Concordance Classes of Regular Un and Spn Action on Homotopy Spheres

M. Davis; W. C. Hsiang

The Annals of Mathematics, 2nd Ser., Vol. 105, No. 2. (Mar., 1977), pp. 325-341.

Stable URL:
http://links.jstor.org/sici?sici=0003-486X\(197703\)2\%3A105\%3A2\<325\%3ACCORAA\>2.0.CO\%3B2-8

The Annals of Mathematics is currently published by Annals of Mathematics.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/annals.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact support@ jstor.org.

Concordance classes of regular U_{n} and Sp_{n} action on homotopy spheres

By M. Davis ${ }^{1)}$ and W.C. Hsiang $^{2)}$

Introduction

In this paper and a subsequent one [7], we shall apply the general theories of [4], [5], and [6] to some interesting and important cases. Let G_{n} be O_{n}, U_{n} or Sp_{n}, let ρ_{n} be the standard representation of G_{n} and let Σ be a smooth homotopy sphere. Consider a smooth action $G_{n} \times \Sigma \rightarrow \Sigma$ modeled on $k \rho_{n}$ with $n \geqq k$. This means that the orbit types and the normal representations of G_{n} on Σ occur among those of k times the standard representation of G_{n}. In other words, the orbits are Stiefel manifolds of the form G_{n} / G_{n-i} where $0 \leqq i \leqq k$. Following [12], [13], such actions will also be called 'regular G_{n}-actions'. There are two typical examples of these actions:
(A) The unit sphere of the representation $k \rho_{n} \oplus l \theta$ (where θ denotes the one dimensional trivial representation) is clearly such a G_{n}-sphere.
(B) Let $\Sigma^{2 m+1}(p, q)$ be the Brieskorn variety (see [3], [9]) defined as the intersection of the unit sphere in \mathbf{C}^{m+2} with the hypersurface $f^{-1}(\varepsilon)$ where

$$
f\left(u, v, z_{1}, \cdots, z_{m}\right)=u^{p}+v^{q}+z_{1}^{2}+\cdots+z_{m}^{2},
$$

and where ε is a sufficiently small positive number. For suitably chosen p and $q, \Sigma^{2 m+1}(p, q)$ will be a homotopy sphere for $m>1$. If $V^{2 m+2}(p, q)$ is the intersection of $f^{-1}(\varepsilon)$ with the unit disc in \mathbf{C}^{m+2}, then $V^{2 m+2}(p, q)$ is a parallelizable manifold with boundary equal to $\Sigma^{2 m+1}(p, q) . O_{m}$ acts linearly on \mathbf{C}^{m+2} by operating on the last m coordinates and the invariant submanifold $V^{2 m+2}(p, q)$ becomes an O_{m}-manifold modeled on $2 \rho_{m}$. Write $m=d t n+l$, where $d=1,2$ or 4 as $G_{n}=O_{n}, U_{n}$ or Sp_{n}, and consider the embedding $t \rho_{n}+l \theta: G_{n} \rightarrow O_{m}$. The restriction of the O_{m}-action to G_{n} gives $\Sigma^{2 m+1}(p, q)$ the structure of a G_{n}-sphere modeled on $k \rho_{n}$ with $k=2 t$. As we shall see, these action on Brieskorn spheres can be distinguished from one another by the index or Kervaire invariant of $V^{2 m+2}(p, q)$ which coincides with the index or Kervaire invariant of the fixed point set $V^{2 l+2}(p, q)$. Thus, for any even

[^0]k there are non-linear G_{n}-spheres modeled on $k \rho_{n}$.
It turns out, rather surprisingly, that for $G_{n}=U_{n}$ or Sp_{n}, these examples are essentially the only possibilities which can occur. More precisely, we shall show that if $G_{n} \times \Sigma \rightarrow \Sigma$ is modeled on $k \rho_{n}$ with $n \geqq k$ and with $G_{n}=U_{n}$ or Sp_{n}, then there is a regular G_{n}-action on $\Sigma \times[0,1]$ such that the action on $\Sigma \times 0$ is the given action while on $\Sigma \times 1$ it is equivalent to either the linear action or one of the above actions on a Brieskorn sphere ${ }^{3}$-we shall say that the G_{n}-sphere $\Sigma \times 0$ is concordant to one of the typical examples. For $k=2$, this result was essentially proved by Bredon in [2]. Two immediate consequences of our result are particularly worthwhile mentioning:
(A) If the regular G_{n}-sphere Σ modeled on $k \rho_{n}$ is fixed point free, then Σ is concordant to the linear action.
(B) If the regular G_{n}-sphere is modeled on $k \rho_{n}(k \leqq n)$ for k odd and if the dimension of the fixed point set is not equal to 3 , then Σ is concordant to the linear action.

In particular, in either of the above cases, the underlying differentiable structure on Σ is the standard one. The case of $G_{n}=O_{n}$ is dealt with in the next paper [7].

Let us now give a rough sketch of our proof. We shall work entirely in the category of smooth G-manifolds and (equivariant) 'stratified maps' and in the analogous category of 'local G-orbit space' and stratified maps (see Sections II.4-II. 6 in [5]). For now, it should suffice to mention that a G-manifold is stratified by the orbit types as is its orbit space and that we only wish to consider smooth maps which are 'stratified' in the sense that they preserve the strata and that they map the normal bundle of each stratum transversely.

For a G_{n}-manifold M which is modeled on $k \rho_{n}$, the strata can be indexed by the integers between 0 and k. Thus, M_{i} is the invariant submanifold consisting of the orbits of type G_{n} / G_{n-i}.

The first part of our program is carried out in [6] where it is shown that we have the following set-up. Let D denote the unit disc in the representation $k \rho_{n}+m \theta$ and let $S=\partial D$ be the unit sphere. Here $m \theta$ is the trivial m-dimensional representation, where $m=\operatorname{dim} \Sigma_{0}+1$ (Σ_{0} is the fixed point set). If the homotopy sphere Σ admits a G_{n}-action modeled on $k \rho_{n}$, then Σ equivariantly bounds a parallelizable G_{n} manifold V, also modeled on $k \rho_{n}$, and there is a stratified map $F:(V, \Sigma) \rightarrow(D, S)$ which is a homotopy equi-

[^1]valence on the boundary. In this paper, we investigate the question of when we can choose such a V to be a disc.

Let A, B, K and L denote the orbit spaces of V, Σ, D and S, respectively. Then, F induces a stratified map $f:(A, B) \rightarrow(K, L)$. It is also shown in [6] how we can faithfully translate our problem to the orbit space level. For $G_{n}=U_{n}$ or Sp_{n}, the condition that F is a homotopy equivalence on the boundary is precisely that $\pi_{1}(B)=0$ and the restriction of f to the i-stratum B_{i} induces an isomorphism in (integral) homology for each i. (In the case $G_{n}=O_{n}$, the failure of this to be true is one of the major difficulties [7].) Also, V is a disc if and only if $f \mid A_{i}$ induces an isomorphism in (integral) homology and $\pi_{1}(A)=0$.

Therefore, we try to do 'surgery' on F rel B to get a new orbit space A^{\prime} together with a map $f^{\prime}: A^{\prime} \rightarrow K^{\prime}$ in such a way that for each $i, f^{\prime} \mid A_{i}^{\prime}$ will induce an isomorphism on homology. If we succeed, our new G_{n}-manifold V^{\prime} (obtained by the pullback construction of [5]) will be contractible. From such a V^{\prime}, it is easy to produce a concordance of Σ to the linear action. It turns out that modulo the usual low dimensional difficulties the only obstruction to doing this surgery is the index or Kervaire invariant of the fixed point set $V_{0}=A_{0}$. Furthermore, if k is odd, the surgery obstruction must automatically be zero. From this, we deduce the results.

By 'surgery', we essentially mean surgery on a stratified space (compare [4]). This type of surgery is a generalization of surgery on a manifold with boundary (which has two strata). The way in which surgery obstructions are computed can also be illustrated by considering this simple example. So suppose that we are given a normal map $\varphi:(M, \partial M) \rightarrow(N, \partial N)$ where N and ∂N are simply connected, and that we are trying to do surgery on φ to a homotopy equivalence of pairs. First, we try to do surgery on $\varphi \mid \partial M$. There is no obstruction (i.e., no index or Kervaire invariant), since $\varphi \mid \partial M$ is the boundary of a surgery problem, namely φ. Hence surgery is always possible. In this argument, we are "looking up one stratum." To continue, one tries to do surgery rel the boundary on $M \cup X$, where X is the trace of the surgery on ∂M. We might meet an obstruction. If so, one simply changes the cobordism X by adding the negative of this obstruction, and so surgery will again be possible. In this argument, we are "going down one stratum and changing the cobordism."

The problem of doing surgery on an orbit space is analogous. In our case, we must solve a sequence of (ordinary) surgery problems indexed by $\{0,1, \cdots, k\}$. The definition of the surgery problem on the i-stratum depends on the choice of the solutions of problems on the lower strata. Thus, as in
the case of a manifold with boundary, we can sometimes change the obstruction by going down one (or more) stratum and changing the cobordism. Furthermore, the possible surgery obstructions for the problem on the i-stratum are not arbitrary. In particular, part of the boundary of the ($i+1$)-stratum is a fibre bundle over the i-stratum with fibre $\mathbf{C} P^{m}$ (or $\mathbf{Q} P^{m}$). When m is even, by using a slight generalization of the product formula, we can sometimes look up one stratum and conclude that the original problem must have the vanishing surgery obstruction. Using one or the other argument one sees that there is no obstruction except possibly on the 0 -stratum. In this case, for k even, we would like to go down one stratum and change the cobordism; however, there is no lower stratum, so we are left with an obstruction (which is realized by the Brieskorn examples).

There is a close analogy between this program and classical obstruction theory. "Looking up one stratum" to eliminate some possible surgery obstructions corresponds to observing that a primary obstruction must be annihilated by some cohomology operation if the map is to extend to the next higher skeleton (of the domain, viewed as a cell complex), while "going down one stratum" corresponds to observing that certain nonzero candidates for obstructions are indeterminacy tied to the next lower skeleton.

It should be pointed out that here we are doing surgery in a slightly different context from that proposed by Browder and Quinn [4]. Their treatment deals with a stratified map $F:(M, \partial M) \rightarrow\left(M^{\prime}, \partial M^{\prime}\right)$ which is required to be an isovariant homotopy equivalence on the boundary. (In other words, the homotopy inverse of $F \mid \partial M$ is required to be equivariant and strata preserving as are the homotopies to the identity.) In the general situation, this hypothesis is necessary to insure that $F \mid \partial M$ will induce a homotopy equivalence on each stratum of the orbit space of ∂M. However, it is more natural for us to assume that F is an isovariant map which only induces a homotopy (homology) equivalence on the boundary (but not necessarily an isovariant homotopy equivalence on the boundary). Even with this weaker hypothesis, for regular U_{n}, Sp_{n} manifolds, we can still conclude that $F \mid \partial M$ induces on each stratum an isomorphism in integral homology (and $Z_{(2)}$-homology for the corresponding O_{n} case). The reason for this is that we can use Smith theory, since for regular U_{n}, Sp_{n} actions the conjugacy classes of isotropy groups have distinct ranks [6], [10] (see Theorem B in §1).

In Sections 1 and 2, we summarize the results of [5], [6] necessary for our argument. In Section 3, we state the main result and deduce some consequences from it. In 4, we prove the main theorem.

1. Preliminaries

In this section, we review some general definitions from [5] concerning the stratification of a G-manifold and the existence of pullbacks.

Suppose that a compact Lie group G acts smoothly on a manifold M (smooth $=C^{\infty}$). For $x \in M, G_{x}$ denotes the isotropy subgroup at x and $G(x)$ is the orbit passing through x. The slice representation (at x) is the G_{x}-module

$$
S_{x}=T_{x}(M) / T_{x}(G(x)) .
$$

The famous (Differentiable) Slice Theorem asserts that $G(x)$ has an invariant tubular neighborhood of the form $G \times{ }_{G_{x}} S_{x}$. Thus, the local structure of M is completely determined by the slice representation.

A slice representation can be decomposed as $S_{x}=F_{x} \oplus V_{x}$, where F_{x} is the subspace on which G_{x} acts trivially and $V_{x}=S_{x} / F_{x} . \quad V_{x}$ is called the normal representation at x. The (conjugate) equivalence class of the G_{x}-module V_{x} is called the normal orbit type of x. A stratum of M is the set of points of a given normal orbit type. It follows from the Slice Theorem, that a stratum is a smooth invariant submanifold. Notice that a fibre at x of the normal bundle of a stratum is V_{x}. A smooth equivariant map of G-manifolds $\varphi: M^{\prime} \rightarrow M$ is stratified if $G_{x}=G_{\varphi(x)}$ and if the differential of φ induces an isomorphism $V_{x} \cong V_{\varphi(x)}$.

Let $\pi: M \rightarrow B$ be the projection of M onto its orbit space. There is a natural induced 'smooth' structure on B. Essentially, this is obtained by defining a function $\varphi: B \rightarrow \mathbf{R}$ to be smooth if $\varphi \circ \pi$ is smooth (see [1]). In view of the Slice Theorem, B is locally isomorphic to $\left(G \times_{G_{x}} S_{x}\right) / G \cong S_{x} / G_{x}$. If M_{α} is a stratum of M, then its image $B_{\alpha}=\pi\left(M_{\alpha}\right)$, also a smooth manifold, is called a stratum of B.

In what follows, a theorem of [14] plays an important technical role. It says that the orbit space of an H-module (e.g., S_{x}) is smoothly isomorphic to a certain semi-algebraic subset of euclidean space.

We may define a 'local G-orbit space' as a space equipped with a stratification and local charts to the orbit space of an H-module (H is a closed subgroup of G). Everything we shall say about orbit spaces is also true for local G-orbit spaces.

Once we are given the 'smooth' functions on B, we can define for any $b \in B$ the tangent space $T_{b} B$ in the usual fashion. It is a finite dimensional vector space of constant dimension along each stratum. It follows that $T(B) \mid B_{\alpha}$ is a smooth vector bundle and that the ordinary tangent bundle of a stratum $T\left(B_{\alpha}\right)$ is a subbundle. So it makes sense to define the normal
bundle of B_{α} in B by $N\left(B_{\alpha}\right)=\left(T(B) \mid B_{\alpha}\right) / T\left(\left(B_{\alpha}\right)\right.$. A map $f: B^{\prime} \rightarrow B$ of (local) G-orbit spaces is stratified if it preserves the smooth structure and the stratification and if for each stratum the induced map $N\left(B_{\alpha}^{\prime}\right) \rightarrow N\left(B_{\alpha}\right)$ is an isomorphism when restricted to each fibre. It is not difficult to see that a stratified map of G-manifolds induces a stratified map of the orbit spaces. (In [5], there is a further condition in the definition of a stratified map; however, it is unnecessary in this paper.) The following theorem was suggested by the proof of a special case in [2]. It is proved in Section III. 1 of [5].

Theorem. Suppose that M is a smooth G-manifold over B and that B^{\prime} is another local G-orbit space. If $f: B^{\prime} \rightarrow B$ is a stratified map, then the pullback

$$
f^{*}(M)=\left\{(x, y) \in M \times B^{\prime} \mid \pi(x)=f(y)\right\}
$$

is a smooth G-manifold over B^{\prime}. Moreover, the natural map $f^{*}(M) \rightarrow M$ is stratified and

is a Cartesian square.
So, for example, we can produce an equivariant cobordism of a stratified map of G-manifolds by producing a stratified cobordism of the induced map of orbit spaces.

Remark. It is necessary to take some care in formulating the definition of a stratified map $f: B^{\prime} \rightarrow B$ if the above theorem is to be true. For example, if we had only required that f preserve the stratification, then it would not, in general, be true that the space $f^{*} M$ is a manifold.

2. Regular G_{n}-manifolds

In this section, we set up some notation and review the results of [6] which we need.

First we consider the linear model. As $d=1,2$ or 4 , let $\mathbf{F}(d)$ be the field of real, complex or quaternion numbers, respectively; and let G_{n}^{d} stand for, respectively, O_{n}, U_{n} or Sp_{n}. Let $M^{d}(n, k)$ be the vector space of $n \times k$ matrices with entries in $\mathbf{F}(d)$ and let $H_{+}^{d}(k)$ be the set of $k \times k$ positive semidefinite $\mathbf{F}(d)$-hermitian matrices. The representation $k \rho_{n}^{d}$ can be defined as the action of G_{n}^{d} on $M^{d}(n, k)$ given by matrix multiplication. For $n \geqq k$, the orbit space can be identified with $H_{+}^{d}(k)$ and the orbit map with $\pi(x)=x^{*} x$
(x^{*} is the conjugate transpose of x).
If $x \in M^{d}(n, k)$ is a matrix of rank i (over $\mathbf{F}(d)$), then the isotropy subgroup at x is conjugate to G_{n-i}^{d} and the normal representation at x is equivalent to $M^{d}(n-i, k-i)$. Thus, a stratum of $M^{d}(n, k)$ is the union of all x of a given rank. Similarly, $H_{+}^{d}(k)$ is stratified by rank.

A G_{n}^{d}-manifold M is modeled on $k \rho_{n}^{d}$ if its normal orbit types occur among those of G_{n}^{d} on $M^{d}(n, k)$. This means that the orbits are Stiefel manifolds of the form $G_{n}^{d} / G_{n-i}^{d}(0 \leqq i \leqq k)$, and that the normal representation at an orbit of type G_{n}^{d} / G_{n-i}^{d} is equivalent to $(k-i) \rho_{n-i}^{d}$. Throughout this paper we will assume that $n \geqq k$. Also, we will suppress the d 's in our notation when there is no ambiguity.

The strata of M can be indexed by integers $0,1, \cdots, k$. Thus, the union of orbits of type G_{n} / G_{n-i} is the i-stratum of M and denoted by M_{i}. Similarly, if B is the orbit space of M, we have the i-stratum, $B_{i}=\pi\left(M_{i}\right)$ of B.

Let $D^{d k n+m}$ denote the unit disc in $M^{d}(n, k) \times \mathbf{R}^{m}$, where G_{n}^{d} acts trivially on \mathbf{R}^{m}. Let $S^{d k n+m-1}$ be the unit sphere. The notations $D=D^{d k n+m}$ and $S=S^{a k n+m-1}$ are used when there is no ambiguity. Then both D and S are G_{n}-manifolds modeled on $k \rho_{n}$. Let $K=D / G_{n}=\pi(D), L=S / G_{n}=\pi(S)$. The following theorem is the beginning of our program.

Theorem A. Let Σ be a G_{n}^{d}-manifold modeled on $k \rho_{n}^{d}$. Suppose further that Σ is an integral homology sphere of dimension $d n k+m-1$. Then, Σ equivariantly bounds a parallelizable G_{n}^{d}-manifold V, also modeled on $k_{\rho} \rho_{n}^{d}$, and there is a stratified map of pairs

$$
F:(V, \Sigma) \longrightarrow(D, S),
$$

where $D=D^{d k n+m}, S=S^{d k n+m-1}$. Furthermore, except for the case where $d=1, m=0, k$ is even and n is odd, F can be chosen to be of degree 1.

To exploit Theorem A, we shall need the following theorem.
Theorem B. Let $G_{n}=U_{n}$ or Sp_{n}. Suppose that M and M^{\prime} are G_{n}-manifolds modeled on $k \rho_{n}$ and that $\Phi: M \rightarrow M^{\prime}$ is a stratified map. Let $\varphi: B \rightarrow B^{\prime}$ be the induced map of orbit spaces and let $\varphi_{i}=\varphi \mid B_{i}$. Then

$$
\Phi_{*}: H_{*}(M ; \mathbf{Z}) \longrightarrow H_{*}\left(M^{\prime} ; \mathbf{Z}\right)
$$

is an isomorphism if and only if for each i,

$$
\left(\mathscr{\varphi}_{i}\right)_{*}=\left(\mathscr{P} \mid B_{i}\right)_{*}: H_{*}\left(B_{i} ; \mathbf{Z}\right) \longrightarrow H_{*}\left(B_{i}^{\prime} ; \mathbf{Z}\right)
$$

is an isomorphism.
The proofs of Theorems A and B will appear in [6].
Theorem B tells us the following. With the hypothesis of Theorem A, suppose that $(A, B)=\left(V / G_{n}, \Sigma / G_{n}\right)$ and that $f:(A, B) \rightarrow(K, L)$ is the map
of orbit spaces induced by F. Then, since $F \mid \Sigma$ is of degree 1 , it induces a homology isomorphism; hence, for each $i\left(f \mid B_{i}\right)_{*}$ is an isomorphism. Also, we see that F will induce an isomorphism on homology if and only if each $\left(f \mid A_{i}\right)_{*}$ is an isomorphism.

Remarks. (1) Of course, it is implicit in the statement of Theorem A that if Σ is any homology sphere which admits an action modeled on $k \rho_{n}^{d}$, then the dimension of Σ is $\geqq d k n-1$.
(2) The proof of Theorem B is a relatively straightforward argument using Smith's theory and Mayer-Vietoris sequences. (A similar application of these arguments can be found, for example, in Section 4 of [8].) As stated, Theorem B is not valid for $G_{n}=O_{n}$. Essentially, the reason for this is that $O_{2 r}$ and $O_{2 r+1}$ have the same maximal torus and this prevents us from using Smith's theory with integral coefficients in the same manner as for U_{n} or Sp_{n}. However, a slightly more complicated version of Theorem B is still true in this case. (See [6].)
(3) The proof of Theorem A contains most of the main ideas in [6] (which is a revised version of the first author's thesis). Since this work has not yet appeared, we will sketch the line of thought in the proof.

First, it is shown that if M is any G_{n}-manifold modeled on $k \rho_{n}$ with $n \geqq k$, and if the bundle of principal orbits is a trivial fibre bundle, then M is the pullback of the linear model $M(n, k)$ via a stratified map $f: B \rightarrow H_{+}(k)$ (where B is the orbit space of M). Next, it is shown that if M is a homology sphere, then the bundle of principal orbits is trivial so that the above result applies (this is proved by showing that the base space B_{k} is acyclic). Next, it is shown that if M is a pullback of $M(n, k)$, then it equivariantly bounds a V which is also a pullback of $M(n, k)$. This is proved by constructing the orbit space A of V and an extension of f to A. In this construction it so happens that if M is a π-manifold, then so is V (more will be said about this below). By a slight modification of our original argument, Theorem A is then proved by showing that (V, Σ) is a pullback of (D, S).

A few words concerning the tangential structure of B are in order. For any $y \in H_{+}^{d}(k)$, it is easy to see that $T_{y}\left(H_{+}^{d}(k)\right)=H^{d}(k)$ where $H^{d}(k)$ is the vector space of all $k \times k$ hermitian matrices. It follows that the union of all the tangent spaces has the structure of a bundle, the tangent bundle. The same is true for B, since it is locally modeled on $H_{+}(k)$. Thus $T B$ is a well-defined vector bundle over B. In the proof that V is parallelizable, the following observation of Bredon [2] is essential (see also [6]).

Theorem C. Suppose that M is a pullback of $M(n, k)$ with $n \geqq k$. Then M is a π-manifold if and only if $T B$ is trivial.

In fact, a trivialization of $T B$ induces a stable trivialization of the equivariant tangent bundle $T M$.

In what follows it is also important to understand the normal bundles of the strata. The normal bundle of M_{i} in M, denoted by $\nu\left(M_{i}\right)$, is a G_{n}-vector bundle over M_{i} with fibre $M(n-i, k-i)$. Its orbit space $\nu\left(M_{i}\right) / G_{n}$ is a bundle over B_{i} with fibre $M(n-i, k-i) / G_{n-i}=H_{+}(k-i)$. We shall also wish to consider the unit disc bundle $\bar{\nu}\left(M_{i}\right)$ and the unit sphere bundle $\partial \bar{\nu}\left(M_{i}\right)$. Since for $x \in M(n, k),\|x\|^{2}=$ trace $x^{*} x$, we see that the image of the unit disc in $M(n, k)$ in $H_{+}(k)$ is just the space $\bar{H}_{+}(k)$ consisting of matrices of trace less than or equal to one. Similarly, the image of the unit sphere is $W_{+}(k)$, the set of all matrices in $H_{+}(k)$ of trace 1. Let $C\left(B_{i}\right)$ denote the fibre bundle $\bar{\nu}\left(M_{i}\right) / G_{n} \rightarrow B_{i}$. It has the fibre $\bar{H}_{+}(k-i)$ and the structure group G_{k-i} (or actually $G_{k-i} /$ center), which acts on $H_{+}(k-i)$ by conjugation. Similarly, let $S\left(B_{i}\right)$ be the bundle $\partial \bar{\nu}\left(M_{i}\right) / G_{n}$ with fibre $W_{+}(k-i)$. Notice that the normal bundle $N\left(B_{i}\right)$ of B_{i} in B can be identified with the restriction to B_{i} of the tangent bundle along the fibres of $C\left(B_{i}\right)$. Thus $N\left(B_{i}\right)$ is a vector bundle over B_{i} with fibre $H(k-i)$ and the structure group G_{k-i}. The crucial fact is that the i-stratum $H_{+}^{d}(k)_{i}$ is a 'fat' Grassmannian, i.e., it is of the homotopy type of $G_{k}^{d} / G_{i}^{d} \times G_{k-i}^{d}$. (This can be seen for example by considering the transitive $\mathrm{GL}^{d}(k)$ action on $H_{+}^{d}(k)_{i}$ and computing the isotropy subgroup.) It can also easily be seen that K_{i} and L_{i} are homotopy equivalent to the same Grassmannian (except for $L_{0}=S^{m-1}$). In particular, for $G_{n}=U_{n}$ or Sp_{n}, K_{i} and L_{i} are both simply connected (except for $L_{0}=S^{1}$). Essentially the same observation shows that $W_{+}(k)_{1}=G_{k} / G_{1} \times G_{k-1}$ (since G_{k} acts by conjugation transitively on $W_{+}(k)_{1}$ with isotropy subgroup $\left.G_{1} \times G_{k-1}\right)$. In other words,

$$
W_{+}^{d}(k)_{1}=\mathbf{F} P^{k-1} \quad \text { where } \mathbf{F}=\mathbf{F}(d) .
$$

Let $S\left(B_{i}\right)_{i+1}$ be the $(i+1)$-stratum of $S\left(B_{i}\right)$. Then $S\left(B_{i}\right)_{i+1} \rightarrow B_{i}$ is a fibre bundle with fibre $W_{+}(k-i)_{1}$. Thus we have the following lemma.

Lemma D. $S\left(B_{i}\right)_{i+1} \rightarrow B_{i}$ is a fibre bundle with fibre $\mathbf{F} P^{k-i-1}$ (where $\mathbf{F}=\mathbf{F}(d)$).

3. Statement of results

For the remainder of this paper let $G_{n}=U_{n}$ or Sp_{n}. Let Σ be a homology sphere and let $G_{n} \times \Sigma \rightarrow \Sigma$ be an action modeled on $k \rho_{n}$. By Theorem A, Σ bounds a parallelizable G_{n}-manifold V and there is a diagram

where both F and f are stratified and F is of degree 1. By Theorem C, we can choose a framing $T A \rightarrow \mathbf{R}^{N}$ of the tangent bundle of A. Since f is stratified, it induces an isomorphism

$$
N\left(A_{i}\right) \cong f_{i}^{*}\left(N\left(K_{i}\right)\right)
$$

Thus, Φ induces a framing

$$
\psi_{i}: f_{i}^{*}\left(N\left(K_{i}\right)\right) \oplus T A_{i} \longrightarrow \mathbf{R}^{N}
$$

Since $f_{0}:\left(A_{0}, B_{0}\right) \rightarrow\left(K_{0}, L_{0}\right)=\left(D^{m}, S^{m-1}\right)$ is a map of degree 1 , the data $\left(f_{0}, \psi_{0}\right)$ form a surgery problem in the sense of [15]. Since $f_{0} \mid B_{0}$ is a homology isomorphism by Theorem B , there is an obstruction to doing surgery rel B_{0} on f_{0} to a homology isomorphism. Since K_{0}, L_{0} are simply connected ($m \neq 2$), this obstruction is the same as the ordinary surgery obstruction (where $f_{0} \mid B_{0}$ is required to be a homotopy equivalence). Hence for $m \neq 4$, the obstruction $\sigma_{0} \in L_{m}(1)$ is defined by

$$
\sigma_{0}= \begin{cases}\frac{1}{8} \text { index of }\left(A_{0}, B_{0}\right) & \text { if } m \equiv 0(4) \\ \text { the Kervaire inveriant of }\left(f_{0}, \psi_{0}\right) & \text { if } m \equiv 2(4) \\ 0 & \text { if } m \equiv 1(2)\end{cases}
$$

Our main result is the following theorem.
THEOREM 1. Let Σ be a homology sphere and let $G_{n} \times \Sigma \rightarrow \Sigma$ be an action modeled on $k \rho_{n}$. Suppose that the fixed point set B_{0} is of dimension $m-1$ with $m \neq 4$. Moreover, if $m \leqq 3$, suppose that $k \geqq 3$ for U_{n} and $k \geqq 2$ for Sp_{n}. (These assumptions are made to avoid the usual low dimensional surgery difficulties.) Then, Σ equivariantly bounds a contractible G_{n}-manifold V modeled on $k \rho_{n}$ if and only if $\sigma_{0}=0$. If k is even, σ_{0} can assume any possible value. On the other hand, if k is odd, σ_{0} must always vanish.

Suppose that Σ and Σ^{\prime} are G_{n}-manifolds modeled on $k \rho_{n}$ and that the underlying manifolds are homotopy spheres. Σ and Σ^{\prime} are said to be concordant, if there is an action of $\Sigma \times I$ such that its restriction to $\Sigma \times\{0\}$ is equivalent to the action on Σ and its restriction to $\Sigma \times\{1\}$ is equivalent to the action on Σ^{\prime}. Let $\theta^{d}(k, n, m)$ denote the set of concordance classes of G_{n}^{d}-actions on homotopy ($d k n+m-1$)-spheres which are modeled on $k \rho_{n}^{d}$. For $m>0, \theta^{d}(k, n, m)$ has a group structure induced by taking the equivariant connected sum along the fixed point sets. Let $P_{m}=L_{m}(1)$. It will follow from the proof of Theorem 1 that the map

$$
\sigma_{0}: \theta^{d}(k, n, m) \longrightarrow P_{m}
$$

which sends Σ to the surgery obstruction of (f_{0}, ψ_{0}) is a well-defined homo-
morphism. Therefore, as a corollary to Theorem 1 we have the following theorem.

Theorem 2. Assume that $m \neq 4$ and if $m \leqq 3$ then $k \geqq 3$ for U_{n} and $k \geqq 2$ for Sp_{n}. If k is odd or if m is zero, then $\theta^{d}(k, n, m)$ is the trivial group. If k is even and $m>0$, then

$$
\sigma_{0}: \theta^{d}(k, n, m) \longrightarrow P_{m}
$$

is an isomorphism.
Let $F: \theta^{d}(k, n, m) \rightarrow \theta_{d k n+m-1}$ be the forgetful homomorphism, i.e., $F(\Sigma)$ is the underlying homotopy sphere. According to Theorem A, the image of F is contained in $b P_{d k n+m}$, the subgroup consisting of those homotopy spheres which bound π-manifolds. Then, as a further corollary, we have the following theorem.

Theorem 3. For $m \geqq 6$, the following diagram commutes

where b is the canonical map.
Proof. It follows from Theorem 1 that it suffices to check this for the Brieskorn examples for which it is well-known.

For $k=2$, these theorems are essentially all due to Bredon [2]. For $k=1$, they are implicit in [11].

The concordance relation is introduced to take care of difficulties with the fundamental groups of the strata. Suppose that all the strata of Σ are simply connected. By taking connected sum with a Brieskorn sphere (which also has 1 -connected strata), we may assume that $\sigma_{0}=0$. Then, modulo the usual 3 and 4 dimensional difficulties, we can actually do surgery so that $f \mid A_{i}$ will be a homotopy equivalence for each i. The concordance produced in this manner will be equivariantly diffeomorphic to the linear action on $S \times I$. We therefore have the following theorem.

Theorem 4. With the hypothesis of Theorem 1, suppose also that for each i, Σ_{i} is 1-connected. Then, Σ is equivariantly diffeomorphic to the linear action on $S^{d k n+m-1}$ or an action on a Brieskorn sphere (depending on whether or not $\sigma_{0}=0$).

On the other hand, it is easy to construct examples where the fundamental groups of the strata are not 1-connected. One way to do this is to
alter any stratum of the linear orbit space L by taking the connected sum with a homology sphere and altering the higher strata appropriately.

4. Proof of Theorem 1

Before beginning the proof, we need to make one technical digression. A stratum of a compact G-manifold or its orbit space is in general an open manifold. Usually, one replaces such a stratum by a compact manifold with corners (called the closed stratum), the interior of which is the original stratum. A closed stratum is essentially a stratum of the G-manifold (or its orbit space) minus open tubular neighborhoods of the lower strata. It does not matter very much how we remove these tubular neighborhoods, although in [5[, [13] it is shown how to remove them in a 'canonical' way. So, for example, if B is the orbit space of a regular G_{n}-manifold, from now on we will use the notation B_{i} to denote the manifold with corners

$$
B_{i}=\overline{\left(B-\bigcup_{j<i} C\left(B_{j}\right)\right)}
$$

where $C\left(B_{j}\right)$ is a fibre bundle neighborhood of B_{j} in $B . B_{j}$ is a 'manifold with faces' (see [13]). We have

$$
\partial B_{i}=\partial_{0} B_{i} \cup \cdots \cup \partial_{i-1} B_{i},
$$

where $\partial_{j} B_{i}=\left(S\left(B_{j}\right)\right)_{i}$. Thus, $\partial_{j} B_{i}$ is a fibre bundle over B_{j} with fibre $W_{+}(k-j)_{i}$. Moreover, if we remove the neighborhoods in the canonical way, a stratified map $f: B \rightarrow C$ will induce a bundle map $f \mid \partial_{j} B_{i}: \partial_{j} B_{i} \rightarrow \partial_{j} C_{i}$ covering f_{j} (see section III. 1-2 in [5]).

Now, we begin the proof. Recall that we are given a map $f:(A, B) \rightarrow$ (K, L) and a framing $\Phi: T A \rightarrow \mathbf{R}^{N}$. We want to construct a 'stratified' normal cobordism rel B to a new map $f^{\prime}:\left(A^{\prime}, B\right) \rightarrow(K, L)$ which is a homology isomorphism. To do this, we will inductively construct for each i a normal cobordism rel B to

$$
\begin{aligned}
& f(i):(A(i), B) \longrightarrow(K, L), \\
& \Phi(i): T(A(i)) \longrightarrow \mathbf{R}^{N}
\end{aligned}
$$

so that $f(i)$ will induce a homology isomorphism on the j-stratum for $0 \leqq j \leqq i$. To start with, we have the surgery problem

$$
\begin{aligned}
& f_{0}:\left(A_{0}, B_{0}\right) \longrightarrow\left(K_{0}, L_{0}\right), \\
& \psi_{0}: T A_{0} \oplus f_{0}^{*} N\left(K_{0}\right) \longrightarrow \mathbf{R}^{N} .
\end{aligned}
$$

Let us assume that the surgery obstruction $\sigma_{0}=0$ so that we can begin our induction. Then, there is a normal cobordism rel B_{0} to $f_{0}^{\prime}:\left(A_{0}^{\prime}, B_{0}\right) \rightarrow\left(K_{0}, L_{0}\right)$ where f_{0}^{\prime} induces an isomorphism on homology. Denote this cobordism by

$$
\begin{aligned}
& h_{0}:\left(X_{0}, A_{0}, A_{0}^{\prime}\right) \longrightarrow\left(K_{0} \times I, K_{0} \times 0, K_{0} \times 1\right), \\
& \tilde{\psi}_{0}: T X_{0} \oplus h_{0}^{*}\left(K_{0} \times I\right) \longrightarrow \mathbf{R}^{N+1} .
\end{aligned}
$$

We use this to construct a cobordism of f. Let $X(0)=A \times I \cup h_{0}^{*}\left(C\left(K_{0} \times I\right)\right)$ where the union is via the identification $f_{0}^{*} C(K) \cong C\left(A_{0}\right) \times 1$ given by the differential of f (using the fact that f is stratified).

$X(0)$ is a cobordism from A to

$$
A(0)=\left(A-C\left(A_{0}\right)\right) \cup h_{0}^{*} S\left(K_{0} \times I\right) \cup f_{0}^{\prime *} C\left(K_{0}\right) .
$$

(See $\S 2$ for definitions of S and C.) The map h_{0} induces a cobordism

$$
h(0):(X(0) ; A, A(0)) \longrightarrow(K \times I ; K \times 0, K \times 1)
$$

from f to $f(0):(A(0), B) \rightarrow(K, L)$ in an obvious fashion. Also, since

$$
T\left(h_{0}^{*} C\left(K_{0} \times I\right)\right)=p^{*}\left(T X_{0} \oplus h_{0}^{*} N\left(K_{0} \times I\right)\right),
$$

where $p: h_{0}^{*} C\left(K_{0} \times I\right) \rightarrow X_{0}$ is the projection map, we have that the framing $\tilde{\psi}_{0}$ induces a framing

$$
\tilde{\Phi}(0): T X(0) \longrightarrow \mathbf{R}^{N+1}
$$

By construction,

$$
f(0)_{0}=f_{0}^{\prime}:\left(A_{0}^{\prime}, B_{0}\right) \longrightarrow\left(K_{0}, L_{0}\right)
$$

is a homology isomorphism of pairs.
Now, suppose by induction that we have constructed a normal cobordism rel B from (f, Φ) to

$$
\begin{aligned}
& f(i-1):(A(i-1), B) \longrightarrow(K, L), \\
& \Phi(i-1): T A(i-1) \longrightarrow \mathbf{R}^{N+1}
\end{aligned}
$$

in such a way that

$$
f(i-1)_{j}:\left(A(i-1)_{j}, B_{j}\right) \longrightarrow\left(K_{j}, L_{j}\right)
$$

induces an isomorphism on homology for each $j, 0 \leqq j \leqq i-1$. Let

$$
h(i-1):(X(i-1), A, A(i-1)) \longrightarrow(K \times I, K \times 0, K \times 1)
$$

denote the cobordism. Let X_{j} denote the cobordism from $A(j-1)_{j}$ to $A(j)_{j}$. We consider the map $f(i-1)$ on the i-stratum. To simplify notation, let $Y_{i}=A(i-1)_{i}$ and let

$$
r_{i}=f(i-1)_{i}:\left(Y_{i}, \partial Y_{i}\right) \longrightarrow\left(K_{i}, \partial K_{i}\right)
$$

Notice that

$$
\partial Y_{i}=B_{i} \cup \partial_{0} A(i-1)_{i} \cup \cdots \cup \partial_{i-1} A(i-1)_{i}
$$

Since $\partial_{j} A(i-1)_{i}$ is a fibre bundle over $A(i-1)_{j}$ and since $r_{i} \mid \partial_{j} A(i-1)_{i}$ is a bundle map, it follows from the induction hypothesis that $r_{i} \mid \partial_{j} A(i-1)_{i}$ is a homology isomorphism. Since $r_{i} \mid B_{i}$ is also a homology isomorphism, a simple argument using Mayer-Vietoris sequences show that $r_{i} \mid \partial Y_{i}$ is a homology isomorphism. Also, we have a framing

$$
\psi_{i}: T\left(Y_{i}\right) \oplus r_{i}^{*} N\left(K_{i}\right) \longrightarrow \mathbf{R}^{N+1}
$$

induced by $\Phi(i-1)$. Thus, we have a surgery problem (r_{i}, ψ_{i}) where we want to do surgery rel ∂Y_{i} to a homology isomorphism. Since K_{i} and ∂K_{i} are simply connected, this obstruction lies in the ordinary surgery group. Thus, let $\sigma_{i} \in L_{p}(1)\left(p=\operatorname{dim} Y_{i}\right)$ be this obstruction.

Lemma 1. For $i>0$, with a possible alternation of the choice of X_{i-1}, $w e ~ c a n ~ a l w a y s ~ m a k e ~ \sigma_{i}=0$. Furthermore, if k is odd, $\sigma_{0}=0$.

Let us defer the proof of the above lemma and continue our proof of Theorem 1. Since $\sigma_{i}=0$, we can de surgery rel ∂Y_{i} on r_{i} to a homology isomorphism

$$
f_{i}^{\prime}:\left(A_{i}^{\prime}, \partial Y_{i}, B_{i}\right) \longrightarrow\left(K_{i}, \partial K_{i}, L_{i}\right)
$$

Let X_{i} be the trace of the completed surgery on r_{i}. Let $h_{i}: X_{i} \rightarrow K_{i} \times I$ and $\tilde{\psi}_{i}: T X \bigoplus h_{i}^{*} N\left(K_{i} \times I\right) \rightarrow \mathbf{R}^{N+1}$ be the normal cobordism. As before, define $X(i)=X(i-1) \cup h_{i}^{*} C\left(K_{i} \times I\right)$ where the union is via the identification $r_{i}^{*} C\left(K_{i}\right) \cong C\left(A(i-1)_{i}\right)$. Use h_{i} to extend $h(i-1)$ to $h(i): X(i) \rightarrow K \times I$, and $\tilde{\psi}_{i}$ to extend $\Phi(i-1)$ to $\Phi(i): T X(i) \rightarrow \mathbf{R}^{N+1}$. This completes our induction. Hence, setting $A^{\prime}=A(k)$ and $f^{\prime}=f(k)$, we have our required $\operatorname{map} f^{\prime}:\left(A^{\prime}, B\right) \rightarrow$ (K, L), which induces a homology isomorphism on each stratum. Using the pullback construction, we obtain a G_{n}-manifold $V^{\prime}=f^{*} D$. By Theorem B, V^{\prime} is acyclic. If A_{k}^{\prime} is simply connected, then by the fibration sequence so is V_{k}^{\prime}; and hence, by a general position argument, we have that $\pi_{1}\left(V^{\prime}\right)=0$. Conversely, according to Corollary II. 6.3 on page 91 of [1], if V^{\prime} is simply connected then so is A_{k}^{\prime}. Therefore, V^{\prime} is simply connected (and hence, contractible) if and only if $\pi_{1}\left(A_{k}^{\prime}\right)=0$. But when we do surgery on r_{i} we may clearly assume that the resulting manifold A_{i}^{\prime} is simply connected.

Thus, $\sigma_{0}=0$ implies that Σ equivariantly bounds a contractible G_{n}-manifold V^{\prime}.

We must also show that if Σ equivariantly bounds a contractible manifold, then $\sigma_{0}=0$. So, suppose that V, V^{\prime} are parallelizable G_{n}-manifolds modeled on $k \rho_{n}$ and that the bundles of principal orbits are trivial. Suppose further that $\partial V=\partial V^{\prime}=\Sigma$. Let $A=V / G_{n}$ and $A^{\prime}=V^{\prime} / G_{n}$. Choose framings $\Phi: T A \rightarrow \mathbf{R}^{N}, \Phi^{\prime}: T A^{\prime} \rightarrow \mathbf{R}^{N}$. Since B is acyclic, Φ and Φ^{\prime} are homotopic on B. Thus, we may assume that Φ, Φ^{\prime} agree on B and there is a global framing $\theta: T\left(A \cup A^{\prime}\right) \rightarrow \mathbf{R}^{N}$. This together with our classif ying map provides a framing of the normal bundle of the closed manifold $M_{0}=A_{0} \cup A_{0}^{\prime}$. Since M_{0} is a closed framed manifold, its index or Kervaire invariant is zero. Now, suppose V^{\prime} is contractible, then it follows from Theorem B that A_{0}^{\prime} is acyclic. Thus, $\sigma\left(A_{0}^{\prime}\right)=0$ and hence

$$
\sigma_{0}=\sigma\left(A_{0}\right)=\sigma\left(M_{0}\right)-\sigma\left(A_{0}^{\prime}\right)=0 .
$$

Modulo Lemma 1, this completes the proof of Theorem 1.
We need the following lemma for the proof of Lemma 1.
Lemma 2. Let M^{s} be an s-dim compact (simply connected) manifold with boundary, and let $p: E \rightarrow M$ be a fibre bundle with fibre F^{t} a closed simply connected manifold of $\operatorname{dim} t$. Suppose that $f:\left(M^{\prime}, \partial M^{\prime}\right) \rightarrow(M, \partial M)$ is a normal map which induces a homology isomorphism on the boundary (we suppress the normal data). The natural map

$$
\bar{f}:\left(f^{*} E, \partial f^{*} E\right) \longrightarrow(E, \partial E)
$$

is also a normal map and induces a homology isomorphism on the boundary. Then

$$
\begin{aligned}
I(\bar{f}) & =I\left(F^{t}\right) \cdot I(f), \\
C(\bar{f}) & =\chi\left(F^{t}\right) \cdot C(f)
\end{aligned}
$$

where $I\left(F^{t}\right), \chi\left(F^{t}\right)$ denote the index and the Euler characteristic of F^{t} respectively, and $I(f), I(\bar{f}), C(f), C(\bar{f})$ are the index, and the Kervaire invariant of f, \bar{f} respectively.

In particular, if $F=\mathbf{C} P^{j}$ or $\mathbf{Q} P^{j}$, then the correspondence $\sigma(f) \rightarrow \sigma(\bar{f})$ defines a homomorphism $L_{p}(1) \rightarrow L_{p+t}(1)$ of the surgery groups where $\sigma(f)$, $\sigma(\bar{f})$ denote the surgery obstruction of f, \bar{f} respectively. This homomorphism is an isomorphism if j is even and the zero map if j is odd.

Proof. If $s>4$, let us perform surgery on f rel ∂M to make it highly connected. We may assume that M^{\prime} is a boundary connected sum $M^{\prime \prime} \# M^{\prime \prime \prime}$ such that $f \mid M^{\prime \prime}$ induces a homology isomorphism and $M^{\prime \prime \prime}$ carries the
homology kernel. Since the induced bundle over $M^{\prime \prime \prime}$ is trivial, the lemma follows from the standard product formula for surgery. If $s<4$, we can reduce it back to $s>4$ by taking a product of our surgery problem with C $P^{2 l}$.

Proof of Lemma 1. First suppose that $k-i-1$ is even (in which case we 'look up one stratum'). Recall that σ_{i} is the obstruction to completing the surgery $r_{i}:\left(Y_{i}, \partial Y_{i}\right) \rightarrow\left(K_{i}, \partial K_{i}\right)$ where $Y_{i}=A(i-1)_{i}$. Consider the surgery problem

$$
s_{i+1}:\left(W_{i+1}, \partial_{i} W_{i+1}\right) \longrightarrow\left(K_{i+1}, \partial K_{i+1}\right)
$$

where $W_{i+1}=A(i-1)_{i+1}, \partial_{i} W_{i+1}=\partial_{i} A(i-1)_{i+1}$, and $s_{i+1}=f(i-1)_{i+1}$. Let $s_{i+1}^{\prime}=s_{i+1} \mid \partial_{i} W_{i+1}$. By the lemma at the end of Section 2, $\partial_{i} W_{i+1} \rightarrow Y_{i}$ is a fibre bundle with fibre $\mathbf{F} P^{k-i-1}\left(=\mathbf{C} P^{k-i-1}\right.$ or $\mathbf{Q} P^{k-i-1}$). Since $f(i-1)$ is stratified, s_{i+1}^{\prime} is a bundle map covering r_{i}. In fact, s_{i+1}^{\prime} is just the normal map induced by r_{i}. Thus, by Lemma 2, the obstruction to doing surgery on s_{i+1}^{\prime} rel boundary is equal to σ_{i}. But s_{i+1}^{\prime} is the boundary of a surgery problem (namely s_{i+1}) hence the index or Kervaire invariant of s_{i+1}^{\prime} is zero, i.e., $\sigma_{i}=0$. In particular, if k is odd, this argument shows that $\sigma_{0}=0$.

Now, suppose that $k-i-1$ is odd, so that $k-i$ is even. In this case we 'go down one stratum and change the cobordism'. Suppose that $\sigma_{i} \neq 0$. It follows from the construction that $Y_{i}=A(i-1)_{i}=Q^{\prime} \cup Q$ where $Q^{\prime}=$ $A(i-2)_{i}-C\left(A(i-2)_{i-1}\right)$ and where Q is an $\mathbf{F} P^{k-1}$ bundle over X_{i-1}. Furthermore, $r_{i} \mid Q$ is a bundle map covering $h_{i-1}: X_{i-1} \rightarrow K_{i-1} \times I$. Recall that X_{i-1} is a cobordism rel B_{i-1} from $A(i-2)_{i-1}$ to A_{i-1}^{\prime}. If $\operatorname{dim} X_{i-1}=t$, then $t=\operatorname{dim} Y_{i}-\operatorname{dim} \mathbf{F} P^{k-i}$ and therefore $t \equiv \operatorname{dim} Y_{i}(4)$. We may choose a parallelizable manifold U^{t} with ∂U^{t} a homotopy sphere and a normal map $\lambda:\left(U^{t}, \partial U^{t}\right) \rightarrow\left(D^{t}, S^{t-1}\right)$ such that $\sigma(\lambda)=-\sigma_{i}$. (Here we use the fact that $\operatorname{dim} U=t \equiv \operatorname{dim} Y_{i}(4)$ to identify the surgery group in the usual fashion.) Let $X_{i-1}^{\prime}=X_{i-1} \# U, h_{i-1}^{\prime}=h_{i-1} \# \lambda$, where $\#$ means the boundary connected sum along A_{i-1}^{\prime}. Thus A_{i-1}^{\prime} is changed to $A_{i-1}^{\prime} \# \partial U$ and Y_{i} is changed to

$$
Y_{i}^{\prime}=\left(Y_{i}-\left(D^{t} \times \mathbf{F} P^{j}\right)\right) \cup\left(\left(U-D^{t}\right) \times \mathbf{F} P^{j}\right)
$$

where D^{t} is a small disc in X_{i-1} and $j=k-1$. By Lemma 2 again, $\sigma(\lambda \times \mathrm{id})=$ $-\sigma_{i}$. It therefore follows from the addition formula that the surgery obstruction σ_{i}^{\prime} of $r_{i}^{\prime}:\left(Y_{i}^{\prime}, \partial Y_{i}^{\prime}\right) \rightarrow\left(K_{i}, \partial K_{i}\right)$ is equal to $\sigma_{i}+\sigma(\lambda \times \mathrm{id})=\sigma_{i}-\sigma_{i}=0$. The only time this argument fails to work is when $i=0$ (and so $X_{i-1}=\varnothing$); therefore, the only possible nontrivial contribution to the surgery obstruction occurs for $\sigma_{i}=\sigma_{0}$, and this happens only if $k=k-i$ is even. This proves Lemma 1 and thereby Theorem 1.

Remark. The same argument calculates the 'isovariant surgery group' ${ }_{\sigma} L_{*}(M, \partial M)$ of [4]. Thus let M be a compact G_{n}-manifold with boundary which is modeled on $k \rho_{n}$ with $n \geqq k$. Suppose further that $\pi_{1}\left(M_{i}\right)=\pi_{1}\left(\partial M_{i}\right)=0$ and the fixed point set $M_{0} \neq \varnothing$. Then, we have the following theorem.

Theorem 5. For kodd, ${ }_{G} L_{p}(M, \partial M)=0$; while for keven, ${ }_{G} L_{p}(M, \partial M)=$ $L_{m}\left(M_{0}, \partial M_{0}\right)=P_{m}$ where $m=p-d k n$.

Princeton University, New Jersey and Massachusetts Institute of Technology University of California, Berkeley

References

[1] G. Bredon, Introduction to Compact Transformation Groups. Academic Press, New York, 1972.
[2] -, Biaxial actions, mimeographed notes, 1973.
[3] E. Brieskorn, Beispiele zur Differiential topologie von Singularitaten. Inventiones, 2 (1966), 1-14.
[4] W. Browder and F. Quinn, A surgery theory for G-manifolds and stratified sets, Manifolds Tokyo Conf. 1973, 27-36, University of Tokyo Press.
[5] M. Davis, Smooth G-manifolds as collections of fiber bundles (to appear).
[6] - Regular O_{n}, U_{n} and Sp_{n} manifolds (to appear).
[7] M. Davis, W. C. Hsiang and J. Morgan, Concordance classes of regular O_{n} actions on spheres (to appear).
[8] D. Erle and W. C. Hsiang, On certain unitary and sympletic actions with three orbits types, Amer. J. Math. 94 (1972), 289-308.
[9] F. Hirzeburch and K. H. Mayer, O(n)-Mannigfaltigkeiten, Exotishe Spharen, und Singularitaten, Springer Lecture Notes, 57 (1968).
[10] W. C. Hsiang and W. Y. Hsiang, Differentiable actions of compact connected classical groups: I. Amer. J. Math. 89 (1967), 705-786.
[11] W. Y. Hsiang, On classification of differentiable $\mathrm{SO}(n)$ actions on simply connected π-manifolds, Amer. J. Math. 88 (1966), 137-153.
[12] - A survey of regularity theorems in differentiable compact transformation groups. Proc. Conference on Transformation Groups, Springer Verlag, New York, (1968) 77-125.
[13] K. JÄnich, On the classification of $O(n)$-manifolds, Math. Ann. 176 (1968), 53-76.
[14] G. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology 14 (1975), 63-68.
[15] C. T. C. Wall, Surgery on Compact Manifolds. Academic Press, New York, 1970.

[^0]: ${ }^{1)}$ Partially supported by NSF grant number MPS-7406839 during the preparation of this paper.
 ${ }^{2)}$ Partially supported by NSF grant number GP34324X1 and a Guggenheim Fellowship. He also would like to thank the Mathematics Department of the University of California at Berkeley for its hospitality during his stay 1975-1976.

[^1]: ${ }^{3)}$ We have some mild condition on the dimension of the fixed point set and the number k to avoid the usual low dimensional surgery difficulties. See Theorem 2 for the precise statment.

