 
concentrated on a small concentric subdisk outside of which the map 
stage of the homotopy) is constant along rays (defined in the ai coordi 
of course). Clearly the disks can be made so small, in terms of the large dl 
that they are contained in disjoint metric (large disk) disks about some poi 
One can then take the one of the metric disks farthest south and mov 
downwards (a homotopy) until it is in the bottom half disk of Bn withou 
disturbing the other disks. Then the others can be moved up (by a stretch 
Bn, for example) until they are in the upper half disk. Now, by indu 
the sum of the ai in the top half of Bn gives the same element as the entire 
upper half as an n-cell. The case k = 1 implies that the a, in the bottom half 
is the same as the element defined by the entire lower half disk. 

Thus it remains to prove the case k = 1, and the case k = 2 where the disk 
CJ, is the upper half disk of Bn and a, is the lower half disk. 

We take up the latter case, k = 2, first. This is done by a sequence 0 

homotopies illustrated in Figure VII-8. 
The first step is a combination of a homeomorphism changing the shape 

of Bn into a cube and a simple homotopy that makes the map take the 
left-hand face of the cube to the base point. The next homotopy squeezes 
the cube right leaving a larger part going to the base point. The next sta 
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Figure VII-8. Case k = 2 of the Homotopy Addition Theorem. 

shrinks the small cells using the large coordinates. Next a deformation is 
performed on the cube which moves the small cells left. The vertical dividing 
line bulges in towards the left. This leaves the entire right half of the cube 
going to A under the map. The next homotopy just slices more and more 
from the right half of the map, and it ends with the map that was on the 
left half. At this time the division between the upper and lower halves of the 
cube goes entirely into the base point. But then the definition of addition 
shows that the element represented by the entire cube is the sum of that 
defined by the top half and that defined by the bottom half. By the case 
k = 1, these are just a, and a,. 

Thus it remains to prove the case k = 1. (No, that is not trivial.) For this 
case we may assume Bn = Dn. By a homeomorphism (of degree one), or a 
homotopy, we can also assume that the center 0 of Dn is in int(o). Let z be 
a concentric (with respect to Dn) disk about 0 and contained in int(o). (See 
Figure VII-9.) We shall complete the proof in three "stages." 

Stage 1. By using the linear structure of a we can do a shrinking homotopy 
re1 Bn - int(u) ending with a map taking Bn - int(z) into A. (See Figure VII-10, 
but note that this is on a instead of on Bn.) This shows that we may as well 

Figure VII-9. Initial state of case k = 1. 
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Figure VII-10. Stage 2 homotopy. 

assume that 

f (Bn - int(z)) c A. 

Stage 2. First recall that the element [f,]~it,(X, A, *) was definsd using 
the image under f of a path from the base point of B" to that of a and going 
through Bn - int(a). But note that since the larger set Bn - int(r) is simply 
connected and is (now) taken by f into A, we can allow images of paths in 
that set instead. 

Now consider a shrinking homotopy using the structure of B" which ends 
with Bn shrunk to the size of T. (See Figure VII-10.) Let f '  be the end of the 
homotopy. Then f 2. f '  re1 *. Also, throughout the homotopy, Bn - i n t (~ )  goes 
into A. Also note that f '  is constant on radii (of Bn) between ar and aBn. 

The restriction of this homotopy to  a x I is a $-ee homotopy along a path 
which is the image under f of a path in Bn - int (z). (This is illustrated as a 
vertical line in Figure VII-10.) Thus f 1, and f' l ,  represent the same element 
of Z,(X, A, *). Consequently, we may replace f by f'. 

We are also free to change the base point of a (changing, along with it, 
the path from the base point of Bn). Thus we can assume that the base point 
of a is the first point of a met by a radius coming in towards the center from 
the base point of Bn. Since f '  is constant on radii outside z, it takes this 
portion of the radius into the base point of X. This can be used for the path 
from the base point of Bn to that of a. That is, we can now forget about that 
path. 

It remains to show that [ f '1 = [ f 'I,] in ii,(X, A, *). 
Stage 3. Conslder a slightly larger, concentric, disk t' about T still 

contained in int(a). There is a map on Bn to itself which is the identity on z 
and stretches the part between t and 7' so that z' goes homeomorphically 
to B", and which is the radial projection to aBn outside T'. Let r : (o ,aa) -+  
(Bn,8Bn) denote the restriction of this to a.  Since r is the identlty on T, and 
T is its own inverse image, r has degree one. Also note that / ' I ,  = /'or since 
f' is constant on radii outside z. Thus, [fiI,] = [f'or] = [f'], where the last 
equality is because r has degree one. 0 

9.6. Theorem ('T'hc Absolule Homotopy Addition Theorem). Lpt PI >_ 1. Let 

S" + ' be an oriented (n + lksphere and let r ,, . . . , T, be (n + 1)-cells in S" + ' with- 
disjoint interiors oriented coherently with S"+ '. Let f :  (Sn+' - Uint(ri)) + Y .  
Then 

k 

C C f l a , , l = O  in E,(Y), 
I= 1 

where it,(Y) = x,(Y) for n > 1 and is the abelianized n,(Y) for n = 1. 

PROOF. Of course, one has to make clear the meaning of these homotopy 
classes and of the orientations. This is done similarly to the relative case and 
shall be left to the reader. For simplicity of notation, we may as well assume 
that the sphere is the standard sphere Sn+ '. Put X = Y u f S n +  '. The canonical 
map from S"" into this is an extension off and we shall retain the notation 
f for it. Thus we have that 

f:  ( S ~ + ~ , S " + '  - (J int(zi)) + ( X ,  Y). 

Compose this with the mapc: D"+' +S"+' collapsing the boundary of the 
disk to the base point of the sphere. (The base point of the sphere is, of 
course, assumed to lie outside any of the z;.) For simplicity of notation we 
will use the same notation zi for the inverse images of these disks in Dn+'  
Thus we get a map 

f:(Dn+',Dn+' - Uint(z,))-+(x, Y). 

On the pair (Dn+ ', Sn), f represents j#[ f ]EX,+ ,(X, Y, *) where j#: x,, ,(X, *) -, 
n,+,(X, Y,*) is from the exact sequence of a pair. The Relative Homo- 
topy Addition Theorem (Theorem 9.5) implies that j#[ f ] = xi[ f I,,] in 
it, + , (X, Y, *). Applying a# we get 

k k 

0 = a#j#Cf I = C a#Cf I,,] = C Cf la,,] 
i =  1 1 = 1  

10. The Hurewicz Theorem 

Previously we proved the Hurewicz Theorem linking x1(X, *) with H I ( X ) .  
Here we shall generalize this to higher dimensions. We shall also derive a 
relative version of the theorem. 

To simplify notation in this section we are going to regard the standard 
n-simplex A, and the disk Dn as the same space. This should not cause 
confusion, particularly because of the fact, from the last section, that to specify 
a homotopy class it suffices to have a map from any pointed n-disk B that IS 

oriented, i.e., has a given generator of H,(B, dB). 
Since the identity I = 1,  on A, is a singular n-cycle of (A,, aA,), its homology 

class 9 = 111-0 can be taken as the orientation class. Any map f :  (A,, dA,, *) -+ 
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(X, A, *) represents a homotopy class 1 f]en,(X, A, *). It is also a cycle and 
so represents a homology class 

lf 1 = f*(9)~Hn(X, A). 

Now, for two such maps f and g, 

Cfl=C91 * f =s =. f * = s *  =. lIfB=l[sli 
Thus the following definition makes sense (except for the word "homo- 
morphism" which we must justify). 

10.1. Definition. The Hurewicz homomorphism h,: zn(X, A, *) -+ H,(X, A) 
defined by hn[f]=[f]. That is, hn[f]= f*(9). 

10.2. Lemma. The Hurewicz map h, is a homomorphism. 

PROOF. Consider the comultiplication y: (Dn, Sn- ') --+ (Dn, Sn- ') v (Dn, Sn- I). 

Let pi, i = 1,2, be the two projections (Dn, Sn- ') v (Dn, Sn- ') -+ (Dn, Sn- 
Then piOy 1: 1 for each i. Let i,,i2 be the two inclusions (Dn,Sn-') 
(Dn, Sn-') v (Dn, Sn-'). Then pioij = 1 if i = j and is the constant map if i 
The composition 

H,(Dn, Sn- ') , Hn(Dn v Dn, Sn- ' v Sn- ') 

P*.@PZ. +H,(D~,s~-~)oH,(D~,s~- ' )  

takes 9 to (9,s). But p1*Op2, is an isomorphism with inverse ill + i2*. T 

Y*(S) = i1*(9) + i2*(9). 

Iff, g: (Dn, Sn- ', *) -+(X,  A, *) then (( f y g)oy), = (f y g),y,. Therefore 

hn(Cfl+ Csl) = hn(C(f v ~ ) O Y I )  

= ( ( f  v 9)"Y)*($) 

= ( f  v s)*(i1*(9) + i2*(Q)) 

= ((f  l! 9)"ii)*(9) + ( ( f  !! g)"iz)*(S) 

10.3. Corollary. For n > 2, ker(h,) contains the subgroup generated by the 
elements of the form a(/?) - P for CLETC~(A, *) and PETC,(X, A, *). In case n = 2, 
ker(h2) contains the subgroup generated by the u(B)P-', which contains the 
commutator subgroup of z2(X, A, *). 

PROOF. Let [g] = u[ f]  for some uen,(A). Then f and g are freely homotopic, 
whlch implies that f, =g,. Thus [f] = [g]. If j?= [f] then this means 
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- that h,[a(J)] = h,(J). Since h, is a homomorphism, we conclude that 
h,(a(P) - p) = 0. The proof needs only minor changes to cover the noncom- 
mutative case n = 2. 

1 10.4. Definition. Let A:)(X, A) denote the subgroup of A,(X, A) generated by 
I 
I 

ular simplices o: A, -+X which carry the n-skeleton of A, into A, 

I 
k(A). 

I 
I 

Since AF)(X, A) is a subcomplex of A,(X, A) we get a homomorphism 
I 

I HP'(X, A) -+ H,(X, A), 

where the first group denotes, of course, the homology of this subcomplex. 
If (X, A) is n-connected, we are going to show that this is an isomorphism. 

10.5. Theorem. If (X, A) is n-connected then the inclusion AII',)(X, A) c, 
A,(X, A) is a chain equivalence. 

PROOF. First we will define, for each singular simplex o: A,+X, a map 
P(o): I x A, -+ X, such that the following four conditions are satisfied: 

(1) P(o)(O, Y )  = 4 ~ ) ;  
(21 P(a)(l, .)eA"(X); 
(3) cr~Ar'(X) => P(o)(t, .) = a for all t; and 
(4) P(a)o(l x F:) = P(a"'), 

where F: is the ith face map and a") = aoF:. ' 

The function P is already defined for aeAF)(X). We shall define it on 
other simplices by induction on k. Suppose P is defined for all i-simplices, 
i < k. If a is a k-simplex, then P(di)) is defined for all i. These fit together to 
give a map (I x aA,)u({O) x A,)-+X. Let us denote this by P(do). 

If k I n then 

P(ao): (I x dA, u (0) x A,, { 1) x dA,) -+ (X, A). 

Since n,(X, A) = 0 by assumption, this map can be filled in taking the top 
(1) x A, of the cylinder into A. Define P(a) to be any such map. 

If k > n then just use the Homotopy Extension Property on (A,,dA,) to 
define P(a). This completes the inductive construction of P. 

Now define 

by q')(a) = P(a)(l, .) = P(a),(ly) x 1,) where I:~): A, -+ ( 1) c I = A, is the 0-face 
of I , .  

Define a chain homotopy D: A,(X, A )  4 A,(X, A )  by 



Then 

But 

Thus  DO + Dao = P(o),(z?) x I,) - P(o),(ry) x z,) = 4(a) - o, the latter 
equation by (1). It follows that inclusion04 - 1. By (3), @inclusion = 1. 

10.6. Corollary. If (X, A) is n-connected then Hi(X, A) = 0 for all i I n. 

10.7. Theorem (The Relative Hurewicz Theorem). Suppose that A c X are 
both arcwise connected and that (X, A) is (n - 1)-connected, n 2 2. Then 
Hl(X,A)=O for all i < n  and 

is an epimorphism whose kernel is the subgroup generated by the elements 
o(p) - P for ail o ~ n , ( A ,  *) and PEK,(X, A, *). In particular, ifa,(A) = 1 then 
h, is an isomorphism. 

PROOF. We know that o(P) - P~ker(h,). Let n:(X, A) denote the quotient by 
the subgroup generated by these elements. (Note that this is independent of 
the base point and that n,*(X, A) is abelian.) 

Iff: (A,, aA,) + (X, A), then f €A!,- ')(X, A) and so h, induces a map (which 
we call by the same name): 

h,: n:(X, A)+ Hr - ' )  (X, A) 25 H,(X, A). 

For a singular simplex f :  A, -+ X which represents a generator of A;-')(X, A), 
we have f :  (A,, dA,) -+ (X, A )  and therefore [ f]  €n;(X, A) is defined. (If 
f :  An + A then [ f ] = 0.) Thus the assignment f w [ f ] EZ:(X, A) generates a 
homomorphism 

4: A!,-"(X, A) -+ n;(X, A). 

Also, since A:--,"(X, A) = 0, A;-l)(X, A) is entirely made up of cycles. We 

claim that the boundaries are in the kernel of 4. To see this, suppose that - 
g is a singular simplex in Ar;,"(X, A). Then with j#: n,(X) + n,(X, A), we have 

by the Homotopy Addition Theorem (Theorem 9.5) applied to aA,,,. But 
the last term is zero since [gIaA,+ ,] = 0 in nn(X) because it extends to A,,, 
as a map to X. 

Thus 4 induces a homomorphism 6: Hr-')(X,A)+n,*(X, A) given by 
$1 f] = [f]. This is a two sided inverse of h, by construction. 

By taking A = (*I, and noting that for n > 0, H,(X) x H,(X, *), we get: 

10.8. Corollary (The Absolute Hurewin Theorem). If X is (n - 1)-connected 
for some n 2 2, then h,: q ( X ,  *) -+ H,(X) is an isomorphism. (Also see Problem 4 
of Section 1 1 .) 0 

10.9. Corollary. ZfA c X are both 1-connected and Hi(X, A) = 0 for i < n, then 
h,: n,(X, A) + H,(X, A) is an isomorphism. 

PROOF. The exact sequence n,(X) -+ 7r1(X, A) -, n,(A) of pointed sets has both 
ends trivial, and so the middle is also trivial. Since X and A are both simply 
connected, Theorem 10.7 implies that the first nonvanishing terms, ni(X, A) 
or Hi(X, A), are isomorphic. Thus n,(X, A) = -.. = n,- ,(X, A) = 0 and the 
terms in dimension n are isomorphic. 17 

10.10. Corollary. If X is 1-connected and Hi(X) = 0 for i < n then ni(X, *) = 0 
for i < n and n,(X, *) M H,(X). 

10.1 1. Corollary. A connected C W-complex K is contractible- nl(K) = 1 
and &,(K) = 0. 

PROOF. This implies that ni(K) is trivial for all i. Start with the map 

4:K x (0 )uK x { l ) + K  

given by 4(x, 0) = x and 4(x, 1) = *. Extend this to K x 1 + K by induction 
on the skeletons. Since all homotopy groups of K are trivial, there is nothing 
to prevent this from being carried out. 

10.12. Example. The dunce cap space X (Figure 1-6) is a CW-complex with 
one 0-cell, one 1-cell and one 2-cell attached by the loop with word a2a-'. 
Thus the fundamental group is {ala2a-' = 1) = 1. The boundary map 



480 VII. Homotopy Theory 

C ,  -r C ,  in the cellular chain complex takes -a generator x (the two ceil) to 
2a - a = a e C , .  Thus there are no 2-cycles. Consequently, t ? , ( ~ )  = 0. It then 
follows from Corollary 10.1 1 that X is contractible. 

10.13. Example. Let X=X(S3/1') be the unreduced suspension of the 
Poincare dodecahedral space of Theorem 8.10 of Chapter VI. By the 
Seifert-Van Kampen Theorem (Theorem 9.4 of Chapter 111), X is simply 
connected. By the suspension isomorphism, X is a homology 4-sphere. Thus, 
by Corollary 10.10, ni(X) = 0 for i < 4 and n,(X) z 2. 

To end this section, let us discuss a technical detail that we glossed over 
in the definition of the Hurewicz homomorphism h,. We said at the start 
that we would take A, to equal Dn, but actually one must choose some 
homeomorphism between them at least up to homotopy. It is clear that a 
change in this choice can only affect the sign of h,, i.e., different choices yield 
homomorphisms that differ only by sign. It is also clear that one can achieve 
any desired sign by the appropriate choice of homeomorphisms. 

1. Let K and L be finite CW-complexes and consider the join K * L. If K is contractible, 
show that K *Lis contractible. If K and Lare simply connected, show that K * L  
is 4-connected. Generalize. 

2. Compute xi(CP2,CP') for i as large as you can. 

3. Let f:S3 +S3/I' be the canonical map where the latter space is the Poincark 
dodecahedral space of Theorem 8.10 of Chapter VI. Let X =(S3/1')ufD4. Show 
that x,(X), 7t3(X), H1(X), and H,(X) are trivial but that H3(X) # 0. 

1 1. The Whitehead Theorem 

11.1. Proposition. For A c X the following diagram commutes, and-is called 
the "homotopy-homology ladder": 

PROOF. This is clear from the definitions of the Hurewicz homomorphisms, 
except for the sign of the square involving the connecting homomorphisms. 
But, as remarked at the end of Section 10, h, was not quite pinned down as 
to sign. One is free to choose the sign so that this diagram does commute, 
or one can leave it open and treat this ladder as only commuting up to 
sign in that square. This makes no difference as far as our uses of this 
result go. [5] 
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Suppose that f : X  -+ Y is a map. Recall that, up to homotopy equivalence, 
one can regard f as an inclusion by replacing Y by the mapping cylinder 
M /. Thus the ladder can be applied to the pair (Mf, X) and then Y can be 
substituted for M in the absolute groups. This yields the following homotopy- 
homology ladder for a map: 

11.2. Theorem (J.H.C. Whitehead). Let n 2 1. Given a map f :  X -+ Y with X and 
Y arcwise connected, we have: 

isomorphism for i < n 
I(a). f# is an the same for f , ,  

epimor~hism for i = n 
I(b). f# is an isonzorphism for i I n 3 the same for f , . 
TI. If X and Yare  simply connected then: ! 

isomorphism for i < n 
f ,  is an + the same for f#. 

epimorphism for i = n 

PROOF. We shall prove part I(b). The exact homotopy sequence of (Mf, X) 
shows that ni(Mf,X) = 0 for is n. By the Hurewicz Theorem we get that 
Hi(Mf, X) = 0 for i 5 n and that h,, ,: 7t,+ ,(Mf, X) -+ H,+ ,(Mf, X) is an 
epimorphism. Thus the relevant part of the homotopy-homology ladder is 

and the result follows from a diagram chase. 
The proof of I(a) is similar but easier and will be omitted. For part 11, the 

exact homology sequence of the pair (Mf, X) shows that Hi(Mf, X) = 0 for 
i < n. The exact sequence n,(Y)-+ nl(Mf ,X) -+ nO(X) shows that xl(Mf, X) = 
0. Since n,(X) = 0, the kernel of the first nontrivial relative Hurewicz 
homomorphism is zero. It follows that ni(Mf, X) = 0 for i 5 n. The result can 
now be read off from the exact homotopy sequence of (Mf, X). 

11.3. Example. This example shows that the theorem would be false in 
absence of the hypothesis that the isomorphism is induced by a map of spaces. 
The product S2 x S4 has the same homology groups as does CP3. The 
homotopy sequence of the fibration S1 -+ S7 --+ CP3 shows that n3(CP3) = 0, 
whereas n,(S2 x S4) = n3(S2)@n3(S4) z Z. 



11.4. Example. This example shows that the analogue of the Whitehead 
Theorem is false in the relative case. Consider the inclusion map f :  
(D: , S2) CL, (S3, D?). This gives an isomorphism in homology (because it 
is essentially an excision map). However n4(D3, S2) z n3(S2) z Z while 
7c,(S3, D3) w n4(S3, *) % Z2 by Theorem 8.3. This example also shows, of 
course, that homotopy groups do not satisfy an excision property. 

11.5. Example. Let n, m > 1. The inclusion map f :  Sn v Sm cz+ Sn x Sm 
induces an isomorphism 

Hi(Sn v Sm) + Hi(S"x Sm) for i < n + m. 

By the Whitehead Theorem it follows that 

f#: ni(Sn v Sm) w 7ci(Sn x Sm) for i < n + m - 1. 

It is not an isomorphism for i = n + m - 1, as the reader is asked to show 
in Problem 1. 

Now we shall apply the Whitehead Theorem to the study of the effect on 
homotopy groups of attaching cells to a space. Assume that X is arcwise 
connected and let (fa:Sn+X} be a family of maps, where n 2 1. Put 

11.6. Proposition. In the above situation, ni(X)+ni(Y) is an isomorphism for 
i < n and is an epimorphism for i = n. If X is simply connected then the kernel 
of 7cn(X) -+ 7cn(Y) is the subgroup generated by the [fa]. 

PROOF. AS in the proof of Lemma 11.2 of Chapter IV, an approximation 
argument shows that (Y, X) is n-connected. Thus n,(Y, X) = 0 for i I n. From 
the exact homotopy sequence we get that 7ci(X)--+7ci(Y) is an isomorphism 
for i < n and an epimorphism for i = n. Now assume that 7cl(X) = 1 and 
consider the commutative diagram 

The isomorphism on the left is by the Relative Hurewicz Theorem, and it 
implies that nn+ ,(Y, X) is generated by the [gal where g,: (Dn+', Sn) + ( K  X) 
is the characteristic map for the cell cr. (This follows since the homology 
group is generated by the Hurewicz images of these classes.) Therefore ker(i#) 
is generated by the a#[ga] = [J,]. 

11.7. Theorem. Let n 2 2 and let X be arcwise connected and semilocally 
I-connected (i.e., X has a universal covering space). Let fa: Sn -, X and 

as above. Then: - 
ni(X) --+ ni(Y) is an isomorphism for i < n, 

and 

a,(X)+nn(Y) is an epimorphism with kernel generated by (oUa] l o ~ n ~ ( X ) } .  

PROOF. Note that i#(o[  fa]) = i#o(O) = 0 in nn(Y), the attached disk killing 
it. Let X' be the universal covering space of X and choose a base point over 
the one in X. Let A w nl(X) be the group of deck transformations. We can 
lift each fa to f :: Sn -+ X'. If OEA then o o  f & is another lift of fa. 

Note that o o  f:, is freely homotopic to a pointed map and this free 
homotopy covers a free homotopy of fa in X about a loop in X representing 
w* 'ER~(X).  Thus c o o  f:]~x,(X') maps to o* '[ f,]~z,(X). 

Put 
Y' = X ' v { o o f a )  (D;+ l). 

This is a covering space of Y by Theorem 8.10 of Chapter IV, with deck 
transformation group 4. Consider the commutative diagram 

By Proposition 11.6 the kernel of the epimorphism on top is the group 
generated by the [ o o  fa]. These map to w*'[fa] in nn(X) and the result 
follows. 

Proposition 11.6 can be used to prove the following result about "killing" 
homotopy groups. 

11.8. Theorem. Let X be arcwise connected and let n 2 2. Then there exists 
a space Y ;7X obtained by attaching cells to X (called a "relative CW- 
complex") such that 

ni(X) + ni(Y) is an isomorphism for i < n, 

and ni(Y) = Q for i 2 n. 

PROOF. Choose maps fa: Sn + X representing generators of 7cn(X). Put 

Then n,(X) -+ 7ci(Yl) is an isomorphism for i < n and nn(Yl) = 0. 
Now do the same thing with generators of 7cn+1(Y1) producing a space 

Y, =I Y, 3 X such that ni(Y2) -r q(Y,) is an isomorphism for i < n + 1 and 
nn+ ,(Y,) = 0, etc. Taking Y to be the union of the Yj  and using the fact that 
7ci(Y) = I$, n,(Yj) finishes the proof. (The fact about direct limits was proved 
earlier for CW-complexes, and the proof applies to the more general relative 
CW-complexes.) i 

I 
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11.9. Corollary. Let n 2 2 and let n be an abelian group. Then there exists a 
space X = K(a, n) such that ni(X) = 0 for i # n and nn(X) x z. This also holds 

for n = 1 where a is any group. 

PROOF. The case n = 1 will be left to the reader. For n 2 2, let a have a 
presentation of the form 

R *F-+Z-+O 

(exact) where F is free abelian. Let {fa) be a basis of F and consider the 
one-point union 

Then ni(W) = 0 for i < n, and zn(W) = Hn(W) x F. For each ~ E R  let g,: Sn + W 
represent cr(r)~F = an(W). (Just taking r from a set of generators of R suffices.) 
Put 

Y1= W~{,,)fD"a'l. 
Then x,(Y,) = 0 for i < n and an(Yl) % F/u(R) x a. NOW add higher- 
dimensional cells to Y ,  to kill all the higher-dimensional homotopy. This 
yields the desired "K(a, n)" space. C] 

11.10. Theorem. Let X be (n - 1)-connected, n 2 2, and let a = an(X). Then 
there is a fibration 

K n - 1 - E 

where 8#: nn(X) -+ zn(K(z, n)) z K is an isomorphism. (This notation means that 
p is the pullback of the path-loopfibration ofK(a, n) via 8, and so the top map 
is the inclusion of thefiber in the total space.) Moreover, E is n-connected and 
p#: ni(E) -+ ni(X) is an isomorphism for i # n. 

PROOF. Let Y be the space obtained from X by attaching cells to X to kill 
the ith homotopy group of X for all i 2 n + 1. Then Y is a K(n, n) and the 
inclusion X c_, Y induces an isomorphism on nth homotopy groups. The 
fibration in question, then, is that induced by the inclusion X c Y. The 
fiber F is the loop space of Y and so is a K(x, n - 1). There is the following 
commutative diagram, where the top row is the homotopy sequence of this 
induced fibration over X and the bottom is part of that for the path-loop 
fibration of Y: 
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It follows that x,(E) and R,- I(E) are both trivial. The remainder follows 
from the rest of the top sequence. [I3 

11.11. Definition. A map f:  X -+ Y is an n-equivalence if f#: ni(X) -, ni(Y) is 
orphism for i < n and an epimorphism for i = n. Iff is an n-equivalence 

n then it is called a weak homotopy equivalence or an co-equivalence. 

Note that the condition in Definition 11.11 is equivalent to ni(Mf,X) 
being 0 for i 2 n. 

11.12. Theorem. For n I co, a map f: X -+ Y is an n-equivalence if and only 
if, for every relative CW-pair (K, L) with dim(K - L) I n any commutative 
diagram 

can be completed to 

where the top triangle commutes and the bottom triangle commutes up to a 
homotopy re1 L. 

PROOF. The implication e is just the definition of zi(M,, X) = 0 using (K, L) = 

(Di, si- I). 

Let i: X c+ MJ be the inclusion and p: MJ -+ Y the projection. Since M z, Y, 
the map g can be regarded as a map g: K -+ Mf and f can be regarded as a 
map f :X-+Mf.Thengl ,= fob-iohsince f l:i:X-+Mf.By the homotopy 
extension property applied to (K, L), there is a homotopy F: K x I -+ Mf of 
g to a map g': K -+ M y  such that g'l, = ioh, and poF: K x I -t Y is a homotopy 
re1 L. Thus pog =peg' re1 L. 

Nowex tend themaphxIvg 'x  {O} :LxIvK x {O)-+MftoG:K X I - +  
Mf such that G(K x (1))  c X by induction over skeletons of (K, L) using 
that a,(Mf, X) = 0 for i < n and that dim(K - L) 5 n. Define 4 :  K -+ X by 
$(x) = G(x, i )€X.  

Then for XEL, +(x) = G(x, 1) = G(x, 0) = h(x), meaning that the top triangle 
commutes.Also, i.4 = G(., I )  - G(.,O) = g'rel L.Thus f 04 = poi04 zpog'  5 

pag = g re1 L. 

11.13. Corollary. Iff: X -+ Y is an n-equivalence (n 5 co) and K is a CW- 



complex, then 

f#: [ K ;  XI -+ [K; Y1 
is bijective for dim(K) < n and surjective for dim(K) = n. This also holds in 
the pointed category. 

PROOF. The onto part is by application of Theorem 11.12 to (K, a). The 
one-one part is by application of Theorem 11.12 to (K x I, K x dl). In the 
pointed category use the base point instead of @. 0 

11.14. Corollary. Let f:  K -+ L be a map between connected CW-complexes. 
Then f is a homotopy equivalence ifand only iff#: ni(K) -+ ni(L) is an isomorphism 

for all i. 

PROOF. Select base points corresponding under f and restrict attention to 
pointed maps. Then f#: [L; K] -+ [L; L] is bijective by Corollary 11.13. Thus 
there is a [~]E[L;K] with f#[g] = [I]. But f#[g] =[fog], so fog .v 1. 

On homotopy groups we have 1# = (f og)# = f#og#. But f#  is an isomor- 
phism so it follows that g# is also an isomorphism in all dimensions. Then 
by the same argument used for f applied to g, there is a map h: K -+ Lsuch that 
goh N 1. Thus f 2: f ogoh .v h, from which we get 1 2: goh 2: go f. 

11.15. Corollary. Suppose that K and L are simply connected CW-complexes. 
Iff: K -+ L is such that f,: Hi(K)-+ Hi(L) is an isomorphism for all i, then f is 
a homotopy equivalence. 

11.16. Example. Consider the suspension X(Sn x Sm) of the product of two 
spheres, n, m > 0. We have the composition 

where the first map is from the coproduct and the second is the one-point 
union of the maps Cn,, Cx2, and Cq, where n, and n2 are the projections to 
the factors of the product and r]:  S" x Sm -+ S" A Sm z S"+". It is easily seen 
that this composition is an isomorphism in homology. Thus it is a homotopy 
equivalence by Corollary 1 1.1 5. 

11.17. Example. We shall prove the converse of Theorem 10.14 of Chapter VI, 
thereby giving a complete homotopy classilication of the lens spaces L(p, q). 
We must show that if + qq' is a quadratic residue mod p then L(p, q) --- L(p, 9'). 
The condition is equivalent to the existence of integers k, n, and m, prime to 
p, such that n2kq' + mp = + 1 and kq r 1 (modp). With the notation from 
the proof of Lemma 10.13 of Chapter VI consider the map 8: S3 -+S3 given 
by 8(u, v) = (u'"', ~'~4'"'). Then it can be checked immediately that BTq = Ti,$; 
i.e., 8 carries the Z,-action generated by T, to that generated by Ti.. Now 
consider p disjoint disks in S3 permuted by T,. By pinching the boundaries 

of these disks to points, we get a space W = S i  u S: u . . - u S i  (one point 
unions but at different points) and an equivariant map S3 -+ W where S3 and 
Si have the Tq-action and the other S? are permuted by T,. Map W-+S3 
by putting 8 on S:, and a map of degree m on S: propagated to maps of 
degree m on the other S? by equivariance. Then the composition Q: S3 -+ W -+ 

S3 has degree deg(8) + mp = n2kq' + mp = .$_ 1 and carries the T, action to 
the Ti, action. Since @ has degree + 1 it induces isomorphisms Q: 7ci(S3)-+ 
ni(S3) for all i. The induced map Y: L(p, q) + L(p, q') on the orbit spaces then 
gives isomorphisms Y#: 7ci(L(p, q)) -+ ai(L(p, 9')) for all i; (see the proof of 
Lemma 10.13 of Chapter VI). Thus Y is a homotopy equivalence by Corollary 
11.14 as desired. This discussion generalizes easily to prove the converse of 
Problem 3 of Section 10 of Chapter VI; i.e., the higher-dimensional analog 
of the present example. 

We finish this section with a brief discussion of the classification problem 
in topology. This is the problem of finding a way to tell whether or not two 
spaces are homeomorphic. This is too ambitious, so let us modify it so as 
to be less demanding. Let us ask for a decision procedure to determine 
whether or not two finite polyhedra are homotopy equivalent. Perhaps this 
does not sound too ambitious, but, in fact, it is, as we now explain. Suppose 
we are given a group G in terms of a finite number of generators and relations. 
Then we can construct a finite simplicial complex having G as its fundamental 
group by taking a one-point union of circles, one for each generator, and 
then attaching Zcells (which can be done simplicially) to kill the relations. 
(Perhaps such a construction should be called "fratricide.") If we had such 
a decision procedure, then that procedure could be used to decide whether 
or not G is the trivial group (i.e., whether or not the space is simply connected). 
The problem of finding a decision procedure for determining whether or not 
a group G, defined by generators and relations, is trivial, is essentially what 
is known as the "word problem" in group theory. The word problem is 
known to be unsolvable (proved in 1955 by Novikov [I]), i.e., it is known 
that there exists no such decision procedure. Thus we have the following 
fact. 

11.18. Theorem. There does not exist any decision procedure for determining 
whether or not a given two-dimensionalfinite polyhedron is simply connected. 

Also, it follows from Section 9 of Chapter 111, Problem 13 that there is 
no decision procedure for deciding whether or not a given 4-manifold is 
simply connected. 

This should not be taken as discouraging. After all, the simply connected 
spaces make up a large segment of interest in topology. Moreover, the result 
can be viewed as proof that topologists will never find themselves out of 
work. 
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1. Show that nn+m-  l(Sn v Sm) -+ nn+,,- x Sm) is not an isomorphism. 

2. Finish Example 11.16 by showing that the indicated map is an isomorphism in 
homology. (Hint: Show the second map is onto in homology.) 

3. If K is a simply connected CW-complex with Hn(K) x Z and H , ( K )  = 0 for i # n, 
then show that K 1. Sn. 

4. Prove this amendment to the Absolute Hurewicz Theorem: Suppose that X is 
(n - 1)-connected, n 2 2. Then the Hurewicz homomorphism h,: a,(X) -+ Hi(X) is 
an isomorphism for i 5 n and an epimorphism for i = n + 1. (Hint: Consider the 
pair (Y, X) where Y is a space obtained from X by attaching n-cells to kill an(X).) 

5. Consider cren1(S1 v SZ) and /?~n,(Sl v S2) given by the inclusions of the factors. 
Let f :  S2 -+S1 v S2 represent 2P - cr(P)~n,(S' v S2) and put X = (S1 v S2)u,.D3. 
Show that the inclusion S' c , X  induces an isomorphism on a, and on H ,  but 
is not a homotopy equivalence. 

6. A "graph" is a CW-complex of dimension 1. A "tree" is a connected graph with 
no cycles in the sense of graph theory; i.e., having no simple closed curves. 
(a) Show that a tree is contractible; i.e., prove the infinite case of Lemma 7.7 of 

Chapter 111. 
(b) Show that a connected graph has the homotopy type of the one-point union 

of circles (possibly infinite in number); i.e., of a graph with a single vertex (the 
infinite case of Lemma 7.13 of Chapter 111). 

(c) Show that the fundamental group of any connected graph is free; i.e., prove 
the infinite case Theorem 7.14 of Chapter 111. 

(d) Show that a subgroup of a free group is free; i.e., prove the infinite case of 
Corollary 8.2 of Chapter 111. 

7. For any space X construct a CW-complex K and a map f :  K -+ X which is a weak 
homotopy equivalence. (This is called a "CW-approximation" to X.) Use this to 
remove the hypothesis in Theorem 11.7 that X is semilocally 1-connected. 

12. Eilenberg-Mac Lane Spaces 

An arcwise connected space Y is called an "Eilenberg-Mac Lane space of 
type (n, n)" if nn(Y) = n and ni(Y) = 0 for i # n. We have already met these 
spaces in the last section where Corollary 11.9 proved their existence as 
CW-complexes, where, of course, n must be abelian for n > 1. In this section 
we shall also require n to be abelian for n = 1. Such a space is also called 
simply a "space of type (n, n)" or a "K(x, n)." 

The purpose of this section is to show that there exists a natural equivalence 
of functors 

[K; K(n, n) ] % Hn(K; n), 

on the category of CW-complexes K and maps. (Compare Hopfs Theorem 
11.6 of Chapter V.) 
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Note that if Y is of type (n, n + 1) then the loop space QY is of type (n, n), 
as follows from the exact homotopy sequence of the path-loop fibration of Y. 

Also [K;QY] % [SK; Y-J by Lemma 4.2. It is also clear that any map 
K("+ ' ) -+RY extends to K since ni(QY) = 0 for i > n, and any partial homotopy 

("+ 'I  x I u K x 81 +RY extends to K x I for the same reason. Therefore 
Y-J x [K(~+~);QY-J. 
e sequence 

is coexact by Corollaries 1.4, 5.3, and 5.5. Thus, for Y of type (71, n + I), there 
is the diagram 

in which the long rows and column are exact and the diagonal maps marked 
6 are defined by commutativity. The 0 at the left end of the third tier is by 
[SK("+ ')/SK("); Y] = 0 since SK("+')/SK(") is a bouquet of (n + 2)-spheres 
and xn+,(Y) = 0. Similarly, the 0 at the end of the exact column is by 
[SK("- 'I; Y] = 0, by Corollary 1 1.13, since dim(SK("- I)) I n and ni(Y) = 0 
for i I n. The 0 on the right of the first row is for the same type of reason. 

An easy diagram chase gives 

[K;QY] w [SK; Y] w [sK("+ '); Y] x ker(b,)/im(b,- ,). 

It remains to identify the maps 6 ,  and 6,-,. They differ only by a change 
of the index n, so it suffices to look at 6,. This is induced by the composition 

Recall that the first map is the homotopy equivalence given by collapsing 
the cone to a point. The second map is the collapse of K("+", and the last 
is the collapse of SK("-I). 

Now K("")/K(") is a bouquet of (n + 1)-spheres, one for each (n + 1)-cell a 
of K. Similarly, SK("'/SK("- ') = S(K(")/K("- I ) )  is a bouquet of (n + 1)-spheres, 
one for each n-cell z of K. 

For an (n + 1)-cell a, consider the characteristic map 



This extends to 

f,uCfa,:Dn+' uCSn-+ K'"+"uCK'"'. 

Letting 7,: S"+ ' -+ K("+ ')/K(") be the (inclusion) map induced by f,, we have 
the commutative diagram 

where p, is the projection of K(")/K("-') to the zth sphere in the bouquet. It 
follows that 6, takes the ath sphere to the 7th sphere by the map S(prfa,,); 
i.e., a map of degree deg(pr fa,). 

Now an element of [V,S"+'; Y ]  can be regarded as a function that 
assigns to each (n + 1)-cell o of K, an element of [S""; Y] = nn+ ,(Y) = n. 
That is, it is a cellular cochain in Cn+'(K;a) = Hom(C,+,(K),n). Similarly, 
an element of [V,Snf '; Y] is a function assigning to each n-cell z of K, an 
element of a. That is, it is a cochain in Cn(K; a). We have shown that the map 
[SK(")/SK("-'); Yl-+ [K("+')/K("); Y l  corresponds to the homomorphism 

6: C"(K; n) -+ Cn+ '(K; n) 

given by 6 f (o) = Xdeg(p, fa,) f (z), where o is an (n + 1)-cell and z ranges 
over the n-cells. But the right-hand side is f (C, deg(p, far)z) = f (do). Therefore, 
6 is precisely the cellular coboundary up to sign, justifying our use of that 
symbol. 

We have constructed the isomorphism 

[K; SI Y l  x Hn(K; a), 

which is natural in K. 
We can replace RY by a CW-complex L since the construction of a 

CW-complex L of type (n, n) in Corollary 11.9 makes it clear how to also 
define a weak homotopy equivalence L+RY (or into any K(n,n)). This is 
actually a homotopy equivalence because Milnor [I] has shown that RY 
has the homotopy type of a CW-complex when Y has, but we neither need 
nor will prove this fact. By Corollary 11.13, [K;L] = [K;RY] for all CW- 
complexes K. Replacing [SK; Y] by [K;RY] and then by [K; L], the im- 
portant part of diagram (*) becomes 

Starting with a map 4: K -+ L representing [$]e[K; L], chasing it to C"(K; a) 
is given by first restricting it to K'") then (or prior on K) to a 
homotopic map that takes K("-') to the base point of L, and then passing 
to the induced map 4': K(")/K("-')-+ L. Finally, this gives a cochain cy on 
K by c,,(z) = [$'07~] enn(L) = n, where x: Sn -+ K(")/K("-') = V,Sn is the in- 
clusion of the zth sphere induced by the characteristic map f,: Dn + K("). As 
shown, c,, is a cocycle when it comes from 4: K -+ L this way. (One can also 
see that directly.) The fact that [C$]I-+[C,.] is a bijection means that the 
class [[c,.] depends only on [&I and this means that the cocycle cy depends 
on the choice of 4', given 4, only up to a coboundary. (One can also see 
this directly, but we do not need that.) 

Describing the correspondence the other direction is as easy: Starting with 
a class teHn(K; a), represent it by a cocycle c: Cn(K) -+ a and construct a map 

by putting a representative Sn -+ L of c(z)en = an(L) on the zth sphere. This, 
then, induces a map K'") -+ L and it extends to f: K -+ L because c is a cocycle 
and by the main discussion. 

If we take the space L of type (a, n) to be as constructed in Corollary 11.9 
then L'"-') = (*) and so L'") = V,S" where the n-cells z correspond to given 
generators of a. Then it is clear that le[L; L] corresponds to the class 
u€Hn(L; a) represented by the cocycle c taking each n-cell z to the corre- 
sponding generator of a. Then c*: H,(L) -+ a is an isomorphism. (Also recall 
that the Hurewicz map nn(L) -+ Hn(L) is an isomorghism.) A class vcHn(L; a) 
which corresponds to an isomorphism Hn(Lj-+ a is called a "characteristic 
class." This is defined for any space with a as the first nonzero homotopy 
group. 

Let us denote by T: [K; L] 5 Hn(K; a) our natural equivalence of func- 
tors. Then T(l) = u. For a map f :  K -+ L, the commutative diagram 

[L; L] 2 Hn(L;n) 

IfU If* 
[K; LI -11, H"(K;z) 

shows that f #(I) = [ f] and T [  f ] = f *(T(l)) = f *(u). More generally, any 
map f :  K -+ K' of CW-complexes induces 

Iff :  L-t L is a homotopy equivalence, then f * is an isomorphism. It follows 
that T[. /]  = j'*(u) is characteristic. Conversely, if f is such that f *(u) is 
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characteristic, then f #: [L; L],-t [L; L] is a bijection, and so there is a map 
g: L-+ L such that f #[g] = 1. This implies that go f - 1 and hence f *g* = 1, 
so that g* is also an isomorphism and fog = 1. This essentially means that 
any characteristic class ueHn(L; n) is as good as any other. 

For any space Y of type (n, n) there is a weak homotopy equivalence L-+ Y 
and this induces [K; L] - [K; Y]. This allows the results for [K; L] to 
be transferred to [K, Y]. Summarizing, we get: 

12.1. Theorem. Let Y be a space of type (n, n), a abelian, and let ueHn(Y; n) 
be characteristic. Then there is a natural equivalence of functors 

T,: [K; Y] -+ Hn(K; a) 

of C W-complexes K, given by Tu[ f] = f *(u). 

Note that if (K, A) is a relative CW-complex then KIA is a CW-complex 
and so it follows that, in the situation of Theorem 12.1, 

[KIA; Y] x Hn(K/A; n) x Hn(K, A; a). 

There are three cases of well-known spaces of type (a, n). The most obvious 
one is S' which is a K(Z, 1). Also CPm = UCPn, with the weak topology, is 
a K(Z, 2). This follows from the fibrations S1 -+S2"+ + CP" and the fact that 
ni(CPm) = 1% ni(CPn). Similarly, Pm is a K(Z2, I), and, more generally, an 
infinite lens space is a K(Z,, I). 

Let us now discuss an application to "cohomology operations." 

12.2. Definition. A cohomology operation 8 of type ( n , ~ ;  k , o )  is a natural 
transformation 

of functors of CW-complexes. It need not consist of homomorphisms. 

For example, @-a2, for CXEH"(.;Z) is a cohomology operation of type 
(n, Z; 2n, Z), and similarly with the higher powers and other coefficient groups. 
Another example is the Bockstein Po: Hn(-; Z,)+ Hn+'(.;Z), which is of type 
(n, Z,; n + 1, Z). Similarly, the Bockstein /I: Hn(-; Z,) -+ Hn+ '(.; Z,) is of type 
(n, Z,; n + 1, Z,). 

12.3. Theorem (Serre). There is a one-one correspondence between the co- 
homology operations of type (n, n; k, w) and the elements ofHk(K(n, n); w), which 
is given by B+-+B(u) where ueHn(K(n, n);n) is characteristic. 

PROOF. This is equivalent, via Theorem 12.1, to the statement that operations 
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correspond to elements of [K(n,n); K[w,k)] via $ ~ $ ( l ) .  To simplify no- 
tation, let K = K(n, n) and L = K(w, k). 

Given f :  X -+ K we have the diagram 

which, on elements, is 

Cll I.+ *(l) 
5 5 

Cfl I.+ *Cfl- 

Thus, $[ f] = f #$(I) = [go f]  where g: K -+ L represents +(I)e[K; L]. Con- 
versely, [g]€[K; L] induces the operation +, by defining $[ f] = [go f]. 

For example, the fact that HZn(CPm; Z) x Z implies that all cohomology 
operations 8: Hz(.; Z) -+ HZ"(-; Z) have the form 8(u) = kun for some keZ. 

On the other hand, the fact that a w a 2  of H4(X; Z) -+ H8(X; Z) is nontrivial 
on some space X (e.g., CPm) implies that H8(K(Z,4); Z) # 0. 

Similarly, the fact that H2(Pm; Z) x Z, implies that there is exactly one 
nontrivial operation H1(-; Z 2 ) 4  HZ(-; Z). Since the Bockstein in that case is 
nontrivial (e.g., on PZ), it is that unique operation. 

12.4. Corollary. No nontrivial cohomology operation lowers dimension. 

PROOF. This follows from the fact that Hk(K(n, n); a) = 0 for 0 < k < n by the 
Hurewicz and Universal Coefficient Theorems, or simply by the construction 
of K(n, n) in Corollary 11.9, which has trivial (n - 1)-skeleton. 

In the next section we will need some technical items about connections 
between characteristic elements, and another matter. This will fill out the 
remainder of this section. It is suggested that a first time reader skip this 
material and refer back to the statements, which are quite believable, when 
they are used in the following section. 

In the remainder of this section, and in the following sections, we shall 
make the blanket assumption that all pointed spaces under consideration 
are well-pointed. 

Let the "suspension isomorphism" in cohomology be defined as the com- 
position 

(for n 2 0). Sometimes this is defined with a difference in sign. This would 
have no effect on our main formulas, just on some details of the derivations. 



We also use _the analogous definition for the suspension isomorphism in 
homology and the suspension homomorphism for homotopy groups. 

12.5. Lemma. Iff: X + Y is a map between (n - 1)-connected spaces which 
induces an isomorphism on nn(X) -+ nn(Y) x n and ifueHn(Y; n) is characteristic, 
then f *(u)eHn(X; n) is characteristic. 

PROOF. There is the commutative diagram 

where the p's are the maps in the Universal Coefficient Theorem (Theorem 7.2 
of Chapter V). By definition, u€Hn(Y; n) is characteristic oB,(u): Hn(Y) -, n is 
an isomorphism. We have that BX( f *(u))(a) = By(u)(f*(a)) by commutativity. 
Thus B,(f *(u)) = By(u)o f, is an isomorphism, implying that f *(u) is charac- 
teristic. 

12.6. Lemma. The class UEH"(Y;Z) is characteristic, where Y is (n - 1)- 
connected, o Sus Hn+l(Sy; x) is characteristic. 

PROOF. The Hurewicz Theorem implies that S Y  is n-connected. It is an 
immediate consequence of the definition that the following diagram com- 
mutes up to sign (which can be seen to be (- ly"): 

Then p,,(S(u))(Sa) = +PY(u)(a) and so P,,(S(u)) = r f r  Pr(u)0S-' is an 
isomorphism. 

12.7. Lemma. The diagram 

commutes, where the verticals are the Hurewicz maps. 

PROOF. The suspension for homotopy is defined as the composition along 

the top of the commutative - diagram 

X 
k"(X) - nn + 1 (CX, X) ----, nn + ' (SX) 

and the lemma follows. 

For any space K consider the map 1:SQK-K which is the adjoint to 
1:RK +RK. That is, 1 is induced by the evaluation map K' x I +K. The 
class [A] corresponds to [I] under the bijection [SQR, K]++[RK;QK]. The 
diagram (of sets) 

(KXIX \ 

commutes where the horizontal map is induced by the evaluation, the 
diagonal one is the exponential correspondence f'(x, t) = f (x)(t), and the 
vertical map is f I+ f x 1 where (f x l)(x, t) = (f (x), t). This induces the 
diagram 

[xsT\ 
[SK SQK] * [SX; K], 

where the diagonal is the adjoint (exponential) correspondence. Thus this 
diagram commutes. 

Now if K = K(n, n + 1) then we conclude that the diagram 

commutes and it follows that 

is an isomorphism. 
Now choose any characteristic class ueHn+'(K;n). By Lemma 12.5, 

/2*ueHn+ ' (SQK; n) is characteristic. By Lemma 12.6, v = S- ';l*ueHn(QK; n) 
is characteristic. These remarks imply the following result: 

12.8. Proposition Let K = K(a, n f 1) and let ueHn+'(K; n) be characteristic. 
Then I * p ~ H n +  '(SRK; n) and v = S-'I*UEH"(IRK; n) are characteristic and 
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the .following diagram commutes: 

12.9. Proposition. For a cojibration A r, X let c: X U  C A - S A  be the 
collapsing map. Then the composition ( for  arbitrary coeficients) 

is -a*, where 6* is the connecting homomorphism for the exact sequence of 
( X ,  A). 

PROOF. Consider the diaglram 

1 = I- -1  1-1 
6. H"(A x d l ,  A  x ( 0 ) )  p Hn+ ' ( A  x I ,  A x d l )  r HH"+'(SA, t) 

t -  t -  1 = 
Hn(A x ( 1 ) u X  x { 0 ) , X  x { 0 } )  ~ H ' + ' ( A  x I u X  x f0j.A x { l ] u X  x {o))-H"+'(SUCA,X) 

1 = 
6* 

1 1 
H n ( A  x ( 1 ) )  Hn+'(A x I u X  x {O} ,A  x { l } )  - H n + ' ( X u C A , * )  

Some of the 6* maps in the diagram are from exact sequences of triples. The 
horizontal isomorphisms on the right are induced by obvious maps as are the 
vertical homomorphisms. The composition along the left is the identity and 
so, from the upper left, all the way down and then right to Hn+'(X, A )  is 
just 6*. The composition along the top is S, by definition. The composition 
from the upper right, all the way down and then left to Hn+'(X, A )  is -c*, 
the sign caused by the inversion of the parameter S A - + S A  midway down. 
Hence c* O S  = - 6* as claimed. 

12.10. Lemma. Let io, i,: X -+ X x 81 be i,(x) = (x,O) and i ,(x) = ( x ,  1). Then 
jbr 6*: Hn(X x 81)- Hn"(X x I, X x 81) E Hn+'(sX) ,  with any coeficients, 
we huue S-'a* = i,* - i:. 

Pntxjr.. We know that (i;, i:): H"(X x d l )  5 Hn(X)@ Hn(X). Let jo,jl: 
H n ( X ) - t H n ( X  x 81) induce the inverse isomorphism, so that igjo = 1 = i r j l  
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and i;Fjl = 0 = iyj,. Then j,i,* + j, if = 1. Clearly, j, is the composition - = 

j,: H"(x) &- H"(X x ar, x x ( 1 ) )  5 H.(X x al )  

induced by X H ( X , O )  and the inclusion h:(X x dl,@) c , ( X  x al ,X x ( 1 ) ) .  
Also j ,  = o*j, where w is the reversal of the I parameter. Consider the 
following commutative diagram, similar to that in the proof of Proposition 
12.9: 

H"(X) 
6* + Hn+ ' ( C X ,  X )  Hn+ ' ( S X )  

T  - T -  11 

This shows that S-'6*jo = 1, since S is the composition from top left to bottom 
right, going right then down. Then S-'6*j, = S-'6*o*j0 = S-'o*6*j0 = 
- S-'6*jo = - 1, since o induces - 1 on H*(SX). Consequently, S-'6* = 
S-'6*01 = S-'6*(joi: + j l i f )  = i,* - i:. 

1. Show that any K(Z,  n) is infinite dimensional for each even n > 0. 

2. Show that any K(Z,,n) is infinite dimensional for each n > 0. 

3. Show that there are no nontrivial cohomology operations of type (1, Z; k, o) for 
any k > 1 and any w. 

4. + Show that there are no nontrivial cohomology operations of type (n, Z; n + 1,o) 
for any n > 0 and any w. 

5. Rederive Hopf's Classification Theorem (Theorem 11.6 of Chapter V) as a corollary 
of the results of this section. (Hint: Use Corollary 11.13 and Theorem 11.8.) 

13. Obstruction Theory jSF 

In this section and the next we impose the blanket assumption that all pointed 
spaces under consideration are well-pointed. This is not an important restric- 
tion and is made merely to avoid having to distinguish between reduced and 
unreduced suspensions. 



We shall now attack the fundamental lifting and extension problems in 
homotopy theory. Suppose that F -+ Y + B is a fibration. The lifting problem 
is the question of finding criteria for being able to complete the commutative 
diagram 

The elttension problem is the question of giving criteria for being able to 
complete the diagram 

But the extension problem is simply the special case B = {* }  of the lifting 
problem and so it suffices to discuss the latter. 

As with any problem as difficult as this, it is desirable, perhaps necessary, 
to break the problem into a sequence of simpler problems. This is exactly 
what obstruction theory does. We first take up the case in which the fibration 
Y +B is induced from the path-loop fibration over a K(n,n + 1) via some 
map 0: B -+ K(n, n f 1) and then try to fit these together to gain information 
about the general case. 

13.1. Definition. Let p,: PB, -+ B, be the path-loop fibration over some space 
B, and let 0: B + B, be a map. Then the induced fibration p,: E, + B is called 
the principal Jibration induced by 0. That is, E, + B is the pullback: 

Suppose given such a principal fibration and consider maps f :S+ E,, 
where S is any space. Then, by the definition of a pullback, such maps f are 
in one-one correspondence with pairs f ,: S  -t B, f2: S + PB, of maps such 
that 0 f, = p, f2. 

In the pointed category, we have PB, = Bh so that such maps f2: S - ,  Bi 
correspond to homotopies $: S x I -t B, with $(s, 0) = * and $(s, 1) = pof2(s) = 
8 f,(s); see Section 2. Therefore, there is a one-one correspondence between 
liftings f:  S -+ E, of a given f,: S -+ B and homotopies $: S x I + B, such that 
$(s, 0) = * and $(s, 1) = 8 f ,(s); i.e., homotopies from * to 8 f . 

Next let (X, A) be a relative CW-complex, and specialize to the case B, = 
K(n,  n + I), so that the fiber is QB, = K(n, n), Consider the commutative 
diagram 

We shall call this diagram a "lifting problem f of type (n, n)," and the pro- 
spective map g, a "solution" to this lifting problem. Then the lifting problem 
corresponds to a map 

$:A X I U X  xdl+B,  

such that $(x,O) = * and $(x, 1) = 8 f,(x). A solution g corresponds to an 
extension of II/ to X x I+ B,. Since t,b takes X x (0) to the base point, it 
defines a map 

where the middle map is the pardmeter flip in I, a technicality to allow use 
of our standard definition of CA, etc. If a solution exists to the lifting problem 
then (bf extends to CX = X x I/X x f 1) and so +I 1: *. Conversely, if +f 1: * 
then 4f extends to CX by the homotopy extension property (since 
(CX, X u CA) is a relative CW-complex). Therefore, the lifting problem f has 
a solution if and only if the element 

is trivial. Recall that the collapsing map XuCA-+X/A is a homotopy 
equivalence by Theorem 1.6, and so, using Corollary 1.7, 

[X u CA; B,] z [XIA; B,] z Hn+ '(X/A; n) % Hn + '(X, A; n). 

Let c;+ ' E Hn+ '(X, A; K) be the cohomology class corresponding to [q5 f], 
That is, 

c n + l  = TuC4fI=4T(u) 

where U E  Hn+ '(B,; n) is characteristic. 
By the naturality of these constructions, the image of c;+' in Hn+'(X; n) 

is the class corresponding to the same lifting problem after A is forgotten 
(i.e., A is taken to be empty). Letj  X c, X u CA, so that j*: H*(X, A) -+ H*(X). 
Note that 4 f o j  = 80 f,. By the diagram 

I+' [XU CA; B,] - [X; B,] 

we have j*(cf)=j*Tu[~f]=~U(j#C4fI)=T,[8fx]=(0fx)*(u)= f;8*(u) 
where U E H " + ' ( B , ;  n) is characteristic. Thus we have proved: 



JUU v 11. rlolllvropy I neory 

13.2. Theorem. Let ( X ,  A) be a relative CW-complex and let E,-t B be the 
principal fibration induced by 6: B -, B, = K(x,-n + 1). Then, given the lifting 
problem f of type (n, n): 

a solution g exists o a certain "obstruction class" c;+ 'eHni ' ( X ,  A; IT) vanishes. 
Moreover, c;+' goes to f ; t l * ( u ) ~ H " + ~ ( X ,  n )  where u is characteristic. CI 

Now suppose we have not only one but two solutions go,gl to the lifting 
problem f :  

We ask for a similar obstruction to making go - g, re1 A, by a fiber homotopy. 
But this is just the lifting problem F: I 

and so there is the obstruction 

[&I E [x  x I u C(A x I u X x 81); K(n, n + I ) ]  
w [ X x I / ( A x l u X x i ? I ) ; K ( n , n + l ) ]  

= [S(X/A); K(n, n + l ) ]  

= [XIA; RK(n, n + I ) ]  

= CXIA; K ( z ,  n)l 
= Hn(X, A; n). 

The corresponding cohomology class is called the "difference class" of go 
and g ,  and is denoted by 

dn(go, g1 )€Hn(X,  A; 

By definition and Proposition 12.8, dn(g,, g,) = S- 'c", where c", +'E 

Hn + ' ( ( X ,  A) x ( I ,  d l ) ;  n )  and where S: Hn(X, A; n) -% H n +  ' ((x,  A )  x ( I ,  dl); n )  
is the suspension isomorphism. 
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Suppose we have three such liftings g,,g,, and g,. Then there is the lifting 
problem 

X x I  B - K(x,  n + 1) 

for which the above constructions produce a class in 

Now, forgetting the middle solution g, amounts to composing this with the 
coproduct S(X/A) -, S(X/A) v S(X/A).  In terms of the difference classes, this 
implies that 

(The fact that the coproduct corresponds to addition of cohomology classes 
results immediately from the explicit correspondence between [+; K(n, n + l ) ]  
and Hn+'(.; n)  given in Section 12.) Therefore we have: 

13.3. Theorem. For two solutions g,,gl of the lifting f of type (n, n) there is 
an obstruction dn(g,, g1)€Hn(X, A; n) which vanishes i f  and only i f  go is fiber 
homotopic re1 A to g,. These satisfy the relation 

The next step in studying the general lifting problem for a fibration p: Y 4 B 
is to attempt to decompose p into a sequence - 0 .  4 Y, 4 Y2 -+ Y,  -+ 3 of 
fibrations, each principal and induced from a path-loop fibration over some 
K(n, q + 1). Such a decomposition is called a "Moore-Postnikov decomposi- 
tion" of p. If B is a point, the decomposition is called a "Postnikov decomposi- 
tion" of Y. 

13.4. Definition. A map f :  Y -+ B between arcwise connected spaces is called 
simple if f#n,(Y) 2 [a ,  (B), n l (B)]  (the commutator subgroup) and the pair 
(Mr,  Y )  is simple (meaning that n, (Y)  acts trivially on nn(M,., Y )  for all n 2 1). 

The following theorem is the main technical result for the construction of 
Moore-Postnikov decompositions: 

13.5. Theorem. Suppose given a simple map f,: Y -+ Y, which is an n-equivalence. 
Then there exists a principalfibration p: Y,+ , 4 Y, induced by a map 8: Y, -+ 

K(n,n+1) and a lifiing fn+,:Y-+Y,,+l o f f ,  such that f,,, is an @ + I ) -  
equivalence and is simple. 

PROOF. We can replace Y, by Mrn and f ,  by the inclusion Y c, M f n  (using 



the homotopy lifting property). Therefore, upon renaming M m  as X and Y 
as A, it suffices to prove the following lemma: 

13.6. Lemma. Let i: A + X be a simple cofibration with (X, A) n-connected 
and put n = x,, ,(X, A) w Ha+ ,(X, A) w H,+, (X/A). Let VEH"+'(X/A;~) 

0 
be characteristic and let X -+ X/A + K = K(n, n + 1) represent v; i.e., 
0*(u) = u for UEH"+'(K; n) characteristic. Let p: E -, X be the induced principal 
fibration with fiber F = RK = K(n, n). Let g: A --+ E be the map g(a) = (a, c) 
where c is the constant path at the base point. Then g is an (n + 1)-equivalence 
and is simple. 

PROOF. Note that, in the case n=O, simplicity implies that n,(X/A)x 
n,(X u CA) x n,(X)/i#n,(A) is abelian, and so there is no difficulty with the 
notion of characteristic elements in this dimension. 

Consider the commutative diagram 

We have that i# is isomorphic for q < n and p# is isomorphic for q # n, n + 1, 
and so g# is isomorphic for q < n. We must show that g# is isomorphic for 
q = n and epimorphic for q = n + 1. If we have this, then the exact sequences 
for (Mi, A), (M,, A), and E -, X show that nj(M,, A) -, nj(Mi, A) is monomor- 
phic for j > n + 1 and hence for all j since nj(Me, A) = 0 for j I n + 1. This 
implies that nl(A) acts trivially on all nj(M,, A) and hence that g is simple. 
Therefore it suffices to prove this contention about g#. 

We can extend the composition of 8: X/A -+ K with the collapse X + X/A 
to a map 4: X u  CA -+ K taking CA to the base point and hence define the 
pullback diagram 

Regard F as the fiber over the vertex of CA. Let I: n,, ,(X, A)-+n,(F) be the 
composition along the top of the commutative diagram 

The assumption that u is characteristic implies that 4# is an isomorphism 
for q = n, and hence for q I n since both groups vanish for q < n. The Hurewicz 

iF 
Theorem implies that the two verticals on theleft are isomorphisms for q I n. 
Consequently, il is an isomorphism for q I n. 

We claim that the following diagram commutes up to sign: 

.-.- %+,(A) --+ ~ ~ + ~ ( x ) -  n4+~(X,A)------, n4(A) -.- 
IS# 1= 1 .". -IS# 

... - n,, 1 (E) - .n,+ ,(X) - n,(F) ----------+ n,(E) -f . . a .  

The desired result will follow from this, the 5-lemma, and the fact that n,(F) = 0 
for q Z n. 

The commutativity of the first two squares is triv~al. For the third square, 
the composition going down then right is illustrated by the top of 
Figure VII-11. The composition right then down is illustrated by the bottom 
of the figure. 

Most of the top of the figure is the description of 1 as follows. We consider 
an element or of n,+,(X,A) as represented by a map on the lower half 
(q + 1)-disk as suggested by the figure. Cone off the top to give the extension 
to the full disk shown in the second part of the figure. Then lift the map to 
a map into E as indicated in the third part. Restricting the map to the 
boundary S4 gives a map Sq-+ F which represents I@). This is the fourth 
part of the figure. As a map into E there is a homotopy to the restriction of 
the third part of the diagram to the map on the top hemisphere and the 
equator of the disk, illustrated by the fifth part of the figure. This completes 
the description of going down by 1 and then right in the diagram in question. 

For the composition right then down, also consider the diagram 

Y - nq+ l(E'9 E )  - n,+ ,(-Kc,, E,). 
Taking am,+ , (X, A) to %(A) is illustrated by the first two parts of the 
bottom of Figure VII-11. The diagram shows that the effect of g# can be 
described by first coning off to give a map into CA represented by the third 

Figure VII-11. Comparison of two constructions. 



3w V11. Homotopy Theory 

part of the figure, then lifting to get the fourth part of the figure, then 
restricting to the boundary to get the last part of the figure. The only Jfference 
of this final result from that given by the top of the figure is one of orientation, 
and so the square commutes up to sign as claimed. 

13.7. Theorem. Let g: Y + B be a simple map. Then there exists a sequence 

of principal$brations induced by maps Y, -, K(n,, n + I), and maps g,: Y + Y, 
factoring g and such that p,og,+, = g, and g, is an n-equivalence. Moreover, 
n n = n , + l ( M g , Y ) . ( T h ~ ~ f o r  B=*,  we haven,=n,+,(CY,Y)wn,(Y).)  

PROOF. The first map Y,  -+ Yo is essentially just the covering map correspond- 
ing to the normal subgroup g#n,(Y) of n,(B), provided that B is locally 
arcwise connected and semilocally 1-connected. Most of the theorem follows 
immediately from Theorem 13.5 and it remains only to identify the groups n,. 

Since Y,+, + Y, is a fibration with fiber being a K(n,, n) we have that 

isomorphic for q it n, n + 1, 

.n,(Y, + ,) -* nq(Y,) is epimorphic for q = n, 
monomorphic for q = n + 1. 

It follows that 

I isomorphic for q > n, 
nq(Y,) -, zq(B) is 

monomorphic for q = n. 

Let K be the mapping cylinder of Y, + B. Then it follows that nq(K, Y,) = 0 
for q 2 n + 1. Let V = M,,, the mapping cylinder of g,: Y + Y, and let W be 
the union of V and K along Y,; see Figure VII-12 Then (W, Y) 2. (M,, Y ) ,  by 

Figure VII-12. Mapping cylinders. 
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Theorem 14.19 of Chapter I since K 1: B. We have the exact sequence - 
x,+z(W, V)-,n,+,(K y) -+n,+~(W,  Y)+a,+,(W, V). 

But (K, Y,) is a strong deformation retract of (W, V )  and so the groups on 
the ends of this sequence are zero. It follows from the proof of Theorem 13.5, 
i.e., the proof of Lemma 13.6, that n, = n,+ ,(V, Y) and hence it follows from 
the preceding remarks that a, = n, + ,(V, Y )  z n,, ,(W, Y )  w n, + l (Mg,  Y )  as 
claimed. 

Recall from Problem 2 of Section 6 that any map g: Y -t B is homotopy 
equivalent to a fibration. The fiber of such a fibration is called the "homotopy 
fiber" of g. 

13.8. Proposition. If F is the homotopyjber of q: Y + B  as in Theorem 13.7, 
then n, z n,(F). 

PROOF. It suffices to treat the case of a fibration g: Y +B. Let F, F, and F; 
be the fibers of the fibrations g: Y -+ B, Y,+ , -+ Y,, and Y,+ , -+ B, respectively. 
The 5-lemma (in the strong form of Problem 2 of Section 5 in Chapter IV) 
applied to the diagram 

shows that the middle verticals are isomorphic, and so n,(F) = n,(F,) = 

' L -  

Whenever one has a sequence of maps 

one can define their "inverse limit" lim Y, = ( y  = (yo, y,, y,, . . .)E Yo x Y ,  x . . . 
Ip,(y,+,) = y,} with the topology Lduced from the product topology on 
X Y,. If one has maps g,: Y -t Y, such that p,og,+, = g, for all n then there 

is the induced map g,: Y -+ l@ Y, given by 

13.9. Proposition. I n  the situation ofTheorem 13.7, the projection 1 9  Y, -+ Y, is 
a fibration and an n-equivalence. 

PROOF. That this is a fibration is a trivial exercise on the definition of the 
inverse limit and of a fibration. Suppose that (K ,L)  is a CW-pair with 



dim(K - L) I n. Then the lifting problem 

has a solution for m 2 n since Hm+l(K, L; n,) = 0. It follows that the lifting 
~roblem 

has a solution. Therefore the result follows from Theorem 11.12. 0 

13.10. Corollary. The map g,: Y - * l i ~  Y, is a weak homotopy equivalence. 

PROOF. In the diagram 

both of the maps to Y, are n-equivalences and it follows that g, is an 
(n - 1)-equivalence, for all n. 

Let us now summarize our results to this point. For a map p: Y -, B which 
is not a fibration, a solution to the "lifting problem" f :  

is a completion of the form 

where the lower triangle commutes only up to homotopy re1 A. The reader 
can show that this does correspond to the regular lifting problem when p is 
replaced by a fibration, i.e., that the lower triangle can be made to commute 
in that case. Then we have shown: 

13.1 1. Theorem Let (X, A)  be a relative C W-complex and let p: X -+ B be a 
simple map with homotopyjber F. Then for the lifting problem f: 

A f" , Y 1 , :1,/N4']p - - A  

/ 

X -------- B. 
f x  

there exists a sequence of obstructions cYf ' eHn+'(X, A; n,(F)), where all 
previous obstructions must be zero before the next one is defined, and where 
dgerent choices of previous lijlings may lead to different obstructions, such that 
there is a complete sequence of obstructions of which all are zero -s there is a 
solution to the lifting problem. Also, ifgo and g, are solutions and ifpog, ci p O g l  
re1 A via the homotopy G: X x I -+ B, then there exists a sequence of obstructions 

to lijting the homotopy G. 

Let us now specialize, for the remainder of this section, to the case B = *, 
in which the lifting problem becomes the simpler extension problem: 

Then the map Y -+ * being simple reduces to the space Y being simple and 
arcwise connected. Then we have a sequence of obstructions 

to the existence of an extension to X. Also, for two extensions go,gl: X -, Y 
we get a sequence of obstructions dn(go,g,)~H"(X, A;n,(Y)) to the existence 
of a homotopy re1 A between go and g,. 

Let us specialize further to the case in which Y is (n  - 1)-connected. Then 
the first nontrivial obstruction to extending f :A -+ Y to g: X + Y is 

This is called the "primary obstruction." In this case we wish to identify the 
obstructions more concretely. 

The first nontrivial lifting problem then comes from the diagram 

*Y 

A '----, Y", , = Q K  
2 %  
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where .n = .nn(Y). For simplicity of notation we shall occasionally useffor the - 
composition A -+ Yn+ , off with gn+ , . 

In defining the obstruction, we constructed a map 

In the present case, 4,- is trivial on X and so it factors through 
( X u  CA)/X = CA/A w SA: 

It is easy to check that - f '  is the map corresponding to f via the exponential 
law KSA x QKA (see Theorem 2.4) where the "-" indicates composition with 
the map SA-ISA reversing the suspension parameter. (The exponential 
correspondence is defined even when A is not locally compact and it induces 
the isomorphism [A;QK] w [SA; K] of groups.) This setup then induces the 
diagram 

[A; Y1 

I 
# 

[A; QK] 2 [SA; K I  ---A [X u CA; K] A [X/A; K ]  

where VEH"(QK;Z) is characteristic, u~H"+l(K;n) is characteristic (recall 
K = K(n, n + 1) and i2K = K(n, n)), and S is the suspension isomorphism. We 
shall take v as in Proposition 12.8 and then the left-hand square commutes 
by Proposition 12.8. Starting with [f]€[A; Y], taking it down and then to 
the extreme right to [XIA; K] and then down to Hn+ '(X, A; a) yields - 
by definition of the latter. (The "-" is because there was a reversal of the 
suspension coordinate in the definition of cf.) By commutativity and 
Proposition 12.9, we have c;+ ' = - c*ST,[ f ] = - c*Sf*(u) = 6* f *(v). Similar 
remarks hold for the first nontrivial obstruction for a homotopy between 
two extensions go and g,. This obstruction is called the "primary difference" 
dn(go,gl) = S-'C",+'EH"(X, A;X,(Y)), where G: A x I u X  x 81 -, Yis f x 1 on 
A x I and g, on X x (i}. Now j*d"(go,g,) = S-'d*G;(v) where Gx is the map 
X x a1 -+ Y contained in G. Thus 

by Lemma 12.10. We conclude: 

13.12. Theorem. For a relative C W-complex (X, A) and the extension problem 

f A-Y 

13. Obstruction Theory 

where Y is (n - 1)-connected (andsimple if n = I), the primary obstruction to 
extension to X is 

* * - 8  f (v)EH~+'(X,A;Z) 

for some characteristic class veHn(Y; nn(Y)) x Hom(Hn(Y), nn(Y)). 
Similarly, ifgo, g, : X -+ Y are two extensions off: A -I Y then the primary 

obstruction to a homotopy re1 A between them, called the "primary dzfference," is 

where G:A x lux x a I - +  Yis f x 1 on A x I and gi on X x {i). Also 

j*dn(go7gl) = g,*(v) - g:(v)€Hn(X; nn(Y)), 

where j*: H"(X, A; nn(Y)) -+ Hn(X; x,,(Y)) is the canonical map. 

It is worth noting that there is an easy direct proof that this is an 
obstruction to an extension, since, iff extends to g: X -, Y, then the diagram 

shows that 6* f * = 0 since it equals 8*i*g* = 0 because 6*i* = 0. 
In order to derive some concrete applications let us further restrict to the 

case in which the only possible nonzero obstruction is the primary one. 

13.13. Corollary. Suppose that (X, A) is a relative C W-complex and that Y is 
(n - 1)-connected. Assume that Hi+ '(X, A; .ni(Y)) = 0 for all i > n. Then a map 
f: A -+ Ycan be extended to g: X 4 Yifand only ifd* f *: Hn(Y; n) 4 Hn+ '(X, A; n) 
is trivial, where a = nn(Y). 

PROOF. If 8* f * = 0 then the extension exists since the only obstruction is 
p++1- - 6 * f * (v) = 0. The converse follows from the preceding remark. 

Similarly, for A = (a, we get: 

13.14. Corollary. Let X be a CW-complex. Let Y be (n- 1)-connected and 
ussume that Hi(x; ni(Y)) = 0 for all i > n. Let .n = nn(Y). Then two maps 
go, g, : X -+ Y are homotopic a g,* = g:: Hn(Y; n) -+ HYX; n). 

If we assume only one possible nonzero obstruction to both the extension 
and the homotopy problems we get the following generalization of Hopf's 
Theorem (Theorem 11.6 of Chapter V) on maps to spheres. 

13.15. Theorem. Let (X, A) be a CW-pair. Let Y be (n- 1)-connected, and 
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simple if n = 1. Assame that 

Hi(X, A; a i (Y) )  = 0 = Hi+'(X,  A; ni(Y))  

for all i > n. Let fo: X -+ Y be given. Using [ X ;  Y ] ,  to denote the homotopy 
classes re1 A of maps X-+ Y which equal f ,  on A, there is a one-one 
correspondence 

PROOF. We will first show that the indicated correspondence is onto. Let 
W = A x 1 u X x 81 and W,  = A x I u X  x (0). Consider the extension 
problem (with a = x,(Y)): 

Note that, under [ X ;  Y,, ,] a [WO; Y,+ 1 1  ~ H " ( W O ;  a), f !  goes to 

f ;  (0)- 

Let ~ E H " ( X ,  A; a )  so that S ~ E H " + ' ( ( X ,  A)  x ( I ,  81); a )  = Hn+'(X x I, W, a). 
Consider the comniutative diagram (coefficients in a): 

An easy diagram chase shows that there is an element <eHn(W) going to 
f ; (v)  in Hn(Wo) and to Sa in Hn+'(X x I, W).  By Hn(W; a)  z [ W ;  Yn+ ,I, this 
means that there exists a map F,+ ,: W -+ Y, + , such that 6*F,*+ ,(v) = Sa and 
which equals fo on X x (0). Let f ,:  X -+ Y,+, correspond to the restriction 
of F,+, to X x (1). 

Now we can extend F,+ , to F: W -t Y because the obstructions to doing 
this are in Hi+ ' ( X ,  A; n,(Y)) = 0 for i > n. Also dn( fo,  f ,) = S-'6*F*(u) = g 
completing the proof that the correspondence is onto. 

To show that the correspondence is one-one, suppose that dn(fo ,  f , )  = 

d"(fo,f2).  By the additivity property (Theorem 13.3) of the difference 
obstructions, we conclude that d"(f ,, f,) = 0. This is the primary obstruction 
to making f, -- f ,  re1 A. The rest of the obstructions are in Hi(X,  A; n i (Y ) )  = 0 -. - . -  

for i > n, so we are done. 

13.16. Corollary. Let Ybe (n - 1)-connected. I f X  is a CW-complex such that 
Hi+ ' ( X ;  a i (Y ) )  = 0 = H1(X; n , (Y) )  ,for all i > n, then there is a orie-one 

cx ; Yl-HYX;  n,(Y)) 

given by f I+ f *(u) where ueHn(Y; an(Y))  is characteristic. 

PROOF. Iff,: X -+ Y is a constant map then -dn( fo,  f )  = f *(u) - f g(u) = f *(u) 
by Theorem 13.12. 

1. Let p: Y -t B be a fibration with fiber F. Because of the inclusion (CF, F) c , (Mp,  Y) 
there is the homomorphism 

Show that the diagram 

commutes, and hence that z,(F) -% n, + ,(M,, Y), giving a more conceptual 
proof of Proposition 13.8. Figure VII-13 provides a hint. 

2. If p: Y-tB is a fibration with arcwise connected fiber F, show that p is 
simple-n,(B) acts trivially on nn(F) for all n 2 1; see Problem 2 of Section 7. 
(Hint: Use Problem 1 .) 

3. (F If p: Y -, B is a fiber-orientable sphere bundle then show that p is simple. (Hint: 
Use Problem 2 and the fact that a map Sn -t S" of degree one is homotopic to the 
identity.) 

14. Obstruction Cochains and Vector Bundles 0 
We again take up the lifting problem. Let ( X ,  A) be a relative CW-complex 
and let X(&) be the union of A with the k-skeleton of X. Consider the principal 
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lifting problem f: 
-= 

and the associated problem 

The obstruction to the latter is in H"+'(x("), A; n) = 0 and so the liftingexists. 
Next consider the lifting problem 

and the lifting problem 

The associated obstructions are related by the maps 

where we don't name the middle obstruction. As indicated, one can identify 
the middle group with the cellular cocycles because it is canonically 
isomorphic to H"+'(X("+~),X("';~) and the sequence 

0, ~n + l(x(n + 2) ~ ( n ) .  ,) _, HW + l(x(n + 1 ), ~ ( n ) ;  n) , , 

is exact. 
This relationship between the three obstructions shows that c",' 'EC"+'(X, 

A;n )  is a cocycle and it represents c;+' = [q' ']EH""(X, A;x). It is 
important to realize that it depends on the choice of the lifting to X'") -, Yn+ ,. 

Let a be an (n + 1)-cell of X and consider the diagram 

14. Obstructron Cochains and Vector Bundles 

- Then the obstruction q+' maps to that for the problem 

,' 0-K- K(n,n+l) 

which is in Hn+ '(a, aa; TC) x n. Since a -, Y, is homotopically trivial, this lifting 
problem is equivalent to the extension problem 

and the obstruction here is just the cochain ai+[h]~n,(K(n, n)) x n. It is 
suggestive to use the notation a#[ f ox,]~n,(F) x n for this class [h], where 
xo: a -+ X is the characteristic map for the cell Q and F = RK(n, n + 1) = K(n, n) 
is the fiber of Yn+ , -+ Y,. Thus 

(The actual identification of F?+'(a) as an element of n depends on the choice 
of characteristic class for K(n,n + 1). A different choice acts by an auto- 
morphism of n independent of a. None of this matters from a practical 
standpoint.) 

One can start With this formula for E;+' as another approach to obstruc- 
tion theory. That is, in fact, amore traditional method; see G. Whitehead [I]. 

Now let us pass to the gener~l lifting problem: 

and let ..- -* Y2 -+ Y,  -+ Yo = B be a Moore-Postnikov decomposition of p. 
The following diagram indicates some of the relationships among the 

various associated lifting problems: 

Notes on this diagram: 

ct 1 >> onto since obstructions to lifting are zero; 
t t 2  >> iiftings of << 1 >> are homotopic on X'"- I); 



<t 3 >> here obstructions to extension and homotopy are all zero; 
<t4>> c;+ ' E Hn+ ' ( X ,  A; an(F)) is the only obstruction to this lifting. 

In addition we have shown: 

14.1. Theorem. Let (X, A) be a relative C W-complex and p: Y + B a simple 
fibration with$ber F. Consider the lifting problem: 

A +Y 

[ ,/./'/P 
X-----+ B. 

f x  

Suppose we are given a lijling fn: X'") + Y. Then ~ + ' E C " + ' ( X ,  A; xn(F)) is 
defined and is a cocycle representing c;+ '. It is given by 

where x,: (Dn+ ', Sn) + ( X ,  X(")) is the characteristic map for the (n + 1)-cell 0. 

Also, fn extends to a lifting X("+')-, YoE;' '  = 0. Moreover, the restriction 
f n -  1 : X ( n - 1 ) ~ Y o f f n e x t e n d s t o a l i f t i n g X ~ n + 1 ' ~ ~ o O = c ; f 1 = [ [ ~ ~ + ' ] ~  
H" + '(x, A; zn(F)). 0 

Similar considerations apply to obstructions to homotopies. 
We shall now apply these remarks to the case of an orientable k-plane 

(vector) bundle p: E(<) + B where B is a CW-complex of dimension n. The 
orientability of the bundle < implies the simplicity of the associated sphere 
bundle of p by Problem 3 of Section 13. Then obstructions to a nonzero 
section of 5 are in Hi+'(B; 7ti(Rk - ( 0 ) ) )  M Hi+ l (B;  ni(Sk-')) and this is zero 
for i 2 n and for i < k - 1. Therefore all obstructions vanish if k > n. This 
proves: 

14.2. Corollary. If tk is an orientable k-plane bundle over a CW-complex B 
ofdimension nand i fk  > n then there exists an n-plane bundle qn over B such that 

where ek-" is the trivial (k - n)-plane bundle. 

Now let t: W + B  be a k-disk bundle and assume that B is triangulated. 
Recall that there is the Thom class zreHk(W,dW) and the Euler class 
X r  = i*zreHk(B) where i: B c, W is the zero section. 

14.3. Theorem. If t: W + B is an oriented k-disk bundle over the polyhedron 
B then the primary obstruction to a nonzero section is the Euler class 

PROOF. There are no obstructions to construction of a section j,: B ' ~ -  + a  W 

and j, extends to a map j: B -+ W by _local triviality. Then x ,  = i*z, = j*zr 
since i zx j. Now j: (B(k), B(k- I ) )  -+ ( W, a $4') and so 

j*: Hk(W, 8w)+  Hk(B(k), B(k- l))  = C k ( ~ )  

takes z,: to a cochain ck = j*(zr). For a k-cell a of B, we have that 

where j ,  is the restriction of j to (o, 80) -, (W,  d W ) .  Now W is trivial over o 
and so this can be thought of as a map (o, ao) + (Dk, Sk - l). Since the Thom 
class represents a generator of H ~ ( D ~ , S ~ - ' )  in each fiber, it is clear that 
jz(r,l,) is just the degree of j ,  which is the same as a,[jo~,]  = c:(o) by 
Theorem 14.1, showing that the primary obstruction is 

as claimed. a 

14.4. Corollary. If c is an orientable n-plane bundle over the n-dimensional 
complex B then 5 has a nonzero section o 0 = X r  E Hn(B). a 

14.5. Corollary (Hopf). A smooth connected orientable closed mani,fold Mn 
has a nonzero tangent vector field e x(M) = 0. a 

14.6. Corollary. Let M n k S n + 2  be an embedded orientable smooth 
submanifold. Then the normal bundle is trivial. 

PROOF. By Proposition 12.2 of Chapter VI, the Euler class x of the normal 
bundle v2 to M in Sn+2 is zero. The higher obstructions to a section are in 
Hi+ ' ( M ;  ai(S1)) = 0 for i > 1. Therefore, there is a nonzero section. Thus the 
normal bundle splits as v2 =el Q 5' for some line bundle C1.  But v2 is 
orientable, whence l1 is orientable, which means that it is trivial. Therefore 
v2 is trivial. 

14.7. Theorem. If Mn Q Sn+Z is a smooth embedding o f  the closed orientable 
manifold Mn then Mn =aVn+' for some compact orientable manifold 
v n + l  ~ n + 2 .  

PROOF. By Corollary 14.6 the normal bundle is trivial and so we can regard 
a tubular neighborhood of M"as an embedding M" x D2 c Sn+2. Let K = 
S"+2 - int(Mn x D2) and consider the exact Mayer-Vietoris sequence 

It follows that 
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Consider the diagram y 

Assume first that H 1 ( M )  = 0. Then H1(K) --% H'(M x S1) = [M x S1;S1] 
and this implies that the prospective map g: K + S1 exists. We can assume 
that g is smooth. Then put V:+' = g-'(x) where x is a regular value. Since 
V", intersects Mn x S1 in Mn x (x), it extends in an obvious manner to the 
desired Vwith i)V = M. Vis orientable because it has a trivial normal bundle. 
It can be assumed that g is the projection to S' in some neighborhood of 
M x S' of the form M x S' x I and then the resulting V is smooth. 

If H1(M)#O then the element of H1(M x S') corresponding to the 
projection M x S' +S1 goes into the pair (~,B)EH'(K)@ H1(M) by the 
isomorphism H1(M x S') x H1(K) QI H1(M) above. The element &H1(M) 
corresponds to a map f: M + S'. Then the map M x S1 + S' taking 
( x , t ) ~ ( f  (x)-lt) gives a reframing of M. The reader can check that under 
this reframing, the projection M x S' x S' now corresponds to (a, O)€H1(K)  @ 
H1(M), and then the argument in the case H1(M) = 0 applies to this case as 
well. 

A particular case of Theorem 14.7 is a smooth embedding of S' in S3 (or 
R3), called a "knot." Thus every knot bounds an orientable surface in R ~ .  
Such a surface is a sphere with handles and with a disk removed. The number 
of handles is called the "genus" of the surface. For a given knot there is 
such a surface with minimal genus and then that genus is called the "genus 
of the knot." Figure VII-14 shows a knot of genus 1 (the cloverleaf) and part 
of the orientable surface of minimal genus it bounds. 

Figure VII-14. Knot of genus 1 and spanning surface. 

14. Obstruction Cochains and Vector Bundles 

14.8. Corollary. There is no smooth embedding o f C P 2  in 9. 

PROOF. If there were such an embedding then CP2 = aV5, with V5 orientable, 
contrary to Corollary 10.6 of Chapter VI. 

More generally, by the results in Section 10 of chapter VI, a codimension 
2 closed orientable submanifold of S" must have even Euler characteristic 
and zero signature. 

14.9. Theorem. An orientable k-plane bundle t over an n-dimensional complex 
B is stable for k > n. That is, if 5, are two such bundles and if t @ q w <'@q 
for some vector bundle q then 5 x 5', if k > n. 

PROOF. This proof will use some unproved, but elementary, facts about vector 
bundles. By Theorem 14.2 of Chapter I1 and the remark below it, there exists 
a vector bundle v such that v@q is trivial. This implies that it suffices to 
prove the theorem in case q = E is the trivial line bundle. If < @ E x f @ E 

then there is a bundle p over B x I which is 5 @ E on one end and CQ E on 
the other. Then E provides a section s of p over B x aI. The obstructions to 
extending s to B x I are in Hi+ ' ( B  x (I, dl); ni(Sk)) which is 0 for i < k (hence 
for i l n) and for i + 1 > n + 1; hence for all i. Therefore s does extend. The 
complement to s is a bundle over B x I whose ends are 5 and 5'. But a 
bundle over B x I is isomorphic to a product with I of a bundle over B and 
so 5 x C as claimed. 

14.10. Corollary. IfMn is a smooth closed stably parallelizable submanifold of 
Rn+' and k > n, then the normal bundle is trivial. 

PROOF. The Whitney sum z@v is the restriction of the tangent bundle of 
Rn+k and so is trivial. But r @ck is also trivial for k > n by the definition of 
"stably parallelizable" and by Theorem 14.9. It follows from Theorem 14.9 
that v x ck. 



Appendices 

Dare to be naive. 

BUCKMINSTER FULLER 

A. The Additivity Axiom 

In the proof of the uniqueness of homology theories for CW-complexes we 
needed, in the case of infinite-dimensional complexes, a result that asserted 
that the map lin+~~ Hp(Ko))-+Hp(K) is an isomorphism; see Section 10 of 
Chapter IV. This will be established here. (Note that this is trivial for singular 
theory and the whole point is in proving it from only the axioms.) It is a 
consequence of the Additivity Axiom, due to Milnor. Also used is the 
Mayer-Vietoris sequence, which can be proved from the axioms according 
to Problem 4 of Section 18 of Chapter IV. We also need Corollary 11.14 of 
Chapter VII. 

First, for a CW-complex K, consider the product complexes K'") x [n, n + I], 
0 5 n, and their union T, called a "telescope," see Figure A-1. We can describe 
a point of T by (x, t) where XEK'"' if n < t < n + 1. There is the map 9: T -+ K 
taking (x, t) to x. We claim that this is a homotopy equivalence. Choose a 
base point X~GK'O). For any 0 I to < co we will identify n*(T, {x,, to) ) with 
z*(T, {x0,O}) via the path {x,) x [O,t,]. This being said, we can disregard 
base points. 

For any cellular map f :  Sn -+ K we know that its image is in K(") and thus 
g(x) = (f (x), n)eK'"' x {n} c T is defined. Clearly [ f ]  = 8# [g], so that 8# is 
onto. Any cellular map g: Sn -+ T has image in 

and thus is homotopic, along {xo} x [0, a), to a map into K'"+" x {n + 1). 
If 0.g is homotopically trivial in K then it is so in K'"") (by a cellular 
homotopy). But that homotopy can be pulled back to K'"") x {n + I), 
showing that g is homotopically trivial in K("+') x {n + 1) c T. These two 
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facts imply that- 8#: x,(T)-+ n,(K) is an isomorphism for all - n. By 
Corollary 11.14 of Chapter VII, 8: T 4 K is a homotopy equivalence. 

Also note that 8 restricts to 

6,: T,=K(O) x [0, I ] u + - . u K ' " - "  x [ n -  1,nluK'"' x (n )+K(")  

and this restriction is clearly a homotopy equivalence because of the tele- 
scoping of T, onto K'") x in).  We have the commutative diagram 

where the verticals are induced by inclusion. This induces 

Il_m,, Hp(Tn) 6 limn H,(K(")) 

1 - i 
Hp(T)  Hp(K).  

Our desired result is that the vertical map on the right is an isomorphism. 
Thus it suffices to prove that the vertical map on the left is an isomorphism. 
We will prove a slightly more general result. 

Consider a sequence of spaces X,,  X I , .  . . and maps f,: X ,  -+ X,+ , for all 
n 2 0. Let Y, be the mapping cylinder off, but with parameter values in 
[n, n + 11. That is, Y, is the quotient space of X, x [n, n + I] u X ,  + , by the 
relation ( x ,  n  + 1 )  - f,(x). We will consider X ,  as embedded as the "top" of 
Y, and X,+, as the "bottom." Then we can form the telescopic union 
T = Y o u  Y,  u . . . ;  see Figure A-1. Again, we can describe points in T by pairs 

Figure A-1 . A telescope. 

A. The Additivity Axiom 

(y, t )  where  EX, whew n I t < n + 1 .  Put 

for n 2 1 .  Then the U ,  are disjoint open sets in T homotopy equivalent to 
X2(, - , , .  The V, are disjoint open sets in T homotopy equivalent to X 2 , - , .  
Let U = U U, and V = U V,. Then U n  V is the disjoint union 
U ,  n V,  -I- V, n U 2  + U ,  n V2 + .-. which is homotopically equivalent to the 
disjoint union X ,  + X ,  + -.-. By the Additivity Axiom, Hp(U n V )  can be 
described as 

Hp(U n V )  = {(a, ,  a , ,  . . . ) J a i ~ H p ( X i ) ,  a, = 0 for large i ) .  

Similarly, 

Hp(U) = ((a, ,  0 ,a2,0 , .  . . ) la2 ,~HP(X2,) ,az i  = 0 for large i ) ,  

Hp(V) = ( (0 ,  a,,(), a,,. . .)lazi+ , E H , ( X ~ , +  ,I, a,,+ , = 0 for large i}. 

Also, it is clear that the homomorphism H , ( U n  V) 4 H,(U) takes 

and Hp(U n V )  ')-r Hp(V) takes 

(a,, a , ,  . . .)-(O, a1 + fo*(ao),O, a3 + f2*(a2),0, - '1' 
Taking the direct sum of the first of these maps with the negative of the 
second gives the map 

4: Hp(U n V )  4 Hp(U) O H p ( V  

described by 

Put 4(ao,a , , .  . .) = (bo, b , ,  . ..). If the bi are all 0 then so are the a, as is seen 
by an induction. Thus d, is a monomorphism. The map 4 is one of the maps 
in the Mayer-Vietoris sequence for ( U ,  V). (See Problem 4 of Section 18 of 
Chapter IV.) It follows that H J T )  = H,(U u V) is the cokernel of 4 .  

The image of 4 is generated by the 

These are exactly the relations defining the direct limit of the factors Hp(X,).  
Consequently, we have proved that the maps Hp(X, ) -+Hp(T)  induce an 
isomorphism limn H,(X,) ,- Hp(T) ,  which is our desired result. 

-i 

The same proof works for pairs of CW-complexes, but the result for such 
pairs also follows immediately from the 5-lemma. 

For more on this topic see Milnor [2] .  



B. Background in Set Theory 

Intuitively, a "set" is a collection of objects called "members" of the set. In 
mathematics the notion of a "set" is taken as undefined, as is the relation of 
membership, and axioms are put down for these to follow. We will not do 
so in this "naive" treatment. Of course, it is well known that an undisciplined 
approach easily leads to logical difficulties such as the "set of all sets that 
do not contain themselves." These problems are handled in set theory by 
careful treatment of the axioms. But that is not the purpose of this appendix. 

1 We merely intend to set down terminology and notation that the reader 
must already have a feeling for, or he would not be studying this book. We 

1 will briefly discuss some "obvious" concepts and results, and will then prove 
some things that are not so obvious. 

The terms "collection" or "family" are synonyms of "Set," although the 
term "family" is usually used only for somewhat complicated sets such as a 
family of subsets of a set or a family of functions. The term "class" is often 
used as a synonym for "set," but in axiomatic set theory, it is used for a 
more encompassing concept: a "set" is a class that is a member of another 
class. A "proper class" is a class that is not a "set." The phrase "the class of 
all sets that do not contain themselves" is meaningful, but "the class of all 
classes that do not contain themselves" is not. We will not worry about such 
things, but we will avoid the use of the term "class" when we mean a "set." 

i (An exception to this is the use of "class" in the phrase "equivalence class" 
which is traditional.) 

We shall use the logical symbols 3 to mean "there exists", 31 to mean 
"there exists a unique," V to mean "for all," 3 to mean "such that," => to mean 
"implies," e to mean "is implied by," and o to mean "if and only if." 

If an object x is a member of a set S then we write XES. If not then we 

i write x$S. If P(x) is a statement about objects x which can be true or false 
for a given object x, then {xlP(x)) stands for the set of all objects for which 
P(x) is true, provided this does in fact define a set. If S is a set then {xeSI P(x)} 
is the same as {xlxeS and P(x)}. 

If S and T are sets then we say S is contained in T, or S is a "subset" of 
T if x ~ S * x e  T. This is denoted by S c T or T 2 S. The statement S c S is 
true for all sets S. If S c T is false then we write S rf T. 

The "empty set" $3 is the unique set with no objects, i.e., XE@ is false for 
all objects x. The statement @ c S is true for all sets S. 

The "union" of two sets S and T is S u  T = { x l x ~ S  or XET). The "or" here 
is always inclusive, i.e., in the previous sentence it means XES or X E T  or 
both XES and X E T  The "intersection" of two sets S and T is S n T  = (xlxcS 
and X E  T}. The "difference" of two sets is S - T = {SESI s$ T). 

If A is a collection of sets then ~ { S J S E A )  = { x ~ ~ S E A ~ X E S )  and 
~ ( S I S E A )  = {x~VSEA,XES}. If {Sa la~A)  is an "indexed" family of sets, we 
also use the notation US, = { x l 3 a ~ A  3 XES,} and n S ,  = {xlVa~A,x~S, j .  

Unions, intersections and differences follow these laws: 

S u T =  TvS,  S n T =  TnS,  
Ru(SuT)=(RuS)uT,  Rn(SnT)=(RnS)nT,  
R u ( S n T )  = (RvS)n(Ru T), Rn(SuT)=(RnS)u(RnT) ,  

R U ~ S , =  ~ ( R W S , ) ,  R n  USa = u ( ~ n S a ) ,  
(X-S)u(X-T)=X-(SnT),  (X-S)n(X-T)=X-(SuT),  

u ( X  -Sa)=X-  ()Say ~ ( x - s , ) = x -  US,, 
(USaIn(UTg)= U(SanTB), ( n s a > u ( f )  Tg) = (-)(saw T~). 

The "cartesian product," or simply the "product" of two sets S and T is 
the set of ordered pairs S x T = {(s, t )  IseS, t~ T). We sometimes use (s, t) 
instead of (s, t) to denote an ordered pair. 

A "relation" R between two sets S and T is a set of ordered pairs R c S x T. 
We usually write s R t to mean (s, t)eR. For example, E is a relation between 
a set of objects and a collection of sets. Another example is the relation x I y 
between the set R of real numbers and itself. 

The "domain" of a relation R c S x T is {t ~ L E S  3 s R t) and the "range" 
of R is { s l 3 t ~ T 3 s R t ) .  

A "function" f from the set X to the set Y is a relation f c Y x X with 
domain X such that (xcX,yeY, y'eY,yfx and ylfx)=>y = y'. One writes 
y = f (x) to mean y fx. We also use f: X + Y, and variants of this to mean 
that f is a function from X to Y. The notation x w y  is also used for y = f (x). 

A function f :  X + Y is said to be "injective" or "one-one into" if f (a) = 
f (b) * a = b. It is said to be "surjective" or "onto" if ye Y * 3xeXsy = f (x). 
It is said to be "bijective" or a "one-one correspondence" if it is both injective 
and surjective. 

The identity function on X taking every member of X to itself is denoted 
by I,, or simply by 1 when that is not ambiguous. 

If R and S are relations (in particular, if they are functions) then we define 
the "composition" of R and S to be 

RoS= ((a,c)13b 3 a R b  and bSc}, 

and the "inverse" of R to be 

It is easy to see that (R0S)-' = S-'OR-'. It is also elementary that go f is 
a function when f and g are both functions. 

IfR c Y x X is a relation and A c X then we put R(A) = {YE YI3a~A3y R a). 
Note that, for a function f :  X + Y, f (A) c Y is defined for A c X and f -'(B) c 
X is defined for B c Y. 

Iff: X + Y and A c X then let f 1, = f n(Y x A), the "restriction" off to 
A. 

B.1. Definition. A relation R c X x X is an equivalence relation on X if: 

( I )  (reflexive) x R x for all xeX, 
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(2) (symmetric) x R y  =r- y R x ,  
(3)  (transitive) x R y  and y R z  .;> x R z .  

B.2. Definition. If R is an equivalence relation on X then we put 

[XI= ( Y ~ X I ~ R Y ) .  

This is called the equivalence class of x. 

B.3. Proposition. If R is an equivalence relation, then [ x ]  = Cy]-x R y. Also 
Cx3 n CYI # (a-Cxl= bl. 

In other words the equivalence classes [x ]  partition X into disjoint subsets 
whose union is X. 

B.4. Definition. If R is an equivalence relation on X then the set of equivalence 
classes { [ x ] l x ~ X )  is denoted by X/R. There is the canonical surjection 
4: X -t X / R  given by 4(x )  = [x]. 

B.5. Definition. If X is a set then its power set is B ( X )  = {AIA c X) .  Also 
let P o ( X )  = P ( X )  - {a>. 

B.6. Definition. If X and Y are sets, put YX = { f I f :  X -, Y). 

B.7. Proposition. If 2 denotes the set ( 0 , l )  of two elements then the corre- 
spondence A H X ,  between B ( X )  and 2' given by 

is a bijection. 

B.8. Definition. A partial ordering on a set Xis a relation I on X such that: 

(1) (reflexive) a s a for all  EX, 
(2) (antisymmetric) a I b and b 2 a => a = b, 
(3) (transitive) a l b  and b l c  * a l c .  

A set together with a partial ordering is called a partially ordered set or a poset. 

B.9. Definition. A poset X is said to be totally ordered (or simply ordered or 
linearly ordered or a chain) if a,b~Xt=>either a I b or b 5 a. 

B.lO. Definition. A function f :  X 4 X on a poset is called isotone if x I y=> 
f ( x )  5 f(y) .  

B.11. Definition. If (X, I )  is a poset and A c X then X E X  is an upper bound 
for A if a ~ A * a  5 x. The element x is a least upper bound or lub for A i f  it 
is an upper bound and x' an upper bound for A s x  I x'. Similarly for lower 
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ound and greatest lower bound or glb. Also, supremum = least upper bound 
and infimum = greatest lower bound, and sup and inf are abbreviations of these. 

B.12. Definition. A lattice is a poset such that every two element subset has 
an lub and a glb. It is a complete lattice if every subset has an lub and a glb. 

B.13. Proposition. l f S  is a set then B(S) is partially ordered by inclusion (i.e., 
by c )  and is a complete Lattice. 

B.14. Proposition. If X is a complete lattice and f :  X + X is isotone, then f 
has a fixed point, i-e., 3 ~ ~ x 3  f (x) = x. 

PROOF. Let Y = {xEXI f (x )  2 x )  and put yo = sup(Y). Note that ye Y 3 f (y) 2 
~ 1 = > f ( f ( y ) ) 2 f b ) = - f O e Y -  Also Y E Y * Y I Y O - Y  ~ f ( y ) ~ f C v ~ ) = - f ( y ~ )  is 
an upper bound for Y => f (yo) 2 yo a yo€ Y f (yo)€ Y * f (yo) I yo. Since we 
had the opposite inequality, we conclude that f (yo) =yo.  

B.15. Proposition. Let f :  X + Y and g: Y -+ X be functions. Then there are sets 
A c X a n d  B c Y s u c h t h a t f ( A ) = B a n d g ( Y - B ) = X - A .  

PROOF. Consider the power set B ( X )  ordered by inclusion. It is a com- 
plete lattice by Proposition B.13. If S c X then let h(S)@(X) be h(S) = 

X - g ( Y - f ( S ) ) .  
If S c T then it is easy to see that h(S) c h(T), so that h is isotone. By 

Proposition B.14 there is a subset A c X such that h(A) = A. Let B = f (A). 
Theng(Y-B)=g(Y- f ( A ) ) = X - h ( A ) = X - A .  

B.16. Definition. A totally ordered set X is said to be well ordered if every non- 
empty subset has a least element. That is, # A c X - 3 a ~ A 3 ( b ~ A = a  I b). 
( O f  course, the least element of A is glb(A).) If XEX then its initial segment is 

and its weak initial segment is 

Also, if X E X  and is not the least upper bound of X (which may not exist) 
then we put 

succ(x) = g l b ( y ~ X  1 y > x), 

the successor of x. 

Note that every subset of a well ordered set is well ordered. 

B.17. Lemma. Let X be a poset such that every well ordered subset has an 
lub in X .  I f f :  X 4 X  is such that f ( x )  2 x for all X E X ,  then f has aJixed point, 



PROOF. Pick an elemen$ xOeX. Let S be the collection of subsets Y c X sush 
that: 

(1) Y is well ordered with least element xo and successor function f 1, - (,,, ,). 

(2) xo # y~Y=.lub,(1S,(Y))~ Y. 

For example, {x,) ES, {x,, f (x,)) ES, etc. We need the following sublemmas 
(A) and (B): 

(A) If YES and YES, then Y is an initial segment of Y' or vice versa. 

To prove (A) let V = {XE Y n  Y'I WIS,(x) = WIS,,(x)). Suppose first that 
V has a last element u. If v is not the last element of Y then succ,(v) = f (0). 
If v is not the last element of Y' then succ,.(v) = f (v). Hence if neither of Y, Y' 
is an initial segment of the other then f ( v ) ~  V ,  whence f (v) = v and we are done. 

If, on the contrary, V has no last element, let z = lubx(V). If Y # V # Y' 
then it follows from (2) that ZE Yn Y' (because if y = inf(Y - V) then V = ISYO 
and therefore z = ~U~, ( IS~&))E  Y by (2)). Therefore, ZE V ,  a contradiction, 
proving (A). 

(B) The set Yo = U (Y( YES) is in S. 

To prove (B) note that if Y,EYES then it follows from (A) that 
(yeYoly < yo) = ISy(yo) and so this subset is well ordered with successor 
function f. This implies immediately that Yo is well ordered and satisfies (1). 
Also lub,(IS(yo))~Y c Yo which gives condition (2) for Yo. Thus (B) is 
proved. 

Now we complete the proof of Lemma B.17. Let yo = lub,(Y,). If yo$ Yo 
then Yo u {yo) ES and so yo E Yo after all. If f (yo) > yo then Yo u (f (yo)) ES 
contrary to the definition of Yo. Thus fCyo) =yo as desired. 

B.18. Theorem. The following statements are equivalent: 

(A) For each set X, there is a function f:  P0(X) 4 X such that f(S)eS for all 
@ # S c X .  

(B) If X is a poset such that every well ordered subset has an lub in X then 
X contains a maximal element, i.e., an element aeX 3 a' 2 a *a' = a. 

(C) (Maximal Chain Theorem.) If X is a poset then X contains a maximal 
chain, i.e., a chain not properly contained in any other chain in X. 

(D) (Maximality Principle.) If X is a poset such that every chain in X has an 
upper bound, then X has a maximal element. 

(E) (Zermelo, Well-Ordering Theorem.) Every set can be well ordered. 
(F) If f : X +  Y is surjective then there is a section g: Y+X off, i.e., an 

injection g: Y -+ X such that f og = 1 ,. 
(G) (Axiom of Choice.) If {S,laEA) is an indexed family of nonempty sets S, 

then there exists afunction f :  A -+ US,  such that f (a)ES, for all a€A .  

PROOF. (A)*(B): Assume (B) is false. Then let X, = ( X E X ~ X  > a). By assump- 
tion X, # 0 for all  EX. Let g: So(X)-+ X be a choice function. Define 

f: X 4 X by f (a) = g(X,) > a,Then f (x) > x for all xt-X contrary to Lemma - 
B. 17. 

(B)*(C): Let S be the collection of all chains in X ordered by inclusion. 
If C c S is a chain of chains (i.e., Y,, Y2cC=. Y, c Y2 or Y2 c Y,) then 
U {YI YEC) is a chain. Therefore every chain in S has a lub. By (B) there is a 
maximal element of S, i.e., a maximal chain. 

(C)*(D): Pick a maximal chain C and note that if x is an upper bound 
of C, then x is maximal. 

(D)*(E): Consider the collection W of elements of the form (U, <<) where 
U c X and << is a well ordering on U. Order these by (U, <<) 5 (V, <<')-they 
are equal or (U, <<) is an initial segment of (V ,  <<') and << is the restriction 
of <<' to U x U. 

As in the proof of Lemma B.17 we see that every chain in W has a (least) 
upper bound, namely, the union of its elements. Thus (D) implies that there 
exists a maximal (with respect to I) well ordering, say (U, <<). 

We claim that U = X. If not, let XEX - U and define (U u {x), <<') where 
<<' = << u(U x (x)), i.e., make x larger than anything in U. This contradicts 
maximality of (U, <<). 

(E)*(F): Well order X and let gy) be the first element off  -'Q. Then 
f 0901) = Y. 

(F)*(G): Let S =  U S , a n d X = ( < s , a ) ~ S  x AIxES,). Let p,:X-,S and 
p,: X 4 A be the projections p,(s, a )  = s and p, (s, a )  = a. Then p, is onto 
since each Sa # 125. Thus there is a section g: A -+X for p,; i.e., g(a) = (s, a )  
for some SES,. Let f = p p g :  A4S.  Then f is a choice function since f (a) = 
psg(a) = ps (s, a )  = s for some SES,, all a~ A. 

(G)=>(A): For TEP,(X) define ST = T. Then Bo(X) = (ST/ TEP,(X))) is 
an indexed collection of nonempty sets. Note that US, = X since, for any 
x e X , x ~ ( x )  = SIX). By (G) there is a function f: 9 , ( X )  + u ST = X such that 
f (T)€ST = T for any 125 # T c X. 

The Maximality Principle (D) is often inappropriately referred to as "Zorn's 
Lemma." It is actually due, independently, to R.L. Moore and Kuratowski, 
a dozen years before Zorn. 

The only numbered results in this appendix that depend on the Axiom of 
Choice are Theorems B.28 and B.26(d). (The latter requires only a countable 
number of arbitrary choices, and so is relatively innocuous.) 

B.19. Definition. Two sets X and Yare said to have the same cardinal number 
if there exists a one-one correspondence between them. 

Given a set S of sets, this relation is an equivalence relation on S. If XES 
we denote the equivalence class of X by card(X). We also write card(X) I 
card(Y) if there exists an injection f: X -r Y. 

B.20. Theorem (Schroeder-Bernstein). If card(X) I card(Y) and card(Y) I 
card(X) then card(X) = card(Y). 



a&" 
Appendices 

PROOF. (Note that this proof does not use th? Axiom of Choice.) By hypothesis 
there exist injections f:  X 4 Y and g: Y 4 X .  By Proposition B.15 there exist 
subsets A c X and B c Y such that f (A) = Band g(Y - B) = X - A. Therefore 
f 1,: AHB and gl,-,: Y - B-X - A are one-one correspondences. Put them 
together. 

B.21. Corollary. The ordering I on the cardinals is a partial ordering. 0 

It is not hard to see that, assuming the Axiom of Choice in the guise of 
the Well-Ordering Theorem, the cardinals are well ordered by I. This is, 
in fact, equivalent to the Axiom of Choice. 

B.22. Theorem. For any X, card(X) < card(g(X)). 

PROOF. The relation card(X) 5 card(g(X)) holds because of the injection 
XH{X). Let f: X + B(X) be any function. Put A = (xtzXIx$ f (x)}. We claim 
that there can be no yeX with A = f(y). If there is such a y then 

so neither possibility is tenable. Thus there never exists a surjection 
f :X+B(X). 0 

The symboi o is used to denote the set of nonnegative integers with the 
usual ordering. Let of = o u (a),  tacking on a last element. Note that card(w) 
is the least infinite cardinal. 

B.23. Definition. A set X is said to be countable if there exists an injection 
f :X+o.  

B.24. Lemma. The product w x o is countable. 

PROOF. The function f:  o x o 4 o given by f (n, k) = (2n + 1)2k - 1 is a 
bijection. 0 

B.25. Lemma. Iff: X + Y is an injection with X # jZI then there exists a 
surjection g: Y -+ X such that go f = lx.  

PROOF. For some X , E X  let g(y) be x, for y&  f(X) and g(y)= f -'(y) for 
y e f  (XI .  

8.26. Theorem. 

(a) If X is countable and f :  X 4 Y is onto then Y is countable. 
(b )  A subset o f a  countable set is countable. 
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(c) X, Y countable * X x Y countable. 
(d) A countable union of countable sets is countable. 

PROOF. For (a) let g: X -, w be injective and define h b )  = inf g( f - Then 
h: Y + w is an injection. 

r (c), if f: X -+ w and g: Y 4 o are injections then the composition of 
f x g: X x Y -+ o x o with the injection o x o -+ o ,  given by Lemma B.24, 
gives an injection X x Y 4 o. 

For (d), suppose that Xu is a countable set defined for aeA # fZ/ which 
is countable. Then let fa: o + X ,  be a surjection and g: o -+ A a surjection. 
Let h: o x o -+ U (Xu/ & € A }  be given by h(n, k) = f,,,,(k). Then h is surjective 
and so UX, is countable by (a). 

In general, it can be shown that if X, Yare nonempty, and not both finite, 
then card(X u Y) = max(card(X), card(Y)) = card(X x Y).  The consequence 
that card(X x X) = card(X), whenever X is infinite, is equivalent to the Axiom 
of Choice. 

B.27, Theorem. If R is the set of reals then card(R - (0)) = card(Y(o)) > 
card(w). 

P R ~ .  Let R+ denote the nonnegative reals, The injection R, GR and 
the injection R -+ R+ given by x ~ e "  show that card(R) = card(R+ ). Similarly, 
card(R) = card(R - (0)). We shall exhibit a bijection R + ++B(w), 

First write each positive real number r in its continued fraction expansion 

r = a , +  1 
1 

a1 + 
1 

a2 + a ,  + 

where the ai are integers with a,  2 0 and ai > 0 for i > 0. We shall denote 
this expansion by r = [a,, a , ,  a,, . . .]. A terminating (rational) continued 
fraction will be written in the form 

1 

and condensed to [a,, a , ,  . . . ,a , ] .  In particular, an integer n > 0 is written as 
n = (n - 1 )  + 1 = [n - 11. With this understanding, a continued fraction re- 
presenting r is uniquely determined by r. Thus this determines a one-one 
correspondence of the positive reals r with the sequences, infinite or finite, 
[a,, a , ,  . . .]. Also let the real 0 correspond to the empty sequence. Finally, let 



a sequence [a,, a,, .  . .] correspond30 the subset {a,, a, + a,, a, + a, 4 a,, . . .) 
of w. This is easily seen to be a one-one correspondence between the non- 
negative reals and subsets of o ,  as claimed. The real number 0 corresponds 
to the empty subset of w. 

It should be noted that, in the above correspondence, the rationals corre- 
spond to the finite subsets of w. Thus the set of all finite subsets of w is 
countable. (I believe the foregoing proof is due to A. Gleason.) 

B.28. Theorem. There exists an uncountable well-ordered set R' with last 
element Q such that x < SZ=-IS(x) is countable. 

PROOF. Well order the reals and put on an extra element x, at the end. Then 
let 52 be the least element in the ordering such that IS(l2) is uncountable. 
This exists since IS(xo) has cardinality that of R which is greater than that 
of w. Then 0' = WIS(R) is the desired set. Note that by an equivalence, one 
can regard n' as Qu {R). 

We shall refer to a, as in Theorem B.28, as "the least uncountable ordinal" 
and to other elements of n' as "countable ordinal numbers." 

B.29. Theorem. If card(X) = card(X x Y )  then card(B,(X)) = card(g,(X) x 

PROOF. By assumption there is a one-one correspondence f:  X x Y +X. 
This induces a one-one correspondence F: B(X x Y) -+B(X) by F(S) = 
(f(x, y)l ( x , y > ~ S ) ;  i.e., F(S) = f (S). But g: So(X) x Bo(Y)+Bo(X x Y) given 
by g((S, T)) = S x T is an injection, and so F.g:S,(X) x 8,(Y)-+B0(X) is 
also an injection. There is also an injection B,(X)+B,(X) x B,(Y) (unless 
Y = a, in which case the result is trivial) and so the contention follows from 
the Schroeder-Bernstein Theorem (Theorem B.20). 

B.30. Corollary. For any positive integer n we have card(Rn) = card(R). 

PROOF. By Lemma B.24, card(w x o )  = card(o). By Theorem 8.27, card(R) = 

card(R - {O)) = card(S,(o)), so Theorem B.29 implies that card(R2) = 
card(R x R) = card(R). If we know that card(Rn) = card(R) then 
card (Rn + I) = card(R x Rn) = card(R x R) = card(R) and so an induction 
finishes the proof. 

As mentioned before, the Axiom of Choice implies similar facts for arbitrary 
infinite cardinals, but Theorem B.29 and Corollary B.30 do not depend on 
the Axiom of Choice. 

In this book, we shall often make use of the Axiom of Choice without 
explicit mention. In cases where use of the axiom is known to be crucial, we 

do mention that. There are probably many other places where the axiom is 
crucial but where that fact is not definitely known to the author. 

C. Critical Values 
I The purpose of this appendix is to give a proof of Sard9s Theorem: 

C.1. Theorem. If Mn is a smooth man$old and f: Mn + Rk is smooth and if 
C c Mn is the critical set off then the set f (C)  of critical values has measure 
zero in Rk. 

The proof does not require knowledge of measure theory. (The definition 
of "measure zero" does not presume a definition of "measure," and it is 
an invariant of smooth manifolds, and so is not really a measure-theoretic 
concept.) Our proof of Theorem C.l is partly based on that of Holm [I]. 

C.2. Definition. A set K c Rn is said to have measure zero if, for any E > 0, 
there exists a sequence of open cubes Qi with K c 0 Qi and xi vol(Qi) < E. 

This is equivalent to saying that K can be covered by countably many 
balls of arbitrarily small total volume, since the ratio of the volumes of a 
cube and the circumscribed ball depends only on n, and vice versa. Similarly, 
one could use rectangles, etc. 

For an open set U c Rn let vol(U) = inf{Ci vol(Qi)) where (Qi) is a sequence 
of cubes covering U. This may be infinite. The definition of "measure zero" 
can then be rephrased as the existence of open sets of arbitrarily small volume 
and containing the given set. 

C.3. Proposition. 

(a) A countable union of sets of measure zero has measure zero. 
(b) If every point XEK c Rn has a neighborhood N with K n N of measure 

zero then K has measure zero. 

PROOF. If K = K t  u K2 u.. . , and if K, c Ui, an open set of volume < ~ / 2 ~  
then U = u Ui 2 K and vol U I xi vol Ui < Xie/2' = E, proving (a). For (b), 
let (&) be a countable basis for the topology of Rn. If XEK, let N, be a 
neighborhood of x with K n N, of measure zero. Let Wi,,, c N, with XE Wi(,). 
Then K n Wi(,, has measure zero and K = U K n W,,, is (really) a countable 
union of sets of measure zero. 

The following lemma shows that "measure zero" is a "smooth invariant": 

C.4. Lemma. If K has measure zero, where K c U and U c Rn is open, and 
if y: U + R"is differentiable, then g(K)  has measure zero. 



PROOF. *Let Q c U be a cubical neighborhood of x e K .  Let B be a bound 
for all idg,/axjl on Q. If N is an open ball of radius r abo; a point of K n Q  
then the Mean Value Theorem (Theorem 1.1 of Chapter 11) implies that 
g(Qn N) is contained in a ball of radius Br. Thus, if Q n K  is covered by 
balls of total volume < 6, then g(Q n K) is covered by balls of total volume 
< BE. C1 

Now we proceed with the proof of Sard's Theorem. Let f :  M " + R ~  be 
smooth and put f = (f,, . . . , fk). The proof will be by induction on n, and 
the case n = 0 is true. Let C be the critical set off, which is closed in Mn. 
Let D c C be the set of points where the differential off vanishes. We shall 
divide the proof into the cases of showing that f (D) has measure zero, and 
f (C - D) has measure zero. Note that D is closed in C and hence in M. 

C5. Lemma. The set f (D) has measure zero in Rk. 

PROOF. If the differential f, off is zero at x then so is the differential off,. 
Thus, if E is the critical set off, (which equals the set where the differential 
of f , vanishes) then f (D) c f (E) x Rk- l.  Since Rk- ' can be covered by a 
countable set of cubes, each of volume < 1, f,(E) x Rk-' has measure zero 
in Rk if f,(E) has measure zero in R. Hence, it suffices to prove Lemma C.5 
for k = 1, i.e., when f: U + R is a real valued function, U open in Rn. 

Let Di = (XE U [all partial derivatives of f of order I i vanish). Then we 
have that D = Dl 3 D2 3 -.- 3 D,, and all are closed. 

Case n. Proof that f (D,) has measure zero: 

It suffices to show that f(Dn nQ) has measure zero for any closed cube Q c U. 
Let s be the length of the sides of Q. Let m be an integer and partition Q 
into mn cubes of side s/m, hence of diameter s&/m. Let %Qn Dn and let Q' 
be one of the small cubes containing the point 2. Since the partial derivatives 
off through order n + 1 are bounded on Q there is a constant 3, independent 
of m, such that 

XEQ' =. I f(x) - f (2 ) l s  ~ 1 1  x - nlln+l < ~ . ( s & / m Y  

by Taylor's Theorem. Thus f (Q') is contained in an interval of length A/mn+ ', 
where A is a constant independent of m. Hence f(QnDn) is contained in a 
union of intervals of total length i; Amn/mn+ ' = A/m. Since A/m -+O as m-, oo, 
f (Q n D,) has measure zero, finishing Case n. 

Case i < n. Proof that f (D, - Di+ ,) has measure zero: 

Since Di+, is closed in U, we may as well throw it out of U and so assume 
that Dl+, = a. At a point %€Dl, then, all partial derivatives of order 5 i 
vanish and there is a partial derivative of order i + 1 which does not vanish. 
Let g be such an ith order derivative o f f ,  whose differential is nonzero at 
i. We may pass to a smaller open neighborhood of 2 on which the differential 

C. Critical Values 533 

of g is nonzgro. Then g = 0 on Di and 0 is a regular value for g Let Vn- ' = 

g-'(O). Then f 1, has critical set Di since its differential vanishes there. By 
the inductive assumption, f (D,) = f Jv(Di) has measure zero, as claimed. 

Putting Case n together with Cases 1 5 i < n proves the lemma. 0 

C.6. Lemma. The set f (C - D) has measure zero. 

OOF. Since D is closed we can remove it from Mn as far as the proof goes, 
and so we can assume that D = @. Since the differential off does not vanish 
at 2, there is a coordinate projection, say the last coordinate, g: Rk + R such 
that the differential of go f does not vanish at  Z. We can restrict attention 
to a neighborhood U of 2 where go f has nonzero differential; i.e., where all 
values are regular for go f: U -+ R. For teR, V:-' = (go f)-'(t) is then a smooth 
(n - I)-manifold. Put f, = f I,: V:-l +g- '(t) = Rk- ' x f t). Since the differen- 
tial of f  at any xcY, maps some vector to a vector not in Rk-' x (t) (i.e., 
going nontrivially to R under g), it follows that x is critical for f if and only 
if it is critical for f,. By the inductive hypothesis, the set of critical values of 
f, is of measure zero in Rk-' x { t )  for each t. Since it suffices to show that 
the image of C n Q has measure zero for each cube Q c U,  it suffices to show 
that a compact set in Rk has measure zero if its intersection with each hyper- 
plane Rk-' x {t) has measure zero. This follows from the Fubini Theorem 
in measure theory. An elementary proof of it is given in the next lemma. 0 

This completes the proof of Sard's Theorem (Theorem C.l). 

As promised, we now give an elementary proof of the consequence of 
Fubini's Theorem used in the proof of Lemma C.6. Although Fubini's Theorem 
is part of every mathematician's education, a large number of students will 
not have seen it prior to the time of studying this book. In any case, the 
proof of the following lemma is very easy. 

C.7. Lemma. If K c Rn is a compact set whose intersection with each hyper- 
plane Rn-' x {t) has measure zero in the hyperplane, then K has measure zero 
in Rn. 

PROOF. We may as well assume that K c In. For any closed set S c In let 

p(S) = inf{vol U I U 2 S open). 

This clearly has the properties 

AS) 1, 
S c  T => P(S)I@(T), 

LJ T )  5 A S )  f P(T). 

Define a function f :  I -+ R by 

f(x) = p ( ~ n 1 " - '  x [O,x]). 



Figure C-1. Piccolo Fubini 

For any X E I ,  and given any e > 0, there is an open set V in In-' such that 
V x { x )  2 K n ( P -  ' x ( x } )  and with vol V < e. By compactness of K,  there is a 
number h, > 0 such that V x [ x  - ho, x + h,] I> K n ( In -  x [ x  - h,, x + h,]). 
(See Figure C-1.) Then, for any number h with 0 < h < h,, (K n I n -  ' x 
[O,x + h ] )  c ( K n I n - '  x [O,x])u(V x [x ,x  + h ] )  can be covered by an open 
set of volume less than f ( x )  + eh. That is, 

system is called a direct system of abelian groups.) Then G = 15 Ga is defined 
to be the quotient group of the direct sum G = @G, modulo the relations 
fa,,(g) - g for all ~ E G ,  and all > a. 

Since any element of the direct sum involves only a finite number of G,, 
it is equivalent to an element in a single G,. Thus the direct sum could be 
replaced by the disjoint union, but the present definition makes the group 
structure transparent. 

The inclusions Ga i, @Ga induce homomorphisms i,: Ga -+ 1% G, and it 
is clear that i,of,,,= i,. Moreover, for any geG there is a g,€G,, for 
some a, such that g=i,(g,). Also, for any index aeD, and element 
g,eG,, i,(g,) = O o  3 p 2 a 3 fs,,(ga) = 0. In fact, these two properties charac- 
terize the direct limit: 

D.2. Proposition. Suppose given a direct system (G,, f,,;} of abelian groups. 
Let A be an abelian group and h,:G,-+A homomorphisms such that 
j? > a => hso fa,, = ha. Then there is a unique homomorphirm h: lim G,+ A such that 

+ hoi, = ha for all a. Moreover: 

(1) im(h) = ( a ~ A l a  = h,(g) for some g and a )  = Uim(h,); and 
(2) ker(h) = ( g e l 5  Gal 3a and g,eG, 3 g = i,(g,) and h,(g,) = 0 )  = (J i,(ker ha). 

f ( x + h ) s  f (x )+eh  for O ~ h t h , .  PROOF. Define h(g,) = h,(gJ. This defines a homomorphism on @Ga and it 

similarly ( K ~ I " - '  x [ o , x ] ) c ( K ~ I " - '  x [ O , x - h ] ) u ( V x  C x - h , ~ ] ) ,  so respects the equivalence relation defining the direct limit, so it is well defined. 

that Uniqueness is obvious as is property (1). The equivalence class g of ~ , E G ,  
is taken to 0 by hoh,(g,) = 0 in A which is just another way of writing 

f ( x ) s  f ( x - h ) + e h  for Osh<h , .  property (2). 

Therefore I 

for all Ihl < h,. It follows that f is differentiable at x with derivative zero. 4 a 

Also f (0) = 0. Hence f E 0 by elementary calculus. Consequently, 0 = f (1) = 
inf{vol U J  K c U open), which is the desired conclusion. 0 

D. Direct Limits 

In this appendix we discuss the algebraic notion of direct limits. This is used 
in the discussion of duality in Chapter VI, and to a lesser nonessential degree 
in some other parts of the book. It is also used in Appendices A and E. 

D.1. Definition. Let D be a directed set and let G, be an abelian group defined 
for each a e D .  Suppose we are given homomorphisms fp,,: G, -G ,  for each 
f i  > cc in D. Assume that for all y > f l >  a in D, we have fy ,c fp,a = fY,,. (Such a 

D.3. Corollary. In the situation of Proposition D.2, h: l i ~  G, -+ A is an isomor- 
phism i f  and only if the following two statements hold true: 

(i) VUE A, 3 a ~ D  and g,eG, 3 h,(g,) = a; and 
(ii) i f  h,(g,) = 0 then 38 > a 3 fs,,(g,) = 0. 

D.4. Theorem. The direct limit is an exact functor. That is, if we have direct 
systems {A:), (A,), and (A,") based on the same directed set, and ij'we have 
an exact sequence A:+ A,+ A," for each a, where the maps commute with 
those defining the direct systems, then the induced sequence 

lim A: + 1% A, -+ lim A," 
4 -+ 

is exact. 

PROOF. This is a very easy diagram chase in the diagram made up of all the 
original exact sequences and the limit sequence, using Corollary D.3. 

D.5. Theorem. Suppose given two directed sets D and E. Define an order on 
D x E by (a, p) 2 (a', ,Y) o a 2 a' and /? 2 j?'. Suppose Gar,@ is a direct system 
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based on D x E. Then the maps G,, - 1 9 ,  Ga,p 4 1% (I$@ Gag@) induce an iso- 
morphism 

PROOF. This is just a matter of (easy) verification of (i) and (ii) of Corollary 
D.3. For (i), note that any element of the iterated limit comes from an element 
of some lim, Ga,p, but that, in turn, comes from some Gas@ implying it comes 
from the2ouble limit. For (ii), if some element of Ga,@ maps to zero in the 
iterated limit then it must already map to zero in s ~ m e l $ ~  Gas,B. But, similarly, 
that implies it must already map to zero in some Ga,,@,. 

E. Euclidean Neighborhood Retracts 

In this appendix we answer the question of which subsets of euclidean space 
are retracts of some neighborhood there. Such a set is called an ENR 
(euclidean neighborhood retract). We shall see momentarily that the existence 
of such a retraction does not depend on the embedding. Thus this is an 
intrinsic property of the embeddable space and should be describable in 
terms of that space alone. Since a retract X of an open set U c R" is closed 
in U, it is locally compact. Moreover, since Rn is locally contractible, it is 
easy to see that X is also locally contractible, meaning that any neighborhood 
U of a point xeX contains a smaller neighborhood V of x such that there 
is a homotopy F: V x I 4  U starting at the inclusion and ending at a constant 
map. These, together with embeddability, are precisely the conditions needed. 

E.1. Lemma. Suppose X c R" is a retract of an open neighborhood U of X in 
R". Let K be a metrizable space and let Y c K be homeomorphic to X. Then Y 
is the retract of some neighborhood V of Y in K. 

PROOF. Let f :  X 4 Y be a homeomorphism and r: U 4 X the given retraction. 
Since Y is locally compact, it is the intersection of an open neighborhood 
W of Y in K with y, by Proposition 11.7 of Chapter I. Thus Y is closed in 
W. The composition off -'. with any coordinate projection X c Rn -+ R can be 
extended to W by Tietze's Theorem (Theorem 10.4 of Chapter I). These 
combine to give a map h: W-+Rn extending f -I .  Let V = h-'(U). Then 
f oroh: V -+ Y is the required retraction. 0 

E.2. Lemma. Let X c R" be locally compact. Then there is an embedding of 
X in Rn+' as a closed subset. 

PROOF. Since X is locally compact and hence locally closed, X = U nx for 
some open U c R". Let C = - X = - U ,  which is closed. Let f :  R" -+ R 
be f (x) = dist(x, C) which is easily seen to be continuous. Then we claim that 
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4: X -+ Rn x R = R"", given by d(x) = (x, I/  f (x)), is an embedding Of X onto 
a closed set. To see this, let (xi} be a sequence in X such that lim 4(xi) = (y,, y2) 
exists in R" x R. Then lim(xi)= yl and lim(l/f(xi))=y2, so that 
dist(xi, C) = f (xi) +0. This implies that y, = lim(x,)~X - C = X and so 
lim &xi) = (~(JJ~)E+(X), as claimed. 

Note that the "n + 1" in Lemma E.2 cannot be improved to "n" as is 
shown by the example of the open Mobius band M c R3. If M could be 
embedded as a closed subset in R3 then adding the point at infinity would 
give an embedding of P2 = M + in S3 contrary to Corollary 8.9 of Chapter VI. 

E.3. Theorem (Borsuk). IfX is locally compact and locally contractible then 
any embedding of X in any Rn is a retract of some neighborhood there. 

PROOF. By the lemmas we can assume that X is closed in R". First, we will 
briefly outline the idea of the proof which is very simple. We divide R" - X 
into cells which get small as they approach X. This is easiest done with 
cubes as cells. We then attempt to build a map to X on each cell by induction 
on the dimension of the cell. If a map is given on the boundary of a cell 
whose image is in a set which contracts in X then the map extends to the 
cell by putting the contraction along radii from the center of the cell. In 
order for this to produce a neighborhood we need two things: 

(1) it must be continuous with the identity on X as cells approach X; and 
(2) it must be defined on enough cells to provide a neighborhood of X. 

Both these things are guaranteed by arranging that small cells don't map 
too far away. 

Now the details. Divide R" into cubes by hyperplanes parallel to the 
coordinate planes and of integer distance from the origin. Define a set C ,  
as the union of those closed cubes which do not touch X. Note that any 
point a with dist(o,X) > & is contained in a cube in C ,  since f i  is the 
diameter of an n-cube of side 1. Now divide the complement of int(C,) into 
cubes of side 4 whose sides are integer or half integer distance from the 
coordinate planes and let C, be C, together with all the smaller cubes not 
touching X. Continue this with cubes of side 4, etc., giving sets C,, C,, C3 ,... . 
By the remark that C, contains all points a with dist(a, X) > x, n and its 
analogues for C ,  any point a$X is in only a finite number of such cubes. 
Therefore C = UC, is a locally finite CW-complex structure on Rn - X. 

Now we attempt the construction of the retraction r. For any 0-cell a of 
C let ro(a) be some point of X such that 

For any cell a of C and map f: a 4 X define 



Suppose, by induction, that we have defined a map ri on the union Ai of 
some of the i-cells of C to X. Then we define r i+,  as follows. Let a be an 
(i + 1)-cell of C for which ri is defined on 80. If there exists an extension of 
ril to a map a -+ X then let f be such an extension so that 

These maps f fit together to give the desired map ri+, on a union A,,, of 
some of the (i + 1)-cells of C, to X. 

Let A = UAiu X and r: A -+ X the function which is ri on Ai and the 
identity on X. We claim that r is the desired retraction. We must show that 
r is continuous, and that A is a neighborhood of X. Both of these will be 
proved by the same reasoning. Consider any point peX and number E ,  > 0. 
Then we can find numbers E ~ , E ~ ,  . . . ,eZn such that 

and 

B,,, is deformable to a point inside Bi, 

where Bi = X n B,,(p). Let U = B B,,,,, (p). Then r(U n A,) c BZn by (1). Assume 
inductively that r is defined on each i-cell o of C such that a c U and that 
r(a) c BZn- 2i. Let a be an (i + 1)-cell of C inside U. Since 480) c B2n-2i 
and B,,-,, contracts inside B2n-,i-,, there exists an extension of rlao to 
f: a+ B2,-,,- ,. Consequently, r is defined on o. If aea  then dist(a, f(a)) l 
dist(a,p) + dist(p, f (a)) < (i)ezn + E ~ ~ - ~ ~ -  By (2), dist(a,r(a)) < ($)eZn + 
2 ~ ~ ~ - ~ ~ - ~ ,  for any aea, and so 

whence r(a) c B,n-2i-2. This completes the induction and shows that r is 
defined on each cell in U with values in B,,(p). This implies both that r is 
defined in a neighborhood of p and that it is continuous at p. 

E.4. Corollary. If a topological man$old Mm is embedded in Rn then it is the 
retract of some neighborhood there. 

E.5. Corollary. If  M is a compact topological man$old then H,(M) and H*(M) 
are .finitely generated. 

PROOF. The first part of the proof of Theorem 10.7 of Chapter I1 applies to 
topological manifolds and shows that M can be embedded in some Rn. It 
is then a retract of some neighborhood there. There is a smaller neighborhood 
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of A that is a finite CWcomplex (e.g., a union of cubes). Thus there exists a 
finite CW-complex K, an inclusion i: X c.+ K and a retraction r: K -+ X. 
Since the identity map 1: X -+ X factors as 1 = roi we have that 

I* = r*oi*: H*(X) + Hew)  + H*(X). 

Since HJK) is finitely generated, so is H,(X). A similar argument works for 
cohomology, or one can use the Universal Coefficient Theorem for that. 

E.6. Corollary. If the manifold Mm (or any ENR) is embedded in Rn then 

is an isomorphism, where K ranges over the neighborhoods of M in Rn. 
I , 

PROOF. The proof has two disparate parts. First, we will show that any 
neighborhood U c M contains a smaller neighborhood V which strongly I 

i deforms to M through U. Then we will show that this implies the direct limit I 

statement. i 
For the deformation statement, it suffices to produce, for some neighbor- 

hood W of M, a deformation F: W x I -+Rn, with F(m, t) = m for all meM 
and ~ G I ,  f (w, 0) = w, and f(w, 1)eM, since, for any U, F-'(U) is an open set 
containing M x I, and hence containing an open set of the form V x I by the 
compactness of I. But if r: W-+ M is a retraction of ;l neighborhood of M 
in Rn, then F: W x I +Rn defined by F(w,t) = tw + (1 - t)r(w) is such a 
deformation. 

For the second part, let U be a neighborhood of M in R" so small that 
there is a retraction of U to M. Then the restriction map (induced by inclusion) 
H*(U)-+ H*(M) is onto, and is split by the map induced by the retraction. 
Suppose that M c V c U with F: V x I -t U a deformation as above. Let 
r = F(., 1): V x (1)  -+ M, a retraction. Let i: V x (0) -+ U be the inclusion 
(v, O)t-+ue V c U, and j: M c U, the inclusion. Consider the commutative 
diagram 

H*(M) 5 H*(V x {I}) 

i* I 1 = 

)I We see that j*(a) = 0 * F*(a) = 0 i*(a) = 0. Thus any element a€H*(U) ii going to 0 in H*(M) already goes to 0 in H*(V). This, together with the :I 
surjectivity pointed out before, proves the result, by Corollary D.3. :I 
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E.7. Corollary. LeE f: X -, Y where X and Y are ENRs and X is cbmpact. 
Then the mapping cylinder M ,  and the mapping cone Cf (unreduced) are ENRs. 

PROOF. Local contractibility is clear, and so it suffices to  produce embeddings 
in euciidean space. Assume that X c Rn and Y cRm. Then the map 
(x, t ) w ( t x ,  (1 - t )  f (x), t ) eRn  x Rm x R and y w ( 0 ,  y, 0) induce a n  embedding 
of Mr. Changing the tx to t(1- t)x gives an embedding of CI.  

E.8. Corollary. A finite C W-complex is an ENR. 
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i Index of Symbols 
1 

Z integers, 43 
z~ ZlpZ, 13 1 
Q rational numbers, 21 5 
R real numbers, 1 
C complex numbers, 53 
H quaternions, 53 
Rn real euclidean n-space, 1 
Sn unit sphere in Rn+', 40 
Dn unit disk in Rn, 40 
Pn or RPn real projective n-space, 43 
CPn complex projective n-space, 197 
Qp" quaternionic projective n-space, 206 
I or I unit interval [O, 11, 6 
I" n-cube, 198 
Tn n-torus, 43 
K Klein bottle, 43 
Gb, F) general linear group, 53 
SKn, F) special linear group, 53 

i O(n) orthogonal group, 53 

I u(n) unitary group, 53 
i SP(~)  symplectic group, 53 

A transpose of A, 53 
&,k Stiefel manifold, 54 

6 . k  Grassmann manifold, 463 
YP, q) classical lens space, 86 

i r ; q , . . . , q )  generalized lens space, 15 1 
3 YX space of maps X -, I: 23,437 
'c T,(M) tangent space at p of M, 76 



HP(X) 
p c x )  
Hp(X) 
H$(M) 
~ ( " f  

mesh(K) 
carr(x) 
St,(v) 
AP(V) 
o"? 
QP(M) 
do 
P or Po  
A@B 
Hom(A, B) 
Ext(A, B) 
A * B or Tor(A, B) 
Cp,,,: sn -+ sn 
X x Y  
x x, 
X +  Y 
+ xu 
u X U  

U U U  

a n a  
( % a >  
8 
9 
CM1 
a e h  

CKI. [NI 

total space of vector bundle 5, 108 
base space of vector bundle 5, 108 
normalizer of H, 148 
nth homotopy group of X, 1 19, 130 
Euler class, 378 
Euler characteristic of X, 153, 215 
cellular/simplicial chain group of X, 203, 247 
standard n-simplex, 169 
singular chain group of X, 170 
singular cochain group of X, 273 
augmentation, 172 
group of p-cycles, 171 
group of p-boundaries, 171 
pth homology group of X, 171 
pth cohomology group of X, 273 
pth cech cohomology group of X, 348 
pth reduced homology group of X, 181, 184 
pth de Rham cohomology group of M, 263 
n-skeleton of K, 195 
nth barycentric subdivision of K, 251 
mesh of K, 251 
carrier of x, 25 1 
open star in K of u, 252 
alternating p-forms on 1/: 260 
exterior product of o and q, 260 
differential p-forms on M, 262 
exterior derivative of o, 262 
Bockstein homomorphism, 18 1 
tensor product of A and B, 271 
group of homomorphisms A -+ B, 272 
(extensions), derived functor of Hom, 275 
torsion product of A and B, 278 
induced map from cellular map, 209 
cartesian product of X and Y; 22 
cartesian product of the Xu, 22 
topological sum of X and Y, 24 
topological sum of the X,, 24 
cross product of u and v, 220, 322 
cup product of u and v, 326 
cap product of a and a, 334 
Kronecker product of a and a, 322 
Eilenberg-Zilber map, 3 16 
orientation class, 348 
fundamental class of manifold M, 335 
intersection product of a and b, 367 
intersection number of K and N, 380 

7 

f '  and f !  
DM 
Sqi 
Pi 
Wi 

K(n, n) 
Cn + 1 

h f ,  $7) 
dist(x, y) 
BAx) 
diam(A) 

f 

f 
ac 

Sf 
X v Y  " xu 
X A Y  
v f 
A 
A 
cx, YI 
Cx; YI 
[a: z] 

Cn, XI 
Ca, Dl  
G*H 
*Gu 
f * s  
CX 
SX 
cx 

f u  

fa, 
p,: K(") -+ S" 
yn: I" -+S" 
f#  

f* 
fA 
f* 
f* 
r 
L(f 
Yf,g) 
tr 

Thom class; 368 
transfer map, 368 
(inverse of) PoincarC duality map, 367 
Steenrod square, 404 
Steenrod cyclic reduced power, 410 
ith Stiefel-Whitney class, 421 
Eilenberg-Mac Lane space, 484 
obstruction class, 499 
difference obstruction class, 500 
distance from x to y, 1 
€-ball about x, 2 
diameter of A, 28 
mapping cylinder off, 42 
mapping cone off, 42 
boundary of c, 9, 170 
coboundary off, 271, 321 
one-point union of X and Y, 44 
one-point union of the X, 200 
smash product of X and Y ( = X x Y/X v Y), 199 
gradient off, 80 
deck transformation group, 147 
diagonal approximation, 327 
Lie bracket of vector fields X and Y, 88 
homotopy classes of maps X-+ Y, 48 
incidence number between cells a and z, 204 
commutator subgroup of n, 173 
Whitehead product of a and P, 461 
free product of groups G and H, 158 
free product of groups G, 158 
concatenation of paths, loops, or homotopies, 46 
unreduced suspension of X, 190 
reduced suspension of X, 128 
cone on X, 430 
characteristic map for a, 195 
attaching map for a, 194 
collapsing projection, 200 
canonical collapsing map, 199 
induced map on homotopy groups, 13 1 
induced chain map, 175 
induced cochain map, 286 
induced map on homology, 176 
induced map on cohomology, 273 
subdivision operator, 223 
Lefschetz fixed point number, 254 
Lefschetz coincidence number, 394 
trace, 253 



Index of Symbols 

N 

Cf I 
lfll 
a-b 
ALX - 
A 
int(A) 

Gx 
CUO, -. ,v,I 
<'O9. . . ,un)  

( ~ 0 , .  - .  9 v,) 
f x s  
v 
f vs 
1 5  

l i p  

f is transverse to g, 84, 114 
torsion subgroup of A, 255,283 
path space of X, 456 
loop space of X, 441 
induced equivalence by characteristic element u, 491 
isomorphism, homeomorphism, o r  diffeomorphism, 5 
homotopy or homotopy equivalence, 45,219 
homologous, 171 
homotopy class off, 124, 129 
homology class off, 171 
element a goes to element b, 523 
inclusion map of A in X, 46 
closure of A, 8 
interior of A, 8 
isotropy subgroup of G a t  x, 54 
affine simplex, 169 
simplicia1 simplex as a chain, 246 
simplicia1 simplex as a space, 246 
thecomposition(f xg)od :N-+Nx N - + K x M ,  380 
codiagonal map X v X -+ X, 441 
the composition Vo(f v g): X v Y -. Z v Z +Z,  441 
direct limit, 535 

inverse limit, 505 

Index 

Action 
effective 54 
free 154 
group 54,86, 150 
monodromy 146,150 
properly discontinuous 150-154,219 
smooth 306 

Acyclic models (see Models, acyclic) 
Adem relations 405,408,411,412,466 
Adjoint 495 
Affine independence 245 
Affine simplex (see Simplex, afine) 
Algebra 

cohomology 263,329 
Lie 305 

Alexander duality (see Duality, 
Alexander) 

Alexander horned disk 23 1-232 
Amalgamation 159 
Amoeba 472 
Anchoring 470-471 
Antipodal map (see Map, antipodal) 
Approximation 

CW 488 
diagonal 327-328,334,335,413 
simplicial 25 1-253 
smooth 96-97 

I Atlas 69,76,347-348 
Attaching 41,482-484 
Augmentation 172, 181, 220, 224, 335, 

356 
Axtom of Choice 18,526-531 

Barycenter 224,251 
Barycentric coordinates 169 
Base point 118,128 

nondegenerate 435 
Base ring (see Ring, base) 
Basis 

neighborhood 4,6,8, 13,24,32,437 
of a topology 5-6,9,437 

Betti number (see Number, Betti) 
Bicollaring 235 
Bidegree 409,412 
Bijection 523 
Bockstein homomorphism 18 1,334, 

338,363,404,410,417-418,492-493 
Bott periodicity 467,469 
Boundary 9,71,170-171,177,204,213, 

221, 247, 315, 321, 355& 360-361, 
366 

Bouquet (also see Union, one-point), 489 
Braid diagram (see Diagram, braid) 
Bundle 106-1 14,455 

disk 109,367& 426-429 
euclidean 109 
induced 11 1-1 14 
line 294,389,424,426,515,517 
normal 93,99,110, 113,3788 515 
orientation 340-348 
principal 1 11 
sphere 109,368,390-393,408,412 
tangent 88-89, 109, 113, 378g 391, 

420 
vector 108,378fi 420-426,511-517 



Card (see Number, cardinal) 
Carrier 251 
Cartan formula 404,410,419-420 
Category (first and second) 57,81 
Cell 194ff 
Cell attachment 482-484 
Cellular approximation (see Theorem, 

cellular approximation) 
Chain 168& 524 

maximal 526 
Chain contraction 316 
Characteristic, Euler 153,215-217,256, 

285, 321, 355, 360, 366, 378, 380, 
383-389,391,398,515 

Chart 68-75,82-84,347-348 
flat 83 

Class 
characteristic (also see Class, Stiefel- 

Whitney and Class, Chern), 4 9 1 .  
Chern 294 
difference 500-501,507,509-511 
equivalence 524 
Euler 379ff,421, 514-515 
fundamental 199,339,355,377 
obstruction 500,507,509,512-515 
orientation (also see Class, 

fundamental) 301 
self-intersection 382 
Stiefel-Whitney 420-426 
Thom 367-372,377,379-384, 

514-515 
Wu 423 

Classification problem 487 
Closure 8 
Cobordism 120-1 26 
Cochain 271 f f  
Coefficients 180, 184 
Coexact 445-448 
Cofibration 430-436 
Cogroup 441-442 
Cohomology 

Cech 348ff 
de Rham 263-271,286-297,304-314 
sheaf 373 

Cohomology operation (see Operation, 
cohomology) 

Cohomology ring (see Algebra, 
cohomology) 

Coincidence 393-404 
Collapsing 40,433-436,445-447 
Collar 267, 355 
Compactification 

one-point 32-33 
Stone-Cech 34-35 

Compactness (see Space, compact) 

Completion 29 
Complex 

chain 177 
CW 194-218,246 
relative CW 483 
simplicia] 245-254 

Component 10-12, 31, 234-239, 353, 
355 

Component, arc 12 
Concatenation 46, 127,441 
Cone 219,223,287,430 

mapping 42-43,48-51,433,445-448 
Connectivity (see Space, connected) 
Continuity 1-7, 15,437-439 
Convergence, uniform 6,440 
Convex 56 
Coproduct 442 
Corner 383,427 
Countable 

first 6 
second 6 

Covering 138-158,198,216,341-348 
orientable 348 
regular 149-151 
universal 145, 155 

Crosscap 163 
Curl 269,291 
CW-complex (see Complex, CW-) 
CW pair 450 
Cycle 168ff 
Cylinder, mapping 42-43, 46-50, 432- 

436,457,481,485 

Decision procedure 487 
Deck transformation (see Transformation, 

deck) 
Deformation retract (see Retract, 

deformation) 
Degree 124,142-143,186- 187, 

190-194,244,256,300-304,315,333, 
359,403,409,449,470 

Dense 9 
Derivation 77 
Derivative, exterior 262 
Diagonal 24 
Diagonal approximation (see 

Approximation, diagonal) 
Diagram, braid 188-189,230 
Diameter 28 
Dictionary order 6 
Diffeomorphism 63,70 
Difference, primary 508-509 
Differential 78 
Direct system 535 

Directional derivative 76 
Distance 1 
Divergence (div) 269, 291 
Dodecahedra] space (see Space, 

dodecahedral) 
Doubling 59,370,371,402 
Dual cell structure 339 
Duality 

Alexander 351-353 
cup product 357-358 
Lefschetz 351-353 
PoincarC 338-340, 348g 367 
Whitney 422 

Duality pairing 358 
Dunce cap 50,206,257,479 

Embedding 27,353,362 
smooth 79,89-92 

ENR 255-256,536-540 
Equivalence 

bundle 108 
chain 219 
homotopy (see Homotopy equivalence) 
n- 485 
weak homotopy 485 

Euler characteristic (see Characteristic, 
Euler) 

Euler number (see Number, Euler) 
Evaluation (also see Map, evaluation), 

322 
Exactness (see Sequence, exact) 
Excision 183,223-228,285,482 
Exponential law (see Law, exponential) 
Ext 274ff 
Extension problem 430,4988 

Face 169,328 
Fattened manifold (see Manifold, 

fattened) 
Fiber 107, 146,450 

homotopy 505 
Fiber homotopic (see Homotopy, 

fiber) 
Fibration 450-457 

Hopf (see Map, Hopf) 
Hurewicz 450 
induced 456 
path-loop 456-457,484 
principal 498 
Serre 450 

Final 16 
Finlte intersection property 19 
Fixed point property 257-259,294,412 

Flow 86-88,386 
Form 

alternating 260 
closed 263,291 
differential 261fi 304-3 14 
exact 263,291 
induced 263 
integration of 265ff 
invariant 306, 308 
left-invariant 305 
symmetric 310 

Fox-Artin wild arc 231 
Fratricide 487 
Function 

closed 7 
continuous 4 
isotone 524 
nowhere differentiable 60-62 
open 7 
periodic 291 
semicontinuous 62 
transition 70 

Functional structure 69 
induced 72-74 

Functor 131,176 
exact 535 
left exact 272 
right exact 272 

Fundamental group (also see Group, 
fundamental) 

of arbitrary complex 487 
of circle 142, 149 
of CW-complex 21 1 
of 4-manifold 164,487 
of graph 153,488 
of Klein bottle 161 
of knot complement 164 
of product space 137 
of projective space 143, 147, 149 
of surface 162 
of topological group 138 
of torus 143, 149 
of union 159- 164 

Gauss map (see Map, Gauss) 
General position (see Transversality) 
Genus 162,516 
Germ 76 
Glb 525 
Gradient (grad) 80,93,269,291 
Graph 152-153, 239, 240, 380$, 427, 

488 
Grassmann manifold (see Manifold, 

Grassmann) 



Index i Index 

Group - 
classical 53-55, 101-106, 463-469 
covering 158,311 
divisible 274 
free 152-155, 158-161,488 
fundamental 132fS, 172-1 75,211 
graded 177 
H- 441 
homotopy 127-132,393,443ff 
icosahedral 353-354 
injective 274 
isotropy 54, 146 
Lie 53-55, 101-106, 110-111, 291, 

304-3 14,388-389,463-467 
one-parameter 102, 106, 312-314 
orthogonal 53-55, 103-104, 164- 

167, 191, 354,464-467 
presentation of 164 
projective 274 
semisimple 3 1 1 
simple 31 1 
structure 107 
symplectic 53-55,103-104,464-467 
topological 51-56, 138, 158,412 
torsion free 279 
unitary 53-55, 103-104,393,412, 

463-469 
Weyl 389 

Haar integral 306 
Heine-Borel property 19 
Hom 270-281 
Homeomorphism 5 
Homology 

axioms for 183 
Borel-Moore 373 
Cech 169,184 
cellular 200ff 
computation of 204-206,258 
reduced 181, 184 
relative 180 
singular 168-1 82, 219 f f  

of one-point union 190-191 
of plumbing 427-429 
of products 21 1-214,320,325,374 
of projective spaces 175, 193, 204, 

206,217-218,240-241,249,283, 
292-296,329-330,338,359,375-377, 
41 1-412 

of simplicia1 complex 247 
of sphere 175, 185 
of sphere bundle 390-393 
of spherical complement 233 
of Stiefel manifolds 392 
of suspensions 190 
of torus 175,205-206,25433 1 
of union 228-231 
of unitary group 393 

Homomorphism, connecting 178,183 
Homotopy 44-51,115fi 127fi 430ff 

chain 219,275,317-318 
constant 46 
fiber 457 
free 136,457-461 
inverse of 47 

Homotopy equivalence 45,486,488 
Homotopy extension property 430-43 1 
Homotopy fiber (see Fiber, homotopy) 
Homotopy groups 

of attachment 482-484 
of classical groups 463-469 
of H-spaces 443 
of one-point unions 457, 482, 488 
of products 454 
of projective spaces 457,464,480 
of spheres 121-126,131,295,453-454, 

464-466 
Homotopy inverse 45 
Homotopy lifting property 450 f f  
Homotopy re1 46 
Homotopy type 45 
Hopf invariant 409,412 
Hopf map (see Map, Hopf) 
H-space (see Space, H-) 

smooth singular 269-fil .  286-291 , - - - -  
uniqueness of 210 
with coefficients 180 

Homology groups (andlor Cohomology 
groups) 

of CW-complex 200// 
of dunce cap 206 
of figure eight 175 
of Klein bottle 175, 205, 250, 284 
of lens spaces 205-206,363, 366 
of Lie groups 304-3 14 
of manifolds 338fl 

Imbedding (see Embedding) 
Immersion 79,424-425 
Index (also see Signature) 385-388 
Indivisible 378 
Initial segment 525 
Inequalities, Morse 21 7 
Infimum (inf) 525 
Initial segment 525 
Injection 523 
Interior 8 
Intersection matrix 428-429 

4 Intersection product (see Product, Grassmann 463 
I intersection) orientable 71 

Isometry 29 oriented 70 
f Isomorphism, Thom 368-370 parallelizable 89,389,410,469, 517 
1 Isotopy 116, 120, 122 product 75 

Isotropy group (see Group, isotropy) 
i smooth 68ff 

Stiefel 54, 391-393. 464 
i 
1 Jello 165 
t Join 409,468,480 a 

7 - .  
strange 59-60 
topological 59, 68,341g 429 
unsmoothable 429 

t with boundary 71 
6 Map 4 

Killing homotopy groups 418,483-484 antipodal 40, 43, 163, 187, 21 7-218, 
? Klein bottle 43, 88, 89, 11 1, 138, 140, 240-245, 253,256, 362 

142,151,158,161, 163,175,197,205, attaching 194 
214,250,284,36 1,426,450,462 bundle 108 

Knot 163-164,516 cellular 207 
K(n, n) (see Space, Eilenberg-Mac Lane) chain 176. 177 

Ladder 177,227,288,480-481 
Lattice 525 
Law, exponential 438,444 
Lemma 

bootstrap 345, 351, 369, 370 
five 181-182 
Lebesque 28 
Poincark 288 
reparametrization 46 
Sperner's 253 
Urysohn's 29 
Zorn's 527 

Lens space (see Space, lens) 
Lie algebra (see Algebra, Lie) 
Lie bracket 88,263, 305 
Lifting problem 143,498ff 
Limit 14 

direct 231, 534-536 
inverse 505 
of net 14- 1 8 

Line integral 134 
Linking number (see Number, linking) 
Locally compact (see Space, locally 

compact) 
Locally finite collection 35 
Loop 132ff 
~ o o h  spaceVisee Space, loop) 
Lub 524 

I Manifold 

I closed 359 
,P different~able 68ff 
t fattened 119 
! framed 121 

differentiable 70 
discrete valued 10 
equivalence to a fibration 457 
equivariant 240-245,364,487 
evaluation 437 
exponential 101-106,314 
Gauss 384,385,389 
Hopf 13 1,295,406-409,453,464-469 
identification 39,43 
isometric 29 
pointed 128,434ff 
proper 20,22,33 
restriction 455 
simple 501, 507 
simplicia1 250 
smooth 7 4 7 1  
splitting 179-180 

Mapping cone (see Cone, mapping) 
Mapping cylinder (see Cylinder, mapping) 
Mayer-Vietoris (see Sequence, Mayer- 

Vietoris) 
Maximality principle (see Principle, 

maximality) 
Mesh 251 
Metric, Riemannian 109 
Metric space 

complete 25 
separable 10 
totally bounded 25 

Metrizable 26-31, 36, 38,69 
Mobius band 537 
Models, acyclic 221, 287, 317, 323, 327, 

337,413 
Monodromy action (see Action, 

monodromy) 
Moore-Postnikov decomposition 501 



Neighborhood 4 ff 
cubic 267 
symmetric 51 
tubular 92-101 

Net 14-18,21,23,24,440 
universal 17, 21 

Nowhere dense 9 
Number 

Betti 172, 258-259,398,401 
cardinal 527-530 
Cayley 469 
coincidence 393ff 
Euler 382-383 
incidence 204, 246,297 
intersection 340, 380-382,428 
Lefschetz fixed point 254, 294, 381, 

384,389,393,394,398 
linking 117-1 18,366 
ordinal 530 
self-intersection 382 

Obstruction 297-298,379,497-517 
difference 500-501, 507-509 
primary 507-509 

One-parameter subgroup (see Group, 
one-parameter) 

One-sided 376 
Operation, cohomology 328, 363, 393, 

404-420,492-497 
decomposable 407 

Orbit 54 
Order 

linear 524 
partial 524 
simple 524 
total 524 
well 525 

Ordinal 6, 530 
Orientation 71, 199,205,267,301,338- 

348,355,370,471 

Partition of unity 35-37, 89 
Plane, projective (also see Space, 

projective) 40, 50, 74,139, 142,143, 
147,158,162,163,193,204,214,230, 
248-250,257,283,284,300,304,320, 
321,329-332,338,361,365,375,376, 
401,403,425,426,436,480,493, 517, 
537 

Plumbing 426-429 
Poincare conjecture 354,429 
Poincare duality (see Duality, Poincare) 
Pointed (see Map, pointed) 

Polyhedron 246' 
Poset (see Order, partial) 
Postnikov decomposition 501 
Principle,maximality 17, 18,37,38,275, 

526-527 
Product 

cap 323,334-338,349,358 
cartesian 523 
cross 220-223,321-338 
cup 326-337,413-414 
exterior 260 
free 158-159 
intersection 366-378,395 
Kronecker 322,338 
smash 435 
tensor 180,271-281,315 
torsion 278 
wedge 260,435 
Whitehead 461-463 

Pullback 11 1,455,484,498 

Quadratic residue 365 
Quantum 167 
Quasi-component 11,12,31 

Refinement 35 
Relation, equivalence 523 
Representation, adjoint 308-314 
Residual set (see Set, residual) 
Resolution 

injective 275 
projective 277 

Restriction (see Map, restriction) 
Retract 42, 51, 186, 245, 257, 412, 431, 

454 
deformation 45,432,451 
neighborhood 536-540 
of disk 98, 186 

Ring 
base 280 
whomology (see Algebra, cohomology) 
truncated polynomial 330 

Saturation 41 
Section 342,368,378-379,382-383, 

391,514-515,526 
Semicontinuity 62 
Separated sets 223,345 
Sequence 

Barratt-Puppe 447 
Cauchy 25 
exact 178 
fibration 453 

Gysia. 390-393 
homology 180 ff 
homotopy 445-450,463 
Mayer-Vietoris 228-234285-287 
Smith 240,387 
split 179-180 

i Set 
cellular 237-239 
clopen 10 

I closed 3 
counthble 528 
dense 9,18 

I 
directed 14 
elementary 139 
evenly covered 139 
fixed point 2538 307,378ff 
open 3 
power 524 
residual 57-62, 8 1 
symmetric 51 
uncountable 530 

Sheet 139, 147, 149,216 
Shriek (see Transfer) 
Shrinking 37,90 
Signature 361,517 
Simple (see Group, simple or Map, simple 

or Space, simple) 
Simplex 169, 170 

affine 169,223-226,246 
smooth 269,286-291 

Skeleton 195 
Space 

acyclic 182, 332, 334 
arcwise connected 12 
comb 134-135 

? compact 18-21 

complete metric 25 
completely regular 26,30,34-35 
connected 10-12,25 
contractible 45, 51, 99, 185, 21 1, 219, 

436,479,480 
covering 138-158, 198,216,457 
dodecahedra] 353-354,429,480 

j Eilenberg-Mac Lane 484,488-493 
: 
i fiber 450-457 
i H- 333,412,441-443,463 
1 Hausdorff 13, 15,24 

irreducible 10 
lens 86, 151, 206, 219, 363-366, 392, 

486-487,492 
locally compact 31-34,57,437-441 
locally connected 12 

i locally relatively simply connected 
155 

metric 1-3,6, 14,25-29, 57-62 
metrizable 26,28, 38-39, 69 
n-connected 207,449 
n-simple 459 
normal 13,20,30,36,40 
orbit 150,219 
paracompact 35-39 
path 456-457 
pointed 44,128, 199,435 
projective (also see Plane, projective) 

55, 114, 147, 149, 175, 190, 197, 198, 
206, 216, 217-218, 241, 245, 257, 
292-297,304,359-360,362,377,403, 
41 1-412,424-426,457,464,481,492 

quotient 39-44 
regular 13 
semilocally 1-connected 155 
separable metric 9 
a-compact 37-39 
simple 459, 501 
simply connected 132 
topological 3 ff 
totally bounded metric 25 
well-pointed 212, 435-436, 457, 493, 

497 
Zariski 10, 14 

Sphere 
exotic 429 
homology 354,428429,480,488 
Kervaire 429 
Miinor 429 
noncontractibility of 99 

Split (see Sequence, split) 
Stability 13 1 
Star 252,339 
Steenrod squares (see Operation, 

cohomology) 
Stereographic projection 73 
Stiefel manifold (see Manifold, Stiefel) 
Subdivision 223-228,339 
Submanifold 79 
Submersion 79 
Subnet 16 
Subspace 8 

locally closed 33 
of compact space 34-35 
of completely regular space 28 
of HausdorfT space 14 
of normal space 60 
of regular space 13 

Successor 525 
Sum 

connected 158,358,361,366 
topological 24, 183, 286 
Whitney (see Whitney sum) 



,a\, Index 

Support 36,90,265,342,355 
Supremum (sup) 525 
Surjection 523 
Suspension 124-126,128-129,190,212, 

332,406,417,435,442,448,464,486, 
493-494 

Tangent bundle (see Bundle, tangent) 
Tangent field (also see Vector field) 

87-88, 188,256,383-388,515 
Tangent space 76 
Tangent vector (see Vector, tangent) 
Telescope 519-521 
Theorem 

maximal chain 526 i 
mean value 63 
metrization 28 
path lifting 140 1 
Poincark duality (see Duality, Poincark) i 
Poincark-Hopf 387 
Sard's 80-82,531-534 I 
Schoenflies 235-239 I 
Schroeder-Bernstein 527 
Seifert-Van Kampen 158-164 
Serre 492 

1 

simplicia1 approximation 252 
smooth approximation 96,97 
Stokes' 267-269 
Stone-Tukev 243 

1 
i 

Banach 64 
Borsuk 537 
Borsuk-Ulam 240-245,362 
Brouwer fixed point 98, 186,402 
cellular approximation 208 
classification of covering spaces 154 
classification of deck transformations 

149 
covering homotopy 140 
de Rham 271,286-291 
divergence 269 
Eilenberg-Zilber 3 18 
Euler-Poincark 215 
exponential (see Law, exponential) 
Freudenthal suspension 126 
Fubini 533 
fundamental, of abelian groups 215 
fundamental, of algebra 81-82, 142, 

194,388 
Gauss' 269 
Green's 269 
Gysin's 390 
ham sandwitch 242-243 
homotopy addition 469-475 
Hopf classification 124,297-304, 

497,509 
Hurewin 174,475-480,488 
implicit function 65-66 
invariance of dimension 235 
invariance of domain 235 
inverse function 67-68, 82-86 
Jordan-Brouwer 234 
Jordan curve 230-240,353 
Kiinneth 318-320, 325 

Thorn isomdrphism 368,370 
Thorn-Pontryagin 122 
Thorn realizability 377 
Tietze extension 30 
tubular neighborhood 92-100 
Tychonoff 23 
universal coefficient 281-283 
Urysohn 28 
well-ordering 526 
Whitehead 481 
Whitney duality 422 
Whitney embedding 91,92 
Wu 423 1 

Theory, homology 183 
Topological group (see Group, 

topological) 
Topology 

coarsest 7 
compact-open 437-441 
discrete 5 
finest 7 
generated 5 
half open interval 6 
identification 39 
induced 39 
largest 7 
order 6, 7, 14, 18 
product (Tychonoff) 22,214,441 
quotient 39 ! 
relative 8 
smallest 7 
strongest 7 

i 
subspace 8 
trivirrl C 

i 
f 

Index 
557 

Torus 43, 50, 72, 75, 143, 158~163, 175, Unity,partition of(seePartitionofUnity) < 

197,205,206,210,216,250,304,331, Universal net (see Net, universal) 
334,373,378,388-389.400-401 476 - - 7 - -  

maximal 388 
Trace formula 254 
Transfer 240,368,394-395 Value 
Transformation, deck 147 critical 80, 53 1-534 
Transgression 297 regular 80,531-534 

Vector Translation (left and right) 51,468 
probability 100 Transversality 84-86,91.114-118,371, 76 

381 
Tree 152-153,427,488 Vector bundle (see Bundle, vector) 
Triangulation 169,246 Vector field (also see Tangent field) 86-88, 
Trivialization 107, 426 268-269,291,305 
Tubular neighborhood (see incompressible 291 

Neighborhood, tubular) index of 385-388 
Type, finite 215 left-invariant 305fl 
Type (n, n) (see Space, Eilenberg-Mac 

Lane) 
Well-pointed (see Space, well-pointed) 
Whisker 436 

Union Whitney sum 113,422 
disjoint 24 Word 158-162,487 
one-point 44, 50, 153, 199, 206, 257, 

488 
separated 345 

--..--. - 
Lefschetz-Hopf fixed polnt 253-259, weak (CW) 194-195,214 

381,384,389 weakest 7 

Zariski space (see Space, Zariski) 

lifting 143 Tor 274-280 
Torsion 279 Lusternik-Schnirelmann 243 

Mayer-Vietoris (see Sequence, Mayer- Torsion subgroup 255, 283, 346, 357, 
Vietoris) 366 i 
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