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CAT(0) REFLECTION MANIFOLDS

F. D. ANCEL, M. W. DAVIS AND C. R. GUILBAULT

Let M" be a compact, contractible manifold. Its boundary X1 is
a homology sphere. We assume that £"~! admits a PL triangulation.
(This is automatic for n # 5.)

In {7], Davis showed how to construct an action of a reflection group
on an open contractible manifold with fundamental chamber M. In [10],
Gromov showed that a modified version of this construction could be
given a piecewise Euclidean, CAT(0) metric. (Roughly, a “CAT(0) met-
ric” is the generalization to singular metric spaces of the notion of a com-
plete Riemannian metric of nonpositive sectional curvature on a simply
connected manifold. The precise definition is given in [10, §2.4.C].) In
Gromov’s version, M is replaced by CZ, the cone on X, and the CAT(0)
space on which the group acts is generally, no longer a manifold, but only
a polyhedral homology manifold. In [1], Ancel and Guilbault showed
that any contractible M™, with n > 5, can be written as the union of
two cones along the cone on a homology (n — 2)-sphere. This allows us
to use Gromov’s idea to put CAT(0) metrics on many of the original
examples of [7]. In particular, we get the following result.

Theorem. Let M"™ be a compact, contractible manifold, with n > 5
and with boundary a PL homology sphere. Then there is an open con-
tractible n-manifold X with a piecewise Euclidean CAT(0) metric and
an isometric action of a reflection group W on X with fundamental
chamber M".

Basically, the proof consists of recalling the constructions of [7], [10]
and (1)

The construction of [7] Triangulate ¥ and denote the resulting
simplicial complex again by X. Let S be the set of vertices in ¥ and let
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W be the right-angled Coxeter group generated by S with relations:

s?=1, foralls€ S
(ss)? =1, if s and s’ span an edge of L.

We identify S with its image in W. “Right-angled” refers to the fact
that if s and s' are distinct elements of S, then the order of ss' in W
is either 2 or co. For each s in §, let £, denote the closed star of s in
the barycentric subdivision of ¥. For each z € M, let W, denote the
subgroup of W generated by {s € S | = € X,}. (If this set is empty,
then Wy = {1}.) Set

X(W,M) = (W x M)/ ~

where the equivalence relation ~ is defined by (w,z) ~ (w',z') if and
only if z = z' and w™'w' € W,. Then W acts naturally on X (W, M).
It is proved in [7] that X(W, M) is a manifold (since M is a manifold
with boundary).

More generally, if X is any space and {X,};cs is a family of closed
subspaces, then we can define a W-space X' (W, X) in exactly the same
way. By a reflection group we mean an action of a Coxeter group on
a space which is equivariantly homeomorphic to some X(W, X). The
space X is called the fundamental chamber.

In particular, the construction X' (W, M) could be modified by replac-
ing M by CZ. The resulting space X(W, CX) is a polyhedral homology
manifold, which is W-equivariantly homotopy equivalent to X' (W, M).
However, X (W, CX) is generally not a topological manifold since there
will be singularities at the cone point and its W-translates whenever &
is not simply connected (and of dimension greater than 1).

A simplicial complex is a flag complez if any finite set of vertices,
which are pairwise joined by edges, span a simplex.

It is proved in [7] that X (W, M) is contractible if and only if ¥ is
a flag complex. (This condition is easy to achieve, for example, the
barycentric subdivision of any cell structure on ¥ is a flag complex.)

The construction of [10] The cone on the barycentric subdivision
of a k-simplex can be identified with a standard simplicial subdivision
of a (k + 1)-cube in a natural way. This gives an identification of the
cone on a k-simplex with a (k+ 1)-cube, well-defined up to symmetries.
The picture for & = 2 is given below.

Gromov puts a piecewise Euclidean structure on CY by identifying
the cone on each simplex of ¥ with a regular Euclidean cube of edge
length 1. Each translate of CZ in X(W, CX) is given a cubical structure
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FIGURE 1

in a similar fashion. Further details on this cubification can be found in
[5, §6].

The distance between two points in X(W,CX) is then defined to
be the length of the shortest path between them. This metric gives
X (W,C3X) the structure of a “geodesic space” (also called a “length
space”). Since X (W, CX) is simply connected, to prove that this metric
is CAT(0), it sufficies to show that it satisfies CAT(0) locally (i.e., that
it is nonpositively curved), cf., [10, p. 119] and [3, p. 195]. To prove
this it is necessary and sufficient to show that the link of each cubical
face of CT in X(W,CX) is a flag complex, cf., [10, pp. 120-122] and
[4, Lemma 1.3]. But this is true if and only if ¥ is a flag complex.
(Proof: The link of the cone point is £. The link of any other cubical
face in the interior of CX can be identified with the link of a simplex in
¥ and this is a flag complex if ¥ is. Finally, the link of a cubical face
on the boundary of CX can be identified with an iterated suspension of
a link of a simplex in ¥ and the suspension of a flag complex is a flag
complex.) In the case when the Coxeter group W is not right-angled
there is a more refined version of this construction, due to Moussong,
(11].

The construction of [1]. Let 7% C Z"~! be a PL-embedded
homology sphere of codimension one. Then ¥, divides ¥ into two ho-
mology (n — 1)-cells, call them N; and N,. It is proved in [1, Lemma 1]
and [6, Proposition 2] that, for n > 5, one can always find a ¥ so that
the induced homomorphism m,;(2e) — m(X) is surjective. It follows
from van Kampen’s Theorem that, for ¢ = 1,2, m,(N;) is normally gen-
erated by the image of m(Z,). This result is used in [1] to prove that
M can be written as a mapping cylinder of some map from ¥ to an
arc and in [2] to prove that the interior of M can be given a complete
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CAT(¢) metric, for any ¢ < 0.

Proof of the theorem. As above, let ¥, be a PL homology sphere of
codimension one in ¥ so that, for ¢ = 1,2, n;(V;) is normally generated
by the image of m;(%,). Choose a PL triangulation of X as a flag complex
so that ¥, is a full subcomplex. For i = 1,2, set

3;=N; UCL,
o

where, as before, C'Y denotes the cone on Y. By van Kampen’s The-
orem, %; is simply connected. Let F denote the closed star of the
cone point in the barycentric subdivision of C%,. Glue CZ, to CZ,
along F and call the result X. Then X is clearly a contractible, poly-
hedral homology n-manifold with boundary. Since the complement of
the interior of F' in C%, is a collared neighborhood of X3, we have
0X = N,U(ZoxI)UN,, which is PL-homeomorphic to &. Fori =0, 1,2,
let v; denote the cone point of CY; and let e denote the union of the edge
from v, to vy and the edge from v, to v;. The triangulation of X (as a
union of two cones) has PL singularities only along e. According to a
well-known theorem of Edwards [9], a polyhedral homology manifold of
dimension n > 5 (with boundary a manifold) is a topological manifold
if and only if the link of each vertex in its interior is simply connected.
This holds in our case. (The link of vy is the suspension of X,; for
i = 1,2, the link of v; is £;.) Hence, X is a contractible n-manifold. By
the h-cobordism Theorem, it is homeomorphic rel boundary to M.

Now apply Gromov’s cubification to CE; and CZ,, separately. This
defines a cubical structure on their union, X. For i = 0,1,2, let S; be
the set of vertices in ¥; so that So = $ NS, and § = S; U S,. For
s € 85; — 8, set

XS = (Ei)sa

the closed star of s in the barycentric subdivision of X;. For s € Sy, set
Xs = (El)s U (22)3:

In both cases, X, is an (n — 1)-cell in X and a union of cubical faces.
Let W be the right-angled Coxeter group generated by S defined as
before. Put

X = xX(W, X)
It has a cubical structure induced from that of X. One checks, just

as in Gromov’s construction, that the link of each cubical face is a flag
complex. Hence, we see that X’ is CAT(0) and the proof is complete. O
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Remarks. 1) If "' is not simply connected, n > 2, then the CAT(0)
manifold X is not simply connected at infinity and hence, not homeo-
morphic to R*.

2) A very similar construction using reflection groups was mentioned
in Remark 5b.2 of (8, p. 384]. The idea there was to use only one of
the cones, say C%,, as the fundamental chamber. Let W' be the right-
angled Coxeter group generated by the vertices of £,. It follows, as
above, that X(W’,CL,) is a CAT(0) manifold. Moreover, if the double
of N, (along %) is not simply connected, then X (W', CL,) is not simply
connected at infinity. The point of our theorem is that any compact,
contractible manifold (with PL boundary) can occur as a fundamental
chamber.
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