COXETER GROUPS ARE ALMOST CONVEX

Abstract

In [C] Cannon introduced the notion of 'almost convexity' for the Cayley graph of a finitely generated group. In this paper, we observe that standard facts about Coxeter groups imply that the Cayley graph associated to any Coxeter system is almost convex.

Almost convex groups

Suppose G is a group and C is a finite set of generators such that $C=C^{-1}$. The Cayley graph of (G, C), denoted by $\Gamma(G, C)$, is the directed labelled graph with vertex set G and with a directed edge labelled c from the vertex g to the vertex $g c$, for each $g \in G$ and $c \in C$. Define a metric d on $\Gamma(G, C)$ by declaring each edge to be isometric to the unit interval and defining the distance between two points to be the length of the shortest path connecting them. A path of minimum length is a geodesic.

Given a directed edge path in $\Gamma(G, C)$ from the identity element to g, the labels on the edges, read in order, give a word for g in the generating set C. Conversely, each word for g corresponds to a path connecting 1 to g. For each g in G, put $l(g)=d(g, 1)$. The integer $l(g)$ is called the word length of g.

For each positive integer n, let $S(n)$ (respectively, $B(n)$) denote the sphere (respectively, ball) of radius n centered at 1 in $\Gamma(G, C)$, i.e. $S(n)=\{g \in G \mid l(g)=n\}$ and $B(n)=\{x \in \Gamma(G, C) \mid d(x, 1) \leqslant n\}$.
DEFINITION (Cannon [C, p. 198]). The graph $\Gamma(G, C)$ is (k) almost convex, written $\mathrm{AC}(k)$, if there is an integer $N(k)$ with the following property: any two elements g_{1}, g_{2} in $S(n)$ with $d\left(g_{1}, g_{2}\right) \leqslant k$, can be joined by a path in $B(n)$ of length $\leqslant N(k)$. The pair (G, C) is $\mathrm{AC}(k)$ if $\Gamma(G, C)$ is $\mathrm{AC}(k)$; it is almost convex, written $A C$, if (G, C) is $A C(k)$ for all k.

LEMMA 1 (Cannon [C, Th. 1.3, p. 198]). $\mathrm{AC}(2) \Rightarrow \mathrm{AC}$.

Coxeter groups

Suppose that W is a group and that S is a finite set of generators each element of which is of order 2 . Given $s_{1}, s_{2} \in S$ denote the order of $s_{1} s_{2}$ in W by $m\left(s_{1}, s_{2}\right)$.

* Partially supported by NSF grants DMS-8905378 and DMS-9007959.

DEFINITION ([B, Ch IV, §1.3]). The pair (W, S) is a Coxeter system if W has a presentation:

$$
\left\langle S \mid s^{2},\left(s_{1} s_{2}\right)^{m\left(s_{1}, s_{2}\right)}\right\rangle,
$$

where s ranges over S and $\left(s_{1}, s_{2}\right)$ ranges over pairs of distinct elements in S with $m\left(s_{1}, s_{2}\right) \neq \infty$. The group W is then called a Coxeter group.

LEMMA 2 ([B, Ch. IV, §1.2]). Let m be an integer $\geqslant 2$ and let W be the dihedral group of order $2 m$ with presentation $\left\langle s_{1}, s_{2} \mid s_{1}^{2}, s_{2}^{2},\left(s_{1} s_{2}\right)^{m}\right\rangle$. (Then (W, $\left\{s_{1}, s_{2}\right\}$) is a Coxeter system.)
(i) Each element of W has length $\leqslant m$ and there is a unique element h of length m.
(ii) There are exactly two words of length m for h : one is $\left(s_{1}, s_{2}, \ldots, s_{2-\varepsilon}\right)$ and the other is $\left(s_{2}, s_{1}, \ldots, s_{1+\varepsilon}\right)$ where $\varepsilon=0$ if m is even and $\varepsilon=1$ if m is odd.

The following lemma is also well known.
LEMMA 3. Suppose that (W, S) is a Coxeter system and that w is an element of W with $l(w)=n+1$. Suppose further that there are distinct elements w_{1}, w_{2} in W of length n and elements s_{1}, s_{2} in S such that $w_{1} s_{1}=w=w_{2} s_{2}$. Then the following statements are true.
(i) $m\left(s_{1}, s_{2}\right) \neq \infty$:
(ii) Let h be the element of length $m\left(=m\left(s_{1}, s_{2}\right)\right)$ in the dihedral group $\left\langle s_{1}, s_{2}\right\rangle$ (cf. Lemma 2). Then

$$
l(w)=l\left(w h^{-1}\right)+l(h) .
$$

Proof. A proof can be extracted from Exercise 3, p. 37 of [B]. Put $X=\left\{s_{1}, s_{2}\right\}$ and $W_{X}=\langle X\rangle$. According to this exercise, there is a unique element w^{\prime} of shortest length in the coset $w W_{X}$. Thus, $w=w^{\prime} h$ for some $h \in W_{X}$. Moreover, w^{\prime} and h have the following two properties:
(a) $l(w)=l\left(w^{\prime}\right)+l(h)$
(b) $l\left(h s_{i}\right)<l(h)$ for $i=1,2$.

Property (b) implies that the group W_{X} is finite, i.e. $m \neq \infty$. Property (a) then yields (ii).

COROLLARY 1. With the hypotheses of Lemma 3, there is a path from w_{1} to w_{2} in the ball $B(n)$ of length $2 m-2$ (where $m=m\left(s_{1}, s_{2}\right)$).

Proof. Put $w^{\prime}=w h^{-1}$. By Lemma 2, there are two geodesics from 1 to h. These can be translated by w^{\prime} to yield two geodesics from w^{\prime} to w; one ends in an edge labelled s_{1} the other in an edge labelled s_{2}. Deleting these final edges, we obtain a geodesic of length $m-1$ from w^{\prime} to w_{1} and a geodesic of length
$m-1$ from w^{\prime} to w_{2}. Both geodesics lie inside $B(n)$ (by Lemma 3(ii)). Concatenating the inverse of the first geodesic with the second we obtain a path in $B(n)$ from w_{1} to w_{2} of length $2 m-2$.

DEFINITION. Suppose (W, S) is a Coxeter system. Define an integer $m(W, S)$ by

$$
m(W, S)=\max \left\{m\left(s_{1}, s_{2}\right) \mid\left(s_{1}, s_{2}\right) \in S \times S \text { and } m\left(s_{1}, s_{2}\right) \neq \infty\right\} .
$$

COROLLARY 2. Let (W, S) be a Coxeter system. Then (W, S) is $\mathrm{AC}(2)$ with $N(2)=2 m(W, S)-2$.

Proof. We must consider elements w_{1} and w_{2} in $S(n)$ with $0<d\left(w_{1}, w_{2}\right) \leqslant 2$. Since all relators are of even length, $d\left(w_{1}, w_{2}\right) \equiv$ $l\left(w_{1}\right)+l\left(w_{2}\right)=2 n(\bmod 2)$. Hence, the case $d\left(w_{1}, w_{2}\right)=1$ does not occur. The case $d\left(w_{1}, w_{2}\right)=2$ follows immediately from Corollary 1 .

Combining this with Lemma 1 yields the following.
THEOREM. Any Coxeter system (W, S) is almost convex.
REMARK. Poenaru [P] has recently proved that if a 3-manifold group is AC, then it is simply connected at infinity. It is proved in [D] that there are Coxeter groups W which (a) contain the fundamental group of a closed aspherical n-manifold, $n>3$, as a subgroup of finite index and (b) are not simply connected at infinity. Hence, Poenaru's result is strictly 3-dimensional.

REFERENCES

[B] Bourbaki, N., Groupes et Algèbres de Lie, Chapters IV-VI, Hermann, Paris, 1968.
[C] Cannon, J. W., 'Almost convex groups', Geom. Dedicata 22 (1987), 197-210.
[D] Davis, M. W., 'Groups generated by reflections and aspherical manifolds not covered by Euclidean space', Ann. Math. 117 (1983), 293-324.
[P] Poenaru, V., 'Almost convex groups, Lipschitz combing, and π_{1}^{∞} for universal covering spaces of closed 3-manifolds’ (preprint, 1990).

Authors' address:
Michael W. Davis and Michael Shapiro, The Ohio State University, Department of Mathematics, 100 Mathematics Building, 231 West 18th Avenue, Columbus, Ohio 43210-1174, U.S.A.

