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Regular Convex Cell Complexes

MICHAEL W. DAVIS / Department of Mathematics, Chio State University,
Columbus, Ohio

INTRODUCTION

As ¢ = +1, 0, or -1, let Y: stand for the n-sphere, Euclidean n-space,
or hyperbolic n-space. The study of regular tessellations of Y: by convex
cells is a classical topic. Such tessellations have been completely
classified (e.g., see [2] and [3]). The theory of regular tessellations of
the n-sphere is essentially identical with the theory of regular convex
polyhedra of dimension n + 1. In the case of hyperbolic space, regular
tessellations exist only in dimensions 2, 3, and 4 (cf. [2]).

There is a close connection between the theory of regular tessellations
of YZ and the theory of Coxeter groups: the group of isometric symmetries
of such a tessellation is a group generated by the reflections across the
faces of an n-simplex in the barycentric subdivision of the tessellation;
such reflection groups are Coxeter groups. To a large extent this relation-
ship is of a purely combinatorial nature. This paper is a systematic
cxposition of the combinatorial aspects of this relationship. Most of this
material is classical; however, some new results do emerge.

Suppose that the geometric rcalization of a convex cell complex K is
a PL-manifold of dimension n. We shall say that K is symmetrically
regular if its group of combinatorial symmetries acts transitively on the
set of n-simplices in its derived complex K'. More generally, X is said
to be regular if there is an n-tuple (ml. -o-,mn) of integers > 3 such that
(a) the boundary of each 2-cell in K is an m,-gon, (b) the link of each
(n-2)-cell in K is an m -gon, and (c) for 2 < i < n-1, for each (i+1)-cell
Fiol in X, and for each (i-2)-face Fi_2 of Fi*l’ the link of Fi-z in
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o, is an m, -gon. The n-tuple (ml, ---,mn) is called the Schlafli symbol
of K. (It is easy to see that symmectric regularity implies regularity.

We give a proof in (2.7).) We note that any covering space of a regular
convex cell complex naturally has the structure of a regular convex cell
complex.

We shall prove the following result in section 3.

THEOREM. Suppose that K is a regular convex cell complex and that K is a
connected PL n-manifold. Then the universal cover of K is combinatorially
equivalent to a classical regular tessellation of Yg by convex cells, for
some ¢ € {+1, 0, -1}. The fundamental group = of K is then identified
with a subgroup of the group of isometric symmetries of this tessellation
of YE and K is combinatorially equivalent to the induced tessellation of
Y';/n.

In particular, this result implics that if a manifold admits the
structure of a regular convex cell complex, then it must be PL-homeomorphic
to a complete Riemannian manifold of constant sectional curvature.

In dimension 2, the above theorem was proved by Edmonds, Ewing, and
Kulkarni in [6]. In the special case where K is the boundary complex of
a convex (n+1)-cell and where X is symmetrically regular, it is due to
McMullen [9]. The theoren was proved in full generality by Kato in {7].

Actually, we shall carry out the whole theory in the broader context
where K is a connected n-dimensional pseudo-manifold and where the link of
each i-cell, i < n-2, in K is connccted. Regular convex cell complexes are
classified in this generality; there are some further possibilities besides
the classical tessellations.

Here is a sketch of the mairn argument. The derived complex of K is a
simplicial complex with a natural projection p to the standard n-simplex
a". Onec associates to [ml, o--,mn) a Coxeter group W, the diagram of
which is a connected line segment. To an n-simplex I in K', one associates
a subgroup n(K',Z) of W. There is a close analogy with the theory of
covering spaces: the projection p : K! - A" plays the role of a covering
projection, the Coxeter group W plays the role of the fundamental group
of the base, and w(X',I) plays the role of the fundamental group of X'
(when K is a PL-manifold it actually is the fundamental group). It turns
out that the role of the universal cover of the base is played by the so-
called "Coxeter complex' of W. The theorem is proved by showing that K'
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is a PL-manifold only in the cases where the Coxeter complex is naturally
identified with Y.

The preceding paragraph suggests that we generalize the situation by
studying simplical complexes over a" to which an arbitrary Coxeter group
can be associated (rather than restricting ourseclves to Coxeter groups with
diagrams connected line segments). This is done in section 2.

As we have already mentioned, the theorem stated above was proved in
[7] (by somewhat different methods than those of this paper). Tits' paper
[12] is concerned with a generalization of the material discussed here to
the theory of buildings; the methods of {12] are very similar to those of

this paper.

1. CONVEX CELL COMPLEXES

1.1. Suppose that E is a convex cell in some finite-dimensional real
vector space V. Let Vg denote the linear subspace of V consisting of all
vectors of the form t(x-y), where x, y € E and t € R. In other words, VE
is the linear subspace parallel to the affine subspace supported by E.

For x € E, denote by CE,x the sct of v in VE such that x + tv lies in E for
some t in [0,e) and ¢ > 0. Suppose that F is a proper face of E {written
as F < E). Let E denote the relative interior of F. If x € E and y € F,
then C C:CE,x' with equality if and only if y € ;. If x, y € ﬁ, then

E,y
CE < and CE y have the same image in VE/VF' This common image is denoted
1] bl
by Cone(F,E); it is a convex polyhedral cone in VE/VF'
The unit sphere S(V) in a real vector space V is the quotient space

(v - {(ON/R,.

1.2. Suppose that E is a convex cell and that F < E. The link of F in E,
denoted Link(F,E), is the image of (Cone(F,E) - {0}) in S(VE/VF); it is a
convex cell in S(VE/VF). {The link of a simplex in a simplicial complex
is usually defined in another way; our definition is especially for use

in convex cell complexes.) If Fl < F_ < E, then the inclusions VF cv.,

2 2 E

VF2/VFl c VE/VFI, and CFZ.Y < cﬁ,y induce a natural identification of

Link(Fl,Fz) with a face of Link(Fl,E). Thus, the set of faces of Link(F,E)
is in bijective correspondence with the set of faces of E which properly

contain F.
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1.3. Classically a convex cell complex K is a set of convex cells in some

finite dimensional vector space satisfying the following two conditions:
(i) If E € K and F is a face of E, then F € K.
(ii) If E, F € K, then either EN F = ¢ or E N F is a common face of
E and of F.
A convex cell complex, in the above sense, has the structure of a

poset: the partial ordering is given by inclusion of faces.

1.3.1. Let K be any poset. If E € K, then let K p denote the subposet
{F € K| F < E}). Generalizing the definition in (1.3), we shall say that
a poset K is a convex cell complex if the following two conditions are

satisfied:
(i') If E € K, then K<
convex cell,

F is isomorphic to the set of faces of some

= § or

(ii') If E and F are elements of K, then ecither K<E n Kk <F

else there exists an element F' in this intersection such that

Kg N K=K
For example, an abstract simplicial complex is a convex cell complex in

this sense. An clement of K is calledacell. A convex cell complex K is

n-dimensional if it contains cells of dimension n but none of dimension n+l.

1.4, Associated to a convex cell complex K, there is a topological space

called its geometric realization: this is the polyhedron formed by pasting

together convex cells, one for each element of K, in the obvious fashion.
As is common practice, we shall use the same symbol K to stand for a convex

cell complex and its geometric realization.

1.5. The derived complex of K, denoted by K', is the poset of all finite

chains in K. (A chain in a poset is a totally ordered nonempty subset.)
An element of K' is a simplex; it is a k-simplex if it consists of k + 1
elements of K. The poset K' is an abstract simplicial complex; its vertex
set can be identified with K. The geometric realization of K' is naturally

identified with the barcentric subdivision of K.

1.6. If K is a convex cell complex and if F is a cell in K, then the

of all cells of the form Link{F,E)}, where F < E € K, and where, of course,
whenever Fl < Fz < F3 € K, we identify Link(Fl,FZ] with the corresponding
face of Link(Fl.FS).
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The poset Link(F,K) is in bijective correspondence with the poset of
cells in K which properly contain F. It follows that the simplicial complex
Link(F,K)' can be identified with the subcomplex of K' consisting of all
simplices o =V{F0, Fiooee ,Fk} , such that F < Fg < Fys=r< F €K

1.7. A combinatorial equivalence f from a convex cell complex K to another

one L is an isomorphism of posets £ : K --» L. Such an equivalence f induces
a simplicial isomorphism f' : K' --> L'. Hence, a combinatorial equivalence
induces a PL-homeomorphism of geometric realizations. A combinatorial self-

equivalence of K is called a combinatorial symmetry of K {(or sometimes

simply a "symmetry"}. The group of combinatorial symmetries of K will be
denoted by Aut(X).

[

1.8, Suppose that K is connected and that p : K - X is a covering
prejection. Since cells are simply connected, each cell of K is evenly
covered by p. Thus, K inherits the structure of a convex cell complex.

Let T denote the group of covering transformations. Then T is a subgroup
of Aut(K) and T freely permutes the cells of K. If p : K -->K is a regular
covering (i.e., if K = K/F), then T is a normal subgroup of Aut(K) and

Aut (K)/T can be identified with the group of combinatorial symmetries of K.

1.9. In a similar vein, suppose that X is a convex cell complex and that

I is a subgroup of Aut(K) which freely permutes the cells of K. By an
abuse of language, we shall also call the quotient space K/T a "convex cell
complex." (Strictly speaking, K/r might not be a convex cell complex as
defined in (1.3), since distinct faces of a cell in K might be identified
by an element of I'.) However, by passing back to K, the notion of the link

of a cell in i/r still makes sense.

1.10. In the remaining sections of this paper we shall often impose the
following conditions on an n-dimensional convex cell complex K (or an

appropriate cover).

1.10.1. Each cell in K is a face of an n-cell. Each (n-1)-cell in K is a

face of precisely two n-cells,

1.10.2. K is connected and for each cell F in K of dimension < n-2,
Link(F,K) is connected.

1.11. Condition (1.10.1) means that K is an n-dimensional pseudo-manifold.
It follows from (1.10.1) that for each k-cell F in K, 0 < k < n-1, Link(F,K)
is also a pseudo-manifold of dimension n - k - 1. The complex K is a

PL-manifold if for each k-cell F, 0 < k ¢ n-1, Link(F,K) is PL-homeomorphic
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to s"¥°! with its standard PL structure. Conditions (1.10.1) and (1.10.2)

imply that the link of any i-cell in K has the same number of path com-
ponents as the link of an i-cell in a PL n-manifold. We shall sometimes

also want to impose the following condition.

1.11.1. The link of cach (n-2)-cell in K is a circle and the link of each
cell of dimension < n-3 is simply connected.
This condition means that the link of any i-cell in K has the same

fundamental group as the link of an i-cell in a PL n-manifold.

Next, suppose that L is an n-dimensional simplicial complex.

1.12. An n-simplex in L is called a chamber. Let Chamb(L) denote the set
of chambers in L. Also, for cach simplex ¢ in L, let Chambo(L) denote the
set of chambers in L which have ¢ as a face.

Two distinct chambers are adjacent if their intersection is an (n-1)-
simplex. A gallery in L is a sequence of adjacent chambers. The gallery
(20,--- ,Zm) is said to begin at Zo, to end at Zm’ and to connect EO to Zm.

1.12.1. If L satisfies (1.10.1), then given any I € Chamb(L) and any
(n-1)-dimensional face o of £, there is a unique chamber ' adjacent to
T with N ' = g

1.12,2. If, in addition, L satisfies the connectivity conditions in
(1.10.2), then any two chambers in L can be connected by a gallery; more-
over, if ¢ € L, then any two chambers in Chamba(L) can be connected by a
gallery of chambers in Chambo(L).

1.13. The standard n-simplex A" is the poset of all nonempty subsets of

{0, 1, «++,n). It is an abstract simplicial complex. If o € A", then put
Type(a) = {0,1, -«+ ,n} - ¢. Thus, if o is a k-simplex, Type(o) is a proper
subset of {0,1, *-+ ,n} of cardinality n - k.

1.14. A projection from L onto A" is a simplicial map q : L --> A" such
that the restriction of q to each simplex is injective. The pair (L,q) is
called a simplicial complex over A" 1f (L,q) is a simplicial complex

over An, then for any simplex o in L, put Type{c) = Type(q(o)).

Note that if I is a chamber in L and 1 is a proper subset of
{0,1, «-+ ,n}, then, since qlz : L - a"is an isomorphism, £ has a unique
face of type I.
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Suppose that (Ll’ql) and (Lz,qz) are simplicial complexes over A", A
simplicial map f : Ll -=> L, is called a map over A" if the following

diagram commutes.

f
W
q:\‘ 9
n
A

1.1s. 1If f ; L1 --5 L2 is a map over An, then it follows easily from the
definitions, that f preserves the dimension of simplices. In particular,
there is an induced map f : Chamb(Ll) -— Chamb(Lz).

LEMMA 1.16. Suppose that (Ll'ql) and (L2,q2) are simplicial complexes
over An, that Ll satisfies (1.10), and that f and g are two simplicial
maps over A" from Ll to L,. If there exists a chamber I in Chamb(Ll) such
that () = g(I), then £ = g.

Proof. Suppose that E(E) = g(2). Let v, denote the vertex of I which
projects to the vertex {i} € a", so that 1 = (vo, ~°°,vn). Since f and g
preserve type, we must have f(vi) 2 g(vi), 0<i<n. Thus, f and g agree
on the geometric realization of . In particular, they agree on every
(n-1)-dimensional face of L. It follows from (1.12,1) that f and g agree
on every chamber adjacent to £. By (1.12.2), this implies that f and g
agree on every chamber of L1 and hence, that f = g.

COROLLARY 1.,17. Suppose that (L,q) is a simplicial complex over A" and
that L satisfies (1.10). Then the group of automorphisms over A" of L,
denoted by Aut(L,q), acts freely on Chamb(L).

1.18. Suppose that (L,q) is a simplicial complex over a" and that L
satisfies (1.10). Let £ € Chamb(L). For each pair of integers i and j,
with 0 < i, j<nandi# j, let %i,j} be the (n-2)-face of I of type
{i,j} and put

1.18.1. Lij(x] = Link(Z L).

{i,5)’
It follows from (1.10) that Li.(zl is a connected l1-manifold; hence, it is

either a polygon with a finite number of sides or the tessellation of R by

intervals. The map q induces a simplicial map
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. . n n oo Ll
qij : Lij(X] - Llnk(A{i,j}, A) = AT,

Thus, Lij(E] is a complex over Al

. The vertices of Lij(z) correspond to
(n-1)-simplices which contain E{i,‘)' The existence of the map a5 shows
that the vertices of Lij(t] alternate between type {i} and type {j} (i.e.,
the corresponding (n-1)-simplices alternate between these types). Hence,

if Lij(z) is a finite polygon, it must have an even number of sides. If
Li.(z) is finite, then let mij(z) denote 1/2 the number of its sides; if
Lij(z) is infinite, then put mij(z) = », Also, for 0 < i < n, put mii[z)= 1.

In this way, we obtain an (n+1) by (n+l1) matrix (mi Its

5 0cs, jen
diagonal entries are all equal to 1; its off-diagonal entries are integers

>2o0r =

1.19. Let X = {xo, ~--,xn} be a set of n + 1 symbols and let G(X) (resp.
G+(X)) denote the free group (resp. free monoid) on X. Let (L,q) be as
above. For each chamber I in L and for 0 < i < n, let Xxi denote the unique
chamber in L such that f and Exi are adjacent and such that the (n-1)-simplex
LN Ix, is of type {i}. This defines an injective function from X into the
group of permutations of Chamb(L). By the universal property of G(X), this
function extends to a homomorphism defined on G(X). Hence, we get an action
of G(X) (from the right) on Chamb(L). (N.B. This action isnot induced from
a simplicial action on L.}

1.19.1. Suppose (EO, ---,zm) is a gallery in L. Then £i = £i_1yi for some
yi € X. Hence, the gallery can be rewritten as

se e b s
(Egr Tg¥ys EgYpyo *" o Rg¥y "7t Vel

where the element g = y, ***y, is in G (X)}. Conversely, any element

g € G+(X) yields a gallery from £ to £0g. Since any two chambers can be

connected by a gallery, the groupOG(X] acts transitively on Chamb(L).
1.19.2. Suppose that ¢ is a simplex in L of type I for some proper subset
1 of (0,1, »++ ,n}. Put Xp = l'xi €X|i€1}. Forany [ € Chamb (L) and
e have Ix € Chambo(L].. It follows that for g € G+(XI) the
corresponding gallery from I to Ig is a gallery of chambers in Chamba(L].
Thus, G(XI) stabilizes Chambu(L). It follows from (1.12.2) that G(XI) acts

transitively on Chambo(L).

any x € X
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2 X
E{x.x X, i
( ; J) i
J
E(x.x.) IX X .
1 . J
i
FIGURE 1

Moreover, with ¢ and I as above, we clearly have that

c=LN N Xxi; (1.19.3)
i€l
hence,
o= N zg. (1.19.4)
gGG‘(XI)

1.20. With notation as above the following formula holds:

mij(t)
z:(xixj) =z, (1.20.1)

for 0 < i, j < nand mij(z) ¢ @ , Moreover, if mi.(Z) < o, then it is the
smallest positive integer m such that E(xixj)In = I; while, if mi.(E) z o
then there is no integer m with this property. Since Chambz (r) is
{i,j}
isomorphic to Chamb(Lij(Z)], to prove these assertions it suffices to
consider the case of a polygon with 2m sides. But these assertions are

obvious in this case. (See Figure 1 for the picture whenm = 3.)

LEMMA 1.21. Suppose that (Ll'ql) and (Lz,qz) are simplicial complexes
over 8" satisfying (1.10) and that f : Ll - L2 is a simplicial map over
A", Let T Chamb(L]) ~-> Chamb(L,) be the induced map. Then tis
G(X) -equivariant.

Proof. Let I € Chamb(Ll). It suffices to prove that for each X5 in

X, we have f(txi) = (f(x))xi. The chanmbers f(I) and f(ZXi) are adjacent
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and their intersection has type {i} (since f preserves adjacency and type).
Therefore, f(txi) = (f(t))xi.

Conversely, we have the following result,

THEOREM 1.22. Suppose that (Ll'ql) and (Lz,qz) are simplicial complexes
over a" and that ¢ Chamb(Ll) - Chamb(Lz) is a map of G(X)-sets. Then
there is a unique simplicial map over A" denoted f¢ Py - LZ’ such that
fo = ¢.

In other words, there is a natural bijection between the set of
simplicial maps over A" from (Ll,ql) to (Lz,qz) and the set of G{X)-

equivariant maps from Chamb(L,) to Chamb(L,).
4 P 1 2

Proof. We first remark that since ¢ is G{X)-equivariant,
¢(£xi) = (¢(£))xi. Thus, the chambers ¢(L) and ¢(txi) are adjacent and
their intersection is an (n-1)-simplex of type {i}. Let o be a k-simplex

in Ll’ Put I = Type{o). Choose a chamber I such that o < E. Let

a = ¢(Z) N N ¢(ix,)
i€l

1t follows from the above remarks that a is k-simplex of type [. Further-

more, by (1.19.4),

a-= n (4(£))g.
ge6, (Xp)

From this last equation we see that the definition of a is independent of
the choice of £ € Chamba(Ll). Define £y ¢ L1 -=> L, by f¢(o) = a, It is
clear that f¢ is a simplicial map over A" and that'f¢ = ¢. Uniqueness
follows from Lemma (1.16).

Now suppose that K is an n-dimensional convex cell complex. We shall

apply paragraphs (1.12) through (1.22) to the special case L = K'.

1.23. If F € K, then {F) is a vertex of X'. If i € {0,1, -+ ,n}, then
{i) is a vertex of A". The map of vertex sets Vert(K') --> vert(a™)
defined by {F} --» {dim F)} yields a simplicial projection p': K' -- a".

. . .. n
Thus, K' has a canonical structure of a simplicial complex over 4 .

1.24. Let K,, K, be n-dimensional convex cell complexes. If f : K, -»> K,

is a combinatorial equivalence, then f' : Kj -» K} is a simplicial
isomorphism over a". (In particular, f' preserves type; consequently, f
preserves the dimension of cells. Thus, a combinatorial equivalence pre-

serves the dimension of cells.)
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Conversely, suppose that g : K; --> Ki is a simplicial map over a".
Let £ : Kl ~=> KZ be the induced map of vertex sets. Since g is compatible
with the projections to a", it follows that f is a map of posets and that
f* = g. If g is an isomorphism, then so is f. Hence, the sct of combina-

Py

torial equivalences from K, to K, is naturally bijective with the set of

simplicial isomorphisms over A" from Ki to Ké.

1.25. Applying this in the special case K = Kl = KZ’ we see that Aut(K),
the group of combinatorial symmetries of K, is canonically isomorphic to
Aut(K',p), the group of simplicial isomorphisms of K' over A",

From now on, we suppose that K satisfies (1.10). First we note the

following.

1.26. K' also satisfies (1.10).
Using (1.2S), corollary (1.17) can be translated as follows.

LEMMA 1.27. If K satisfies (1.10), then the group Aut{K) acts freely on
Chamb(K').

1.28. Suppose that L = {Fy <-<< F } is a chamber in K'. For 1 < i <n,

let Li(z) be the 1-dimensional convex cell complex defined as follows:

LI(Z) = an
Li(E) = Llnk(Fiﬂz,aFi+1), 2<i<n-l,
Ln(z) = Llnk(Fn_z,K), n > 2,

For 1 < i < n-1, Li(z) is a polygon; let mi(t) denote the number of its
sides. The complex Ln(t) is either a polygon, in which‘case mn(Z) denotes
the number of its sides, or the tessellation of R by intervals, in which
case put mn(z) = o,

Recall that for 0 < i, j < n, i#j, in (1.18.1) we define complexes
Lij(z) = Link(z{i’j),x'), vhere z{i,.} denotes the (n-2)-simplex
T - {Fi,Fj}. For {i,j)} = {k-l,k},Lij(E) can be identified with the derived
complex of Lk(z)' Thus,

mij(z) = mk(t), whenever {i,j} = {k-1,k} .

In the notation of (1.19) we have that, for 0 < i< n,
i, = (2 -{F,D U ﬁi for some i-cell F, in K. Suppose |i-j] > 2. Put
(i, j) = (¢ - (Fi,FJ.}) U (ﬁi,ﬁj). It follows from the hypothesis li-j| > 2,
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that £(i,j) is a chamber of K'. Moreover, EI(i,j) is the adjacent chamber
to Ix, (resp. to Ix.) across the face of type (j} (resp. type {i}). Thus,
inxj = L(i,j) = ijxi, from which it follows that E(xixj)z = L.

In other words, mij(z) = 2 and Lij(t) is a quadrilateral, whenever

J]i-j| > 2. In summary,

1 , ifi=j
mi5(2) = 2 , if |i-j| > 2
m (5 , if {4,j) = {k-1,K) .

2. REGULAR SIMPLICIAL COMPLEXES OVER a"

2.1. A Coxeter matrix of degree n + 1 is a symmetric (n+l) by (n+}) matrix
M = (mij] 0<i, j<n’ with each diagonal entry equal to 1 and with cach off-
diagonal entry cither an integer > 2 or =.

2.2. To a Coxeter matrix M = (mi ) , one can associate a graph as

j70<i,j<n
follows. The graph has one vertex z, for each integer i, 0 < i < n.
Distinct vertices z, and zj are connected by an edge if and only if mij # 2.
The edge corresponding to {zi,zj} is labelled mij if m.. > 3 and it is left
unlabelled if mij = 3. The resulting graph with edge labels is called the

Coxeter diagram associated to M. The matrix M is clearly determined by its

diagram, up to permutations of the indices.

2.3. Suppose that X = (x0,°-- ,xn} is a set of n + 1 symbols and that
M= mi3)0ci, j<n
M is the quotient of the free group on X (denoted G(X)) by the normal

Mm: .
subgroup generated by {(xixj) 1J}, where 0 < i, j < n, and mij # o,

is a Coxeter matrix. The Coxeter group W associated to

2.4. Associated to M there is another matrix CM = (cijJ , called

0<i,j<n
its cosine matrix, defined by the formula

Cij = -cos(n/mij).

2.5. Regardlkml as the set of all functions from {0,1, -+ ,n} to R and

let {eo,el, --o,en} be the standard basis. Let M, CM' X, W be as above.

Put B, (e.,e.) = ¢c... This extends to a bilinear form
M%) ij
n+1 n+l

BM : IR x R --> IR,
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For 0 < i < n, define a linear reflection s; on IRml by s;y=vy- ZBM(y,ei)ei.

(This is not a standard orthogonal reflection with respect to a hyperplane,

rather it is orthogonal with respect to the symmetric bilinear form B"( s )

This bilinear form could be degenerate and/or indefinite.) It can be

checked that the order of (sisj) in GL(n+1, R) is m Hence, the map

ij°
X --> GL(n+1, R) defined by X, == sy extends to a representation

¢ : W -- GL(n+l, R) called the canonical representation of W. (For more

details on the canonical representation, see Ch. V of [1].)
It follows from the existence of the representation ¢ that the natural

map X --> W is injective and that it takes each element of X to a non-trivial
element of W. Henceforth, we shall identify X with its image in W. It also

follows from the existence of ¢ that the element (xix.) has order mij in W
(rather than just dividing mij)' The pair (W,X) is called the Coxeter
system associated to M. Any pair isomorphic to (W,X) is also called a

Coxeter system.

2.6. Suppose that (L,q) is a simplicial complex over a" ( cf. (1.14)) and
that L satisfies (1.10). From (1.18), we get a function M : Chamb(L) -->
{Coxeter matrices) defined by M(L) = (uij(z))ogj,jgp' We say that (L,q)
is regular if M is a constant function. We denote its value by

M(L) = (mij(L))Oii,jgp' We say that L is of type M(L).

2.7. Again, suppose that (L,q) is a simplicial complex over a" and that
L satisfies (1.10). Then (L,q) is symmetrically regular if its auto-
morphism group Aut(L,q) acts transitively on Chamb(L).

Suppose (L,q) is symmetrically regular. Obviously, for any
a € Aut(L,q) and I € Chamb{(L), we have M(aL) = M(I). Hence, symmetric

regularity implies regularity.

We suppose for the remainder of this section that (L,q) is a regular

s s n
simplicial complex over A".

2.8. Let (W,X) be the Coxeter system associated to the Coxeter matrix
M(L). In (1.19) we defined a transitive nonsimplicial action of G(X) on
Chamb(L). It follows from formula (1.20.1) that this action factors
through W. Hence, W acts transitively (from the right) on Chamb(L). For
any I € Chamb(L), let w(L,I) denote the isotropy subgroup at I. We call
n(L,Z) the group of L at L. As a right W-set, Chamb(L) is isomorphic to
#(L,Z)\W. Hence, for each w € W, n{L,Iv) = w'ln(L,E)w. In other words,

——E ik e et e -
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as I ranges over Chamb(L), =(L,Z) ranges over the conjugacy class of a
subgroup in W.

Next we state a few easy consequences of theorem 1.22.

PROPOSITION 2.9. For i = 1, 2, suppose that (Li'qi) is a regular simplical

complex over A" of type M and that L, € Chamb(Li). Let (W,X) be the Coxeter
system associated to M. Then there is a simplicial map f£ : Ly -> L, over

A" such that f(Zl) = 22 if and only if n(Ll,Zl) is a subgroup of n(LZ,Zz).

Moreover, f is an isomorphism if and only if n[Ll,tl) = w(Lz,zz).

COROLLARY 2.10. For i = 1, 2, suppose that (Li,qi) is a regular simplicial
complex over a" and that Ei € Chamb(Li). Then (Ll’ql) and (Lz,qz) are
isomorphic over A" if and only if M(Ll) = M(Lz) and n(Ll,Zl) and n(LZ,ZZ)

are conjugate subgroups of the associated Coxeter group W.

THEOREM 2.11. Suppose that (L,q) is a regular simplicial complex over A"
and that I € Chamb(L).

(i) The automorphism group, Aut(L,q}, is isomorphic to N(w)/w, where
n = n(L,Z), and N{(n) denotes the normalizer of n in W.

(ii) (L,q) is symmetrically regular if and only if = is normal in W
(and hence, Aut(L,q) =W/a).

2,12, We shall say that (L,q) is universal of type M if it has the follow-

ing property: given any other regular simplicial complex (L ) over

1’%
A" of type M and chambers I € Chamb(L) and 21 € Chamb(Ll), there exists a

unique f : L -- L., which is a simplicial map over 4" and which takes I to

Z,. Clearly, a un;versal regular simplicial complex over a" of type M is
unique up to isomorphism over a".

Consider the following two conditions on a regular simplicial complex
(L,q) of type M.

(i) =(L,Z) is the trivial group.

(ii) Aut(L,q) =W.
From (2.9) and (2.11) we see, just as in the theory of covering spaces,
that these two conditions are equivalent and that either implies ghat

(L,q) is universal.

2.13. We turn now to the question of existence of such universal complexes.

Let M = (mij)oii,jgp

system. It turns out that the universal complex of type M coincides with

be a Coxeter matrix and (W,X) the associated Coxeter

the well-known ''Coxeter complex” of (W,X}. We shall now recall its
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construction. For any proper subset I of {0,1, *+- ,n}, let WI denote the
subgroup of W generated by X, where X = (xi € X|i € I}. Consider the
simplicial complex W x a". Define an equivalence relation ~on W x A" by
{w,0) ~ (w',0') <=> the simplices ¢ and o' are equal and w'lw' € WI,

I = Type(o). (Type(o) is defined in (1.13).) The quotient of W x AP by

~ is a simplicial complex which we shall denote by UM’ (UM is the Coxeter
complex.) (The geometric realization of UM is the space formed by pasting
together n-simplices, one for each element of W, in the obvious manner.)
For the moment, write [w,g] for the simplex in Uy which is the equivalence
class of (w,o). We can identify A" vith the subcomplex in UM consisting of
all simplices of the form [1,q), o € A". The natural projection

W x A" --> 4" induces a projection p : UM --> A", Thus, UM is a simplicial
complex over A". Define an action (from the left) of W on UM by

w(w',a] = [ww',0]. It is clear that W acts as a group of automorphisms
over A" and that W acts transitively on Chamb(UM) (= {WAn}wEN); hence,
W= Aut(UM,p) and UM is symmetrically regular. Thus, we have proved the
following result.

2.13.1. The Coxeter complex UM equipped with its canonical projection

p: UM --> a" is the universal regular simplicial complex over a" of type M.
Here is another property of UM‘

2,13.2. If W is finite, then UM is homeomorphic to s". IfWis infinite,

then UM is contractible. (For a proof, see [11], p. 108, or (5].)

2.14. If 7 is any subgroup of W, then UM/u is naturally a simplicial com-
plex over An; however, the quotient may fail to satisfy condition (1.10).
(For example, if = = W, then UM/u = Jn which does not satisfy (1.10).)
Even if the quotient does satisfy (1.10), it might still fail to be regular
of type M. We shall now determine the conditions on the subgroup w so that
the quotient is regular of type M.

For 0< i, j<n, i1#j, let wij denote the subgroup of W generated
by [xi,xj}. Then wij is a dihedral group of order Zmi..

2.14.1. 1f (L,q) is regular of type M, then for each I in Chamb(L), the
intersection of a(L,I) and wij is the trivial group. (To see this, note
that the subgroup Wij acts freely and transitively on Chamb(Lij(z)), vhere
Lij(z) is defined in (1.18.1):; hence the intersection of wij with the
isotropy subgroup #(L,X) must be trivial.)
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Consider the following condition on a subgroup = of W.

2.14.2, For 0< i, j<n, i# j, and for each w € W, the interscction of
-1 . s s
w aw and wij is trivial.

It is now easy to see that we have the following result.

LEMMA 2.14.3., Let M be a Coxeter matrix and 7 a subgroup of W. Then UM/n
is a regular simplicial complex over A" of type M if and only if w satisfies
(2.14.2).

COROLLARY 2.15. Let M be a Coxeter matrix and (W,X) the associated

Coxeter system. Then the set of isomorphism classes of regular simplicial
complexes over A" of type M is naturally bijective with the set of conjugacy
classes of subgroups = of W such that n satisfies (2.14.2).

PROPOSITION 2.16. Let M be a Coxeter matrix. Then there exists a finite
regular simplicial complex over A" of type M if and only if each entry of
M is < =,

Proof. If (L,q) is of type M and L is a finite complex, then obviously
each mij is < =, Conversely, suppose each ms is < =, Since the associated
Coxeter group W has a faithful representation in GL(n+lR), it is virtually
torsion-free (cf. (10]). Hence, there is a torsion-free subgroup n of
finite index in W. Since wij is finite and n is torsion-free the subgroup
n satisfies (2.14.2). The proposition follows.

2.17. Next let us consider the action of the automorphism group W on U&.
For any proper subset I of {0,1, --+ ,n} let (WI.Xi] be as in (2.13). The
maximal proper subsets of {0,1, «-+ ,n} are of the form I(i) = {0,1, --- ,n}
- {i} for some i, with 0 < i < n. To simplify notation, put X(i) = X](i)
dw,.
and Wy

wType(u]' Similarly, the isotropy subgroup at wo, w € W, is "WType(a]"

= W, ..y. The isotropy subgroup at a simplex ¢ in A" (A" c pr is
I1(1) 1
It is easy to see that W acts properly on the geometric realization of UM

if and only if each isotropy subgroup is finite. In other words,

2.17.1. W acts properly on the geometric realization of UM if and only if
for each proper subset I of {0,1, -+« ,n}, the group W is finite.

Since each maximal subgroup of the form WI is of the form W(i), we
can rephrase (2.17.1) as follows: W acts properly on the geometric
realization of U“ if and only if it satisfies the finiteness condition (JFC)
below.

(FC) For 0 < i < n, the group N(i] is finite.
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Next, suppose that = is any subgroup of W. The isotropy subgroup of
. . R -1 s .
n at a simplex wo in UM is a N "wType(o)" . Hence, the n-action on UM is
free and if and only if each of these intersections is the trivial group.
Moreover, if this condition holds then it is also easy to see that the
w-action is proper. Thus, =m acts freely and properly on Uy if and only if

it satisfies the following condition.

1

2.17.2. For 0< i < n and for each w €W, w mw N w(i) is the trivial

group.

LEMMA 2.18. Suppose that M is a Coxeter matrix, W is the associated
Coxeter group, and that n is a subgroup of W.
(i) The natural map q : Uy » UM/n is a topological covering if and

only if n satisfies (2.17.2).

(ii) 1f n satisfies (2.17.2), then the fundamental group of UM/n is
isomorphic to n, (provided n 2 2).

Proof. Statement (i) follows from the remarks in (2.17). Statement
(i1i) follows from the fact that UM is simply connected (cf. (2.13.2)), if
n > 2.

2.19. Let M be a Coxeter matrix and CM (= (cij)ogﬁ.jgn) its associated
cosine matrix (cf. (2.2)). Let C(i) be the n by n matrix obtained from
Cy by deleting the i*™™ row and ith column. We suppose that, for
0<ic<n, C(i) is positive definite. Then C must be one of the following
three types: positive definite (type (+1)), positive semi-definite with
1-dimensional null-space (type (0)), or nondegenerate and indefinite of
signature (n,1) (type (-1)). We shall say that M is of type g,

€ € {+1,0,-1}, if CM is of type e.

2.20. The complete simply connected Riemannian-manifolds, n > 2, of
constant sectional curvature are the n-sphere, Euclidean n-space, and
hyperbolic n-space {denoted Hn). Let Y: stand for Sn,DfH or H" as
€ = +1, 0, or -1.

Let (yo_..-,yn) be linear coordinates on R"'}. For ¢ € {+1,0,-1},
let q_ be the quadratic form defined by qe(y) = (yo)z*"' "()’n_l)2 + c(yn)z,
and let Be( , ) be the symmetric bilinear form associated to q.. For
n+l. (When
€ = -1, we also require Yn > 0.) We identify Yg with the affine hyperplane
Yo = 1. Foryé€ Y:, the tangent space of Yg can be identified with a

linear hyperplane in]Rn*l; for ¢ = %1, this is the hyperplane which is

€=t1, we can identify Y" with the hypersurface q:(y)= e in R



70 DAVIS

Be~orthogona1 to y. The Riemannian inper product on the tangent space,
T (Yn). is obtained by restricting B to the corresponding hyperplane. It
follows that we can identify the group of isometries of Y , denoted
Isom(Y ), with the subgroup of GL(n+1,R) which preserves q

By a xnerglane in Y we shall mean the intersection of the linear
hyperplane inR™ w1th Ys' (Such a hyperplane in Yc is a complete, totally
geodesic submanifold of codimension one.) It follows that an isometric

reflection on Y across a hyperplane is the restriction to Y of a linear
reflection on IRn 1

2.21. Suppose that (W,X) is a Coxeter system of rank n+¢l. We are interes-
ted in finding a representation € : W - Isom(YZ) satisfying the following
condition.

2.21.1. The group 8(W) acts as a (discrete) reflection group on Y:

(cf. [S]). Moreover, there is a convex n-simplex I in Y" with codimension-
one faces denoted by E( )’ 0 < i<n, such that £ is a fundamental chamber
for 8(W) on Y and such that for each X5 € X, 0(x ) is the reflection
across the hyperplane supported by Z(l)

We shall say that Z(i) has type {i}. More generally, for any proper
subset I of (0,1, ,hl, the simplex L = 0161 (i) is said to be of type
I. This gives a isomorphism from I to the standard simplex A"

If W acts on Y2 as in (2.21,1), then the translates of I by W give a
triangulation of Y: by convex simplices. It is well-known that the
underlying simplicial complex of this triangulation can be identified with
the Coxeter complex UM, where M is the Coxeter matrix associated to (W,X).
(See, for example, Prop. 15.1, p. 318 in [5].)

The following result is classical (e.g., see [1] or {13]).

THEOREM 2.22. Let (W,X) be a Coxeter system of rank n+l and C its
associated cosine matrix. A necessary and sufficient condition for there
to be a representation 6 : W » Isom (Yg),c € {+1,0,-1}, as in (2.21.1) is
that C be of type ¢. Moreover, if 8 exists and we regard it as a
representation into GL(n+1JR), then it is equivalent to the dual of the
canonical representation (cf. (2.5)).

Proof. First we show necessity. Let I be as in (2.21.1). For
0<i<n, letu, be the unit normal to t(i) which points inward. Since

Z(i) and z(j) must make a dihedral angle of u/mij, we have that
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Be(ui'uj) = (ui,uj) = -cos(n/mij) = cij'
In other words, the cosine matrix C can be identified with the matrix of
inner products (Be(ui’uj])0<i,j<n' Let vs denote the vertex of I of type

{0,1, +++ ,n} - {i}. The set (u;}jfi is a basis for Tv’(Yg]. Hence, the
matrix of dot products of this basis is positive defin;te; i.e., Cry) is
positive definite. If ¢ = *I, then {uo, o--,un} is a basis forlRml
Since C is the matrix representation for B_ with respect to this basis, it
must be of Type(e). The case e = 0 also follows easily.

To prove the converse, suppose C is of Type(e). To simplify the
discussion, suppose € # 0. Then we can find a basis {uo, o--,un} for

n+l

R such that Be(ui’uj] = ¢ The intersection of the half-spaces

ij°
Bc(ui.y) > 0 with Yg is a simplex I. For each xi € X let o(xi) € Isom(Yz)
be the reflection across the hyperplane Bctui,y) = 0 given by

z2--> 1z - ZBE(u.,z). The map 6 : X = Isom(Yg) extends to a representation

i
8 : W~ Isom(YE) as in (2.21.1). Moreover, 6 is obviously equivalent to
the canonical representation {which is self-dual since B is nondegenerate).

The argument must be modified somewhat when ¢ = 0. (See Ch. V, 4.9 of [1].)

COROLLARY 2.23. Let (W,X) be a Coxeter system and C its cosine matrix.
(i) The group W is finite if and only if C is positive define.
(1i) (W,X) satisfies condition (FC) (cf. (2.17)) if and only if C
is of type ¢ for some ¢ € {+1,0,-1}.

2.24. Suppose that M is a Coxeter matrix of degree (n+1) and of type ¢.

We shall say that the corresponding Coxeter complex UM is a eclassical
regular triangulation of Y2 over a". More generally, if = is a subgroup

of W such that cach conjugate of u intersects W(i) trivially (i.e., if

n satisfies (2.17.2)), then UM/n is called a classical regular triangulation

of Yz/n over a".

LEMMA 2.25. Suppose that (L,q) is a regular simplicial complex over A"
of type M, n > 2, and that (W,X) is the associated Coxeter system. Also,
suppose that L is a finite complex. The following statements are
equivalent.
(i) L is simply connected and satisfies (1.11.1).
(ii) L is PL-homeomorphic to S".
(iii) W is finite and the natural projection p : U, -+ L is an

M
isomorphism.
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The implication (ii) => (iii) means that any regular triangulation of

s" over A" is combinatorially equivalent to a classical one.

Proof. It is fairly clear that (iii) => (ii) == (i). (The implication
(iii) => (ii) follows from theorem (2.22) and from (2.13.1).)

Suppose, by induction, that the implication (i) => (iii) holds in all
dimensions > 2 and < n. Let I € Chamb(L) and put n = w(L,£). For
0<icn, letv, be the vertex of I which projects to (i} in a". The
complex Link(vi,L) is a regular simplicial complex over An'l
(An'l o Link((i),An)); its associated Coxeter system is (w(i),x(i)). Since
L satisfies (1.11.1) so does Link(vi,L). If n > 2, it follows from the
inductive hypothesis that W(i) Nn={1}. Ifn =2, the same conclusion
follows from (2.14.3). Thus, = satisfies (2.17.2). By Lemma (2.18) (i),
p: U, + L is a covering projection. Since L is simply connected, p must

M

be an isomorphism {i.c., » is trivial). Since L (and hence, UM) is a
finite complex and since W is bijective with Chamb(pr, the group W is

finite. Thus, (iii) holds.

THEOREM 2.26. Suppose that (L,q) is a regular simplicial complex over a"
of type M and that (W,X) is the associated Coxeter system. The following
statements are equivalent.
{i) L satisfies (1.11.1).
(ii) L is a PL-manifold.
(iii) (W,X) satisfies condition (FC) and the natural projection
p: UM + L is a topological covering.
(iv) M is of type ¢, for some ¢ € {+1,0,-1}, and L is equivalent to

a classical regular triangulation of Y2/n {where w = a(L,Z)).

In other words, if L is a PL-manifold, then it is isomorphic to a
classical triangulation of a complete manifold of constant sectional

curvature.

Proof. 1t follows from theorem 2.22 that (iii)<=(iv). Obviously,

(iv) = (1i) =>(i). We shall show that (i) =>(iii). Suppose that L
satisfies (1.11.1). Let I € Chamb(L), s = w(L,Z), and for 0 < i1 < n, let
v, be the vertex of I which projects to {i} € a". Since Link(vi,L) is
simply connected, it follows from the previous lemma, that w(i) is finite
and that W(i) Nn={1}. In other words, (W,X) satisfies (FC} and =
satisfies 2.17.2. By lemma (2.18), p : UM + L is a covering. Thus, (iii)
holds.
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3. REGULAR CONVEX CELL COMPLEXES

3.1. Suppose that K is an n-dimensional convex cell complex satisfying
(1.10). Then K' is a simplicial complex over A" (cf. (1.23)) and K'
satisfies (1.10)(cf. (1.26)). We shall say that K is a regular convex cell

complex if (K',p) is a regular simplicial complex over A",

3.2. Here is an equivalent definition. In (1.27), we associated to each t
in Chamb(K') an n-tuple (ml(X],--- ,mn(z)), where mi(z) is aﬁ integer > 3
for 1 £ i < n-1, and where mn(t) is either an integer > 3 or «». The Coxeter
matrix (mij(z))05j,j£n is given by (1.28.1). It follows that K is regular
if and only if the function from Chamb{K') to n-tuples is constant; it is
then denoted by (ml(K),'-- ,mn(K)) (or simply by (ml,--- ,mn)) and called

the Schlifli symbol of K.

3.3. An n-dimensional convex cell complex K satisfying (1.10) is symmetri-
cally regular if Aut (K) acts transitively on Chamb(K'). Since

Aut(K) = Aut(K',p) (cf. (1.25)), we see that K is symmetrically regular if
and only if (K',p) is symmetrically recgular over a". It follows from 2.7)

that the symmetric regularity of K implies its regularity.

From now on we suppose that K is a regular convex cell complex of

dimension n.

3.4. The Coxeter matrix of K is the Coxeter matrix M = [mij)05j.jsn
associated to (K',p). It is related to the Schlifli symbal by formula

(1.28.1) which we restate here:

—
-

if i=j
m. =9 2 , if |i-jlz2 (3.4.1)
moo. if (1,5} = (k-1,k)

It follows that the Coxeter diagram of M is a connected line segment.

Similarly, the Coxeter system of K is the Coxeter system (W,X) associated
to M.

Using (1.23), (2.10) and (2.11) can be translated as follows.

PROPOSITION 3.5. For i1 = 1,2, suppose that l(.1 is a regular convex cell
L]
complex and that L, € Chamb(Ki). Then Kl and K, are combinatorially

1
-5

equivalent if and only if their Schlifli symbols are equal and =(K
L]
and n(Kz,ZZJ are conjugate subgroups of the associated Coxeter group.

PROPOSITION 3.6, (i) Aut(K) is isomorphic to N(n)/w, where n = n(K*, L)
and N(») is the normalizer of n in W.

. W
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(ii) K is symmetrically regular if and only if = is normal in W
(and hence, Aut(K) =W/u).

3.7. A convex (n+l)-cell E is combinatorially regular if its boundary

complex, denoted by 3E, is regular in the sense of (3.1). A convex (n+l)-
cell E ian"*l is a classical regular convex polyhedron, if its group of
isometric symmetries, denoted by Isom(E), acts transitively on Chamb((3E)*).

If E is a classical regular polyhedron, then radial projection from the

center gives a tessellation of s” by convex cells such that Isom(E) acts

transitively on the chambers in its barycentric subdivision. We call such

a tessellation a classical repgular tessellation gﬁ Sn, by convex cells. Con-
versely, given a classical regular tessellation of Sn, by taking the convex

hull of its vertex set, we obtain a classical regular polyhedron iann*l.

3.8. Suppose that K is a classical regular tessellation of st by convex
cells. Let (W,X) be the associated Coxeter system, then W = Aut(K) and we
can identify W with a finite reflection group in Isom(s™ (= 0(n+1)). The
Coxeter diagram of (Y,X) is a line segment. Conversely, there is the
following classical result (cf. [3]).

THEOREM 3.9. Let (W,X) be a Coxeter system with Coxeter matrix
M= 5500, jen®
of M is a line segment. For 1 < k < n, put mo=m., where {i,j} = {k-1,k}.

h

Suppose that W is finite and that the Coxeter diagram

Then there is a classical regular tessellation K of st by convex cells
with Schlafli symbol (ml, ---,mn). Moreover, K is unique up to isometries
of s".

Proof. By theorem (2.22), there is an orthogonal action of W on s"
such that the corresponding triangulation can be identified with UM‘ We
want to show that the spherical simplices in s" can be assembled into
convex cells in S" giving a convex cell complex K, with K' = UM' Since
the diagram of W is a line scgment, the diagram of W(i) is either a line
segment (if i = 0 or n) or two line segments (if 1 < i < n-1). It follows
that W(i) = Gi x Hi where Gi is the subgroup generated by Xgs "0 0%
and Hi is the subgroup generated by Xipps "0 0%, - Let £ be a chamber
in S" as in (2.21.1) (so that I is a spherical n-simplex) and for
0 <ign, let v, be the vertex of ¢ which projects to {i} € A", Let 9

be the face of ¢ spanned by {vo, -oo,vi}. Put

E. = U o,
i

b weG,
i
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We claim that, for 0 < i < n,

(a) Ei is a convex i-cell in the i-sphere fixed by H; .

(b) The triangulation of Ei by the i-simplices wa,, w € Gi’ is the
barycentric subdivision.

Once we have established (a) and (b) it then follows easily that the
translates of these cells under W give a classical regular tessellation K
of 8" §nd that K' = UM' Let Si be the i-sphere fixed by Hi' Obviously,
o c s, Since the Gi- and Hi-actions commute, we also have E.1 cs'. The
convexity of Ei is then clear, i.e., (a) holds. Suppose, by induction,
that the triangulation of Ei by translates of 9 is the barycentric sub-
division of Ei for i < n. (The case, i = 0, is trivial.) In particular,
this holds for En~l and all of its translates under Gn. But the union of
these translates in 3En. Also, v, is the central point of En. Therefore,
(b) holds. The uniqueness of K follows from the last sentence of theorem
(2.22).

3.10. The thecorem above shows that the classification of classical regular
convex polyhedra follows from the classification of finite Coxeter groups.
Given a finite Coxeter group with diagram a line segment, we obtain a
Schlifli symbol (ml, o--,mn) by the formula m, = mij’ where j = i-1. Since
we get the same diagram if we reverse the order of the indices, this
Schlifli symbol is only well-defined up to reversing the order of the mi's.
Thus, a given diagram corresponds to classical regular polyhedron and its
dual. The regular polyhedron is self-dual if and only if (ml, °-°,mn) =

= (mn, LX) .ml]

The diagram . A , p >3, has Schldfli symbol (p) corresponding to
the regular p-gon which is self-dual. The diagram 0——=0 +++ o—0 (An)
has Schldfli symbol (3,3, --- ,3) corresponding to the regular n-simplex
(self-dual). The diagram 0-:1—0 s 0—0 (Bn] has Schlifli symbol
(4,3, -++ ,3) or (3,3, -++,4) corresponding to the regular n-cube or regular
n-octahedron, respectively. The diagranm o-Ji—O————o (HS) has symbol (S,3)
or (3,5) corresponding to the dodecahedron or icosahedron. The diagram
o2 o0 ——0—0 (Hd) has symbols (5,3,3) or (3,3,5); the corresponding
regular 4-dimensional polyhedra are called, by Coxeter, the "120-cell"
and the "600-cell” respectively. The diagram o—o03 oo (F4) has
symbol (3,4,3) and corresponds to the self-dual regular 4-dimensional
polyhedron called the "24-cell" by Coxeter. Since these are the only
finite Coxeter groups with diagram a line segment (see Table 1), we have

listed above, all of the classical regular polyhedra.
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Combining theorem (3.9) with lemma (2.25) we get the following result.

PROPOSITION 3.11. Suppose that K is a regular convex cell complex and
that K is PL-homeomorphic to s". Then K is equivalent to a classical
regular tessellation of s" by convex cells.

COROLLARY 3.12. Suppose that E is a combinatorially regular convex cell.
Then E is combinatorially equivalent to a classical regular convex
polyhedron.

This coroliary was proved by McMullen [ 9], under the slightly stronger
hypothesis of combinatorial symmetric regularity. (See Chapter V of I8)
for a somewhat different argument.)

3.13. Let (ml, -°-,mn) be an n-tuple of numbers. The initial part (resp.
final part) of this n-tuple is the (n-1)-tuple [ml, X mn_l) (resp.
(mz,--- ,mn)). The initial part (resp. final part) is spherical if it is
the Schlifli symbol of a classical regular convex polyhedron of dimension
n. We shall say that (ml, ---.mn] is an admissible Schldfli symbol if its
initial part is spherical.

PROPOSITION 3.14. Let K be a regular convex cell complex with Schlidfli
symbo1 (ml, v ,mn).

(i) Each k-cell in K, 0 ¢ k < n, is combinatorially regular and has
Schlifli symbol (ml, -o',mk_l).

(i)* The link of each k-cell in K, 0 < k < n-2, is a regular convex
cell complex with Schlidfli symbol (mk+2' ---,mn).

(ii) Any two k-cells in K are combinatorially equivalent.

(ii)' Put 7 = a(K',£). If each conjugate of r has trivial inter-
section with Hk {defined in the proof of Theorem (3.9)), 0 ¢ k ¢ n-2, then
the links of any two k-cells in K are combinatorially equivalent.

{iii) The Schlidfli symbol of K is admissible.

Proof. Statements {i) and (i)' arc immediate from the definitions.
It foliows from corollary (3.12) that any k-ccll in K is classically
regular with automorphism group Gk (defined in the proof of (3.9)). It
follows that the group of such a k-cell is trivial; thus, statement (ii)
follows from (i) and proposition (3.5). Similarly, (ii)' follows from
(i)' and proposition (3.5), Statement (iii) follows from (i) (when
k = n) and Corollary (3.12).
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LEMMA 3.15. Suppose that (W,X) is the Coxeter system of K. Let
L € Chamb(K') and put n = n(K',L}). (= is a subgroup of W.) Then = satisfies
the following two conditions:

3.15.1. Each conjugate of = has trivial intersection with W(n). (Recall
that W(n) is the subgroup of W generated by {xo, ---,xn_l).)
3.15.2. Each conjugate of = has trivial intersection with wn-l 0 the

subgroup of ¥ generated by (xn_l,xn}.

Proof. The group w(n) is the Coxeter group associated to an n-cell in
K. Since such an n-cell is classically regular (cf. (3.12}) we have con-
dition (3.15.1). Condition (3.15.2) is a special case of (2.14.1) which
holds for (K',p).

3.16. Let (ml, o--,mn] be an admissible Schlifli symbol, M the associated

Coxcter matrix, (W,X) the associated Coxeter system, and UM the Coxeter

complex. Let v be a vertex in Uy which projects to {n} € a". Then

(n)"

follows that Star(vn,UM) can be identified with the barycentric subdivision

Link(vn,u“) is the Coxeter complex of the finite Coxeter group W It

b

of a rcgular n-cell, the Schlifli symbol of which is (ml, '--,mn_l). By
assemblying the chambers of UM which meet at cach vertex of type

{0, +-- ,n-1} in this fashion, we obtain a convex cell complex U(ml, --o,an

the derived complex of which is Uy

THEOREM 3.17. (i) Let K be a regular convex cell complex with Schlafli
symbol (ml, ~--,mn) and let n(= n(L,Z)}) be its group. Then K is combi-
natorially equivalent to U[ml, o--.nn]/n.

(i1) ‘tet (ml,--- ,mn) be an admissible Schldfli symbol, (W,X) the
associated toxeter system, and » a subgroup of W sati: ™ 'ng (3.15.'1 and
(3.15.2) ihen U(ml, ---,m“)/r is a regular convex cell complex with
syrnbol (L;, -.-.n%).

Proof. Siatemeat (i) follows trom (2.13.1). Cornsider (ii). The fact
that = satisfies (3.15.1) means that each cell in U(ml, ~-~,mn) has trivial
stabilizer in x1. It follows that U(ml, ---,m")/n is a convex ccll complex
and that for each chamber I in its derived complex mi(x)= me, 0< i< n-l.

Condition (3.15.2) implies that mn(x) =m for each L. This proves (ii).



78 DAVy,

COROLLARY 3.18 (compare (2.15)). Let (ml, ---,mn] be an admissible
Schlidfli symbol and (W,X) the associated Coxeter system. The set of com-
binatorial equivalence classes of regular convex cell complexes with symbol
(ml, ~--,mn) is naturally bijective with the set of conjugacy classes of
subgroups n of W satisfying (3.15.1) and (3.15.2).

Proposition (2.16) can be translated as follows:

PROPOSITION 3.19. Let (ml, ---,mn) be an admissible Schlifli symbol and
suppose that m # =. Then there exists a finite symmetrically regular
convex cell complex with the given Schldfli symbol.

Proof. If W is finite, then choose n to be the trivial group. If W
is infinite, then let n be any torsion-free normal subgroup of finite index
in W (such » exist). Then U(ml, °'-,mn)/n is the desired finite convex
cell complex.

3.20. Let (ml, ~--,mn] be an admissible Schldfli symbol, M the associated
Coxeter matrix and (W,X) the associated Coxeter system. Suppose that the
final part of (ml’ ---,mn) is also spherical (cf. (3.13)). This means that
the subgroups W(n) and W(o) of W are finite. Since the diagram of W is a
line segment, this implies that W(i) is finite for 0 < i < n. In other
words, (W,X) satisfies condition (FC) of (2.17). Therefore, M is of type

e for some ¢ € (+1,0,-1}, (cf. (2.19)). We shall say that (ml, ---,mn) is
of type e.

3.21. Suppose that (ml, °-',mn) is of type €. In theorem {2.22) we showed
that UM can be identified with a classical regular triangulation of Yg

{cf. (2.24)). The proof of Theorem (3.9) shows that the simplices in Y?
can be assembled into convex cells in Yz corresponding to the cells of
U[ml, ---,mn). In this way we identify W with a subgroup of Isom(YZ)
(unique up to conjugation). We shall say that U(ml, ---,mn] is a classical
regular tessellation of Yz by convex cells. The Schlidfli symbols of type

¢ are listed in Table 4. (We note from Table 4 that if ¢ = -1, then

n =2, 3, or 4, Thus, hyperbolic n-space admits a regular tessellation
by convex cells only when n = 2, 3, or 4.) A subgroup n of W satisfies
(2.17.2) if and only if it satisfies condition (3.15.1) and the following

condition.
3.21.1. Each conjugate of n intersects W(O) trivially.

A subgroup n satisfying (3.15.1) and (3.21.1) acts freely on YZ.

Conversely, any subgroup of W which acts freely on YZ satisfies (3.15.1)
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and (3.21.1). We note that if € = 0 or -1, this means that a subgroup n
satisfies (3.15.1) and (3.21.1) if and only if it is torsion-free.

If = satisfies (3.15.1) and (3.21.1), then we shall say that

U(ml, --~,mn)/n is a classical regular tesscllation of YZ/n by convex cells.,

From theorem (2.26) we immediately get the following result.

THEOREM 3.22. Suppose that K is a regular convex cell complex with Schlifli
symbo1l (ml, -o-,mn) and associated Coxeter system (W,X). The following
statements are equivalent.
(i) K satisfies (1.11.1).

(ii) X is a PL-manifold.

(iii) The final part of (ml, ---.mn) is spherical and K is equivalent
to U(ml, ---,mn)/n, where n = n(K',I).

{iv) The symbol (ml, o--,mn) is of type ¢ for some ¢ € {+1,0,-1}
and K is equivalent to a classical regular tessellation of Yz/n by convex

cells.

REMARK. This result implies the theorem in the Introduction. It was first
proved by Xato (7] by a different method.

EXAMPLES 3.23. (i) Suppose that K is a classical tessellation of s" by
convex cells and that W contains the elcment -1. (W = Isom(K)} < 0(n+l).)
(This always happens except in the case where K is the boundary of a
regular (n+l)-simplex or in the case where n = ! and K is a polygon with an
odd number of sides, cf. [3].) Then K/{*1} is a symmetrically regular
tessellation of RP".
(ii) A (p,q,2)-triangle group W gives a classical tesselation of Yi
-1
)

is greater than, equal to, or less than 1, respectively. For ¢ = 0 or -1

with Schldfli symbol (p,q), where ¢ = +1, 0, or -1 as (p-! + q" ! + 2

and © any torsion-free subgroup of finite index in W, the complex K/n is
a tessellation of the closed surface Ygln. (See [6].)
(iii) Suppose that K is a classical tessellation of R® and that n
(=2") is the subgroup of translations in W. Then K/ is a symmetrically
regular tessellation of a torus.

{(1v) Let K be the classical tesselation of 33 with Schldfli symbol
(5,3,3) and let K* be the dual tessellation with symbol (3,3,5). The
automorphism group W contains a subgroup n which is isomorphic to the
binary icosahedral group and which acts freely on s, The quotient Ssln

*
is Poincaré's homology 3-sphere. It follows that K/x and K /o are regular
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convex cell complexes (at least, in the sense of (1.9)). The complex K/n
has only one 3-cell, a dodecahedron; the complex K*/n is tessellated by S
icosahedra. These complexes are not symmetrically regular (by thecorem (4.7)
in the next section).

If K is not required to be a PL-manifold or to satisfy (1.11.1), then
nothing prevents one of the above examples from occuring as the link of a
cell.

4. SYMMETRIC REGULARITY

The conclusions of theorems (2.26) and (3.22) can be substantially
improved if we add the hypothesis of symmetric regularity. (see theorem
(4.7) below.)

4.1. A pre-Coxeter system (G,S) of rank n+l consists of a group G and a

set S = {so, --~,sn} of involutions in G such that S generates G. Asso-

ciated to a pre-Coxeter system (G,S) there is a Coxeter matrix

M= 55004, jn
Coxeter system associated to M, then the map X +» S given by X sy extends

given by the formula, mij = order(sisj). If (W,X) is the

to an epimorphism A : W » G. Let = denote the kernel of A. Let U(G,S)

denote the gquotient of the Coxeter complex U,, by n. The group G acts on

U(G,S) and there is a natural projection p :hL[G,S) »> a", Thus, U(G,S)
is a symmetrically regular simplicial complex over A" (cf. (2.7)).

Let R denote the set of conjugates of S in G. Put U = U(G,S). For
each r in R, the fixed point set of r on U is denoted by Ur and is called

a wall of U.

LEMMA 4.1.1. Suppose that r and r' are elements of R such that Ur = Ur,.
Then r = »r'.

Proof. By definition r is conjugate to some element s in S. Choose
g in G so that g~1rg = s. Also, choose a point x in the relative interior
of the (n-1)-simplex A" n sa". The isotropy subgroup at x is the cyclic
group of ordér two generated by s. Hence, the isotropy subgroup at gx is
the cyclic group of order two generated by r. But r' fixes gx (since
gx € Ur') and this forces r' = r.

The next result gives a characterization of Coxeter systems among
pre-Coxeter systems.
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LEMMA 4.2. Suppose that (G,S) is a pre-Coxeter system. The following
statements are equivalent.

(i) For each s in S, U - US is not connected.

(ii) (G,S) is a Coxeter systen.
Moreover, if one of these conditions holds, then U - Ur has exactly two
components, for each r € R.

Proof. (i) =>(ii). On p. 18 of {1] we find the following result.

LEMMA 4.2.1 (Bourbaki). Let (G,S) be a pre-Coxeter system and let
(PS)Ses be a family of subsets of G satisfying the following conditions.
(A) For eachs €S, 1 €P_.
(B8) For each s €8S, Ps n sPS = ¢.
(C} For elements s,s' in S and g in G, if g € Ps and gs' £ PS, then
sg = gs'.
Then (G,S) is a Coxeter system. Moreover, P_ = {g € Gjelsg) > 2(g)},
where 2(g) denotes the word length of g with respect to the generating set
S.

Supposing that (i) holds, we apply this lemma as follows. For each
s €5, let P denote the set of g in G such that the open chambers A" and
gZ“ belong to the same component of U - Us‘ Condition (A) holds trivially,

°

Since E is connected, s must permute the components of U - US; hence, ga
and sga are contained in different components of U - U_. This implies (B).
To verify (C), suppose g € PS and gs' £ P.. Then gZ“ and gs'zn lie in
different components of U - Ug. Hence, A" lie in different components of
U - g'lUS. Putting r = g'lsg, we have g"lUs = U_; hence, U, scparates the
adjacent chambers a" and s'a". But USI is the unique wall with this pro-
perty. Therefore, Ur = U, Using Lemma (4.1.1), this implies that r = s',
i.e., g_lsg = s'. This verifies (C). Consequently, Lemma (4.2.1) shows
that (i) =(ii).

(ii) => (i). We suppose that (G,S) is a Coxeter system. Here are some

basic facts about Coxeter systems, the proofs of which can be found in [1].

4.2.2. For each g € G and t € R, the parity of the number of times a gal-
lery in U from A" to gAn crosses Ur depends only on g and r (and not on
the gallery). This gives a mapping n : G x R » {¢]1} defined by n(g,r) = -1
(resp. +1) if a gallery from a" to gAn CToSSses Ur an odd (resp. even)
number of times.




82 DAVTy

4.2.3. If n(g,r) = -1 (resp. +1), then a minimal gallery from a" to gAn
crosses U exactly once (resp. does not cross Ur)'

4.2.4. We have n(g,r) = -1 if and only if 2(rg) < 2(g). From (4.2.2) and
(4.2.3), we see that Z“ and gR“ (resp. ng“) belong to the same component
of U - US if and only if n(g,s) = +1 (resp. n(g,s) = -1). It follows that
U - Us has exactly two components.

This shows that (ii) => (i) and it also proves the last sentence of
lemma (4.2).

4.3. Suppose that (L,q) is a symmetrically regular simplicial complex
over An, that M is its Coxeter matrix, and that (W,X) is its Coxeter
system. Put G = Aut(L,q). Then G ==W/n, where = is the normal subgroup
n{l,I). Let S denote the image of X in G. Then (G,5) is a pre-Coxeter
system, and (¥,X) is its associated Coxeter system. Moreover, L and
U(G,S) are isomorphic over A" {cf. (2.13.1}).

PROPOSITION 4.4. Let (L,q) be a symmetrically regular simplicial complex
over 4" of type M. Suppose that L is a PL-manifold and that one of the
following two conditions holds:

(a) dimL =1, or

(b) N (L; Z/2) = 0.
Then (G,S) is a Coxeter system and L = UM (and consequently, L is a clas-
sical triangulation of YZ (cf. (2.24)).

Proof. If (G,S) is a Coxeter system, then W = G and consequently,
7 is trivial and L = UM' By lemma (4.2), it suffices to prove that for
each s €5, L - Ls is not connected. (Ls denotes the fixed point set of
s.) If (a) holds, this is obvious. In general, if follows from Smith
theory that Ls is a Z/2-homology manifold. Let is be the component of Ls
containing A:, the (n-1)-face of AN corresponding to s.. Then Ls is a
Z/2-homology manifold of codimension one in L. If L - Ls is connected,
then the fundamental class in HE(L; Z/2) must be in the image of
Hn-l(

< F

element of Hl(L; Z/2). It follows that condition (b) implies that L - LS
is not connected. This completes the proof.

L.: Z/2), and hence, the Poincaré dual of Es must represent a nonzero

4.5. The following condition on a n-dimensional simplicial complex L is

a weak version of (1.11.1).

4.5.1, For each k-simplex o in L, with k < n-3, Hl(Link(c,L); Z/2) = 0.
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LEMMA 4.6 (Compare lemma (2.25)). Suppose that (L,q) is a symmetrically
regular simplicial complex over A", n > 2, that L is a finite complex, that
L satisfies (4.5.1), and that HI(L; Z/2) = 0. Then L is isomorphic to a
classical triangulation of s, (m particular, L is PL-homeomorphic to
s".)

Proof. It is easy to seec that since L is symmetrically regular, then
so is the link of each simplex in L. Suppose, by induction, that the lemma
holds in dimensions < n. Since Link(o,L) satisfies the inductive hypothesis

for each k-simplex o, k < n-3, Link(o,L) = S"'k'l. Thus, L is a PL-manifold.

Since Hl(L; Z/2) = 0, it follows from the previous proposition, that L is

isomorphic to the Coxeter complex U Since L is finite, the associated

"
Coxeter group W (= Aut(L,q)) must also be finite. Thus, U, is a classical

M
triangulation of s" (ef. (2.22)).

THEOREM 4.7. Suppose that (L,q) is a symmetrically regular simplicial
complex over An, that L is locally finite and that L satisfies (4.5.1).

Then L is a PL-manifold. Consequently, L is equivalent to a classical

‘ triangulation of YZ/n for some ¢ € {+1,0,-1}.

: Proof. This follows from the previous lemma and (2.26).
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APPENDIX

TABLE 1. Elliptic Coxeter Systems (e = +1)
The Irreducible Diagrams
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TABLE 2. . Fiat Coxeter Systems (e = 0) with Fundamental Chamber an n-simple,
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TABLE 3. Hyperbolic Coxeter Systems (¢ = -1) with Fundamental Chamber

an n-simplex

4 -2 * 11, -
f/ 4 with (p” +q " +r ) <1
r
n=13
[ JESIY Yy Y 1 [ ° ° Q ..i_..
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TABLE 4. The Classical Schlidfli Symbols (only one is listed for cach pair

of dual tessellatioms).

] n € = ¥] e=90 £ = -]
1 (p) (=) T
? :2';; (4.4) {p,q) , with
’ (6,3) -1 -1 -1
{5,3) {(p +q #2 ) <1
) T3,3,3)
(3,5,3)
3 (4,3,3) (4,3,4) (5.3.4)
{5,3.3) (5.3.5)
{3,4,3) v
4 (3,3,3.3) (4,3,3,4) E:ggi;
(4,3,3,3) | (3,4.3,3) (5.3.3.5)
(3,3,.4.,3)
n2s |y (4,3,...,3,4)
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