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The paper referred to in the title concerns the algebraic topology at infinity
of geometric realizations of Coxeter groups and of buildings. For Coxeter groups,
the arguments are correct; however, for buildings, they are not. Jan Dymara and
Damian Osajda pointed out to us some serious problems with Section 5, where the
results for buildings are given (see [4]). In particular, Lemmas 5.3 and 5.7 are wrong.
This leads to gaps in the proofs of Theorems 5.8, 5.12 and 5.13. Nevertheless, we
believe that the theorems in Section 5 remain true. (More precisely, Theorems 5.12
and 5.13 should hold as stated and a version of Theorem 5.8 should be true.)

The basic mistake in Section 5 is this. Suppose C is (the set of chambers of) a
building and X ⊂ C is a subset which is starlike with respect to a base chamber c0.
Let c be an extreme chamber in X and put X̌ := C −X. Implicit in both Lemmas
5.3 and 5.7 is the assumption that

(0.1) |X̌| ∩ |c| = |c|I↑(X,c).

In other words, the intersection on the left is a certain union of mirrors of |c| indexed
by I↑(X, c), where I↑(X, c) denotes the set of i ∈ I such that X̌ contains a chamber
i-adjacent to c. In fact, the intersection in (0.1) need not be a union of mirrors.
For example, it can be the union of |c|I↑(X,c) with a lower dimensional face. (This
can be seen even in the case of thick, right-angled, spherical buildings of rank ≥ 2.)

In the calculation of H∗
c (|C|) in Theorem 5.8, one starts by ordering C, c0, c1, . . . ,

so that l(δ(c0, ck+1)) ≥ l(δ(c0, ck)), where δ( , ) is the W -valued distance on C and
l( ) is word length on W . If Xm := {c0, c1, . . . , cm}, then one wants formula (0.1)
to hold with X = Xm and c = cm. There is considerable freedom in choosing the
ordering of C and not all choices work. To see this, suppose R is a spherical residue
in C and dR ∈ R is its chamber closest to c0. Let LR be the set of chambers in R
which are furthest from dR. (LR is the set of chambers in R opposite to dR.) Since
the elements of LR all have the same W -valued distance from c0, when choosing
the ordering of C, LR can be ordered arbitrarily. Most choices of orderings will not
satisfy (0.1). In particular, if LR is not gallery-connected, no choice will work.

When C is right-angled the situation can be remedied. For in this case, LR

is a spherical building of the same type (WJ , J) as R (at least when R is thick).
Order the elements of LR using the WJ -distance on LR. (It may be necessary to
apply this step repeatedly.) The conclusion is that for right-angled buildings there
is an ordering of C satisfying (0.1). Hence, Theorems 5.8, 5.12 and 5.13 hold for
right-angled buildings and Corollary 5.14 is true as stated. A different proof of
Theorem 5.8 for right-angled buildings is given in [2]. It also uses the fact that LR

is a building of type (WJ , J). In the right-angled case, Theorems 5.12 and 5.13, as
well as, Corollary 5.11 also follow from the results in [1].
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