ASPHERICAL MANIFOLDS WITHOUT SMOOTH OR PL STRUCTURE

Michael W. DAVIS and Jean-Claude HAUSMANN

<u>ABSTRACT</u>. One construct closed aspherical PL-manifolds which are not homotopy equivalent to closed smooth manifolds. Examples of closed aspherical TOP-manifolds which are not homeomorphic to closed PL-manifolds are also given.

A space X is **aspherical** if it is homotopy equivalent to a CW-complex and if its universal covering is contractible (in other words : X is homotopy equivalent to the Eilenberg-McLane space $K(\pi_1(X),1)$). Closed aspherical manifolds form an interesting class of aspherical spaces. Classical examples come from Lie group theory and differential geometry and are smooth manifolds. A new kind of construction of closed aspherical manifolds appeared in [D1], giving rise to closed aspherical smooth manifolds with universal coverings not homeomorphic to \mathbf{R}^n . Using these techniques, we prove in this note the following results :

<u>Theorem 1</u> For each n >13, there exists an aspherical closed PL-manifold M of dimension n which does not have the homotopy type of a closed smooth manifold. We prove Theorem 1 by showing that the Spivak bundle of M admits no linear reduction. <u>Theorem 2</u> For each n >8, there exists an aspherical closed topological manifold M of dimension n such that M is not homeomorphic to a closed PL-manifold.

1980 Mathematics Subject Classification : 55D20, 57C99, 57A99, 20E40.

We do not know whether M has the homotopy type of a closed PL-manifold (See Remark 4).

Recall that a group G is a **Poincaré duality group** if there exists a ZG-module structure Z on the abelian group of integers and a class $e \in H_n(G;Z)$ so that the cap product homomorphism $-\Lambda e : H^i(G;B) \longrightarrow H_{n-i}(G;B \bigotimes_Z Z)$ is an isomorphism for all G-modules B (definition of Bieri and Eckmann [BE]). The fundamental groups of the manifolds M of our theorem are the first examples of Poincaré duality groups G such that K(G,1) is not homotopy equivalent to a closed smooth manifold. Recall that a strong version of the Novikov conjecture says that for a Poincaré duality group G, the space K(G,1) should be homotopy equivalent to a closed topological manifold (see Remark 2).

We are grateful to R. Schultz and S. Cappell for valuable help in improving the dimensional restriction in Theorem 1 and in adapting our original proof of Theorem 1 in order to obtain Theorem 2.

The proof of Theorem 1 is given is Section 2, that of Theorem 2 in Section 3, while Section 1 is devoted to recalling some facts about the construction of [D1] (and also [D2]).

1. CONSTRUCTING ASPHERICAL MANIFOLDS WITHOUT CAT-STRUCTURES USING REFLECTION GROUPS

This section is a development of [D1, Remark 15.9]. The notations and the terminology are from [D1], except that, following W. Thurston's terminology, we use the word "mirror" instead of "panel".

Let Q be (finite) CW-complex, P a subcomplex of Q and L a triangulation of P. Replacing L by its barycentric subdivision if necessary, we can assume that L is "determined by its 1-skeleton". (This means that for any set T of vertices in L, if any two distinct elements of T bound an edge, then T spans a simplex of L.) Under the assumption that L is determined by its 1-skeleton, there is a Coxeter system (Γ ,V) with L as associated complex (see [D1, Section 11]). In particular, V is the set of vertices of L. For instance, one could take Γ generated by V with the relations

$$v^2 = 1$$
 for all $v \in V$
 $(vw)^2 = 1$ if v and w bound an edge in L.

The "canonical mirror structure on L" is then defined as follows. For each $v \in V$, let P_v denote the closed star of v in the barycentric subdivision L' of L; each P_v is called a **mirror**. Form the complex $X = Q \times \Gamma/\sim$, where $(x,g)\sim(y,h)$ if x = y and $h^{-1}g$ is in the subgroup of Γ generated by those v such that $x \in P_v$. We recall the following facts from [D1] :

(1.1.a) $X = \bigcup X_i$, with $X_1 = Q$ and X_i is the union of X_{i-1} with with a translated of Q (we write $X_i = X_{i-1} \cup Q$ for simplicity). The intersection $X_{i-1} \cap Q$ is a union of mirrors and can be identified with the closed star in L' of a certain simplex in L [D1, Section 8]. In particular, $X_{i-1} \cap Q$ is contractible.

(1.1.b) The group Γ operates properly on X as a reflection group with finite isotropy groups, and $X/\Gamma = Q$.

(1.1.c) As a Coxeter group, Γ contains a torsion-free subgroup Γ' of finite index. Then $X \rightarrow X/\Gamma' = M$ is a covering projection.

This has the following immediate consequences :

(1.2.a) If P is a polyhedral homology m-manifold, then each $X_{i-1} \cap Q$ is a compact contractible polyhedral homology m-manifold with boundary. (Recall that a polyhedral homology m-manifold is a m-dimensional simplicial complex such that the link of any k-simplex has the homology of S^{m-k-1}).

(1.2.b) If P is a topological manifold, then each $X_{i-1} \cap Q$ is a compact contractible manifold with boundary.

(1.2.c) If P is a PL-manifold and L is a PL-triangulation of P, then each $X_{i-1} \cap Q$ is a PL m-cell.

From now on, we suppose that (Q,P) is a Poincaré pair of formal dimension n and that the simplicial complex L (=P) is a polyhedral homology manifold. In this special case, (1.1) and (1.2) above have the following consequences :

(1.3.a) Each $\rm X_{i}$ is a Poincaré space, X is an (infinite) Poincaré space and M is a closed Poincaré space.

(1.3.b) If Q is a topological n-manifold with boundary $\partial Q = P$, then each X_i is a manifold with boundary, X is a manifold and M is a closed topological manifold.

(1.3.c) If Q is a triangulated manifold and L is a triangulation of ∂Q , then the barycentric subdivision of the triangulation of Q extends to a triangulation of M. In other words, if Q has a TRI-structure in the sense of [GS], then the closed manifold M inherits a TRI-structure.

(1.3.d) Similarly, if Q is a PL-manifold and L is a PL-triangulation of ∂Q , then X is a PL-manifold, Γ acts through PL-automorphisms, and hence M is a PL-manifold.

(1.3.e) If Q is a smooth manifold and L is a smooth triangulation of ∂Q , then Q can be given the structure of a smooth orbifold (see [D1, Section 17]), and hence M is a smooth manifold.

Essentially, (1.3) says that if Q is a CAT-manifold, then so is M (where CAT = DIFF, PL, TRI or TOP). Moreover, M contains Q as a codimension zero Poincaré space or submanifold.

Finally, we deduce the following facts :

(1.4) If Q is aspherical, then M is aspherical (since $X_i \cap Q$ is contractible, X is aspherical and $X \rightarrow M$ is a covering projection).

(1.5) If the map $v_Q : Q \longrightarrow BG$ classifying the Spivak bundle of Q does not lift through BCAT (CAT = DIFF, PL, or TRI), then neither does $v_M : M \longrightarrow BG$ (since $v_M | Q = v_0$) and then M does not have the homotopy type of a CAT-manifold.

(1.6) Suppose that Q is a topological manifold. If the map $\tau_Q : Q \longrightarrow BTOP$ classifying the stable tangent micro-bundle of Q does not lift through BCAT (CAT = DIFF, PL, or TRI), then neither does $v_M : M \longrightarrow BTOP$ and M is not homeomorphic to a CAT-manifold.

<u>**Remark**</u>: The argument of [D2, Proposition 1.4] shows that there is a Γ -equivariant embedding f : X \longrightarrow QxR^N with <u>trivial</u> normal bundle, where Γ acts on R^N as a linear reflection group. Moreover, the composition of f with the projection on the first

factor is the orbit map $\pi : X \longrightarrow Q$. It follows that $\nu_{M} : M \longrightarrow BCAT$ factors as $M \xrightarrow{\pi} Q \xrightarrow{\nu} Q \rightarrow BCAT$. This gives a sort of a converse statement to (1.4)-(1.6).

2. PROOF OF THEOREM 1

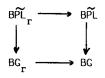
Observe that, if M is a closed aspherical PL-manifold with Spivak bundle v_{M} : $M \rightarrow BG$ admitting no linear reduction, so is MxS¹. Therefore, in order to prove Theorem 1, it is enough, using (1.5) and (1.6), to construct a compact aspherical PL-manifold Q of dimension 13 such that v_{Q} : $Q \rightarrow BG$ has no linear reduction. Our technique to construct such manifolds Q is the following. Let a be an element of $\pi_{k}(BPL)$ so that its image α in $\pi_{k}(BG)$ is not in the image of the natural homomorphism $\pi_{k}(BO) \rightarrow \pi_{k}(BG)$. One has $BPL = BPL = \lim(BPL_{i})$, where BPL_{i} is the classyfing space for PL-block bundles of rank i [RS1]. Let $a_{r} : S^{k} \rightarrow BPL_{r}$, represent a. Let T^{k} be the torus of dimension k. Take a degree one map $T^{k} \rightarrow S^{k}$ and compose it with a_{r} to get $b_{r} : T^{k} \rightarrow BPL_{r}$, or with α to get $\beta : T^{k} \rightarrow BG$. By the classification of "abstract regular PL-neighbourhoods" over a PL-manifold [RS1, Corollary 4.7], there is a compact PL-manifold Q of dimension k + r containing T^{k} as a codimension r-submanifold such that :

1) Q collapses onto T^k . Therefore, Q is aspherical.

2) The map ${\bf b}_{\bf r}$ classifies the normal block-bundle of ${\bf T}^{\bf k}$ into Q.

As T^{k} is parallelizable, it follows from 2) that the composition $Q \rightarrow T^{k}$ with β classifies the inverse of the Spivak bundle v_{Q} of Q. Suppose that v_{Q} admits a lifting through B0. The spaces B0 and BG are known to be infinite loop spaces, so one can write B0 = $\Omega(\Omega^{-1}B0)$ and BG = $\Omega(\Omega^{-1}BG)$. If v_{Q} lifts through B0, the adjoint map $ad(v_{Q})$: $\Sigma T^{k} \rightarrow \Omega^{-1}BG$ would lift through $\Omega^{-1}B0$. But ΣT^{k} is homotopy equivalent to $S^{k+1} \lor A$, where A is a wedge of spheres of dimension k, and $ad(v_{Q}) | S^{k+1}$ is $ad(-\alpha)$. This contradicts the fact that α does not lift through B0.

We now give an example of an element a with the above properties. The group $\pi_9(BG) = \pi_8(G) = \pi_8^S$ is isomorphic to $Z_2 \oplus Z_2$. Observe that an element of $\pi_1(BG)$ lifts to $\pi_1(BG_{k+1})$ if and only if the corrersponding element of π_{1-1}^S lifts to $\pi_{1+k-1}(S^k)$. Therefore, the generators of $\pi_9(BG)$ are $\overline{\nu}$ coming from $\pi_9(BG_7)$ and \mathcal{E} coming from $\pi_9(BG_4)$ [To, Theorem 7.1]. The homomorphism $Z_2 = \pi_9(BO) \rightarrow \pi_9(BG)$ can be identified with the J-homomorphism J : $\pi_8(SO) \rightarrow \pi_8^S$. The group $\pi_7(SO)$ is infinite cyclic, generated by w, and $J(w) = \sigma$, where σ is represented by the Hopf map $S^{15} \rightarrow S^8$. Let γ be the non-zero element of π_1^S . One has $J(w \circ \gamma) = J(w) \circ \gamma = \sigma \circ \gamma = \gamma \circ \sigma = \overline{\nu} + \mathcal{E}$ (for the last equality, see [To, Theorem 14.1]). Take $\alpha = \mathcal{E}$. The homomorphism $\pi_9(BPL) \rightarrow \pi_9(BG)$ is onto since $\pi_8(G/PL) = Z$. Therefore, there exists an element a $\mathcal{E} \pi_9(BPL)$ having image α . The following diagram



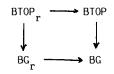
is a pull-back diagram for r γ 3 [RS2, Theorem 1.10]. Therefore, a is the image of an element $a_4 \in \pi_9(BPL_4)$. Thus, the above construction of Q can be performed with dimQ = 13, which proves Theorem 1.

3. PROOF OF THEOREM 2

If M is a closed aspherical TRI-manifold so that the topological stable tangent microbundle $\tau_{M} : M \longrightarrow BTOP$ does not lift through BPL, then MxS¹ has the same property. Therefore, using (1.6), it is enough to construct a compact aspherical TRI-manifold Q of dimension 7 so that τ_{0} does not lift through BPL.

Consider the diagram

The homomorphism $\Omega_{H}^{3} \cong \pi_{3}(\text{TRI/PL}) \longrightarrow \pi_{3}(\text{TOP/PL}) = \mathbb{Z}_{2}$ can be identified with the Rohlin invariant [GS, Section 6] and is therefore surjective. On the other hand, the homomorphism $\pi_{4}(\text{BPL}) \longrightarrow \pi_{4}(\text{BG})$ is also surjective, since $\pi_{3}(\text{G/PL}) = 0$. Therefore, there exists a map $\overline{a} : S^{4} \longrightarrow \text{BTRI}$ inducing a non-zero class in $\pi_{3}(\text{TOP/PL})$ and the zero class in $\pi_{4}(\text{BG})$. Denote by a the composition of \overline{a} with the map $\text{BTRI} \longrightarrow \text{BTOP}$. The diagram



is a pull-back diagram for r γ 3 [RS3, Corollary 2.5]. Therefore, one can find a_3 : $S^4 \longrightarrow BTOP_3$ giving a when composed with $BTOP_3 \longrightarrow BTOP$. Take a degree one map $T^4 \longrightarrow S^4$ and compose it with a_3 to get b_3 : $T^4 \longrightarrow BTOP_3$. Using the classification of topological abstract regular neighbourhoods [RS3, Theorem 3.2], one shows, as in the proof of Theorem 1, that there is a compact topological manifold Q of dimension 7 containing T^4 as a codimension 3 submanifold and satisfying :

1) The inclusion $T^4 \subset Q$ is a homotopy equivalence.

2) b : $Q \simeq T^4 \longrightarrow BTOP$ is homotopic to τ_0 .

As in the proof of Theorem 1, one shows that τ_Q admits no lifting through BPL. But, as τ_Q lifts through BTRI, Q admits a TRI-structure [GS, Theorems 1 and 1.5]. We have thus constructed a manifold Q with the required properties.

REMARKS :

1) We do not know whether 13 and 7 are the smallest dimensions for which Theorems 1 and 2 are respectively true.

2) It is tempting to use the above method to construct an aspherical Poincaré complex which is not homotopy equivalent to a closed topological manifold. This would contradict a (folklore) strong version of the Novikov conjecture. The problem would be to find a fundamental chamber Q which is a Poincaré complex, so that the Spivak bundle v_0 admits no TOP-reduction, but with P = ∂Q homotopy equivalent to a closed polyedral homology manifold.

3) Other examples of aspherical manifolds for Theorems 1 and 2 are obtainable as follows : in the proofs, replace the degree one map $T^k \rightarrow S^k$ by a map $f : K \rightarrow S^k$ inducing an isomorphism on integral homology, where K is a finite aspherical polyhedron of dimension k (K and f exist by [Ma]). The manifold Q will then be a thickening of K with $\tau_0 = a \circ f$, which exists in the stable range.

4) By obstruction theory, if K is a complex of dimension 4, any map $K \rightarrow BG$ which lifts through BTOP admits a lifting through BPL. Therefore, it is not possible to assert that the manifolds M of Theorem 2 are not homotopy equivalent to closed PL-manifolds. But if a homotopy equivalence $f : M' \rightarrow M$ existed with M' a closed PL-manifold, then f would yeld a homotopy equivalence between aspherical closed manifolds which is not homotopic to a homeomorphism. This would be a negative answer to a question of A. Borel.

REFERENCES

[BE]	BIERI RECKMANN B.	Groups with homological duality generalizing Poincaré duality. Inv. Math. 20 (1973) 103-124.
[D1]	DAVIS M.W.	Groups generated by reflections and aspherical manifolds not covered by Euclidean space. Ann. of Math. 117 (1983) 293–324.
[D2]	DAVIS M.W.	Some aspherical manifolds. Duke Math. J. 55 (1987) 105-140
[GS]	GALEWSKI DSTERN R.	Classification of simplicial triangulations of topological manifolds. Annals of Math. 111 (1980), 1–34.
[Ma]	MAUNDER C.R.F.	A short proof of a theorem of Kan-Thurston. Bull. London Math. Soc. 13 (1981) 325-327.
RS1]	ROURKE CSANDERSON B.	Block bundles I. Ann. of Math. 87 (1968) 1-28.
[RS2]	ROURKE CSANDERSON B.	Block bundles III. Ann. of Math. 87 (1968) 431-483
[RS3]	ROURKE CSANDERSON B.	On topological neighbourhoods. Compositio Math. 22 (1970) 387-424.
[To]	TODA H.	Composition methods in homotopy groups of spheres. Ann. of Math. Studies 49, Princeton Univ. Press 1962.

Ohio State University, Colombus, Ohio.

University of Geneva, Switzerland.