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SOME GROUP ACTIONS ON HOMOTOPY SPHERES 

OF DIMENSION SEVEN AND FIFTEEN 


0. Introduction. This paper is based on the simple observation that 
every 4-plane bundle over s4admits a natural action of SO(3) by bundle 
maps and that every 8-plane bundle over S' admits a natural action of the 
compact Lie group G 2  by bundle maps. (These actions are easy to see once 
one remembers that SO(3) is the group of automorphisms of the quater- 
nions and that G 2  is the group of automorphisms of the Cayley numbers.) 
The study of these actions is closely connected to several well-known phe- 
nomena in differential topology and compact transformation groups. 

The most obvious connection is to Milnor's original construction of 
exotic 7-spheres as 3-sphere bundles over s 4 ,  1261. Milnor proved that if 
the Euler class of such a bundle is a generator of H ~ ( s ~ ;  Z), then its total 
space is homeomorphic to s'. He also defined a numerical invariant of the 
diffeomorphism type and used it to detect an exotic differential structure 
on some of these sphere bundles. Subsequently, Eells and Kuiper [12] in- 
troduced a refinement of this invariant, called the p-invariant. Using the 
p-invariant, they proved that the sphere bundle M: (Milnor's notation) is 
a generator for the group of homotopy 7-spheres. These constructions also 
work for 7-sphere bundles overs8 ,  [32], and the manifold M:' is a gener- 
ator for bPI6 ,the group of homotopy 15-spheres which bound T-mani- 
folds. It is a routine matter to check that Milnor's arguments and their 
subsequent refinements work G-equivariantly where G = SO(3) or G 2 ,  
and we shall do this in Sections 2 and 3. In particular, each sphere bundle 
with the correct Euler class is G-homeomorphic to an orthogonal action 
on S2" + l , where 2n + 1 = 7 or 15. Moreover, distinct sphere bundles 
have distinct oriented G-diffeomorphism types. The proof of the second 
fact uses an equivariant version of the p-invariant. As originally defined 
this invariant takes values in Q/Z.  However, it is well-known that in the 
presence of a G-action, with S ' C G, its value in Q is well-defined. Using 
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this fact we shall show in Theorem 3.3, that the G-manifold (M:"", G )  
generates the infinite cyclic group (under equivariant connected sum) of 
oriented G-diffeomorphism types of smooth G-actions on homotopy 
(2rz + 1)-spheres all of which are G-homeomorphic to a standard linear 
action on s2"+'. 

A second connection is to the group c ~ . ~of knotted 3-spheres in S' 
and to the work of Montgomery-Yang [28], [29] on semi-free circle actions 
on homotopy 7-spheres with fixed point set the standard 3-sphere. Let 
C,(SO(~))  be the abelian group of oriented equivariant diffeomorphism 
classes of such actions. The results of Montgomery-Yang together with 
those of Levine [24] show that this group is isomorphic to z6.j.The iso- 
morphism is defined by sending (C7, SO(2)) E 6 , ( ~ 0 ( 2 ) )  to its "orbit 
knot" (C/S0(2), C ~ O ( ~ ) ) .  According to Haefliger [16], [17], the group c ~ . ~  
is infinite cyclic. Restricting the SO(3)-action on M: to the subgroup 
SO(2) c SO (3) gives an action of SO(2) on M:. This action is readily seen 
to be semi-free and to have fixed point set s3.We shall show in Section 7 
that the orbit knot of this action is actually a generator for zh.%nd hence, 
that (M:, SO(2)) is a generator for 6 , ( ~ 0 ( 2 ) ) .  Thus, each of the Mont- 
gomery-Yang examples actually come from the restriction of a 
SO (3)-action. 

A third connection is to the construction of Gromoll-Meyer [IS] of a 
metric of non-negative sectional curvature on a exotic 7-sphere. They pro- 
duced an example showing that M: admits such a metric. In their ex- 
ample the group SO(3) X O(2) acts as isometries. The SO(3)-action on 
M: coincides with the one which we have been discussing above. (In fact, 
this paper grew out of an effort to explain the SO(3)-action of Gromoll- 
Meyer.) The O(2)-action also appears in a more general context. We shall 
show in Section 1 that every 4-plane bundle over s4(or every 8-plane 
bundle over s') admits a canonical action of GL(2, R) by bundle maps 
which commute with the action of SO(3) (or of G z )  The action of the sub- 
group O(2) C GL(2, R)  on M: also coincides with the Gromoll-Meyer 
0(2)-action. 

Actually the various connections these actions make with the above- 
mentioned constructions are only peripheral concerns of this paper. Our 
primary concern is to investigate the role these actions on sphere bundles 
play in the general theory of biaxial actions on homotopy spheres devel- 
oped in [2], [3], 151, [6], [7], [ l l ] ,  1131, [14], [19], [20]. The word "biaxial" 
refers to a smooth action of a group G C O(n)  on a (212 + rn)-manifold 
such that the action is modeled on (i.e., locally isomorphic to) the linear 
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G-action on the unit sphere in R" @ R" @ R"'+' via two times the stan- 
dard representation of O(n)  plus the (m + 1)-dimensional trivial repre- 
sentation. If G is transitive on the Stiefel manifold V,,,z, then the orbit 
space B of such an action on a homotypy sphere C2"+"' is a contractible 
(nz + 3)-manifold with boundary and the fixed point set B,  is a Z/2Z- 
homology m-sphere embedded in aB. Thus, the study of such actions is 
closely related to the study of knots in codimension 2. If G = U(n) C 

0 ( 2 n ) ,  12 r 2, or G = SU(12), 17 2 3, then the orbit space of C4"+"' is a 
contractible (m + 4)-manifold and the fixed point set is an integral 
homology m-sphere. Thus, such actions are related to knots in codimen- 
sion 3. For G equal to O(n) ,  with n 2 2, SO(n) ,  n 2 4, or Spin(7) C 
0(8) ,  any biaxial G-action on a homotopy sphere C2"+"' has the following 
nice property: 

1) (C, G)  is equivalent to a pullback of its linear model. 

This implies that 

2) C equivariantly bounds a parallelizable manifold, and that 
3) C is determined by its "orbit triple" (B, aB. B,). 

These facts are proved in 161, 1191, 1201. Since SO(3) is transitive on V3,2 
and G 2  is transitive on V7,2, one might expect that similar results hold in 
these cases; however, the proofs break down. For G = SO(3) or G 2 ,  our 
G-actions on sphere bundles are easily seen to be biaxial. However, for 
these actions all three of the above properties fail to hold. Moreover, if the 
sphere bundle is not the actual Hopf-bundle these actions do not extend to 
biaxial O(n)-actions, n = 3 or 7. There are similar nice results for biaxial 
actions of U(rz), n 2 2, and SU(n) ,  12 2 4; in particular, for such actions 
properties 1) and 2) hold. However, the corresponding results are false for 
SU(3). In fact, in Section 7 we shall show that the action of SU(3) C G 2  
on the sphere bundle M:' is a counterexample to both these properties. 

For G = SO(3) or G 2 ,  1) can be replaced by the following property: 

1)' (C, G )  is equivalent to a pullback of the natural G-action on the 
quaternionic projective plane if G = S 0 ( 3 ) ,  or on the Cayley 
projective plane if G = G 2 .  

This is proved in [9], where it is also shown that biaxial SU(3)-actions are 
pullbacks of the Cayley projective plane. Under certain conditions (see 
Proposition 4.9), 1) '  insures that (C, G )  equivariantly bounds a spin mani- 
fold. In particular, in dimensions 7 and 15 the equivariant p-invariant is 
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always defined. We use this fact in Theorem 5.3 to completely classify bi- 
axial SO(3)-actions on homotopy 7-spheres: every such action can be writ- 
ten uniquely as the equivariant connected sum of some number of copies 
of (M:,  SO(3)) together with the restriction of some biaxial O(3)-action. 
A similar result holds for G2-actions on 15-spheres. 

An interesting feature of biaxial 0(n)-actions on homotopy spheres is 
that non-linear examples occur in nature, [I], [17]. After Milnor's seminal 
work [26], several other constructions of exotic spheres were discovered. 
The most natural of these is to represent them as the boundary of some 
plumbing manifold or equivalently as a Brieskorn manifold, [17], 1251. 
Kervaire-Milnor proved that every homotopy sphere which bounds a par- 
allelizable manifold could be constructed in this fashion. Hirzebruch ob- 
served in [17] that these plumbing manifolds and certain Brieskorn mani- 
folds support canonical biaxial 0(n)-actions.' Since the SO (3)- and 
G2-actions on sphere bundles generally do not arise as restrictions of 
O(n)-actions, they give a new class of examples. Thus, the essentially dif- 
ferent natures of the two known natural constructions of exotic spheres 
(either as exotic Hopf-bundles or as boundaries of plumbing manifolds) is 
reflected in the study of their transformation groups. The fact that exotic 
Hopf-bundles occur only in fiber dimensions 3 and 7 is mirrored by the 
fact that SO(3) and G 2  play a distinguished role in the theory of biaxial 
actions. 

This distinguished role was already evident in the first work on this 
subject, by Bredon in [2] and [3]. He constructed certain biaxial 
O(n)-actions without fixed points on (2r2 - 1)-manifolds. Later these 
actions were shown to coincide with the natural 0(>I)-actions on the Bries- 
korn manifolds z2"-' (k, 2, . . ., 2), with k odd. (See Example 4.2.) For rz 

odd these manifolds are homotopy spheres. If we restrict the action to 
G c O(n)  for G = O(n),  n 2 2, SO(n) ,  n 2 4, or Spin(7), then for dis- 
tinct k these actions can be seen to be of distinct G-diffeomorphism types. 
However, Bredon showed that fork odd, the SO(3)-action on C5 (k, 2, 2, 2) 
is equivalent to the linear action on s5and similarly for the G2-action on 
C13 (k, 2, . . . , 2). Thus, in the presence of fixed points the unusual feature 
of biaxial actions of G = SO(3) or G2 is that there are G-actions which do 
not extend to O(n), while in the absence of fixed points the unusual 
feature is that different O(n)-actions become equivalent when restricted to 
G. 

1 These two constructions give the  same class of examples. 
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1 would like to thank Glen Bredon for bringing the Gromoll-Meyer 
example to my attention and for pointing out its significance to the study 
of biaxial actions. 

1. Natural Actions on Some Vector Bundles Over Projective Lines. 
Let A stand for either the real, complex, quaternion, or Cayley numbers 
(denoted by R ,  C,  H, or 0, respectively) and let n = dimR A - 1.  Let 
x F denote the canonical anti-involution on A. A real inner product on + 

A is defined by x .y  = M ( 6 + yF). The A-projective line AP' is formed 
by identifying two copies of A via the diffeomorphism of A - (0) 

Clearly, AP' E s"+ ' .  
For each pair of integers (h, , j ) ,  let EAi(A) be the manifold formed by 

identifying two copies of A X A via the diffeomorphism of (A - (0))  X A 

The natural projection ElIi(A) -+ AP' sending ( u ,  v)  to u and (11  ', v') to u ' 
gives EI,,/(A) the structure of a (11 + 1)-dimensional vector bundle over AP '  . 

Remarks. (1.2) The non-associativity of the Cayley numbers causes 
no problems in (1.1). Indeed, since any two Cayley, numbers u and v gen-
erate a proper subalgebra of 0 (hence, an associative subalgebra), the ex- 
pression u VU.' is unambiguous. 

(1.3) The bundle EIti(A) carries a natural inner product induced 
from the standard inner product on the second factor of A X A. Let 
Dh,(A) be the unit disk-bundle and let Sl,,,(A) = aDl1,;(A) be the unit 
sphere bundle. 

(1.4) Isomorphism classes of (rz + 1)-plane bundles over AP' = s"+' 
are in one-to-one correspondence with T,,(O(II + I)) ,  where 
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Let p,,, :S" + O ( n  + 1 )  be the map defined by pl,,(u)(v)= rr"vul, with 
u E S" c A and v E A z R"", and let @:z@ z + ~ , , ( 0 ( n+ I ) )  be the 
homomorphism which sends (h,j )  to the homotopy class of p,, . The map 

is surjective and it is an isomorphism if 12 = 3 or 7. It follows that every 
(12 + 1)-plane bundle over AP' is isonzorphic to one of the forin El, ,  ( A ) .  

Suppose A f R.  Let a 6 H " + ' ( A P ' ;  Z )  z Z be the canonical gener- 
ator. The Euler class of E,,, ( A )  is given by 

The nontrivial Pontriagin classes are given by 

These formulas are an easy calculation given the observation that x and p ,  

are both linear in (h ,  j ) .  (See 1261 and [31].)  
Let C" be the group of R-algebra automorphisms of A. Then 

There is a natural action of G" on El,,  ( A ) :  for g € c.',define 

These formulas are obviously compatible with the identification ( 1 . 1 ) .  
Hence, we have the following result. 

THEOREM1.8. Let A be a real divisiolz algebra of'dir1ler7sio1l 11 + 1 
(of course, n = 0,  1 ,  3 ,  or 7 ) .  E v e q  ( n  + 1)-plune bundle over s"" 
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admits a natural action o f  G.' by bundle maps covering the ccl1loi2ical 
action on the base (thought of as AP ' ) .  

Reirzcrrks. (1.9) By construction, E h ,( A )  is covered by two G '-in-
variant open sets of the form ( A  X A, G"). This implies that the G.'-action 
is biaxial in the sense of Section 4. 

(1.10) The G.'-action leaves the natural inner product on EI , , (A )in-
variant. Hence, the associated unit disk bundle D,,;(A) and the sphere 
bundle S,,;(A)are both smooth G.'-manifolds. 

The vector bundle E h j ( A )  AP' admits further symmetries. In fact, + 

it admits a commuting action of GL(2,  R )  by bundle maps covering the 
natural action on AP' by Moebius transformations. This is obvious for 
A = R or C:  for in these cases EI l i (A )is just the (h  + ,;)-fold tensor 
product of the Hopf-bundle and the Hopf-bundle admits such an action. 
In the general case we must define this action explicitly. 

Suppose y = (: 4 ; )  E GL(2,  R ) .  The action of y on AP' is defined by 

y . u = (au + b)(cu + ~ 1 ) ~ '  

Its action on El,, ( A )  is given by 

y .  (u ,  v)  = ( y . u, (cu + d)"v(czr + d).'/lcu + d 1'''') 

y . ( u ' ,  v ' )  = ( y  . u l ,  (a + btr')"v1(a+ btrl).'/la+ bu ' l l ' t i ) .  

It is trivial to check that these formulas are compatible with the identifi- 
cation (1.1).  Also, it is clear that translation by y is G"-equivariant and 
that translation by y leaves the inner product on EI , ; (A)invariant. It re- 
mains to check that these formulas actually define an action of GL(2, R ) .  
We must show that if y3 = y y 2 ,  then y 3 .  (u,  v) = y . ( y 2 .  (u ,  v)) .  For 
i = 1, 2, 3 ,  let 

Then 
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where 

/3 = c2u t d 2  and 

(Since CY,  p and v belong to the subalgebra generated by u and v, non-
associativity causes no problem in equation (1.1 I) .)  We have that 

ap = [cl(a2u + b2)(c2u+ d 2 ) - '  + d l ](c2u + d,) 

Since CY and /3 belong to the subalgebra generated by u, they commute. 
Hence, 

Substituting this into the formula into ( I .  11) gives 

Therefore, we have shown that every (n + 1)-plane bundle over AP'  ad-
mits a natural action of G ' X GL(2, R )  by bundle maps which leave the 
standard inner product invariant. To get an action of a compact group we 
should restrict our attention to the action of the subgroup G" X O(2). 

Retnnrks. (1.12) In [IS], Gromoll and Meyer give a different con- 
struction of an action of SO(3) X O(2) on the sphere bundles2,-  (H)  +s4. 
Their action is the same as the one constructed above. 

(1.13) There is a bundle isomorphism E h , ( A )+ E,, , (A) covering a 
diffeomorphism on the base provided (h, j )  = k(h ', , j l )  or ( h , j )  = 
k( j ' ,h '1. Moreover, these isomorphisms are G" X GL (2, R )  equivariant. 
Such an isomorphism El,,(A) + E P l , , ( A )  can be defined by 
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Similarly, there is an isomorphism Eh,; (A)  E i h ( A )defined by + 

( u ,  v )  (ii,V ) ,  ( L I  ', v') ( i i ' ,V ' ) .+ + 

Notice that the first map reverses the orientation of the base and that the 
second reverses the orientations of both base and fiber. Note in particular 
that these isomorphisms show that the G"-manifolds S,, ,(A) and S,, , , , (A) 
are equivariantly diffeomorphic whenever (h . , j )  = i( h ', j ' )  or f( , j ' ,h '). 

2. The p-Invariant. Suppose that M ~ v - 'is a smooth manifold such 
that Hzq- , (M.  Q )  = H2,(M. Q )  = 0 , H'(M. 2 / 2 2 )  = 0 , 2and such that 
M'"-' bounds a spin manifold w44 .  In this situation Eells-Kuiper [12] 
defined the p-invariant of M, a certain rational number whose value 
modulo Z depends only on M. If ~ ~ % u ~ ~ o r t s  an effective G-action with 
S' C G, then this rational number is actually a well-defined invariant of 
the oriented G-manifold (M~"' ,  G). (See page 351 in [ I ] . )  This is due to 
the fact that the enus us vanishes for a closed spin manifold with effective 
S '-action. 

If A = H or 0 and if h # -,j, then the disk bundle Dl, , (A) is a spin 
manifold of index +1 and its boundary S / , ,  ( A )  satisfies the necessary ho- 
mological conditions. The formulas in [12] ,pages 101 and 106, yield 

where p,  is the it" Pontriagin class of D l I J ( A )and T = t1 is its index. Note 
that the sign of r is the same as that of h + , j .  

THEOREM2.1. = s/ , , (A)Suppose A H or 0. The11 the ~"-r71c11,if'olds 
aizdSl, , ; , (A) are equivuriarztly d ~ ~ e o l ~ o r p h i c  $ (h .  . j )i f a r~dor~ ly  = Ifi ( h ', j ' )  
or (h.  , j )  = f( , j ' , h '). Such an equivaria~zt diJfeomorphism cull preserve 
orientation if aizd only i f  (h .  , j  ) = ( h ', j ' )  or ( ~ j ' ,  k I ) .  

?These conditions can be weakened. 
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Proof. Suppose there is an orientation-preserving equivariant dif- 
feo~norphism Sh,;(iZ) + S, ,i,(ll). (We can always reduce to the oriented 
case by composing with an equivariant diffeomorphisnl from 1.13.) Since 
the Euler class of Sllj(A) is (h + j ) ~ ,its middle dimensional cohornology 
is cyclic of order h + j (or 03 if k + j = 0). Hence, h + ~j is an invariant 
of the oriented homeomorphism type of Shg(A). If h = -,j, then for dis- 
tinct h the manifolds Sl,j(A) have distinct Pontriagin classes, hence, dis- 
tinct oriented homeomorphism types. If h # -,j, then the p-invariant is 
defined. Since this has the form a (h  - , j ) 2+ b. we have that ( h  - , j )*= 

(h '  - j ' ) 2 ,  i.e., (h - , j )  = f(h '  - ,it). The theorem follows. 

3. The Manifolds M?" and Milnor's Morse Function. Let n = 

dimRA - 1. Suppose that h + j = 1and that k = h -j. Following [26] 
we define M?+' to be the (2n + 1)-manifold Shj(A) with its natural 
GA-action. Also, let s ~ " + 'C n2 be the unit sphere with the linear 
GA-action. 

THEOREM3.1. For each i t l teg~r k,  the G"-nzurlifold M Y + 'is equi- 
variatlt& homeomorphic to s2"" with the litwar actiorl. 

Prooj: (Milnor [26]): Milnor proved the non-equivariant version of 
this by defining a Morse function f on Mi"+ '  with only two critical points. 
The proof works equivariantly. The manifold M?" is the union of two 
copies of 11 X S"with coordinates ( u ,  v) and (u' ,  v ' ) .  Introduce new co- 
ordinates on the second copy (u ", v') by u "  = u'(vl)- ' .  The function 
f :M?" + R is given by 

It has precisely two critical points, both non-degenerate, at (u, v) = 
(0, + I ) .  Since the quantities Re(v), lu j2, Re(u "), and 1 u "  1 '  are all 
G"-invariant, so is f. Thus, M?'' is G"-equivariantly homeomorphic to 
the union of two copies of a (2~1 + 1)-disk with linear action. 

By way of contrast, as an immediate consequence of Theorem 2.1 we 
have the following result. 

THEOREM3.2. Suppose that 11 = H or 0. Thrrz (Mi"", G") is 
equivariarztly d#eon?orphic to (M:" ' , G") if and or11v if k = fl'.+ 

For homotopy 7-spheres the p-invariant takes values in 1/28 Z, while 



69 GROUP ACTIONS ON HOMOTOPY SPHERES 

for homotopy 15-spheres it takes values in 1/8128 Z. The formulas of Sec- 
tion 2 reduce to 

(These formulas occur on pages 101 and 106 of [12].) Notice that for 
k = 3, we have h = 2, and p ( ~ : )  = 1/28, p ( ~ : s )  = 1/8128. 

The group of homotopy 7-spheres, a 7 ,  is cyclic of order 28. Also, 
a7= b8, i.e., every homotopy 7-sphere bounds a ir-manifold. In dimen- 
sion 15 it is known that a15has order 15,256 and that the cyclic subgroup 
bP16 has index two. By work of Wall 1331, a homotopy 15-sphere bounds a 
parallelizable manifold if and only if it bounds a 7-connected manifold. 
Hence, M:' E bP16. It follows from the above calculation of p ( ~ p + l )  that 
M: is a generator of bP8 = 0, and that M i 5  is a generator of bP,, . 

The fixed point set of G A  on Mi"+'  is a circle. We can therefore take 
the connected sum of any number of copies of t(Mi"", G A )  equivari- 
antly, by performing the connected sum operation at a fixed point. Since 
(M?", G A )  is equivariantly homeomorphic to (S2"+' ,  G A )  so is any 
equivariant connected sum. Since the P-invariant is additive we see that 
for A = G ~ )H or 0,(M:"", generates an infinite cyclic group of oriented 
GA-actions on homotopy (2n + 1)-spheres. Also, the natural map from 
this group to bP2,,+2 is just reduction mod 28, Z 2/28 Z if 211 + 1 = 7 ,+ 

or reduction mod 8128, Z Z/8128 Z if 2n + 1 = 15. In summary we -+ 

have the following result. 

THEOREM3.3. Let A = H or 0 and let G = G". The G-marli$old 
(MY+',  G )  generates an infinite cyclic group (under connected sur??) of 
oriented G-actions 011 homotopy (211 + 1)-spheres. (Here 211 + 1 = 7 or 
15.) Evey elemerzt of this group is equivariantly homeomorphic to the or- 
thogonal G-action on S2"". Moreover, evey homotopy sphere it1 bP2,1+z 
admits an infinite number of distinct actions in this group. 

4. The General Theory of Biaxial Actions. In this section we shall 
review some material from [6], [7], [9], [19] and (201 and deduce some 
consequences. 

Let G be a closed subgroup of O(n)  such that G acts transitively on 
both the sphere s"-' and the Stiefel manifold V,,,2 = 0(11)/0(~1- 2). 
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For example, we might take G = O(n),  n 2 2, or G = SO(n) ,  n 2 3. 
Another possibility is to take G = G.', the group of automorphisms of A ,  
where A = H or A = 0.Let W" be the orthogonal complement of R in A. 
Choose an isomorphism W" z R"where 12 = 3 if A = H or 11 = 7 if A = 0. 
This defines a representation G" - 0(iz). If A = H ,  then its image is 
SO(3) and we just have the standard 3-dimensional representation. If 
A = 0, then its image is denoted by G 2 .  In either case it is not difficult to 
check that G is transitive on V,,,z.If G C 0(11) is connected and acts 
transitively on V,,,z, then it is known (41 that the only other possibility is a 
certain 8-dimensional representation Spin (7) C 0(8). 

The natural action of G on biaxialR" @ R" is called the l i ~ ~ e a r  
G-action. Let H = G n O(n - 1) and let K = G n O(II - 2). The orbit 
of (x, y )  c R"@ R" is one of three types: (i) a fixed point if (x, y )  = (0, 0), 
(ii) an (11 - 1)-sphere, G/H,  if x and y are linearly dependent, or (iii) a 
Stiefel manifold, G/K, if x and y are linearly independent. The orbit 
space of G on R" @ R" can be canonically identified with BR(2), the 
space of 2 by 2 positive semi-definite symmetric real matrices. The orbit 
map is given by 

The space BR(2) is a solid 3-dimensional cone. The vertex is the image of 
the origin, the remainder of the boundary is the image of the spherical or- 
bits and the interior is the image of the orbits of type G / K  (that is, the 
principal orbits). 

A smooth G-manifold (M. G )  is biaxial if it is stably modeled on 
(R" @ R", G).  This just means that the orbit types are G/G. G / H  and 
G/K, that the normal representation at a fixed point is equivalent to 
(R" @ R", G),  and that the normal representation at a spherical orbit is 
equivalent to ( R " ' ,  H) .  A biaxial G-manifold M will therefore have three 
strata. We index these by 10, 1, 2),  where 0 corresponds to G/G.  1 to 
G/H,  and 2 to G/K. By the i-stratum qf M (denoted by Mi)  we shall mean 
the union of orbits of type i in M. By the closed i-stratum of M (denoted by 
Mi)  we shall mean the i-stratum of M with the lower strata "blown up." 
(To obtain M, one attaches to M,a boundary made up of the i-stratum of 
the normal sphere bundles of the lower strata as in [I I ]  or [21].) Denote by 
B(M) the orbit space of M and by B ~ ( M )  and Bi(M) the orbit spaces of M, 
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and Mi,  respectively. Since BR(2) is homeomorphic to a 3-dimensional 
Euclidean half-space, B(M)  is homeomorphic to a manifold with bound- 
ary. The interior of B(M)  is the image of the principal orbits. The fixed 
point set Bo(M) is a submanifold of the boundary of codimension 2. 

Example 4.1. Consider the linear action of G on R" @ R "  @ R"'" 
where G acts trivially on the third factor. This action is clearly biaxial with 
orbit space BR(2) X R"'+' .  Also, we may consider the G-action on the 
unit sphere^^"+"' C R" @ R" @ R'"'. This is obviously also biaxial. It 
is easy to see that the orbit space B(s~"+"') is homeomorphic to a (172 + 3)-
disk. The fixed point set B ~ ( s ~ " + " ' )  = S"' is an unknotted sphere embed- 
ded in the boundary. All these actions will be referred to as li~zeur bitrxitrl 
actions. 

Example 4.2. Let ({, w ,  z , ,  . . ., z,,) be complex coordinates for 
c,,+2 and let J' be the polynomial 

The Brieskorn manifold c ~ " "  (p ,  2, . . . , 2) is defined as the intersection 
of fP ' (0 )  and s2"+" Let U(12) act linearly on s ~ " + % ~operating on the 
last n coordinates. If G C O(n)  is transitive on V,,,2: then the represen- 
tation G C O(i2) C U(it) gives a linear biaxial action on s2"+".  The sub- 
manifold c ~ " + '  (p ,  2, . . . , 2) C s 2 " + "  is clearly G-invariant and biaxial. 
It is interesting to note that C2"+' (p ,  2, . . . , 2) also admits a commuting 
action of S '  defined by elH . ({, w, z , , . . . , z , , )  = (ei2H 5; e"'Lw, z ,  , . . . , z,,). 
It is well known that the orbit space of C2"+' (p ,  2, . . . , 2) is homeomor- 
phic to D~ and that the fixed point set C '  (p ,  2) is a torus link of type 
(p. 2) embedded in the boundary 3-sphere. The s'-action of C2"" ( p .  2, 
. . ., 2) induces a strata-preserving 5''-action on the orbit space. We leave 
it as an exercise for the reader to check that this S1-action is equivariantly 
homeomorphic to the linear s'-action given by the representation p 2  + 
p,, :SO (2) -+ S O  (2) X S O  (2) C S O  (4), where p,,:S O  (2) S O  (2) is the -+ 

homomorphism g + g". 

Example 4.3. Suppose that A H or 0 and that G = G.' is the 
group of automorphisms of A. The linear G-action on A2 is biaxial. 
Hence, so is the G-action on El,;(A), since by construction Ell ,(A) is the 
union of two invariant open sets of the form (A2, G) .  Obviously, the re- 
striction of this action to the sphere-bundle S,,;(A) is also biaxial. It is not 
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difficult to calculate the orbit spaces of EI,;(A), and of Sl,,(A). One uses 
the facts that B ( A ~ )  ~ ~ ( 2 )R~ and that El,,,(A) is formed by gluing X 

two copies of n2via (1.1). The reader is encouraged to check that the orbit 
space of Sh,,(A) is homeomorphic to D 4  and that the fixed point set, 
Sh,(R), is the boundary of a band with h + j half twists. Thus, Sl, ,(R) is a 
torus link of type (h + j ,  2) embedded in the boundary of D 4 . We also ob- 
served in Section 1 that Shj(A) admits a commuting action of O(2) c 
GL(2, R). This induces a strata-preserving action of O(2) on the orbit 
space B(Shj(A)). We again leave it to the reader to check that this action 
is equivariantly homeomorphic to the linear O(2)-action given by p2  + 

-+ -+ph+j :0(2) 0(2) X 0(2) C 0(4), where p, :0(2) 0(2) is the 
homomorphism with kernel the cyclic subgroup of order 1 1 .  Comparing 
this with Example 4.2, we see that the G-manifolds Sl,,(A) and C2"+'  
(h + j. 2. . . ., 21, n = 3 or 7 ,  have the sarm orbit spaces (even with 
respect to the induced SO(2)-actions!) Another way to convince oneself of 

1) = C3 (h + , j .  2, 2). this is to observe that S,,;(A) = Sh,(C)  = ~ ~ ( h,;. + 
Next suppose h + j = f1. The torus knot of type (1,  2) is the unknot. 
Hence if h + j = + 1, then the orbit space of Sl,,(A) is isonzor-phic to the 
orbit space of the linear G-action on s 2 " + ' .  (Essentially, we already 
proved this in Theorem 3.1.) 

Now let us return to our general considerations of a biaxial G-niani- 
fold M. The equivariant normal bundle of Mi  in M may be regarded as a 
bundle over Bi(M). (This is explained in 181.) The structure group of this 
bundle can be reduced to a certain compact Lie group S,,which is defined 
and computed in [9]. The associated principal bundle is denoted by 
Pi(M) + Bi(M). Of particular importance is P2(M) + B2(M).  This is just 
the principal bundle associated to the bundle of principal orbits. Its struc- 
ture group S2is actually NG(K)/K. The biaxial G-manifold M is said to 
be trivializable if P2(M)  -+ B2(M) is a trivial fiber bundle. A trivialization 
of M is the homotopy class [f ] of a bundle trivialization f :P 2 ( M )+ S2. 

We denote a trivialized biaxial G-manifold by (M, G. [f 1). Such an 
object (X, G, [g]) is universal if given any (M, G. [ f1) there is an equivari- 
ant stratified map Q:M X such that the following diagram + 
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commutes up to an equivariant homotopy. Moreover, the map + is re- 
quired to be unique up to a homotopy through equivariant stratified 
maps. If (X, G, [g]) is universal, then any (M. G. [ f ] )is equivalent to a 
pullback of Xvia a stratified map cp:B(M) + B ( X ) . (We may take cp to be 
the map induced by q. )  

In the following table we list some groups G C O(n)  which act transi- 
tively on V,,,*. The isotropy groups H and K are given as well. We have 
divided these groups G into two types depending on the structure groups S,. 
We have also listed the corresponding universal G-manifold in each case. 

TABLE 4.4 

The universal 
G H K G-manifold 

O(it - 1) 0 (11 - 2) RN R" 

SO (iz - 1) S O ( n  - 2) R" @ R" 


Spin(7);n = 8 G2 s U ( 3 )  R8 @ R8 


n = 3  SO ( 2 )  (1) HP2
Type I1 

S U ( 3 )  S U ( 2 )  OP2 

The Structure Groups 

Type I: S o = 0 ( 2 ) ,  S 1 = 0 ( 1 ) x 0 ( 1 ) ,  S ,  = 0 ( 2 )  
Type 11; S o = 0 ( 2 ) ,  S 1 = 0 ( 2 ) ,  S2 SO(3) .  

THEOREM4.5 (Bredon). If G is of type I, then the linear nzodel 
(R" @ R", G, [ g ] )is univeisal for trivialized biaxial G-actions. 

This result was essentially proved by Bredon in [6]. A proof is also 
given in [9]. (Actually in 191 the result is only stated for G = O(tl), iz 2 2 
and for G = SO(lz), 11 1 4; however, the same argument works for 
Spin (7).) 

If G is of type 11, then G = G" for A = H or 0.Notice that there is a 
natural action of the group of automorphisms of A on Ap4 ,  the A-projec- 
tive plane. It is proved in [9] that this action is biaxial, trivializable and 
universal. Thus, for G of type 11, Theorem 4.5 is replaced by the following 
result. 

%Since S 2  = O ( 2 )has two components, there are two choices for the trivialiration [gl. 
Either one works. 

"n this case there is only one choice for [g ] .  
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THEOREM4.6. = G~ is of type 11, then (Ap2,  G ~ ,I f  G [g]) is uni- 
versal for trivialized biaxial actions. 

Remark 4.7. The orbit space B(AP*) may be identified with ~ ~ ( 3 ) ,  
the space of 3 by 3 positive semi-definite real symmetric matrices of trace 
one. This space is homeomorphic to D'. The fixed point set B ~ ( A P * )  = R p 2  
is embedded in the boundary 4-sphere in such a fashion that B I(AP*) = 
s4- R P 2  is a 2-plane bundle over RP*. Thus, both singular strata are ho- 
motopy equivalent to RP2 .  It is interesting to note that ~ ~ ( 3 )  is also the orbit 
space of the linear triaxial action of O(n)  on s3"-I ,  11 2 3. Moreover, the 
structure groups associated to the strata are the same in both cases. Also, 
( s 2 " - ' ,  O(n)) is universal for trivialized triaxial O(n)-actions without fixed 
points. It follows that the category of trivialized biaxial G.'-manifolds is 
equivalent to the category of trivialized triaxial O(n)-manifolds without 
fixed points for any n 2 3. I don't know of any real use for this observation; 
however, it does motivate the construction given below in the proof of part 1) 
of Theorem 4.9. 

Many interesting consequences of Theorem 4.5 are deduced in [6]. We 
state some of these in the following result. (See also [7] and [ l l ] . )  

THEOREM4.8 (Bredon). Suppose that G is of type I and that (M, G ,  
[ f ] ) is a trivialized biaxial G-manifold. 

1) M equivariarltly bourzds a trivialized biaxicrl G-tnatzifoM (W,  G .  
[f '1) such that B ( W) is honleonlorphic to B ( M )  X I. 

2) If the tangent bundle T(B(M) is trivial, then T ( M )  is equivariantly 
stably trivial. 

3) In particular. if T(B(M)) is trivial then by 1) T(B(W))  will rrlso be 
trivial; and hence, T(W)  will be equivariantly stably trivial. 

The arguments used to prove this can be modified to deduce the fol- 
lowing result for G = S O  (3) or G 2 .  

THEOREM4.9. Suppose that G -- G.' is of type II  and that (M. G ,  
[ f ] )  is a trivialized biczxial G-manifold. Let (p: B ( M )  + B ( A P ~ )be the 
classrjjing map. 

1) If (p aB(M):aB(M) + dl3 (AP*) = S' is nullhonzotopic, then M 
equivariantly bounds a trivialized biaxial G-marzifold ( W, G .  [f 'I) 
such that B ( W )  is hot?zeot?zorphic to B ( M )  X I. 

2) If T(B(M) is trivial, then  T ( M )  is equivari~rrztly stably equivale?zt to  
a pullback o f  T(AP*). 
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3)  I f p  a B ( M )  is nullhomotopic and i f  W is as irz I ) ,  then T (  W )  is equi- 
variantly stably equivaler2t to a pzrllback of' T ( i l P 2 ) .111 particular. 
W is a spin nzalzifold. 

Proof. 1) The argument is similar to the one given on page 94 of 
[7] .Let ~ ~ ( 3 )be the space of 3 by 3 positive semi-definite symmetric ma- 
trices. Then B R ( 3 )is a cone on T R ( 3 )= B(AP').  Let E € ~ ~ ( 3 )be the 
identity matrix. Let x o  = '/3E C T R ( 3 )and let T I  be the submanifold of 
T R ( 3 )defined by requiring that x # x o  and that the two smaller eigen- 
values of x be equal. We may assume that ( p : B ( M )+ T R ( 3 ) a D' is 
transverse to x o  and to T I . Since p a B ( M ) :  d B ( M )  + a T R ( 3 )  = S ~ S 

nullhomotopic, we may also assume that p - ' ( x o )  is empty. Let s : ~ ~ ( 3 )X 

[0,  w )  + ~ ~ ( 3 )  x + t E  and define B ( W )by the pull- be the map ( x ,  t )  + 

back diagram 

Let 0 E B R ( 3 )denote the cone point. Since p misses xo,  p' misses ( 0 ,  '/3) E 

B R ( 3 ) X [0,  w ) .  Define p : ( ~ ~ ( 3 )( 0 ) )  X [0 , co)- + T R ( 3 )by ( x , t )  + 

(trace x ) - ' x  and set p" = p p ' :  B ( W )  + T R ( 3 ) .The space B ( W )  is0 

locally isomorphic to the orbit space of a biaxial action and the map p" is 
stratified. (The condition that p - ' ( x o )  = 0 is necessary to insure that 
B ( W )  have no stratum corresponding to the cone point of B R ( 3 ) . )Set 
W = are intervals, (p" )* (nP2) .The fibers of s over the interior of ~ ~ ( 3 )  
while over a T R ( 3 )they are points. Since the fibers of B ( W )  + B ( M )  
have a similar description, we conclude that B ( W )  is homeomorphic to 
B ( M )  X I. 

2 )  Since M is equivalent to p*(ilP2) = { ( z ,6)E ilp2 X B ( M )  / p (b )  
= n ( z ) } ,it is clear that it is embedded in i lP2  X B ( M )with trivial normal 
bundle. It follows immediately that T ( M )is stably equivalent to p*(T(ilP2)).  

3 )  Since B ( W ) is homeomorphic to B ( M )  X 1, T ( B ( W ) )is trivial if 
and only if T ( B ( M )is trivial. Hence, 3 )  follows immediately from 1) and 
2) and the fact that i lP2 is a spin manifold. 

5. Biaxial Actions on Homotopy Spheres. Here we will show that 
the results of the previous section can be applied to actions on homotopy 
spheres. 



76 MICHAEL W. DAVIS 

Suppose that B is a space which is locally differentiably modeled on 
BR(2) X R"', i.e., suppose that B is locally the orbit space of a biaxial 
O(it)-action. Then B will have three strata. The triple (B, dB. Bo)  is called 
an orbit triple. We shall be interested in those triples satisfying the fol- 
lowing additional conditions: 

i
a) B is a compact contractible (171 + 3)-manifold with boundary. 
b) Bo is a Z/2Z-homology m-sphere embedded in dB. 

( 5 . 1 ,  c),,,,, If n is even, then Bo is an integral homology m-sphere. 
cIodd If it is odd, then the double branched cover of dB along 

Bo is an integral homology (m + 2)-sphere. 

Let G c O(n) be one of the groups listed in Table 4.4 and let H = G 
fl O(n - I), K = G flO(n - 2). Let C be a homotopy sphere on which 
G acts biaxially and let B(C) be its orbit space. If CG is empty, then it is 
known that C must be of dimension 2n - 1 and that B(C) is a 2-disk. This 
case has been analyzed completely in [2]. If CG is nonempty of dimension 
m, then it is clear that C has dimension 211 + m. Henceforth we shall 
assume that dim C = 212 + in, MI 2 0. 

PROPOSITION5.2. Suppose that G C O(n)  is a group listed in 
Table 4.4 and that G acts biaxially on u hoinotopy sphere C2"+"'. Then 
the orbit triple of (C, G )  satisfies (5.I),,  . 

Proof. Using Z/2Z-tori, Smith Theory implies that CG and CH are 
Z/2Z-homology spheres; hence b) holds. Using the maximal torus of G. 
Smith Theory implies that if n is even, then CG is an integral homology 
sphere, while if n is odd CH is an integral homology sphere. Since CG = 

Bo(C), c),,,, holds, and since CH is the double branched cover of dB(C) 
along Bo(C), we also have cIodd. In [30] Oliver proved that the orbit space 
of a compact Lie group action on Euclidean space is contractible. Applying 
this to the complement of a fixed point in C, condition a) follows easily. 

COROLLARY5.3. Let  ( c ~ ~ + ~ ,G )  be  a homotopy sphere with biaxial 
action, then ( c ~ " ' ~ ,  G )  is a trivializable biaxial G-manifold, i.e., P2(C) + 

B2(C)is a trivial fiber bundle. 

Proof. B2(C) is contractible. 

5.4. 
B(C) is trivial. 

COROLLARY With  hypotheses us above, the taizgeizt burzdle o j  
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Proof. B (C)  is contractible. 
Let ( X ,  G )  be the universal trivializable biaxial G-manifold, i.e., X = 

R" @ R" if G is of type I or X = AP2 if G is of type 11. In view of 
Theorems 4.5 and 4.6 and Corollary 5.3, (C,  G )  is equivalent to the pull- 
back of X via some stratified map p :  B ( C )  + B ( X ) .  As a converse to 
Proposition 5.2 we have the following result. (For a proof, see [7]or [19].)  

PROPOSITION5.5. Suppose that G C O ( n )  is u group listed ill 
Table 4.4, that ( B ,  dB, B o )  satisfies (5.1),,,  and thut p :  B + B ( X )  is u 
strutifed inup where (X .  G )  is universczl. Then the pullback p*(X) is ( I  

honlotopy (2~2 + n2)-sphere with biaxial G-action. 
Therefore, the problem of classifying biaxial G-actions on homotopy 

spheres is equivalent to the problem of classifying triples ( B ,  dB, B o )  satis-
fying (5.1),, together with stratified homotopy classes of maps p :  B + 

B ( X ) .  For a fixed triple ( B ,  dB. B o )  satisfying (5 .I),, it is not hard to see 
that there are exactly two stratified homotopy classes of maps p :  B + 

~ ~ ( 2 )  which is induced and that they differ by an automorphism of ~ ~ ( 2 )  
by an equivariant linear automorphism of the linear model. Hence, we 
recover the well-known result of the Hsiangs 1191 and Janich [20]:i f  G is o/ 
type I, then there is a one-to-one cowespoizdellce between equivariai~t dif-  
feonzorphisvz classes of biuxiul G-actiorls oiz homotopy (211 + 171)-spheres 
and dijfeor~zorphisr~z clusses of orbit triples ( B ,  aB. B o )  satisfying (5.I),, . 

For G = S O ( 3 ) or G2there may be more than one equivalence class 
of map B + B ( A P ~ ) .(We know that this must be the case, since by 
Theorem 3.2 and Example 4.3, the homotopy spheres ( M ? + ' ,  G ) ,k N ,  
all have the same orbit triple yet belonging to distinct equivariant diffeo- 
morphisms classes.) 

By an orientution for (C, G )  we mean an orientation for CG and one 
for C H .  Specifying these orientations is equivalent to specifying orienta- 
tions for Bo(C)and dB(C)  (or B (C)).  Depending on whether 12 is even or 
odd either the orientation for CGor the one for CHwill determine an orien- 
tation for C. By an oriented equivule~zce C + C' we shall mean an equi- 
variant diffeomorphism which preserves both orientations. 

Let C2,,+,,,(G)be the abelian semi-group of oriented equivalence 
classes of biaxial G-actions on homotopy (2n -t m)-spheres. (The semi- 
group operation is connected sum.) Let Dl ,,,, be the abelian semi-group of 
oriented diffeomorphism classes of oriented orbit triples ( B " " ~ ,  dB, B o )  
satisfying condition (5 .I),. Let pc  :CZn+m(G)  + be the semi-group 
homomorphism which sends C to B(C) .  Also, let i C :  C2,r+, l , (0( iz ) )  + 
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C21,+111(G)be the map which sends (C, O ( n ) )  to (C, G ) .  For groups G of 
type I, the result of the Hsiangs-Janich states that p, is an isomorphism. 
Hence, iG must also be an isomorphism. Thus, for G of type I every biax- 
ial G-action extends to biaxial O(12)-action. 

Now suppose that G = G~ is of type 11. Let A2,,+,, ,(G)denote the 
kernel of pG:C21,+,l,(G) consists of + D ,,,,,, . Thus, A211+l11(G) those 
(z211 , G )  with orbit triples equal to that of the linear biaxial action +,?I 
(S211 +Il l  , GI.  

PROPOSITION5.6. A2,,+,,,(G)is an abelian group. 

Proof. If G is of type I, then A2,,+,,,( G ) is trivial. Hence, we may 
assume that G is of type 11. We must show that every (C, G )  c A2,,+,,,(G)is 
invertible. Let ( -C,  G )  denote the result of reversing the orientation (i.e., 
both the orientation of CH and CG are reversed). The usual argument 
shows that C # ( -C)  equivariantly bounds a contractible G-manifold 
~ 2 , 1 + ~ l ~ + l  B ( s ~ " + " ' ) ,  have that B ( v ~ " + " ' + ' )%Since B(C2"+"1) we 

( D21, I). Suppose that D2"+"'+' U c v2"+"'+' and D2"+* 2-

W c AP* are linear disk neighborhoods of fixed points in V and A P 2 , re-
spectively. We have that V is the pullback of AP2 via some stratified map 
(p: B ( V )  + B ( A P ~ ) .We may clearly assume that (p 1 B ( U ) is given by the 
composition 

B ( U )= ~ ~ ( 2 )  -proj 
~ ~ ( 2 )X R""' + B ( W ) c B ( A P ~ ) .  

Since B ( V  - U )  = B(s~"+"'X I ) there is no obstruction to deforming (p 

by a stratified homotopy re1 B ( U )so that its image lies in ~ ~ ( 2 ) .Hence, V 
is the pullback of the linear model. It follows that (V2"+"'+', G ) must be 
equivalent to the linear biaxial action (D2"+"'+', G )  and hence, that the 
action on C # (- C) = a V is also linear. 

6. Actions of SO (3)on Homotopy 7-Spheres and of G2on Homotopy 
15-Spheres. In this section G is of type 11, i.e., G = SO(3) or G 2 and 
n = 3 or 7 .  We shall also assume that in = 1, i.e., that the fixed point set 
is 1-dimensional. 

Suppose that (C2"+' ,  G )  E C2, ,+l (G)is an oriented biaxial action on 
a homotopy sphere. Let B = B (C) and Bo = Bo(C).By 5.2, B is a contrac- 
tible 4-manifold, B o is a circle, and the double branched cover of dB along 
Bo is an integral homology 3-sphere. We shall now define three different 
integer-valued additive invariants of (C2"+' ,  G ) .  
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The index of the orbit knot. The index of an oriented knotted circle 
Bo in an oriented integral homology 3-sphere dB is defined as the signa- 
ture of the symmetrization of a Seifert linking form for the knot. Since the 
double branched cover of this knot is required to be an integral homology 
sphere, this signature is divisible by 8. Define a(C) to be one eighth the 
index of the orbit knot (dB, B o ) .  It is clearly an additive invariant of the 
action on C. 

The p-invariant. By 4.6 and 5.3, z2"+' is equivalent to a pullback 
of A P ~via a map p:  B  + B ( A P ~ ) .Since dB is 3-dimensional, p I dB : dB + 

dB(APZ')= S4 is null-homotopic. Hence, by 4.9 and 5.4, C2"+' 
equivariantly bounds a spin manifold w2"+*.As in Section 2 it follows 
that the rational number p(C) is a well-defined additive invariant of the 
action. We can normalize it to be an integer by setting (C) = tr *,,+ ,U (C)  
where a7 = 28 and a15= 8128. 

The obstvzrction to being a pullbuck oj'the linear rnodel. The fixed 
point set of G on AP2 is R P 2 . Let x o  c RP2 be a fixed point and let D * " + ~  
C AP* be a linear disk centered at xo. We may identify the linear disk 
D2" with D2" X (0) C D ~ ~ + ~C AP2. Its orbit space B ( D 2 " )consists of 
the elements in BR(2)of trace less than or equal to one. Hence, B ( D ~ " )C 

B(AP2) . We wish to analyze the obstruction to making a stratum-by-
stratum deformation of p:  B  + B ( A P 2 )through stratified maps so that its 
image lies in B ( D 2 " ) .  

First we want to make two observations. For any closed biaxial G-mani- 
fold M, dB1 ( M )  is a circle bundle over B o ( M ) .For i = 0, 1 ,  let pi:  Bi + 

Bj(AP2)denote the restriction of p to the i-stratum, and let dp,  : d B I  + 

aB,(AP*)denote the restriction of pl  to d B , .  Since p is stratified, dp,  is a 
map of circle bundles covering po. 

Next we claim that there is essentially a unique stratified map 0 :  B  + 

B(D2").There is only one choice for the map on the 0-stratum, 00 .. B o + 

Bo(D2") ,since its range is the point x o .  Let s.:.,,C B I ( D  2")  be the fiber of 
dBl(AP*)+ B o ( A P 2 )at xo. The 1-stratum of B ( D 2 " )is diffeomorphic to 
the product s:., X I. Since B l  is a knot complement, H ' ( B ~; Z )  z Z .  
Also, dB1 = B o  X s ' .  Let y be a generator of H ' ( B ~; Z) and let 130, : dB,  
+ s.:.,be a map of circle bundles representing j*(y) c H l(aBI ; Z), where 

,i : dBl - B l  is the inclusion. Clearly, d B I  extends to a map 0 , : B I  + 

B , ( D2")= s.!., X I representing y. Since B 2 ( D  *")  is a 3-ball, the maps d o  
and can be extended to a stratified map 0 :  B  + B ( D 2 " ) .It is clear that, 
up to the choice of generator y ,  any stratified map B + B ( D 2 " )must be 
stratified homotopic to the map 0 constructed above. 
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We shall now examine the obstruction to deforming an arbitrary 
stratified map p :  B  B (AP*)to i 0 19: B  B ( A P 2 ) ,where i :  B ( D 2 " )  4+ + 

B ( A P 2 )  is the inclusion. First consider the restriction of p to the 
0-stratum. Since Bo = S 1 and since aB is a homology 3-sphere, the nor- 
mal bundle of Bo in dB is trivial. On the other hand, the normal bundle of 
Bo(AP2)= RP2 in dB(AP2)= s4is non-orientable. Since po:S'  + R P ~  
is covered by a map of normal bundles, it must be null-homotopic. Hence, 
we may assume that po(Bo)= xo .  The 1-stratum of B ( A P * ) is a 2-disk 
bundle over RP2.  Let q :B 1( A P ~ )+ RP2 be the projection and let i :s:,- d~~ ( n P 2 )be the inclusion of a fiber. It is easy to check that q 0 i :s:,- RP2 is the map which is non-trivial on x l .  Let q1= q 0 r p l :  B 1  + RP2 
and let 8, = q 0 i 0 O 1 :B l  + R P 2 . It follows from the above remarks that 
-
ql 1 dB1 is homotopic to 8,ld B l .  Hence, we may assume that these restric- 
tions are equal. Notice that and g1 induce the same map on funda- 
mental groups since they both must represent the non-trivial element of 
H 1 ( B I ;2 / 2 2 ) .  The problem of deforming p to I9 therefore reduces to the 
problem of finding a homotopy of q1to 8, re1 d B l . The obstructions lie in 
H 1 ( B 1 ,d B I ;  .rr,(RP2)). This group is obviously zero for i = 0, 1 .  At first 
glance it appears to be non-zero if i = 2. However, since .rr,(RP2)acts 
non-trivially on 7 r 2 ( ~ P 2 )= Z ,  it follows that the obstruction actually lies 
in H 2 ( B I ,  dBl  ; ztulsted), where the coefficients are twisted via the homo- 
morphism ($[ ), : .rrl ( B 1) + .rrl ( R P 2 ) .Since the double branched cover of 
aB along Bo is an integral homology 3-sphere an easy computation shows 
that H 2 ( B 1 ,  aBl  ; z ' ~ ' " ~ ~ )= 0. Therefore, the only possible non-zero ob- 
struction group is H ~ ( B [ ,  Since .rrl(RP2)acts trivially on dBl ; 7r3(RP2)). 
7r3(RP2)E Z ,  the coefficients are untwisted. Hence, there is a primary 
difference class in H ~ ( B [ ,aB1; Z )  = Z .  It is the complete obstruction to 
deforming p 1  to $1 re1 a B I . Define r(C) E Z to be this cohomology class 
evaluated on the fundamental class of B I .  It is clear that (C2"+' ,  G )  is 
equivaleilt to a  pullback of the linear model $ and oil(v i f  T ( E )  = 0. If 
C211 + 1 is the pullback of the linear model via I9:B + B ( D ~ " ) ,then I9 can 
also be used to pull back the linear O(n)-action on D2". Hence, the 
G-action on C2"" extends to a  biaxial O(iz)-action ifand only i f  T (C)= 0. 
We shall leave it as an exercise far the reader to show that T is additive 
with respect to equivariant connected sum. 

Recall that A,,,+, ( G )  C C21,+l( G ) is the group consisting of those 
(C2"", G) with B(C2"+')= B ( S 2 " + ' ) .Since r induces a bijection be- 
tween the set of stratified homotopy classes of maps B ( S 2 " + ' )  B ( A p 2 )+ 

and the integers, we have the following result. 
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PROPOSITION6.1. The honzo~norphisnz T : A*,,+ I ( G )  Z is trn iso- -+ 

morphisnz. 
Recall that Mi"+'  is the sphere bundle S 2 , - , (A) with its canonical 

action of G = G". As we pointed out in Example 4.3 the orbit space of 
M:"+' is isomorphic to that of the linear biaxial action on s ~ " " ,  i.e., 
~ 2 1 1 +1 

3 E A*,,+I(G).  

PROPOSITION6.2. The infinite cyclic group A2,,+, ( G )  is gerreruted 
by Mi i1+ ' .  

Proof. The homomorphism @ : A2,,+ ( G )  Z takes M:"" to 1 .-+ 

PROPOSITION6.3. C2,,+l ( G )  E A2,,+1 ( G )  @ CZ,r+l(O(12)). Thus, 
eveiy biaxial G-action or1 a honzotopy (2n + 1)-sphere cruz be writre12 
uniquely as the equivariant connected sun2 of the restriction oj' urz 
O(n)-action and some number of copies of M i " + ' .  

Proofs. We must show that any C E Cz,,+l ( G )  can be written in the 
form C' # C" where C' has linear orbit space and where the G-action on 
C" extends to an O(n)-action. By 6.1 we can choose C' E A2,,+l ( G )  so that 
T(C ' )  = T(C) .Since T(C # ( - C ' ) )  = 0 ,  the G-action on C # ( - C ' )  
extends to O ( n ) .  Let C" be the image of C under the canonical projec- 

tion p&l p ~ :  C 2 n + l ( O ( n ) )0 C 2 n + l ( G )  defined in Section 5. Since-+ 

(C # ( -C ' ) ,  O ( n ) )  and (C", 0( 1 2 )  have the same orbit space, the theorem 
of the Hsiangs and Janich implies that they are equivalent. By adding C' 
to both sides and using 5.6, we deduce that C is equivalent to C' # C".  

At this point we have defined three homomorphisms a,@, and T from 
C2,,+I ( G ) to the integers. We have shown that T 1 C2,,+ (O(12)) is the zero 
map. Since the index of the unknot is zero, we have that a /  A2,,+, ( G )  is 
also the zero map. By 4.8, 5.3, and 5.4 any C E C*,,+ I (0( n ) )equivariantly 
bounds a parallelizable manifold v2"+*.By [ 5 ] ,  [13] ,  the index of v2"+' 
is equal to the index of the orbit knot. By [12] ,the p-invariant of C2"+' is 
the index of v2''+ldivided by 8a2,,+,. It follows that @ and a agree on 
Cz,,+I ( O ( n ) ) .By 6.2 the restrictions of and T to A2,,+, ( G )  agree up to 
sign. By choosing our generator y E H ' ( B , ; Z )  Z correctly, we may 
assume that T JAz , ,+ l( G )  = @ IA2,,+l ( G ) .  Hence, @ = T + a.We there- 
fore have the following result. 

PROPOSITION6.4. T = @ - a:C 2 , , + l ( G )  Z.-+ 

By 4.8 and the Brieskorn-Hirzebruch examples, the group of homo- 
topy (2n + 1)-spheres which admit biaxial O(iz)-actions is precisely bPz,,+2. 
Therefore the group of homotopy (2n + 1)-spheres which admit biaxial 
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G-actions contains bPz, ,+z.  Since bP8 = 0,. every homotopy 7-sphere 
admits a biaxial SO(3)-action. A priori the corresponding result for G Z  
could be false since bP16  is a subgroup of  index 2 in However, as we 
pointed out in Section 2, M!' bounds a parallelizable manifold (non-equi- 
variantly). Therefore, as a consequence o f  6.3, we have the following result. 

PROPOSITION 6.5. The set of homotopy 15-spheres which admit 
biaxial Gz-actions is precisely b P 1 6 .  

It is natural to ask to  what extent these results can be generalized 
to higher dimensions. W e  shall end this section by stating a few open 
problems. 

PROBLEM1. Calculate A2,+, ( G )  and CZn+, ( G )  for G = SO (3) or 
G2and  m > 1. 

PROBLEM 3.  Suppose c ~ ~ ~ + ~ ~ '  B ( A P ~ )E C2,,+,,, ( G )  and p :B ( C )  + is 
the classifying map. Is po: Bo(C)  + B ~ ( A P * )= R P 2  null-hornotopic? 

Solving Problem 3 is certainly the first step for solving Problems 1 
and 2. W e  know that Bo(C)  is a Z/2Z-homology nz-sphere. The  question is 
complicated by the fact that H , (Bo(C) ;  Z) may be odd torsion. I f  m = 2,  
then the fact that p0 can be covered by a bundle map d p l  : a B 1  (C)  + 

~ B , ( A P * )implies that po is null-homotopic. I f  m > 2 and i f  H,(Bo(C);  
Z )  has no odd torsion, then I believe that the fact that dp l  can be extended 
to  p l  implies that p0 is null-homotopic. I f  po is null-homotopic, then 
p I aB(C)  is certainly also null-homotopic. Hence, Theorem 4.9 together 
with an affirmative answer to  Problem 3 would imply that every biaxial 
(C2"+"', G )  is equivariantly equal to  the boundary o f  a spin manifold. 

In regard t o  Problem 1 ,  it should not be difficult to  calculate 

Az~ ,+ , , , (G)  and 7r,,,+2(RP2). in terms o f  . i r , , , + l ( ~ ~ 2 )  

Another interesting question is the following. 


PROBLEM 4. Let S :  C2,,+,,,(G) -+ be the honzonlorphisnz 02,,+,,1 
which sends the G-action to the rtnderlying homotopy sphere. Calculate S .  
111 particular, is it possible for S O ( 3 )  or G 2  to act biaxiully on cr hor~iotopy 
sphere which doesn't bound a parallelizable nlanifold? 

There are some further open problems related to  the sphere bundles 
Slit ( A )  and the Brieskorn manifolds C2"+'(h  + j. 2, . . . , 2).  

PROBLEM 5. Fix aiz integer nz. According to Exanzple 4.3 the 
G-nzar?ifolds belonging to {Sill ( A )1 h + J' = m ) U { C *"+' (nz. 2 ,  . . . , 2 ) )  
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all have the same orbit triple (B, dB. B o )  where B o  is a torus link of type 
(m, 2) in dB = s 3 .  Classlb these G-manifolds up to equivariant horneo- 
morphism. 

Tamura [32] has done some work on the corresponding non-equivari- 
ant question. In particular, it is known that these manifolds are not all ho- 
meomorphic. (If n2 = 0 they have distinct rational Pontriagin classes.) 
Suppose that (M. G )  is a biaxial G-manifold with orbit triple ( B ,  aB. B o )  
as above. According to [I] ,  page 282, it suffices to classify the set of pos- 
sible (M - M o ,  G)'s since any equivariant homeomorphism on the com- 
plement of the fixed point set will extend across it. To answer this question 
u e  need only compute the set of possible homotopy classes of maps on the 
1-stratum cp,  :B 1  -+ R P ~ .(Here B 1  is the complement of a certain torus 
link in s'.)The map on the fundamental group .irl(B l) 2 / 2 2  must be + 

non-zero on any meridian, but other than this condition, p l : B l  + RP' 
can be arbitrary. Let a e H 2 ( W 2 ,z ' ~ ~ ~ ' ~ ~) be a generator. It seems pos- 
sible that the question can be settled by looking at pT(a) e H ~ ( B ~ ,z ' ~ " " ~ )  
and also that this class determines the Pontriagin class of M. 

PROBLEM6. IS c~'"'(172, 2, . . . , 2) ever G-difjeo~norphic to (1 

sphere bundle Sh,;(A) with h + = MI? 
Since ~ ~ " + ' ( m .  . . . , 2) equivariantly bounds a parallelizable2, 

manifold of index (m - I) ,  we can compute its p-invariant. We have 
already computed the p-invariant of S,,,,(A) in Section 2. It is easy to check 
that these numbers are equal only if the peculiar condition (h - , j ) l  = 

h + j is satisfied. 

7. Actions of U ( n ) ,  SU(n)  and SO(2) .  There is a theory of biaxial 
U(n)- and SU(n)-actions which is closely analogous to the theory dis- 
cussed in Sections 4, 5 and 6. For U(n),  rz 2 2, and for SU(n) ,  1 2  2 4, this 
theory is due to Bredon [6]. In these cases the key point is that the linear 
model is universal. As one might expect this is false for SU(3).  In this case 
the natural action on the Cayley projective plane is universal. In this sec- 
tion we shall discuss these results and some of their implications for 
SU(3)-actions on homotopy 15-spheres and SO(2)-actions on hon~otopy 
7-spheres. 

Let H stand for U(n), n 2 2, or SU(n) ,  n r 3. A smooth H-manifold 
M4!1 +/I!is biaxial if it is stably modeled on two times the standard linear 
action, i.e., on (C" @ C",H). A biaxial H-manifold M has three types of 
orbits: as before, we shall index the strata by (0, 1, 2). We shall denote 
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the orbit space of M by A (M). The linear orbit space A (C" @ C" ) may be 
identified with ~ ' ( 2 )  the space of complex hermitian, positive semi-defi- 
nite, 2 by 2 matrices. This space is a cone over a 3-disk. It follows that 
A ( ~ 4 1 1+111 ) is homeomorphic to a (m + 4)-manifold with boundary and 
that the fixed point set Ao(M) is a closed m-manifold embedded in dA (M)  
in codimension three.' 

The linear action of U(r7) on C" @ C" is the restriction of the action 
of O(2n) on R2" @ R2" E C" @ C" . Hence, if O(2n) acts biaxially on 
~ 4 1 1+III, then restriction gives a biaxial U(n)-action (M~"'"', U(IZ)). The 

complex numbers are a subalgebra of the Cayley numbers. The subgroup 
of G 2  which fixes C is isomorphic to SU(3). The linear action of SU(3) on 
C L  C 0 is equivalent to SU(3) on C! Hence the restriction of a biaxial 
G2-action to SU(3) is again biaxial. 

Example 7.1. Restriction to the subgroup SU(3) C G 2  gives a bi- 
axial SU(3)-action on the Cayley projective plane. The fixed point set is 
cP2.In [9] it is proved that the orbit space A ( 0 P 2 )  may be identified with 
~ ' ( 3 ) ,  the space of complex hermitian, positive semi-definite, 3 by 3 ma- 
trices of trace equal to one. This space is homeomorphic to 0'. The 
0-stratum is cP2and this stratum is embedded in S' = a0"n such a way 
that its complement (the 1-stratum) is a 3-disk bundle over cP2. 

Example 7.2. Restriction gives a biaxial SU(3)-action on the sphere 
bundle Si,,,(0). The fixed point set is S,',;(C) = + ,;.~ ~ ( h1).  Hence if 
h + j = + 1 the fixed point set is s3.In particular, A ~ ( M ? )  = s3.Also, 
it is straightforward to check that A (Sll,;(0)) is a 7-disk. 

If H = U(n), tz r 2, or SU(iz), i z  r 4 we say that it is of tYl?e I. If H 
= SU(3) then it is of type II. For H of type I the universal trivialized bi- 
axial H-manifold is the linear model (C" @ C" ,H), [6], [9]; for H of type I1 
the universal action is the one discussed in Example 7.1, ( 0 P 2 ,  SU(3)),  [9]. 

Suppose now that H acts biaxially on a homotopy sphere c~ "+ " 'and 
set A = A(C). By using Smith Theory and Oliver's Theorem [30] we see 
that the following conditions (analogous to 5.1) hold: 

(7.3) 	 a) A is a compact contractible ( m  + 4)-manifold with boundary. 
b) A. is an integral homelogy m-sphere embedded in aA. 

"This is one important difference from the case of biaxial O(II)-actions. Recall that  for 
such actions the fixed point set is embedded in the  boundary of the  orbit space in codimen- 
sion two. 



GROUP ACTIONS ON HOMOTOPY SPHERES 85 

The pair (dA.Ao)is called the orbit knot. 
It follows from condition a), that any (C4"+"',H )  is equivalent to a 

pullback of the corresponding universal H-manifold. 
Suppose that H is of type I and that p : A  -t B C ( 2 )= A (C @ C ) is the 

classifying map for (C4"+"'.H). We may assume that p is transverse to a 
ray emanating from the vertex in aBC(2) .The inverse image of this ray 
will be a "Seifert surface" v"'+' forAo in aA,  i.e., v"'+' will be a framed 
submanifold of a A  with avi l '+ '  = A,,. Thus, in contrast to Proposition 
5.5, for H of type I we see that the orbit knot of (C4""11, H )  must satisfy 
the following additional condition: 

(7.4) A .  bounds a framed submanifold v"'+' in aA. 

This result was first proved in [14] .Its significance is that while every knot 
in codimension two has a Seifert surface, there are knots in codimension 
three which fail to satisfy (7.4). Bredon observed in [6]that stratified ho- 
motopy classes of maps p : A  -t B C ( 2 )are in one-to-one correspondence 
with framed cobordism classes of Seifert surfaces for Ao.  In particular, in 
order for there to exist a stratified map cp:A -+ B C ( 2 ) ,  A must satisfy 
(7.4). Therefore, we have the following result. 

THEOREM7.5 (Bredon [6] ) .  Suppose H i s  of type I. For a local orbit 
space A to be the orbit space of biaxial H-action on ( I  honzotopy sphere it 
is necessary and sufficieizt that the triple (A, aA. A o )  satisjy corzditioizs 
(7.3) and (7.4).Moreover, equivalence classes oj'such (C4"+"',H )  over A 
are in one-to-one correspor~derzce with franzed cobordisni classes r!f'Seijert 
surfaces for A.  . 

As a consequence of this result and a construction similar to that in the 
proof of Proposition 4.9, we also have the following theorem of Bredon [ 6 ] .  

THEOREM7.6 (Bredon). Suppose that H is of type I and that 
(~4n+m, H )  is a biaxial H-action on a homotopy sphere. Let v"" C 

aA(C)  be the Seifert surface for Ao(C) associated to a classzfying map 
p: A( C )  -+B '(2). Then (C 4"+m, H )equivariantly bounds a biaxial H-action 
(v4"+"+' ,  H )  on a parallelizable manifold v4"+"+'. Moreover, the in- 
dex of v4"+"+' equals that of v"". (In  fact, their intersection forms are 
equal. ) 

For H = S U ( 3 )  the corresponding result, analogous to Proposition 
4.9, is the following. 
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PROPOSITION Suppose that H S U ( 3 )  and that (C12+", H )  is 7.7. = 
a biaxial H-action on a homotopy sphere. Let p : A  (C) + A (oP') be the 
classzjjing map. I f  p / dA(C):dA(C) + S 7  is null-homotopic, then C 12+"' 
equivariantly bounds a biawial action on a spin rnanqold (w12+",H ) .  

As in Section 5 ,  define C4,,+,l ,(H) to be the abelian semi-group of ori- 
ented equivalence classes of  biaxial H-actions on honiotopy (411 + 1 1 ~ ) -

spheres. Also, let D:! be the abelian semi-group of orbit triples ( A ,  dA. A,,)  
which satisfy conditions (7.3). There is a semi-group homomorphism 

which associates to each action its orbit triple. 
Let @ ~ 1 + 3 , . 3  be the set of  diffeomorphism classes of  pairs (s"".', C"') 

where C"' is a honiotopy nz-sphere. I f  r v  = 3 we shall require that C3 = S 3 ,  
T ~ U S ,06.3 , t h  e set o f  knotted 3-spheres in S 6 .  It is known that = c~~~ 
@ i l l  +3,11l '1s an abelian group under connected sum. Let @;;'+"."' be the sub- 
group consisting of  those knots which have Seifert surfaces (i .e. ,  satisfy 
7.4). Levine [23] and Haefliger [16],  [17] have gone a long way towards 
calculating the groups O"""."'. In particular, the subgroup @{;'+.'."' is 
cyclic of  order 1 ,  2 or a.Also, = Ch.' is infinite cyclic and 0k.LCi." 
is a subgroup of index two, [17].  

W e  have that C D:. Define c4,,+,(H) to be the pre-image @ " ' + 3 9 n '  

of @ii?+3.111 under p,. Thus C?4,,+,,,(H) consists o f  those (C4"+"'.) with 

Ao(C)  simply connected and aA(C)  = s " ' + ~ .  The  proof of  the following 
result is similar to that of  Proposition 5.6. 

PROPOSITION C?4,1+,11( H )  is (111 ubeliurz group. 7.8. 

I f  H is of  type I ,  then by 7.5 the image of  ~ 4 , , + , , 1 ( H )  
under p H  is 

o;+~,"' .  In fact it is proved in [6] that for nz > 1 and for H of type I, 
p H  : ~ 4 , r + , l l( H )  4 0{'+3.i1'is an isomorphism. 

Biaxial Actions of S U ( 3 )  on Homotopy 15-Spheres. W e  now spe-
cialize to the case H = S U ( 3 ) , m  = 3. W e  have the commutative diagram: 

PROPOSITION7.9. The group c 1 5 ( S L J ( 3 ) )  is is0~7zorphic eithel to Z 
or to Z @ 2 / 2 2 .  

mailto:@~1+3,.3
mailto:@;;'+"."'
mailto:@{;'+.'."'
mailto:@ii?+3.111
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Proof. We will show that the kernel of p ~ :  + c ~ . ~C I 5 ( ~ ~ ( 3 ) )  G Z 
is either 0or 2 / 2 2 .  The argument is similar to the proof of 6.1. Suppose 
that ( A ,  aA. A o )  = ( D ' ,  s 6 ,s3)is an orbit triple. We will show that there 
exists at most two stratified homotopy classes of maps A + A(oP*).Sup-
pose that p, p ' : A  A ( O P * ) are two such maps. First observe that any + 

map p o : s 3 + CP* is null-homotopic. Hence, we may assume that the 
bundle maps a p , , a p ; : a A ,  + a A ,  ( 0 P 2 )  differ by a framing of the 
2-sphere bundle a A l  r s3 X s2;i.e., by an element of r 3 ( S 0 ( 3 ) ) .We 
have that A , (oP*) is a 3-disk bundle over CP*. Let q :  A ,  ( oP*)+ CP* be 
the projection. Since the maps q ap l  and q ap,' must both extend to 
A = 0' X s*,it follows that the element of r 3 ( S 0  ( 3 ) )  is zero. Thus we 
may assume that a p l  = a p ; .  We must next try to construct a honlotopy 
from q pl to q p ; : A l  --+ c P 2 where on the boundary the homotopy is 
allowed to vary only through framings of the 2-sphere bundle aA , G s3X 

s*.Relative to a A ,  the only obstruction to finding such a homotopy lies in 
H ~ ( A ,  ; r 6 ( c P 2 ) )  s*;2 / 2 2 )  3 2 / 2 2 ,  Hence, a ~ ,  = H 6 ( D 4 X s*,s3 X 

the obstruction to finding the original homotopy is at most 2 / 2 2 .  Once 
the homotopy is found on the l-stratum there is no problem to extending 
it across the top s t r a t ~ m . ~  

Let F I 5 ( S U ( 3 ) )denote the quotient of e l 5 ( s U ( 3 ) )by its (possible) 
2-torsion. By Proposition 7.7, every C" E e I 5 ( s U ( 3 ) )bounds a spin mani- 
fold. Hence, we can use the p-invariant to define a hon~omorphisnl 
j l :  C 1 5 ( s U ( 3 ) )+ 2 ,  as in Section 6. This induces a hon~on~orphism 
j i :F15(SU(3))+ Z on the quotient group. Analogous to Proposition 6.2 
we have the following result. 

PROPOSITION7.10. The ii?fi'ilite cyclic grozrp F 1 5 ( S U ( 3 ) )  is gerzer- 
ated by (M:', S U ( 3 ) )and f i  is urz iso1~1orphisr7~. 

Proof. The honlomorphism f i  takes (M:', S U ( 3 ) )to 1.  
Since F 1 5 ( S U ( 3 ) )+ c ~ . ~  + c : . ~and e l 5 ( U ( 3 ) )  are both injective we 

have that the natural map e l 5 ( U ( 3 ) )  F15(SU(3) )is also an injection. + 

PROPOSITION7.11. C I 5 ( u ( 3 ) )is a subgroup of index two in Fl5(SU(3)) .  

Proof. Suppose that C" E C l s ( ~ ( 3 ) ) .  be a Seifert surface for Let v4 
(aA(C) ,  A o ( C ) )  = ( s h ,s3).By Rohlin's Theorem, the index of v4,I(v ' ) ,  

6The proof actually shows that the kernel of p~ is the group r 4 ( m ,  S 0 ( 3 ) ) ,  where !U? is 
the space of those maps S2 + CP* which induce an isomorphism on H Z (  ; Z ) .  The compu- 
tation of f I 5 ( S u ( 3 ) )reduces to determining whether a 4 ( m ,  SO(3))  is 0 or 2 / 2 2 .  



88 MICHAEL W .  DAVIS 

is divisible by 16. By 7.6, CIS equivariantly bounds a parallelizable v16 
with index I(v?. It follows that fi(C1') = I/xI(v') = O(mod 2). 

COROLLARY The biaxial SU(3)-action on MiS  does not extend 7.12. 
to a biaxial U(3)-action. 

COROLLARY7.13. The ovbit knot of (MiS,  SU(3)) is (7 gerlertrtor,fov 
c ' , ~ ,  the group of knotted 3-spheves in s'. 

Proof. Consider the diagram 

All four groups are isomorphic to Z. The vertical maps are both multipli- 
cation by 2. Hence, the top map must be an ison~orphisn~. 

Biaxial S O  (2)-Actions on Honzotopy 7-Spheres. A biaxial S O  (2)- 
action is just a semi-free circle action with fixed point set of codimension 4. 
Such actions on homotopy spheres have been studied by Montgomery- 
Yang [27], [28], [29] and Levine [24]. If (~"+"',0(2)) is a biaxial 
SO(2)-action on a homotopy sphere, then its fixed point set Co is an in- 
tegral hon~ology m-sphere and its orbit space C* is a homotopy 
(rn + 3)-sphere, [27]. Moreover the set of oriented equivariant diffeonlor- 
phism classes of such actions is in one-to-one correspondence with the set 
of oriented diffeomorphism classes of pairs (C*, Co) where C* is an 
oriented honlotopy (m + 3)-sphere and Co is an integral hon~ology 
m-sphere, [24]. Thus, every such pair occurs as an orbit knot. 

Regard SO(3) as the automorphisnl of the quaternions. The sub- 
group which fixes C is SO(2).  Thus, if (M. SO(3)) is any biaxial 
SO(3)-action, the restriction of the action to SO(2) is again biaxial. 

The subgroup of G 2  which fixes H is SU(2). Denote the normalizer of 
SU(2) in G 2  by NG2(SU(2)). Then NGz(SU(2))/SU(2) s SO(3). It is easy 
to see that for any biaxial G2-manifold M, the orbit space M / G 2  coincides 
with the orbit space of MSU(*) under SO(3). We also have that 

If (M, SU(3)) is a biaxial SU(3)-manifold then MWU(*) intersects all the 
singular orbits. It follows easily that M S U U ( * ) / ~ 0  (2) s aA(M),  
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Exanzple 7.14. Consider the action of S O ( 2 )  on M :  = S z , - , ( H ) .  
We have that ( M i ,  S O ( 2 ) )  = ( ( M : ~ ) " " ( ~ ) ,S O ( 2 ) ) .By the above remarks 
the orbit knot of ( M i ,  S O ( 2 ) )  coincides with that ( M i 5 ,  S U ( 3 ) ) .  By 7.13 
this orbit knot is a generator of E'I,~. 

Let C , ( S O ( ~ ) )be the abelian group of oriented equivalence classes of 
biaxial SO(2)-actions on homotopy 7-spheres with orbit knot lying in E',~, 
This group was first considered by Montgomery-Yang [28].As we have 
seen, the natural map psoc2,:i;,(s0(2)) + c ~ . ~is an isomorphism. As an 
immediate consequence of 7.13 and 7.14 we have the following result. 

PROPOSITION7.15. The infinite cyclic group C,(SO ( 2 ) ) is gener- 
ated by (M:,  S O  (2 ) ) .  

COROLLARY7.16. Every senzi-j~ee circle action on tr hor?zotopy 
7-sphere with fixed point set s3is the restriction of a biaxial SO(3)-uctiorz 
in A 7 ( S 0 ( 3 ) ) .  
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