THE SMITH CONJECTURE

CHAPTER X

Finite Group Actions on Homotopy 3-Spheres

Michael W. Davis and John W. Morgan
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The Smith conjecture states that certain types of smooth actions of a
cyclic group on a homotopy 3-sphere are essentially linear. Our working
hypothesis is that every smooth action of a finite group on a homotopy 3-
sphere is essentially linear. By making use of the methods presented earlier
in this volume, we have established this hypothesis in a substantial number
of cases. Our results are summarized by the following thcorem.

THEOREM A.  Let £ be a homotopy 3-sphere and let G x £ - £ be an
action of a finite group of orientation-preserving diffeomorphisms. If every
isotropy group is cyclic and if at least one isotropy group has order greater
than S, then the action is essentially linear.

It is an immediate consequence of the Schonflies theorem and the definition
of “essentially linear” that any essentially linear action on S3 is equivariantly
diffeomorphic to a linear action. (The definition of essentially linear is given
in Chapter 1.) Thus we have the following corollary of the above theorem.
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TureorREM B.  Let G x S? — S3 be an action of a finite group of orientation-
preserving diffeomorphisms. If every isotropy group is cyclic and if at least
* gt . - " l
one isotropy group has order greater than 5. then the given action is linear.

This chapter is divided into eight sections. The first introduces the notion
of an orbifold. This is a term coined by Thurston to describe spaces that are
locally the quotients of finite group actions. In Sections 2 and 3 we discuss
two- and threc-dimensional examples of these spaces in some detail. We
find the language of orbifolds a convenient framework for dealing with
quotient spaces of properly discontinuous group actions. Using them, one
can treat all properly discontinuous actions the way onc normally dcals
with free, properly discontinuous actions —by working with the quotient
space.

We establish the connection between finite group actions and linear actions
through the intermediary of Seifert-fibered orbifolds. Essentially, a Seifert-
fibered orbifold comes about when one has a group acting on a Seifert-
fibered manifold preserving the Seifert-fibered structure. The basic properties
of these orbifolds are developed in Section 4. In Section 5 we prove an an-
alogue of a theorem of Seifert and Threlfall. We show that any three-dimen-
sional, Seifert-fibered orbifold with finite fundamental group is diffcomorphic
to S3/G for some finite group G in SO(4) that normalizes the standard S! in
SO(4). This reduces the problem of showing a finitc group action is linear
to the problem of showing that its quotient orbifold can be given the struc-
ture of a Seifert fibration.

We prove Theorem A by showing that if G x £ — £ isa finite group action
on a homotopy 3-sphere, then the quotient £/G is isomorphic to X, # I,
where X, is Seifert-fibered and X is a homotopy 3-sphere. Since X, is equiv-
alent to the quotient of a linear action, it follows easily that the action we
began with is essentially linear.

In Section 6 we reformulate the result along these lines. In Section 7 we
study an important special case. In the special case we study a knot K in a
homotopy sphere Z with the property that the cyclic n-shected branched cover
of X, branched over K, has finite fundamental group for some n > 5. We
show that this implies that K is unknotted in Z. This is very similar to the
situation of the Smith conjecture. The difference is that in the Smith conjec-
ture the cyclic branched cover is assumed to be simply connected (also, one
doesn’t restrict to n > 5). The general plan of attack that resolves the Smith
conjecture, bolstered by some old results of Dickson’s concerning subgroups

' By lincar we mean that the action is equivariantly diffcomorphic to an action arising from a
representation G <, SO(4).
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of PSL,(F), for F a finite field, is used in Scction 7 to deal with thc special
case.

In Section 8 we show how to reduce the general casc to the special case.
The basic idea is to start with an action and restrict it to a certain type of
normal subgroup. We show that if the quotient by the subgroup is Seifert-
fibered, then so is the quotient by the full group. The main result necded to
establish this is that a prime three-dimensional orbifold with boundary is
Seifert-fibered if and only if its fundamental group contains a normal,
infinite, cyclic subgroup. Using this reduction result, one deduces Theorem
A from the special case considered in Section 7.

Lastly, there is an appendix that gives Dickson’s classification of subgroups
of PSL,(F) that contain an element whose order equals the characteristic
of F.

The results of the first three scctions of this chapter are not original. They
are properly called folklore. We have adopted Thurston’s terminology and
point of view on the subject. The heart of the chapter is Section 7, where we
generalize the argument proving the Smith conjecture to deal with the special
case considered there.

1. Orbifolds

Suppose that H is a discrete group acting smoothly, effectively, and
properly discontinuously on a manifold M". We wish to analyze the local
structure of the orbit space M"/H. For each x € M the isotropy group H,
is finite. Furthermore, each x € M has an H -invariant open neighborhood
Uysuch that (U, )n U, = g forall he H — H_. It follows that the image
of HU, in M"/H is naturally isomorphic to U, /H .

Since the action is smooth, its differential induces a lincar action H, x
T.M — T.M. Choose an H .-invariant metric on M and an isometry T.M =~

R". This yiclds a faithful representation u: H, < O(n), well defined up to
conjugation. Let [x] denote the image of x in M"/H. The conjugacy class
of u(H,) = O(n) is called the local group type at [x]. It is independent of all
choices. If D" < R"is a disk about the origin of sufficiently small radius, then
the exponential map R" = TM, — M can bc used to define an H -invariant,
smooth embedding ¢: D" ¢ M", taking 0 to x. Clearly, we can arrange that
the image of ¢ is contained in U,. Assuming this, it induces an embedding
@: D"/u(H,) » M"/H taking [0] to [x]. The map & is called a smooth orbifold
chart for M"/H centered at [ x].

Suppose that G, and G, arc conjugate subgroups of O(n) and that
b: D"/G, - D"/G, is a map taking [0] to [0]. The map b is called a smooth



184 Michael W. Davis and John W. Morgan

isomorphism if it can be lifted to a diffeomorphism b5: D" — D" so that the
following diagram commutes:

Dn B b Dn

|

D"/G, —2— D"/G,

The map b is called a lifting of b. If b is another lifting of b, then there is an
element g€ G, so that b’ = b - g. A map of orbit spaces f: M/H — M'/H’ is a
smooth isomorphism (or a diffeomorphism) if it is a homecomorphism and if
for each [x] e M/H there arc smooth orbifold charts centered at [x] and
S[x] so that in these coordinates the map is a smooth isomorphism. Notice
that if {: M/H — M’/H’ is a smooth isomorphism, then it preserves the local
group types. (However, it is not nccessary that M = M’ or that H =~ K’
for M/H to be diffeomorphic to M’/H'.)

Now we generalize these concepts from spaces that are globally quotients
of properly discontinuous group actions to those that locally have such
descriptions. Such a notion was first suggested by Satake (8] under the name
of V-manifolds. Recently, Thurston has made use of these spaces and has
introduced the word orbifolds. We follow Thurston’s point of view and term-
inology.

By a (smooth) n-dimensional orbifold we shall mean a paracompact Haus-
dorff space X together with a maximal atlas of local charts of the form
D"/G < X, where G ranges over the conjugacy classes of finite subgroups of
O(n) and where the overlap maps are diffeomorphisms in the sense defined
above. The notions of the local group at a point and of a diffeomorphism of
orbifolds then have unambiguous meanings. A point in X is called a manifold
point if its local group is trivial; otherwise, it is exceptional. An orbifold is a
manifold if it has empty exceptional set.

It 1s clear that if M" is a manifold and H x M" - M" is an cflective,
properly discontinuous, smooth action, then M™/H rcceives naturally the
structure of an orbifold.

An orientation for D"/G is an orientation for D" in which G acts as a group
of orientation-preserving maps. An orientation for an orbifold is a compatible
system of orientations for the charts in the atlas defining the orbifold struc-
ture.

There is a similar notion of orbifold with boundary. Here one uses, in ad-
dition, charts of the form (D"), /G, where (D"), = {(x,,....,x)|Zx} <r
and x, 2 0} and G < O(n) leaves the half-space {x, = 0} invariant. The
boundary of an n-dimensional orbifold is an (n — 1)-dimensional orbifold
without boundary.
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An orbifold is compact if its underlying topological space is compact.
An orbifold is closed if it is compact and has empty boundary. (N.B.: The
underlying topological manifold can have a boundary even if the orbifold
is closed.)

If X is an orbifold whose underlying space is Q and if H x Q - Q is a
group action, then the action is said to be a (smooth), properly discontinuous
action on the orbifold X if

(1) H x Q — Q is properly discontinuous, and
(2) cach he H acts via a smooth isomorphism on X.

Suppose that H x X — X is a properly discontinuous action on the orbi-
fold X. We shall give the quotient space the structure of an orbifold. Let Q
be the underlying space of X, and let x be a point in Q/H. Choose X€Q a
point that projects to x. Choose an orbifold chart for X centered at X,
¢:D"/G « X, so that h(e(D"/G)) ~ @(D"/G) = & for all he H — H;.
Choose an open set U < D"/G with [0]e U and with h(e(U)) < @(D"/G)
foralhe H,. Thengp™ ' o ho@: U o D"/G isadiffeomorphism onto its image
for all he H,. Thus there is a lifting (¢~ ' cho @) :U ¢ D", where U is the
preimage of U in D". This lifting can be varied by any element of G. Let H; be
the group of germs at 0 € D" of all liftings of all ¢ "' o ho ¢ for he H;. There
is an exact sequence

15>G— Hy—» Hy— |

In particular, A is a finite group of germs of diffcomorphisms. Each element
aeH,; is represenlcd by a smooth embedding ¢,: U ¢ D". Pull back the
standard metric on D" under each of the ¢,. Average the resulting finite
collection of metrics on U. This produces a riemannian metric on U, in which
the elements of A are germs of isometries. It follows that there is a disk D’
of radius ¢ centered at 0 € U so that D'/H; is embedded in (D"/G)/H ., which,
in turn, is embedded by ¢ in Q/H. The composite is an orbifold chart for
Q/H centered at x. The collection of all charts constructed in this manner
defines the orbifold structure which we denote X/H. It is called the quotient
of the action of H on X.

Local models for the map X — X/H are n: D"/G — D"/G’, where G <
G’ < O(n) and = is the natural projection.

We turn now to the question of covering spaces for orbifolds. Let {U,},., be
a family of orbifolds. A mapping p:U,., U, —» D"/G evenly covers D"/G
if for cach a e[ there is an isomorphism ¢:D"/G, =~ U,, so that G, < G
and po @: D"/G, — D"/G is the natural projection.

If p: Y- X is a continuous mapping between the topological spaces under-
lying two’ orbifolds, then p is said to be a covering projection if every point
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x € X has an orbifold chart ¢: D"/G < X that is evenly covered by p|p~!
(@p(D"/G)). In this case we also say that Yis a covering orbifold of X.

If p: Y > X is a covering projection, then the group of covering trans-
formations G,(Y) acts properly discontinuously on the orbifold Y. The
quotient orbifold Y/Gy(Y) covers X via the map induced by p. Also, the
quotient mapping Y — Y/G4(Y) is a covering projection.

Conversely, if H x Y — Y is a properly discontinuous action on the
orbifold Y, then Y — Y/H is a covering projection whose group of covering
transformations is H.

A covering of an orbifold Y — X is said to be regular if the induced cover-
ing Y/Gy(Y) — X is an isomorphism, i.c., if X is naturally isomorphic to
the quotient orbifold of the group of covering transformations acting on Y.

The usual proof of the existence of universal coverings can be adapted
to show that any orbifold X has a universal covering, ¥ — X. This is a regular
covering, and the group of covering transformations is called the orbifold
Sfundamental group of X, n{®(X). All connected coverings of X come, up to
isomorphism, by dividing X by a subgroup of n{"*(X). A connected cover
of X is regular if and only if it is isomorphic to the quotient of X by a normal
subgroup of n{°(X).

Suppose that X is an orbifold whose underlying spacc is Q. Let p: P — Q
be a topological covering with group of covering transformations G. Since
p is a local homeomorphism, we can induce the orbifold structure X on Q
up to an orbifold structure Y on P. The projection p: Y — X becomes a
covering of orbifolds. Clearly, G acts as the group of covering transformations
for this covering of orbifolds. Thus if P — Q is a regular covering, then so is
Y — X, and the group of covering transformations is the same. Applying
this to the universal topological covering of Q we sec that X has a regular
covering whose group of covering transformations is n,(Q). This proves
Lemma 1.1.

LeEMMA 1.1, If Q is the space underlyving an orbifold X, then there is a
natural surjection n™(X) —» n (Q) — 1.

An orbifold is said to be good if its universal cover is a manifold (as an
orbifold). Therc is a way to formulate this concept in terms of local groups.
First, note that a™®(D"/G) = G. Thus if ¢: D"/G < X is an orbifold chart
centered at x, then n§™(D"/G) is identified with the local group at x. The map
@ induces @, : n7(D"/G) - n{™(X).

The orbifold X is good if and only if for each chart ¢: D"/G < X the homo-
morphism ¢ : 2y D"/G) — =nY®(X) is an injection. We denote this by
saying that “the local groups inject.”

This general discussion of orbifolds impinges on the problem of classi-
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fying actions of finitc groups on homotopy 3-spheres. This is brought out
clearly by the next theorem.

THEOREM 1.2. Classifying finite group actions on homotopy 3-spheres,
up to equivariant diffeomorphism, is the same as classifying closed, good,
smooth, three-dimensional orbifolds with finite fundamental group, up to diffeo-
morphism.

Proof. The corrcspondence between group actions and orbifolds is
given as

quotient orbifolds with

v

finite group actions
j finite fundamental T

on homotopy 3-sphcres | .
universal cover

| groups
|

There is also a notion of locally smooth, topological orbifolds. One uscs the
same charts but requires that the overlap functions lift to homeomorphisms
instead of diffeomorphisms. It turns out that this concept is the same as
the underlying topological space with its stratification by local group type
and with the local group typc associated to each stratum. We shall describe
in more detail these stratified spaccs in dimensions two and three in the next
two sections.

2. Two-Dimensional Orbifolds

The finite subgroups of O(2), up to conjugacy, are (1) cyclic subgroups of
SO(2), (2) O(1), and (3) dihedral groups D,, <= O(2), n = 2. The resulting
quotients of the 2-disk by these groups are shown in Fig. 2.1. From this it
follows that il X is a two-dimensional orbifold without boundary, then its
underlying topological space, @, is a 2-manifold (possibly with boundary).
There 1s a discrete sct of points in the interior with nontrivial local groups.

(1) (2) (3)
DZ

n

o) o) o)

Figure 2.1
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We label these points by the orders of their local groups. There is a discrete
sct of points on the boundary with dihedral local groups. The rest of the
boundary consists of points with local groups O(1).

If we allow X to be an orbifold with boundary, then the situation is more
complicated. There is a disjoint union of circles and closed intervals in the
boundary of the underlying space which forms the space underlying 6X.
This space is unlabeled cxcept for the end points of the intervals, which are
labeled by O(1).

To cach two-dimensional orbifold X we can associate its underlying
triple (Q, K, p), where Q is the underlying space, K < Q is the exceptional
set, and p is the function on Q that assigns to each point its local group type.
Given any such triple (where @ is a 2-manifold and K and p are as described
above), there is an orbifold structure on Q that gives rise to this triple. There
are many such. Any two are diffeomorphic by a diffeomorphism arbitrarily
close to the identity.

One can check easily that there are four types of compact two-dimensional
orbifolds that are not good:

(a) S? with one point labeled,

(b) S? with two points labeled by different integers,

(¢) D? with one boundary point labeled by a dihedral group and the
rest of 8D? labeled by O(1), and

(d) D? with two boundary points labeled by dihedral groups of diffcrent
order and the rest of 0D? labeled by O(1).

Notice that all these orbifolds are closed.
All other compact two-dimensional orbifolds are good. The good orbifolds
with finite fundamental group are

S(i) S2%, RP?;S? with 2 points labeled n, and RP? with one point labeled.
S(ii) S? with 3 points labcled p, ¢, and r, where 1/p + 1/q + 1/r > 1,
S(iii) D? with dD? labeled by O(1), D? with two boundary points labeled

. by D,, and the rest of dD? labeled by O(1),

S(iv) D? with three boundary points labeled by dihedral groups of order
2p, 2q, and 2r with 1/p 4+ 1/q + 1/r > 1 and the rest of dD? labeled O(1);
S(v) D?*with an interior point labeled by p and a boundary point labeled
by a dihedral group of order 2n, where (2/p) + (1/n) > 1 and the rest of
0D? labeled by O(1); and
D orbifolds isomorphic to D?/G for G < O(2).

The orbifolds S(i)-S(v) arc spherical orbifolds in the sense that they arc
diffeomorphic to $?/G for some G = O(3). Those of type D are called 2-
disk orbifolds.
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All other compact two-dimensional smooth orbifolds have infinite
fundamental group. It turns out that all of these are diffeomorphic to either
flat or hyperbolic two-dimensional orbifolds. A flat two-dimensional orbifold
is A/G, where A = R?is a region bounded by straight lines and G is a discrete
group of euclidean motions leaving 4 invariant. A hyperbolic orbifold is
K/T', where K = H? is a region bounded by geodesics (here H? is the hyper-
bolic plane) and I' is a discrete group of hyperbolic isometries which acts
leaving K invariant.

Let X be a two-dimensional orbifold whose underlying space is @ and
whose cxceptional set is K < Q. Suppose that all local group of X are cyclic
subgroups of SO(2). Then K is a discrete sct of points in @, and we can view
p as a function from K to the natural numbers greater than one — p assigns
to each k € K the order of the local group at k. An orbifold covering Y — X
induces a ramified covering of Q, ramified over K with index of ramification
over ke K dividing p(k). Conversely, any ramificd covering of this type
corresponds to an orbifold cover of X.

3. Three-Dimensional Orbifolds

We shall consider three-dimensional orbifolds whose local groups are
contained in SO(3). These are called locally orientable three-dimensional
orbifolds. The finite subgroups of SO(3) are (1) the cyclic groups, (2) the
dihedral groups, (3) the tetrahedral group, (4) the octahedral group, and (5)
the icosahedral group. The quotients of D* by thesc groups are shown in
Fig. 3.1. In each case the orbit space is homeomorphic to D>. In case (a) the
exceptional set is a line segment; the label n means that the local group is
cyclic of order n. In cases (b)-(e), the exceptional set is a cone on three
points. The central vertex is the image of the origin; it 1s the only point with
noncyclic local group type.

I X is a locally orientable, three-dimensional orbifold, then we can extract
the underlying triple (Q, K, p). The first clement, Q, is the underlying space;
the sccond, K < Q, is the exceptional set; and the third, p, is the function
which assigns local group type to each point. In this casc we can view p as a
function from Q-{vertices of K} to the positive integers. Each point
q € Q that is not a vertex has cyclic local group. We think of p as associating
to that point the order of the local group. From this function one can recover
the local group at each point of Q.

If (Q, K, p) is a triple, which locally near each point of Q is of one of the
five types in Fig. 3.1, then there is an orbifold structurc on Q whosc under-
lying triple is (Q, K, p). There are many such structures. Any two are iso-
morphic by an isomorphism that is arbitrarily close to the identity on Q.
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(b)

(c) (d)

N
X
N

(e)
Figure 3.1

A three-dimensional orbifold is of cyclic type if all its local group types are
represented by cyclic subgroups of SO(3). This simply means that the excep-
tional set K is a disjoint union of circles. An orbifold is of dihedral type i
cach of its vertices is dihedral, or equivalently, if each local group typc is
represented either by a cyclic or dihedral subgroup of SO(3).

Suppose that X is a three-dimensional, locally orientablc orbifold whosc
underlying triple is (Q, K, p). Covering spaces of X are exactly ramified
coverings of Q (with the total spacc being a topological manifold) which arce
ramified over K, so that above any ¢ € (K-vertices) the index of ramification
divides p (¢). This means that any covering Y — X yields such a ramified
covering on the underlying triples and, conversely, any ramified covering
P — Q of the type specified above yields a covering of orbifolds Y — X.

The universal cover of X corresponds to the universal ramified covering
of (0, K, p). The orbifold X is good if in the universal ramificd covering the
indices of ramification over any g € (K-vertices) do not mercly divide p(q)
but are equal to p(q).

There is an explicit description of the fundamental group of the orbifold
X in terms of the underlying triple (Q, K, p). Let I' = n,(Q — K). Number
theedgesand circlesof K ase,. ..., er. Let y; € T be the class of the meridian
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around e;. It is well-defined up to conjugation and taking inverses in I'. The
fundamental group n§™(X) is then I'/{(z,)*“", ..., (ur)**7}. The Kernel of
I - 23®(X) —» 1 corresponds to an unramified cover of Q — K. This
covering can be completed in only one way to form a ramified covering
0.2 — O, wWhich is the universal covering of the orbifold.

REMARK 3.1. The order of y; in n9™®(X) divides p(e;). The orbifold X is
good if and only if the order of each y; is equal to p(e;). If X has finite funda-
mental group and is of dihedral type, then it is automatically good. Basically
this follows from the fact that Q is a rational homology 3-sphere.

Let Y be a two-dimensional orbifold and X a three-dimensional orbifold.
An embedding of Yin X is a mapping f: Y —» X that is a homeomorphism
onto its image such that for each x € X there is an orbifold chart ¢: D3/G ¢ X
centered at x so that either.

(1) @(D*/G)n f(Y) = &, or
2) G<=0Q)=0@); f(Y)NpD/G) = p((D* x {0})/G); and [~ 'og:
D?/G < Yis an orbifold chart (in the structure of Y) centered at /'~ '(x).

If Y2 > X2 is an embedding, then we can cut X3 open along Y. The result
is a (smooth) orbifold with boundary. (If Y mcets the boundary of X, then it
is necessary to “round the corners” at dY = X N Y)

If Y2 is an orientable spherical orbifold, then Y? = $2/G for some G < O(3).
Thus Y is the boundary of D3/G. A three-dimensional orbifold is prime if
whenever Y2 ¢, X3 is an embedding of a spherical orbifold which locally
separates X, then Y bounds an orbifold isomorphicto D3/Gin X. If Y2 ¢, X3
is an embedding of a spherical orbifold in X that separates, then we can
write X = X | uy X,, where X, and X, are orbifolds with Yas a boundary
component. If Y = $2/G, then we let X; = X, Uy, D3/G. We say that X is the
connected sum of X, and X,; X = X, # X,. If Y separates, but one side,
say X ,,isisomorphicto D*/G,then X, = S*/Gforsome G < SO(3) < SO(4).
Otherwise, X is said to be a nontrivial connected sum.

PROPOSITION 3.2. Let X be a closed three-dimensional orbifold of cyclic
type with finite fundamental group. Then X =~ X, # Z, where X, is prime and
2 is a simply connected manifold.

Proof. 1If X is a 3-manifold, then the result follows immediately from the
existence of a prime decomposition and the Seifert-van Kampen theorem.
Let us assume that X is not a manifold. Let Q be the underlying space for X
and K < Q the exceptional set. We know that Q is a 3-manifold. The prime
decomposition theorem for manifolds allows us to write Q = Q, # X, where



192 Michael W. Davis and John W. Morgan

K < (Q, — (3-ball)) c Q, # Z and where Q, — K is prime. This induces a
connected sum decomposition X =~ X, # X, where Z is a manifold.

We claim that X is simply connected. Since X is good and X is not a mani-
fold, X, is good and X, is not a manifold. Thus, n{™(X,) # {e}. Since
(X)) = 7™ X ) * n,(X) is finite, 7, (Z) = {e}.

Finally, it remains to show that X, is prime. If Y2 ¢, X, is an embedded
spherical orbifold which locally separates, then Y? is of cyclic type. We shall
show that Y? is the boundary in X of an orbifold isomorphic to D*/G for
some G < SO(3). The underlying space of Y is a closed 2-manifold. Since
(X ,). and hence n,(Q,). is finite, this 2-manifold must separate Q,.
Thus Y2 meects cvery component of K in an even number of points. If Y A
K = &, then Y? is diffeomorphic to a 2-sphere. Since @, — K is prime,
Y2 bounds a 3-ball in X . Il Y?> n K # ¢, then Y? must be a 2-sphere with
two points labeled n. We have a decomposition X, = X| uy X5. Since X,
is good, n™(Y) — n5™(X) injects. Thus we have a free product with amal-
gamation decomposition ’

(X ) = 170X *zpmz (X)),

Since #*°(X,) is finitc, this decomposition must be trivial; i.e., either Y ¢
X, or Y ¢ X, must induce an isomorphism on orbifold fundamental
groups. Suppose that it is Y ¢ X'. Let X', be the universal cover of X'. It is
a simply connected 3-manifold whose boundary is S2. Thus, by the solution
to the Smith conjecture, X, = (D*/G) # X, where G =< O(3) and X is a
homotopy 3-sphere. Since @, — K is prime, this homotopy 3-sphere must
be standard. Thus X', = D?*/G. This proves that X, is prime. W

4. Scifert-Fibered Orbifolds

In this section we shall introduce the notion of a Seifert fiber structure for
a locally orientable three-dimensional orbifold. This will generalize the
classical notion for 3-manifolds. The basic reason for introducing Seifert
orbifolds is that they provide a bridge to quotients of linear group actions
in S3.

Let S' < SO(4) be the subgroup of matrices

RO 0\ .
(o R(c))’ cesh

where R({) is the matrix for rotation by angle { in the plane. If we take the
natural action of SO(4) on S* and restrict it to this circle, then the result is
a frec action. The projection mapping to the quotient space, p: $* — S§7, is
the Hopf fibration. Let Ngq4)(S') be the normalizer of this circle in SO(4).
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It is an extension of the unitary group U(2), by Z/2Z. There is also an exten-
sion

I = S' - Ngouay(SH 5 0O3)— 1.

In this sequence the action of O(3) on S! is given by glg ™' = {4¢'W@ for
all g € Ngoia)(Sh).

Suppose that G = Ngoay(S') is a finite subgroup. Since G normalizes the
S!, its action on S sends fibers of the Hopf fibration to fibers. The induced
action on the fibers is either complex linear or complex antilinear. There is
induced on the quotient orbifold $3/G a decomposition into one-dimensional
sets; namely, the images of the fibers of the Hopf fibration. Most of these
images are circles, but it i1s possible for an image to be an interval. This
happens when there is an element g € G which leaves a fiber invariant but
acts on this fiber in an orientation-reversing manner.

It is exactly these one-dimensional decompositions of three-dimensional
linear orbifolds which serve as models for Seifert-fibered orbifolds.

DErFINITION 4.1.  Let X be alocally orientable, three-dimensional orbifold.
Let % be a deccomposition of X into intervals and circles. We say that & is
a (smooth) Seifert fibration of X if for each clement Te % there are

(1) an open set Uy = X, containing T, that is a union of clements of & ;

(2) a finite finite subgroup Gy < Ngo4)(S!);

(3) a Gy-invariant open set V; < §*, which is a union of Hopf fibers; and

(4) asmoothisomorphism ¢+: V4/Gy — U so that ¢ carries the decom-
position of V;/G; by images of Hoplf fibers to the decomposition which &
induces on U.

We say that X is Seifert-fibered if it admits a Seifert fibration structure.

It is clear from this definition that il G © Ngg4,(S') is a finite subgroup,
then the orbifold S3/G has a natural Seifert fibration induced by the Hopf
fibration in S3. The base space of this natural Seifert fibration on S*/G is the
orbifold S%/p(G). The Hopf fibration induces a continuous map n: S*/G —
S?/p(G), which is called the projection of the Seifert fibration. The fibers of
nt form the decomposition. Thus n: $3/G — S2/p(G), on the level of under-
lying spaces, is just the quotient mapping of the decomposition.

In general, if X is an orbifold with a smooth Seifert fibration .%, then there
is a quotient space A for the decomposition and a continuous map n: Q — A,
where Q is the underlying space of X. Since X is locally isomorphic to S?/G, A
is locally isomorphic to S?/p(G). These local isomorphisms define on A
the structurc of a smooth two-dimensional orbifold. This orbifold is denoted
B and is called the base of the Seifert fibration. The map n: X — B is called
the projection.
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Suppose that n: X — B is the projection of a Seifert fibration of an
orbifold and that u: C — B is a covering of two-dimensional orbifolds.
Form the “fiber product” of X and C over B, and call the result Y,

n

C

S

X —"—B

(Some care is needed in defining this “fiber product;” it is not the set theoretic
fiber product.) The orbifold structure on X induces one on Y so that
WY - X is a covering of orbifolds. The fibers of n': Y — C give a Seifert
fibration on Y with base C. If u: C — B is a regular covering with group of
covering transformations G, then the G-action on C induces a G-action on
Y. The quotient orbifold is X. If C is a manifold, i.e.. if the exceptional set is
empty, then n': Y — C is a smooth circle bundle.

In the next two lemmas we shall consider two consequences of this fiber
product construction.

LeEMMA 4.2.  Suppose that n: X — B is the projection of a Seifert fibration
on an orbifold. Let b € B be a point with local group G, < O(2). Then there is a
neighborhood N of n~'(b) = X of the form (S' x D?)/G,, where G, acts
orthogonally on both factors and where n| N is induced by projection onto the
second factor.

Proof. The point b has a neighborhood in B of the form D?/G,, where
G, = O(2). Let N be the preimage of this neighborhood in X. Form the fiber
product of N and D? over D?/G,. Call the result N. Then N is a smooth circle
bundle over D2. Moreover, G, acts on it by bundlc maps. It follows that therc
is a product structure N = §! x D2, where G, acts orthogonally on both
factors. Hence N = N/G, = (§' x D?)/G,,and n| N is induced by projection
onto the second factor. 1B

REMARK. Onc consequence of Lemma 4.2 is that the orbifold X must
be of dihedral type.

LEMMA 4.3. Suppose that n: X — B is the projection of a Seifert fibration
on an orbifold. Then w induces a surjection T5™™(X) — ny™®(B) — 1. The kernel
of this homomorphism is a cyclic normal subgroup generated by the class of a
generic fiber in the Seifert fibration. This kernel is nontrivial if 0X # .

Proof. Form the fiber product of X and the universal cover B — B. Call
the result Y. Then n$™(B) is the group of covering transformations of Y and
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the surjection nS™(X) — n5™(B) — 1 is induced by =n. If B is good, then
Bis cither R?, 82, or D?, and Y — B is a smooth circle bundle. Hence n5™®(Y)
is cyclic and generated by the class of the fiber. If n9°(Y) is trivial and B is
good, then B = §? and X is closed.

If B is bad, then B is either S? with one exceptional point or S? with two
exceptional points with local groups having relatively prime order. It is
easy to sec that once again n$™(Y) is generated by the class of the generic
fiber. Also, Y, and hence X, 1s closed in this case. I

DermniTion.  If each local group of B is cyclic, then the Scifert fibration
n: X — Bis said to be of restricted type.

We next prove a technical proposition about Seifert fibrations of restricted
type that will be uscful later.

ProrosiTioN 4.4.  Let X3 be an orbifold of cyclic type and let Q be the
underlying topological space. Suppose that Q is Seifert-fibered (in the classical
sense) so that the exceptional set K < Q is a union of fibers. Then X is a smooth
Seifert-fibered orbifold.

First we consider a simple rclative version of the proposition.

LeEMMA 4.5.  Let X be an orbifold with underlying topological space S' x D?
and exceptional set S' x {0}. Suppose that there is given a Seifert fibration
on X that extends to a Seifert fibration (in the classical sense) on S' x D?.
Then the Seifert fibration on 0X extends to one for the orbifold X.

Proof of Lemma 4.5. Supposc that p(S' x {0}) = n. Let Y - X be the
cyclic n-sheeted cover (branched along S' x {0}). Then Yis a manifold. The
fibration on JdX lifts to one on dY which is invariant under the Z/nZ-action.
It is easy to extend this to a Seifert fibration of Y which is invariant under
Z/nZ. Taking the quotient yields the Seifert fibration of X. I

Proof of Proposition 4.4. Let v(K) be a disk bundle neighborhood of K
in Q. By hypothesis, therc is a smooth Seifert fibration of Q — vw(K). Use
Lemma 4.5 on each component of v(K) to extend this to a Scifert fibration
for X. W

Finally, notice that if =: X — B is the projection of a Scifert fibration and
x € X has local group G,, then G, is a subgroup of the local group G,,,.
Thus if K = X is a circle of points with local group cyclic of order > 2, then
n(K) consists of points with local group of order larger than 2. This implies
that n(K) is a single point. This proves the following lemma.
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LEMMA 4.6. If K < X is a circle of points whose local group has order
greater than 2 and if & is a Seifert fibration of X, then K is a fiber of & .

5. Seifert-Fibered Orbifolds and Linear Actions

In [11], Seifert and Threlfall identified the Seifert fiber spaces with finite
fundamental group with the orbit spaces of finite subgroups of SO(4) acting
freely on S3. In this section we shall generalize this to Seifert orbifolds and
nonfree actions. Thus our goal is to identify Seifert orbifolds with finite
fundamental group with linear orbifolds coming from the action of finite
subgroups of Ngo4)(S') on S As we saw in the last section, all such linear
orbifolds are Seifert-fibered. Here we prove the converse.

THEOREM 5.1. Let X? be a good, orientable three-dimensional orbifold
with finite fundamental group. Suppose that we are given a Seifert fibration
for X. There is a subgroup G < Ngouy(S') so that X and S*/G are isomorphic
as orbifolds.

By Remark 3.2, X is good, and thus X is a simply connected 3-manifold.
Since it is Seifert-fibered, it is difftomorphic to S>. Let G = n}®(X). Let 9
be the group of orientation-preserving diffeomorphisms of S3. Identifying
X with S3 gives a representation G . 9. We wish to show that this repre-
sentation is conjugate to one whose image is contained in Ngg4)(S').

Let B be the base of the given Seifert fiber structureon X,and letn: X — B
be the projection. The argument is divided into two cases, depending on
whether B is a good orbifold. Let B denote the universal cover of B.

Case I. B is not good. Let N = (0O(2) x O(2)) n SO®4). It is our plan
to construct an effective action of N on X so that the group of covering
transformations G acts as a subgroup of N. Since it is easy to see that any
such N-action on X is equivariantly difffomorphic to the standard linear
N-action on S3, this will prove that X = X/G is isomorphic to $3/p(G), where
p is the linear representation G ¢ N < Ngg4)(S*). 4

According to the list in Section 2, if B is not good, then cither it is $? with
at most two exceptional points or it is D? with at most two dihedral points on
the boundary (See Fig. 5.1). Hence B decomposes as

B=B,|J)@B, x N B,,
oy oB;
where B; = D?/G, for some G; = O(2). (Actually, the argument in this case
will work for any such B.)) Let X; = n"'(B;) and let Y = 2" 1(0B, x D).
Also let, 9;Y = Y n X;. Clearly,
X=X, vy x..

Ny 82Y
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Let B; = B be the preimage of B;. Each B, is connected. Let X; and ¥ be the
preimages of X; and Y, respectively, in X. They are also connected. The group
G acts on X;, ¥, and 9,7 with quotients X;, Y, and &;Y.

There is a natural action of N on S!' x D? given by the standard linear
action of O(2) on each factor. This action has principal isotropy group Z/2Z
and has one singular orbit —the core. By Lemma 4.2, X; is isomorphic to
(S' x D?)/G;, where G, acts linearly on each factor. Such an identification
induces one of X; with S* x D2, so that G acts as a subgroup of N. (X, is a
manifold since X is good, and X, is a finite cover of X; since G is finite.)
Choose such identifications and let ,;: N x X, —» X, be the resulting actions.
Also, let 4;: 9;Y —» T?/G be the resulting identifications.

Since Yis Scifert-fibered with base 0B, x I, it is diffeomorphicto 9,Y x I.
Choose an identification A: Y - (T?/G) x I so that 1|9,Y = 4,. Then A
defines an N-action on Y, so that G = N, and so that, when restricted to
9, Y, this action agrees with y, restricted to dX,. The problem is that, in
general, the restriction of this action to 8, Y will differ from the action of v,
restricted to 8X,. However, we shall show that after changing the action
¥,:N x X, - X, by an automorphism of N, these actions become equiv-
alent. This will allow us to amalgamate thesc actions into an N-action on X.

The group N is a semidirect product T? x Z/2Z. We denote the elements
of N by pairs (¢, @), where t € T? and w is the generator of Z/2Z. The multi-
plication is defined by (¢, ®') (', @) = (t + (= 1)1, ®'*J). Consider the
natural action on N of S! x S' = S! x D>. A map a:S! x §' - S! x §!
will be called an affine map if it is the composition of a map induced by
A € GL(2, Z) acting lincarly on R? and a map which is translation by t e T2
Ifa: S' x S' - S' x S'isan affine map. then there is a Lie group automor-
phism i,: N — N so that

o(n - x) = i (n)-a(x)
forallne N and xe S§' x S'. The formulas for i, are
i(t, 1) = (At, 1),
i(t, w) = (At + 21, w).
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LEMMA 5.2. Let G = N be a finite subgroup. Any isomorphism @: T?/G —
T?2/G is isotopic (through orbifold diffeomorphisms) to one which lifis to an
affine map on T2,

Proof. If G = SO(2) x SO(2), then T?/G is again a torus. Any diffeo-
morphism of a torus is isotopic to a linear isomorphism, and any linear
map on T?/G lifts to an affine map on T2

Il G is not contained in SO(2) x SO(2), then let G, < G be the subgroup
of index two given by G, = G N (SO(2) x SO(2)). Then T2/G, is a torus
and is a double cover of T2/G. The orbifold T2/G is isomorphic to S2, with
four points labeled 2. The lemma will be established if we can show that ¢
can be deformed until it lifts to an affine map on T?/G,,. First, we may assume
that ¢ is orientation-preserving. Indeed, if 4 eGL(2 Z) has determinant
— 1, then it induces a linear map L ,: T?/Gy — T?/Gy coveringL,: T?/G —
T?/G; and cither ¢ or ¢ o L, is orientation-preserving. Let [0] e T2/G be
the image of 0 € R? (this is one of the four distinguished points). Secondly,
we may assume, by composing ¢ with the image of a translation of order
two, that ¢([0]) = [0]. We can view such a ¢ as an oricntation-preserving
homeomorphism of S? which fixes [0] and which leaves invariant the other
three distinguished points. Birman [1] showed that the group of isotopy
classes of such ¢ is a braid group isomorphic to PSL(2, Z). Furthermore,
this isomorphism can bc realized as follows. Begin with 4 € SL(2, Z), and
let L,: T?/Gy — T?/G, be its linear map. Then L4 induces an isomorphism
L,:T?*G — T?/G. The correspondence 4 — L, lactors through PSL(2, Z)
to give the isomorphism. It follows that every ¢: T?/G — T?/G is isotopic
one which lifts to an affine map T2/G, - T?/G,. H

By using this lemma, we may assume that the identification A: Y —
(T?/G) x I is such that 1]19,Y = A, and 4,0 (4|3, Y)"! lifts to an affine
mapping % on T2, This A defines an action u:N x ¥ - ¥, so that |9, ¥ =
W, 10X, and p|0,¥ = (Y, ° i)0X,.

Thus we can amalgamate these three actions, ¥, u, and ¥, o i,, to define
an effcctive action y: N x X - X, so that G = N and so that ¥|G is the
action of the group of covering transformations.

We can write X = T, U T,, where cach T, is an N-invariant solid torus.
The standard linear N-action on $* has a similar decomposition. By using

these decompositions, one can easily construct an N-cquivariant diffeo-
morphism from X to S°.

Case I1. B is a good orbifold. In this case B is isomorphic to S? and B
is isomorphic to S2/H for some H <« O(3). Let Y — X be the induced covering
of X. We know that Y is Seifert-fibered with base B. Morcover, since B has
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no exceptional points, Y — B is a smooth circle bundlc. As a result, the
induced Seifert fibration on X is also a smooth circle bundle over S2.

Lemma 5.3.  There is a smooth, free S'-action on X so that the orbits are
the fibers of the induced Seifert fibration and so that G = nS™(X) normalizes
the S'-action.

Proof. Each b € B has a neighborhood U, isomorphic to D?/G, for some
G, = O(2). By Lemma 4.2, the preimage of U, in X is of the form (§' x D?)/
G,, where G, acts orthogonally on each factor. For each p € D? choose a
distance function on S' x {p}, so that this family of distance functions is
G,-invariant and smooth in p and so that the total length of cach circle is
2n/n, where n is the order of the kernel of n5™(X) — n$"®(B). These distance
functions definc ones on the fibers of (S! x D?)/G, — D?/G,. Cover B by a
finite collection of such open sets U, and choose product structures and
distance functions as above. Choose a smooth partitition of unity subordinatc
to this cover and use this to average the distance functions on the base.

If we pull back these distance functions to the Scifert fibration Y — B, then
we have an S!'-fibration over S? with each fiber having total length 2n/n.
Pulling back to X, the total length of each fiber is 27. Such a smooth family
of distance functions, together with a choice of orientation, gives a free circle
action on X whose orbits are the fibers. Since the distance functions are
G-invariant, this circle action is normalized by G. This completes the proof
of the lemma. W

Any two smooth, free S'-actions on S? arc equivalent (since they give
principal S!-bundles over $2). In particular, any such action is equivalent to
the standard linear action of S' < U(2), { — (§ ). Hence there is an identi-
fication of X with S? in such a way that the circle action on X normalized
by G becomes S! = U(2). We fix such an identification.

Recall that 2 is the group of orientation-preserving diffeomorphisms of
S3, with group multiplication dcfined by composition. Let Ng(S') be the
subgroup of 2 which normalizes the standard S!, and lct C4(S') be the
centralizer (it is a subgroup of index 2 in N4(S')). The above identification
of X with S3 gives a representation G ¢ Ng4(S?'), where G = n9%(X). We
are trying to show that G is actually conjugate to a subgroup of Ngq4)(S?).

If f & Ng(SY), then define a diffcomorphism f: 2 — S2 by

J(n(2)) = n(f(2)),

where n: §3 —» S? is the Hopf fibration. Let £: Ng(S') » {+ 1} = Aui(S")
be the natural map. If f flips S*, then, since f'is orientation-preserving, f must
be orientation-reversing. Hence (/) = deg(f).
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Let C*(S?, S') be the group of smooth mappings from S2 to S'. (The
group multiplication is pointwise multiplication.) If € C*(§%, S'), then
define a diffcomorphism iy € C4(S?) by

U(2) = Y(n(2)) - z,
where the dot denotes the standard S'-action on S3. There arc exact sequences
1 - C=(5% SY) 5 Ny(S') 5 difi(§?) = 1,
1 = C2(S2, SY) 5 Cu(S") S diff,(S?) - 1,

where p is the homomorphism [ — fand i is y — V.

LeMMA 54. Iffe N (S') and y € C(S?, S?), then f ~' o) o f = 1, where
A= (o )V

Proof. IfaeS'and ze S then f(a-z) = a* - f(2). Thus

Lo Mz) = fOP(J e n(2))V - 2)
= y(fn(z))- f(2)
= Y(r(f(2))- f(2)
=y(f(z)). M

LEMMA 5.5. Any homomorphism p: G — diff(§?), with G a finite group,
is conjugate to a homomorphism with image in O(3).

Proof. The orbifold S2/u(G) is good and has finite fundamental group.
Hence it is smoothly isomorphic to S*/H for some H < O(3). An iso-
morphism S?/u(G) — S?/H lifts to a diffcomorphism of $? which conjugates
WGtoH. W

Let 4 = Ng(S') be the full preimage of O(3) < diff(S?) and let ¥* < ¥
be the full preimage of SO(3). Thus ¢™ is the intersection of Z and C4(S').

COROLLARY 5.6. Let G < Ng(S?') be a finite group. There is an element

J € Ng(S") that conjugates G into 6. If G = C(S"), then f conjugates G into
g+,

Proof. By the above lemma, there is f e diffi{S?) that conjugates p(G)
into O(3). If p(G) < diff . (S?), then this conjugation sends p(G) into SO(3).
Lifting fto f € No(S') gives the required element. i
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Consider the ladder of groups

1 C>(s2, §") —— @ —2 , 03) —— 1
l I— Sl _— NSO(4)(S’) —p‘) 0(3) ——) l.

By applying Corollary 5.6, we conjugate G = n{*®(X) into 4. We wish to do
a further conjugation by an element of C®(52, S') to move G into Ngou)(Sh).
We shall first treat the special case in which G < @+,

Case II1A. G = 9*. The centralizer of ' in SO(4) is U(2). So in this
case our ladder becomes

] —— CS%, 8y —— g+ —2 ., so3) —— |
J J [
1 — S — UQ) SO(3) —— 1

First, we shall define a homomorphism p: G o U(2) so that pop = p|G.
Then we shall use a group cohomology argument to construct an element
Y € C*(S2, ), so that ¥ conjugates G to p(G).

Suppose that ¢ € SO(3) and that n is an integer. For any ¢ € C*(S?%, S'),
define a new function [ |, (¢, ¢) e C*(S?, S?) by

n—1
[T(e,0) = T] (pech
n i=0
Similarly, if 8 € C*(S2, R'), define ) , (6. ¢) by
n-1
YO, )= (0-7).
n i=0

Let exp:R!' — S! be the universal cover. By a lifting ¢ of ¢ € C*(S?, '), we
mean that @ € C*(S?, R!) and that expo @ = ¢.

LEMMA 5.7. Suppose that € 9" has order n. Then there is a je U(2) of
order n and a y € C*(S2, S") such that

(i) f=ejand )

(i) ¢ lifistoy:S* > R with) , (f, /) = 0.
Moreover, this decomposition of [ is unique.

Proof. We have fe SO(3) and f" = 1. Let | be any lift of /. Then I"e S'.
Hence there is an element { e S! with I" = {7". Set k = {{. Clearly, k is also
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aliftoffand k" = 1. Since k = f, we have that f = @ o k for some p e C*(S3, S).
We have

n—1 n-1

id=(@pok)' =[] Kepok ok =[] kiopok™.
i=0 i=0

Lemma 5.4 identifies this last product with the image of I1,(¢. k) = IT,(¢p, /).
Hence I, (¢, f) = 1. Let @: S2 —» R! be any lifting of ¢. Then Y@, F) =m
for some integer m. Define f € C*(S2, RY) by §/(x) = @(x) — m/n. Let w € S*
be defined by w = exp(m/n). Finally, let j = w-k and lct ¢ = exp o).
Clearly, f = o j is a decomposition as required.

Suppose that [ = lﬁ’oj’ is another such decomposition. Since j = j =
feSO(3), we have that j/ = {-j for some { € S*. Thus '(x) = ¥(x) + d for
some d € R! that projects onto . Since Y (0, f) = Y, /) =0 and nd =
Yu, 1) = Y., 1), it follows that d = 0 and, hence, that{ = 1. W

For each fe %" of finite order, let p(f) = j and y, =  be the above
unique decomposition. Also, let i, e C*(S%, R") be the lifting of ¢, that
sums to zero over the f-orbits.

LeMMA 5.8. Let G < 97 be a finite group. The map [ — p(f) defines a
homomorphism p: G — U(2). Furthermore,

l/;fcg= J’f + '/;g°f_-l-

Pr oof We must show that p(e) = e and that p(f~g) = p(f)° p(g). The
first is obvious. As for the second, we have f = l//f p(fland g = l/lg o p(g).
Hence fog = |/11 p(f)e t//J p(g). Since p(f) covers fe SO(3), Lemma 5.4

implies that p(f) e ¢, = (Y,°f ') © p(f). Thus
(*) Vrgop(fog) =Y, o0, of T e p(f) < p(g)
= [l/lf (wq R _l):] OI)(f) P(‘])

The elements p(f° g) and p(f)o° p(g) are in U(2) and have the samc image
in SO(3). Thus there is an element { € S', so that

Cthpg=Wy (yof ™)
This means that there is d € R! with exp(d) = { so that
d+Vpy=td+ Wyof")
Summing over G-orbits gives

order(G)-d + ). lpf,,g00'1= ZGl/;IO&-F > Woof~

axaels aeG
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Since i ; sums over any f-orbit to zero and since a G-orbit is a disjoint union
of f-orbits, Y ycg ¥, o & = 0. Similarly, Y, . ¥,.,o& = 0 and

Z [/;gof—lo(i:()_

axeG
Thus d = 0 and { = 1. This proves that { -y .., = - (f,°f " 1). It follows
immediately from () that p(feg) = p(f)op(g). M

Let G = ¥* be a finite group and let p: G —» Ngg4(S') be the homo-
morphism constructed above. Let ¥: G —» C*(S?, R') be the function that
assigns to g € G the element 1179. The last part of Lemma 5.8 says that P
satisfies the cocycle condition. If we project ¥ to W: G — C=(S?, S'), then
the resulting cocycle is the “difference cocycle” for the two mappings of G
into 4*. Lemma 5.9 shows that if W is a coboundary, then G and p(G) arc
conjugate. We shall complete the proof of Case I14 by showing that P
(and hence W) is a coboundary.

LEMMA 5.9. With notation as above, suppose that ¥: G —» C*(§%,SY) is a
coboundary, that is, suppose that there exists pe€ C*(S2%, S*), so that

(eg  DNop ! =Yg

Jor all g€ G. Then ji conjugates G to p(G).

Proof.
(eget™Nep@) ™ =folgentog Vo,
=[p-(u'leg™")-Yg)l.

1

Thus fiogofi ' = p(g)ifand only if ¥(g) = (u-g - '. W

The next two lemmas establish that ¥ is indeed a coboundary.

LEMMA 5.10. Let w be a generator of Z/nZ and suppose that  acts on D?
by rotation through 2n/n radians. Let 0 € C*(D?, R") be such that ) (6, w) = 0.
Then there is f € C*(D?% R") such that f(wx) — P(x) = 0(x) for all x e D?.

Proof. Define

n—2 ;

p(x) = — Zﬁn_'—i—l (' x).
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Since ) (0, w) = 0, we have —(1/m)f(w" ™ 'x) = Y122 (1/n)B(w'x). Hence

n-3 5 n—2
Blox) — ) = — ¥ 2 T Lot iy + 3 < o)
i=0 h i=o N
n—2 i
yy izt 1 O(w'x)

i=0 n
n—2 i n-2 o

= — - '()(a)"x) + Yy . '()(w"x)
i=1 N i=o N

= f(x)

LemMAa 5.11.  Let p: G = SO(3) be a representation of a finite group and
suppose that W: G —» C*(S?, R") satisfies the cocycle condition

P(fo9) =P + Plg)op(f) "

Then ¥ is a coboundary, i.e., there is a function jie C*(S%, R"), so that
fop(g)™ ' — jt = ¥(g) forall geG.

Proof. Suppose that p(f) = 1. Then
(*) P(fog) =P + Vo).

This means that, restricted to the kernel of p, ¥ is a homomorphism. Since
ker p is a finite group and C®(S2, R') has no elements of finite order,
¥ |ker p = 0. By invoking (*) once again. we see that ¥ factors through
P(G) to define a cocycle on that group. In view of this it suffices to solve
the problem for the group p(G). We may therefore assume that p in injective.

We can cover S2 by G-invariant open sets U, ..., Uy, where each U, has
the form

U,' = G X”. Dz.

where H; < G is a cyclic isotropy group. By the previous lemma we can find
fi;e C°(D?%, RY), so that P(g) = ji;op(g)~' — f; for all ge H,. Extend
fi; to U, by using the same formula for all g € G.

Let {4;} be a G-invariant smooth partitition of unity subordinate to {U,;}
and dcfine

p= Ae ;.

i

Clearly, ¥(9) = fiep(g)™' — i W

M’.-

1
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Setting u = cxp o fi, we have that fi conjugates G =« ¢* to p(G) = U(2).
This completes the proof of Case I1A4.

Case IIB. G < %, but G is not contained in 4. Let G =GN %",
Then G’ 1s a subgroup of index 2 in G. By case IIA, we can conjugate G by an
element of C*(S2, S!) so that G’ is contained in U(2). Choose arbitrarily an
element he G — G’ and an element k € Ngg,,(S') with k = he O(3). There
is an element ¢ € C*(S2%, S!), so that k = @ o h.

LemMA 5.12.  @(x) = @(h~ 'x) for all x € S2.

Proof. Both k2 and h? are elements in U(2) with the same image in SO(3).
Thus there is { € S* with o h* = k2. Since k = ¢ o h, by using Lemma 5.4,
we see that { = ¢po A, where 1 = (poh~")"'. Hence { = ¢p(x)-p(h~'x)""
for all x. Therefore, it suffices to show that { = 1. Let $ € C°(S% R') be a
lifting of ¢. Then ¢ = $(x) — G(h~'x) is a constant that projects to {. By
summing over an h-orbit, we see that { = 0 and hence that { = 1. W

LEmMMA 5.13. If ge G = G UQ), then hgh™' = kgk~!, where h and
k are as above.

Proof. Again, hgh™ ' and kgk ™! are both elements of U(2) with the same
projection in SO(3). Hence, their difference is an element (e S'. Since
k=@ohkogok™ = @o(hogoh VNop'.Setf =hogoh ' Then

{=fo(Pefod™ ) ' =(fopof Negp ' =4:¢"",
where 2 = @pof "' Hence { = (pof~!)- @~ 1. By applying this equality at
x = hy, we find that { = o(f " 'hy)-@(hy)™' = @(hg™'y)- @(hy)~'. Since
@oh =@, wehave { = (pog ')""- . Choose a lifting ¢ € C*(S? R') for
P- Then{ = ¢ — ¢ g~ "'isalifting for {. Summing over a g-orbit shows that
(=0and hencethat{ =1. W

COROLLARY 5.14.  With notation as above, ¢ and its lifting ¢ are G-
invariant.

Proof. The last step in the proof of Lemma 5.13 shows that ¢ is invariant
under G’ = G. Lemma 5.12 shows that $ is invariant under /. Since G’ and
h together gencerate G, it follows that @, and hence ¢, is G-invariant.

Now we define p: G = Nggay(S'). Restricted to G' it is the identity. It
sends an element of the form go h, ge G, to g o k. By using Lemmas 5.12
and 5.13, the following becomes a straightforward calculation.
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LEMMA 5.15. The map p: G — Ngouy(S") is a homomorphism.

LEMMA 5.16. There is an element pue C*(S?, S') that conjugates G to
P(G) = Nsou(S .

Proof. According to Corollary 5.14, the element ¢ € C®(S%, S') has a
G-invariant lifting @ € C®(S2, R!). Define u by u(x) = exp(1/2 @(x)). We
claim that fiego ™' = p(g) for all g € G. Notice that I is also G-invariant.
Thus

fiegofi™!

Ife(g) = 1, then fiogo fi~

=fle i Wog =(a' ") o g.
t_yg

= p(g). If e(g) = — 1, then

=) eg=@gog==¢o(goh™oh=(goh™)odpoh
=(goh™Nek=p(g) N

This completes the proof of Case I1B.

fogop™!

6. Statement of the Main Result
We shall establish the following result.

THEOREM 6.1. Let X be a closed, orientable, three-dimensional orbifold
with finite fundamental group. Suppose that X is of cyclic type and that at
least one point in X has a local group of order >5. Then there is a Seifert-
fibered orbifold X, and a homotopy 3-sphere X, so that X is diffeomorphic to
X, # Z.

This theorem, combined with Theorem 5.1, yields the following corollary.

COROLLARY 6.2. Let G x £ — & be a finite, smooth, orientation-preserving
group action on a homotopy 3-sphere. Suppose that all isotropy groups for this
action are cyclic and at least one has order > 5. Then the action is essentially
linear.

Proof of the Corollary Assuming the Theorem. Let X be the quotient
orbifold £/G. Since G is an orientation-preserving action X is orientable.
The local group of X at x is isomorphic to the isotropy group Gz atany X € s
that projects onto x. Thus X is of cyclic type and at least one local group of
X has order >5. The fundamental group of X is isomorphic to G. Thus
Theorem 6.1 implies that X = X, # X, where X, is a Seifert-fibered orbifold
and X is a homotopy 3-sphere. According to Theorem 5.1, X, is difffomorphic
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to S3/H for some H < SO(4). Thus, ?/G is diffeomorphic to (S3/H) # Z.
This means that the action of G on X is essentially linear. (See Chapter I
for a discussion of essentially linear actions.) W

According to Proposition 3.3, if X is a closed, orientable, three-dimen-
sional orbifold of cyclic type with finite fundamental group, then it is iso-
morphic to X, # X, where X, is prime and X is a homotopy 3-sphere. Thus
we can reformulate Theorem 6.1 as follows.

THEOREM 6.3. Let X be a closed, orientable, prime, three-dimensional
orbifold of cyclic type with finite fundamental group. Suppose that there is a
point x € X whose local group has order >5. Then X is a Seifert-fibered
orbifold.

The above remarks show that Theorem 6.3 implies Theorem 6.1. The rest
of this chapter is devoted to proving Theorem 6.3.

7. A Special Case

Let X be an orbifold as in the hypothesis of Theorem 6.3. Let (Q, K, p)
be the underlying triple of X, In this section we shall prove Theorem 6.3
under the additional hypotheses that

(1) Q is simply connected, and
(i) K < @ is connected.

The hypothesis that some local group has order > 5 means that p(K) =
n > 5. The hypothesis that n{*®(X) is finite mcans that the cyclic n-sheeted
branch cover of Q branched over K has finite fundamental group. We shall
show that under all these assumptions Q is Seifert-fibered (in the classical
sense), with K being a union of fibers. According to 4.4, this means that the
smooth orbifold X is Seifert-fibered of restricted type.

Our argument begins in exactly the same way as that of the solution to the
Smith conjecture. Let v(K) be the interior of a disk bundle neighborhood of
Kin Q.

LEMMA 7.1.  With notation and assumptions as above, one of the following
IS true:

(@) Q@ — v(K)is Scifert-fibered.

(b) Q — w(K) has an incompressible torus which is not peripheral (i.e.,
not parallel to the boundary).

() int(Q — w(K)) has a complete metric of finite total volume all of whose
sectional curvatures are — 1. (Such a structure is called hyperbolic.)
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This lemma follows from the Jaco-Shalen, Johannson theorem and Thurs-
ton’s uniformization theorem exactly as in the case of the Smith conjecture
(see Chapter 1V).

LemMa 7.2.  Q — v(K) does not have a closed, incompressible surface that
is not peripheral.

This follows from the Meeks-Yau result exactly as in the case of the Smith
conjecture (see Chapter VII).

COROLLARY 7.3.  Either case (a) or case (¢) of Lemma 7.1 obtains. If case
(c) obtains, then the representation n,(Q — v(K)) = I' o PSL,(C) coming
Jrom a hyperbolic structure on Q — v(K) is conjugate to a representation
' - PSL,(A) < PSL,(C), where A is a ring of algebraic integers in a number
Sield. :

Proof. The first statement follows immediately from Lemmas 7.1 and
7.2. The sccond follows from an application of Bass’s thcorem on subgroups
of PSL, (C) [Chapter VI]. The reasoning is the same as that which occurs
in the case of the Smith conjecture [Chapter IV]. 1

To prove Theorem 6.3 in the special case under consideration here, we
first show that Q@ — v(K) is Seifert-fibered. To do this it suffices to assume
that @ — K has a complete hyperbolic structure of finite volume and deduce
a contradiction.

We make this assumption. By Corollary 7.3 we can choose the holonomy
representation for the hyperbolic structure, so that 7, (Q — K) =T is
represented in PSL,(A).

Let s € I' be the class of the meridian about K. Since n,(Q) = {e}, [/{u} =
{e}, i.c., p is a normal generator for I'. The group n®(X) = G is I'/{u"}.

The situation which we have can be summarized as follows:

(1) There is a group I' = PSL,(C) that is discrete and torsion-free and
acts on hyperbolic 3-space so that the quotient has finitc volume.
(1) I is actually contained in PSL,(A4), where 4 is a ring of algebraic
integers.
(ii1) I’ is normally generated by an element g of trace +2.
(iv) T/{u"} is a finite group for some n > 5.

We shall show that the only torsion-free, discrete group in PSL,(C), satisfies
conditions (it)-(iv), is a cyclic group. Since no cyclic group acts with quotient
having finitc volume, this will yield a contradiction and will establish that
Q — K cannot be hyperbolic.
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Choose a prime idcal p = A so that ne p. Let p be the rational prime below
p, e, pNnZ = (p). Consider I' =« PSL,(4) — PSL,(A/p). Let H <
PSL,(A/p) be the image of T".

LEMMA 7.4. (a) H is normally generated (over itself) by [1] and
(b) u becomes an element of order p (or 1) in PSL,(A/p).

The first fact follows immediately. since u normally generates I'. The second
follows from the fact that any matrix in PSL,(A4/p) of trace +2 is conjugate
to a matrix of the form +(§ ?) for.some i€ A/p. Clearly, any such upper
triangular matrix is of order p (or 1) since A/p is a finite field of characteristic
p. As a consequence of Lemma 7.4(b). the element u" is sent to 1 in PSL,(A/p)
and hence I' = H < PSL,(A4/p) factors through I'/{y"} = G.

Let X be the universal cover of X, and let X,, be the covering corresponding
to the quotient group H:

Let P be the underlying space of X,,. Also, let T be the kernel of I —» H,
l-T>T->H-1.

By Dickson’s theorem [see the appendix] on subgroups of PSL, of finite
fields, the only possibilities for H are

(7.5) () H iscyclic (of order p of 1).
() H is conjugate to PSL,(F), where F is a subfield of A/p.
(y) p = 2and H is a dihedral group of order 2k + 1)-2.
() p = 3and H is isomorphic to the icosahedral group As.

Case a. H is cyclic. 1If H is cyclic, then it is generated by [u], which has
order p or 1. Thus X,, —» X is either the trivial covering or the p-sheeted
cover of Q branched along K. The group T is isomorphic to n,(P — K).
Clearly, under the representation I = PSL,(A4), the group T is the subgroup
of all matrices in I" congruent to +(§ ) modulo p.

Lemma 7.6. T/ T ® Z/pZ = Z/pZ.
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Proof. The group T/[T, ] is isomorphic to H,(P — K). Therefore,
the lemma states that H,(P — K; Z/pZ) =~ Z/pZ. If H is trivial, then P = Q
and the result is immediate. If H = Z/pZ, then P — K is a cyclic, p-fold
covering of Q — K. We know that H,(Q — K) = Z. Let Z be the infinite
cyclic cover of @ — K and let T: Z — Z be the covering transformation
corresponding to a generator of Z. Then P — K =~ Z/T". We have an exact
sequence

HyQ - K) —— H,(2) H(Z)

— H(@-K) — Z — 0.
Hence | — T,: H,(Z) - H(Z)is an isomorphism. But 1 — T = (1 — T,)*
mod p. Thus | — T4 = (1 — T)?: H\(Z;Z/pZ) - H,(Z; Z/pZ). Hence
I — T% is an isomorphism modulo p. It follows that H (P — K; Z/pZ) =~
Z/pZ. This completes the proof of Lemma 7.6. W

| -7,

Let H, = PSL,(4/p") be the image of I" under reduction modulo p”. By
the previous lemma, (H,/[H,, H,]) ® Z/pZ is either 0 or Z/pZ. On the
other hand, H, = PSL,(A/p") consists of a group of matrices congruent to
+(5 §) mod p.

LemMa 7.7. The group of matrices in PSL,(A/p") congruent to +(} ¢
mod p is a nilpotent p-group.

Proof. Let C, < PSL,(A/p") be the group of these matrices. Let C,_, <
C, be the subgroup of matrices congruent to +( ¢) mod p"~!. We claim
that C,_, is contained in the center of C,. The proofis a simple computation:

EYE () mar

fla=d= +1(p)b=c=0p)a=5=1(p" !),and B =y = 0(p"~!). By
induction on n, one easily establishes that C, is a nilpotent group and, in
fact, has order a power of p. W

It follows immediately from Lemma 7.7 that H, = PSL,(A/p") is a nil-
potent p-group.

Since the abelianization of H, tensored with Z/pZ is cyclic, it follows that
H,, itself is a cyclic group. Thus if we reduce I" modulo any power of p, then
the result is a cyclic group. But every nontrivial element in T is nontrivial
modulo some power of p. Hence every nontrivial element of T is detected
in a cyclic image of T". This means that the commutator subgroup [T, '] is
trivial, i.e., that T is abelian. This is a contradiction since by hypothesis T
is the fundamental group of a complete hyperbolic manifold of finite volume.
This shows that Case (o) never occurs.

-
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Case 8 (for p > 5). H is conjugate to PSL,(F), F a field of characteristic
p > 5. Let y; and ug denote the images of pe I' in H and G, respectively.
Consider the action of G on X. The element p; has fixed point set a circle
lying above K = Q. Consequently, the action of u;; € H on X, has as fixed
point set a union of circles S,, ..., S,, each projecting onto K. (Heret > 1.)
Case f for p > 5is ruled out by the following lemma applied to P, the under-
lying space of X,;.

LeMMA 7.8. Let M be a closed, orientable 3-manifold with finite funda-

mental group. Let F be a finite field of characteristic p > 5. There is no action
of PSL,(F) on M, so that

(i) all isotropy groups are cyclic and
(i) an element of order p, g € PSL,(F), has fixed points.

Proof. Suppose there were an action of PSL,(F) on M satisfying (i)
and (11). Since M has a finite fundamental group and p # 2, the dimension
of H,(M; Z/p) is <I. By Smith theory [2, p. 126], if Z/p acts on M with
fixed point set W in M, then the dimension of H,(W; Z/p) is <2. Thus
the fixed point set of g, denoted by W(g), is either one circle or two. The
normalizer N{g)> < PSL,(F) of {(g) acts on W(g). If « € N{(g) fixes a com-
ponent S of W(g), then the group (o, g)> generated by « and ¢ acts on § and
hence on some tubular neighborhood of S. Since all isotropy groups are cyclic,
it is possible to choose this neighborhood v so that (o, g)> actsfreelyon v — §.
In particular, {a, g> acts frecly and in an orientation-preserving manner on
dv. This implies that {a, g) is an abelian group. Thus « is in the centralizer
Z<{g> of {g>. This proves that the order of N{¢g>/Z{g> is bounded above by
the number of components of W(g). Thus the order of N{g>/Z<{g) is <2.

Consider the element h, = +(5 %), A # 0 in F. Its normalizer contains
all elements of the form +(&2-.), where « is a nonzero clement of the
prime field of characteristic p. None of these clements, save =+ identity,
commute with h,. Thus N<h,;>/Z<{h,) has order divisible by (p — 1)/2. On
the other hand, every element of order p in PSL,(F) is conjugate to an clement
h, for some A. Thus for any element of order p in PSL,(F), g, N{¢g)>/Z{g) has
has order divisible by (p — 1)/2. If p > 5, this contradicts the fact, established
above, that N{g>/Z{g) has order at most 2.

Case f(forp = 2,3,0r 5), Case y,and Case 6. We shall need the following
lemma.
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LEMMA 79. Let X be a three-dimensional orbifold of cyclic type with
finite fundamental group. It is impossible for the exceptional set to have four
or more components labeled 2 or three or more components labeled by n, with
n> 2.

Proof. Let us consider the second case. Suppose there are three compon-
ents of the exceptional set of X all labeled n > 2. Take the orbifold cover
Y of X corresponding to the universal topological cover of the underlying
space of X. In Y there are at least threc components of the exceptional set
labeled n —say K, K,, and K;. Let § be the topological space underlying
Y. There is a regular branched covering of  branched over K, I K, with
group ol covering transformations Z/nZ x Z/nZ. This corresponds to an
orbifold covering of Y. The preimage of K, in this covering is at least n-
circles. We can repeat this process ad infinitum. This contradicts the fact
that 7$®(X) is finite.

A similar argument works in the case of 4-circles labeled 2. Details are left
to the reader. W

We have p < 5, F is a finite ficld of characteristic p, and H < PSL,(F)
is noncyclic and normally generated by an element y,, of order p. Consider
the regular covering X, — X. Let (P, J, t) be the underlying triple for X,,,
and let z: P — Q be the ramified covering of underlying spaces. The map =
is ramified over K, with index of ramification p. Since p < Sand p(K) = n> 5,
we see that J is 7~ '(K) and that z(J) = n/p.

LEMMA 7.10. The number of components of J is divisible by the number of
cosets of Z<{uy, ) in H.

Proof. H actson P leaving J invariant. Since J/H = K, H acts transitively
on the componecnts of J. Let J, be one of these components, and let stab(J )
be its stabilizer. Thus the number of components is the order of H/stab(J,).
As we have seen in the proof of Lemma 7.8, stab(J,) = Z{y,). Thercfore,
the number of components of J is divisible by the order of H/Z{y,;>. R

If p=3or 5 and H is isomorphic to PSL,(F), order(F) = p*, then the
centralizer of an element g,, of order p has order p* and thus J has at least
(p** — 1)/2 > 4 components; ©(J) = n/p.

If p = 3 and H is isomorphic to A, then the centralizer of y,, has order 3,
and J has at least 20 components; ©(J) = n/3.

If p =2 and H is isomorphic to PSL,(F), order(F) = 2% then J has at
least 22 — 1 > 3 components; ©(J) = n/2 > 3.

If p =2 and H is isomorphic to a dihedral group of order(2k + 1)-2,
then J has at least (2k + 1) = 3 components; 1(J) = n/2 = 3.

All these possibilities are ruled out by Lemma 7.9.
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At this point we have ruled out the possibility that Q — K has a complete
hyperbolic structure of finite volume. Thus by Lemma 7.1, @ — vw(K) must
be Seifert-fibered. To complete the proof of Theorem 6.3 in the special case
under consideration we need only show that this Seifert fibration structure
extends over v(K) with K being a fiber. The next proposition guarantees this.

ProposiTION 7.11. Let X be a three-dimensional orbifold with finite
Sundamental group. Let K| be a component of the exceptional set of X. Let
vW(K,) < X be a neighborhood of K. Suppose that the orbifold X — v(K,) is
Seifert-fibered. Then X is Seifert-fibered.

Proof. Let B be the base orbifold for the Seifert fibration on X — v(K,).
There is a boundary circle C for B corresponding to dv(K,). Let g, be the
meridian in dv(K,). Then u, projects to some multiple of C in B. Unless
this multiple is 0, Lemma 4.4 shows that the Seifert fibration c¢xtends over X.

If the multiple is zero, then #n{®(X) = n{°(X — v(K,))/{u"*V} has
n9™(B) as a quotient. Hence n$*®(B) is finite. This means that B is diffeo-
morphic to D2?/G for some G = O(2). Since 4B has a component that is
a circle, G is actually a subgroup of SO(2). As a result, the underlying topo-
logical space of X — w(K,) is a solid torus, and the exceptional set of X —
v(K,) is either empty or the core of this solid torus. This means that the topo-
logical space underlying X is the union of two solid tori, and the cxceptional
set of X is either the union of the two cores or one of the cores. In these cases
it is easy to construct a Seifert fibration of the underlying topological space,
so that the exceptional set is a union of fibers. By Lemma 4.4 this implics that
X is a Scifert-fibered orbifold. W

8. Completion of the Proof

In this section we deduce Theorem 6.3 from the special case proved in
Section 7. Basically, the argument is by induction on the order of the group.
It is bascd on a result for orbifolds (Theorem 8.1) that generalizes a thcorem
for 3-manifolds proved by Waldhausen [10] and Gordon and Heil [5].

Recall that if X* is Scifert-fibered, then the class of a generic fiber generates
a normal, cyclic subgroup N of #$®(X). This group is nontrivial unless X
is diffeomorphic to S*/G. The following thcorem shows that often the exist-
ence of such a normal subgroup is also sufficient for X to be Scifert-fibered
when X # .

THeoreM 8.1.  Let X? be a prime, good, orientable three-dimensional
orbifold with nonempty boundary. X is Seifert-fibered if and only if n5™(X)
contains a nontrivial, normal, cyclic subgroup.
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The proof of this theorem is contained in [6]. Basically, onc follows the
original Waldhausen argument in [10].

A subgroup N < T is said to be characteristic if any automorphism of I’
leaves N invariant.

Another result of [6] that is needed here follows.

ProrosiTION 8.2. Let N < n$™(X) be the normal, cyclic subgroup
generated by the fiber of a Seifert fibration of X. Unless X = T? x I, N is
characteristic.

This proposition is not difficult. The main idea is that if N is not character-
istic, then there is another normal, cyclic group in n8™(X). This group
projects to a nontrivial, normal cyclic subgroup of the base of the Seifert
fibration. This limits the base severely. An examination of the possible base
spaces completes the argument.

By using these two results, we complete the proof of Thecorem 6.3. The
argument is by induction on the order of the fundamental group.

Let X be an orbifold that satisfies the hypothesis of Theorem 6.3. This
means that X is a closed, orientable, prime orbifold of cyclic type with finite
fundamental group. Let Q be the underlying space of X, and let K < Q be
the exceptional set. We know that Q — K is irreducible. Let K, be a com-
ponent of K for which p(K ) > 5.

Case 1. Q is not simply connected. Lect Q — Q be the universal topologi-
cal cover. There is an orbifold covering Y — X, so that on the level of spaces
the projection is J — Q. The exceptional sct of Yis the preimage of K in
0. We call it K. Let K, be the preimage of K,. Since § — K is a covering of
Q — K, it follows that § — K is irreducible. This means that Y satisfies the
hypothesis of Theorem 6.3. By induction, Y is Seifert-fibered. By Lemma
4.6, K, must be a union of fibers. Let w(K, ) be a disk bundle neighborhood
of K, in Q and let v(K,) be its preimage in J. We can easily arrange for Y —
v(Kl) to be Seifert-fibered.

Case la. — w(K,) is not isomorphic (as an orbifold) to T? x I. In this
case the nonnal cyclic group N < n{™™(Y — w(K,)) generated by the class
of a generic fiber is nontrivial (by Lemma 4.3) and characteristic (by Proposi-
tion 8.2). Hence it forms a nontrivial, normal, cyclic subgroup of
(X — v(K,)). Since X is prime, X — v(K,) is also prime. Thus, according
to Theorem 8.1, X — w(K,) is Seifert-fibered. By Proposition 7.11, we can
choose this Scifert fibration so that it extends to one on all of X.

Caselb. Y — w(K)) is isomorphic to T* x 1. In this casc K = K,, and
hence K = K, in Q. Thus Q — v(K,) is finitely covered by T? x I. The only
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orientable manifold with one boundary component that is covered by
T? x I is the twisted I-bundle over the Klein bottle. This manifold has
two S'-fibrations. At least one of them extends to a Scifert fibration of Q
with K being a fiber. According to Proposition 4.4, this implies that X is a
Seifert-fibered orbifold.

Case 2. Q is simply connected and K has at least two components. Let
K, be a component of K distinct [rom K,. Let p be a prime dividing p(K,).
Since Q is simply connected. therc is a p-sheeted, branched, cyclic covering
of Q branched over K,. Let P — Q be this branched, cyclic covering. Since
plp(K,), there is a corresponding covering of orbifolds Y — X. The excep-
tional set is the preimage of K — K, in P if p = p(K,). Otherwise, it is the
preimage of all of K in P. Let K be the exceptional set, and let K, be the
preimage of K, in P.

The orbifold Ysatisfies all the hypotheses of Theorem 6.3, except possibly
the condition that Yis prime. By Proposition 3.3 and induction, Yis isomor-
phic to Y, # X where Y, is Seifert-fibered and X is a homotopy 3-sphere.
By Lemma 4.6, K, must be a union of fibers. Let wW(K,) be a disk bundle
neighborhood of K, = Q, and let v(K,) be its preimage in P. The orbifold
Y, — w(K,) is Seifert fibered.

Case 2a. 'Y, — W(R,) is not isomorphic to T? x I. In this case, as in
Case la, n3™(Y — (K ,)) = 7Y, — w(K,)) has a nontrivial, characteristic,
cyclic subgroup N. This subgroup N is anormal subgroup in n™®(X — (K ,)).
Since X is prime, so is X — v(K,). Hence Theorem 8.1 says that X — v(K,)
is Seifert-fibered. By Proposition 7.11, this means that X itself is Seifert-
fibered.

Case 2b. Y, — wW(K ) is isomorphic to T? x I. Since Y — w(K,) has
two boundary components and X — (K ) has one, the group of covering
transformations of Yover X has even order. By construction this group is a
cyclic group of prime order. Hence the group is isomorphic to Z/2Z. It acts
by interchanging the boundary components. Thus we have an cxtension

| »Z x Z - 19X — wW(K,)) > Z2Z — 1.

It follows that ny™®(X — w(K,)) has a nontrivial, cyclic, normal subgroup.
Since X is prime, so is X — (K ;). Thus Theorem 8.1 implies that X — w(K,)
is Seifert-fibcred. As bcefore, Proposition 7.11 allows us to find a Scifert
fibration on all of X.

Case 3. Q is simply connected and K has only one component. This is
exactly the special case dealt with in Section 7.

This completes the proof of Theorem 6.3 and hence of Theorem A.
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Appendix

Let F be a field with p" elements. Let u e PSL,(F) be the element +({ }).
We shall give Dickson’s argument [3] classifying groups G < PSL,(F)
that contain u. Two such groups are considered cquivalent if there are a
finite cxtension F of F and an element a € PSL,(F) that normalizes PSL,(F),
commutes with g, and conjugates one to the other. This leads to a classi-
fication of groups G = PSL,(F) that contain a nontrivial element of trace
+2 (or, equivalently, that contain an element of order p). Once again the
classification is up to conjugation by clements in PSL,(F), F a finite cxtcnsion
of F, that normalize PSL,(F). The reason is that any nontrivial element of
trace +2 in PSL,(F) is conjugate to +({ %), A% 0. We let F be the extension
of FF obtained by adjoining x = \/i to F. In PSL,(F) the matrix +( 2-1)
normalizes PSL,(F) and conjugates +(3 ) to +(3 }).

Let us begin then with G < PSL,(F) containing u. There are three classes
of such groups, as we shall see

Class .  Subgroups of upper triangular matrices in PSL,(F);

Class II. groups conjugate to PSL,(F’) or a Z/2Z-cxtension of PSL,(F")
for some subfield F' < F; and

Class III. exceptional groups for F a field of order a power of 2 or 3.

We shall discuss in more detail later the various groups in thesc classes.
Let us set up some notation. A maximal unipotent subgroup, or MU sub-

group for short, is any subgroup conjugate in PSL,(F) to the group of strictly
upper triangular matrices

1 x
Bw—{(o I) foxxeF},

Let G = PSL,(F), and let B = PSL,(F) be a MU subgroup. If G n B is
nontrivial, then we say that it is a MU subgroup of G. Any MU subgroup of
G has order p' for some 1 < | < n (where ! might depend on the MU sub-
group).

LemMa Al. Any MU subgroup of G is a p-Sylow subgroup of G.

Proof. A subgroup is a p-Sylow subgroup if it is a maximal p-group
(i.e., if it is not contained in any larger p-group). Any MU subgroup of
PSL,(F) is a p-Sylow subgroup, and any two distinct MUs in PSL,(F) have
trivial intersection. From this it follows casily that any maximal p-group in
G must be of the form G N B, and, conversely, that if G n B is nontrivial,
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then it is a maximal p-group of G. Thus the p-Sylow subgroups of G are the
groups G N B that are nontrivial. i}

COROLLARY A2.  Any two MU subgroups of G are conjugate.

Case I. G has only one MU subgroup. Then G is a group of upper tri-
angular matrices. If G has only one MU subgroup, then that subgroup must
be B, (since g€ G) and B,, must be normal in G. This implies that every
element of G normalizes B, i.e, that G is a group of upper triangular
matrices. This completes Case 1.

For the rest of this appendix we assume that G has more than one MU
subgroup.

LEMMA A3.  The number of MU subgroups of G is fp" + 1, where p" is the
order of G By, and [ > 1.

Proof. B,, acling by conjugation on thc MU subgroups of PSL,(F),
fixes B, and acts freely and transitively on the others. Thus G n B, acting
by conjugation on the MU subgroups of G, has one fixed point—G n B, —
and acts freely on the remaining ones. Thus the number of MU subgroups
of Gisfp" + 1, where p"istheorderof GNB,.

We adhere to the following notation:

order(G N By,) = p".

number of MU subgroupsof G = fp" + 1, [ = L.

N, = normalizer in Gof G N B,.

order(N ) = dp".

order G = dp'(fp" + 1).
Of course, N, consists of all upper triangular matrices in G. The MU sub-
group G N B, is naturally identified with a subgroup of the additive group
of F. This identification sends +(§ ) in G n B, to x € F. Call the image of
G n B, under this identification V. It is automatically a vector space over
the prime ficld F, « F.Let F’ = Fbethesubsctofallae Fsuchthata.- V< V.
One sees easily that F’ < F is a subfield. Clearly, Vis a vector space over F’.
Let the order of F’ be p', I|n. Since the order of Vis p", we see that | < r.

Since leV, Fr < V.
Consider the sequence

1 >GNABy— Ny b F¥/{£1},  where y(£( 5-)) = *a
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The image of ¥ is a subgroup of F*/{+ 1} of order d. Such a group is cyclic
and generated by 414, where 5, is a primitive dth root of — 1. The action of
+ae F*/{+1} on G n B, = Vis by multiplication by «?

6 )66 -6 )

Thus n e (F)*. This shows that d|(p' — 1).
We wish to arrange that N meets the diagonal matrices, {+ (3 2-1)}, in
exactly the cyclic group gencrated by

ne 0O
+ ;
- (O No ‘)

LEMMA Ad4.  There is an element of B, that conjugates G to G' < PSL,(F),
so that G’ {+(& 2-)} is the cyclic group generated by

! 0
+ ( lo _ 1) .
0 7o
(Notice that such conjugation lcaves fixed G n B .)
Proof. 1fn, = =1, then noconjugation is necessarysince N, = G N B.

Suppose that 5y # +1. Let +(3° ) be an element of N,. Since iy # *1,
we sec that g # ng '. Conjugate G by

I x/(1o — 1o ")
i(o | )

The conjugatc group contains

1 _x — No X | X — Ho 0
+ Mo — Mo _ o— 1Mo | =% IR
0 1 0 10/ \o [ 0 n',

We assumce that we have made the required conjugation and have renamed
the new group G. At this point we have

(AS) (a) a subfield F' < F with p' elements,
(b) an F’-vector subspace V < F of order p" containing F'. and
(c) aninteger d such that d|(p — 1), and such that
(d) N < G consists of all products

1 v\ fno O C
+ - for ve Vand n, a primitive dth-root of —1;.
0 1/\0 »no'
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LEMMA AG. There are (fp" + 1) right cosets of N , in G. Each nonidentity
coset contains at most 2d elements of order p (at most d if p = 2).

Proof. Since the order of N, is p'd and the order of G is (1 + fp) dp’,
the first statement follows immediately. -
Let V;= (& %§);j=1,..., fp', be coset representatives for the nonidentity

coscts (thus yJJ- # 0). The condition that a product

+ aj ﬂj n nv
“\y; 6;/\0 n7')°

with ve V and 5% e (F')*, be an element of order p is that its trace no; +
y;nv + n~ 16 be 2. By fixing j and n, there are at most two solutions (one
if p=2)to

noy + o+ o= 12 W

On the other hand, G has (1 + fp") MU subgroups. Thesc groups have
trivial intersection and each contains (p” — 1) nontrivial elements of trace
+2. Thus G — N has fp"(p" — 1) elements of trace +2. In light of Lemma
A6, this implies that

Wer =D <2dp if pisodd
and

J(p" — 1) < dfp if p=2.
Since d|(p' — 1)and { < r, this yields

(A7) I=randd =(p" — 1)20rd =p" — 1,if pis odd.
=randd=p" — Lifp=2.
Fr=V

(A8) Ifd = (p" — 1)/2, then N, = B, n PSL,(F'). This is also true for
=2 Ifd=p" — 1 and p> 2, then N, equals {1 )In*e(F)* and
Ae F'}. Furthermore, if d = p" — 1 and p > 2, then the degree [F : F'] is even.

Case 1IA. If p is odd and d = (p" — 1)/2, then G = PSL,(F’), unless
p" = 3, in which case G is conjugate to PSL,(F’). As we have scen (A6)
each nonidentity coset of N, contains at most 2d = (p” — 1) clements of
order p. This gives a maximum of fp'(p” — 1). On the other hand, this is
exactly the number of elements of order p outside N . We conclude that for
each j and each 5 € (F')* there aré two solutions to

ajn + yno 4+ 8;nT = 12
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Since each coset of N, contains an element of order p, and hence of trace 2,
we can assume that we have chosen v; = (¥ {,’jﬁ) so that «; + §; = 2. By
substituting, we see that

an —n~") + yu=+2 -2y

has two solutions for each ne(F)*. (Here, «; and y; are fixed in F, and
“solution” means v e F' satisfying the equation.) If we take n = %1, then
above equation reduces to y;v = +4. For there to be two v € F' solving this
equation, it is necessary that y;e (F")*. If the order of F' is not 3, then choosc
N # *+1,ne(F)* Thercarcsolutionsve F' foray —n~ ') + y;nv = £2 —
2p~1'. Since n — n~'e(F)* and y;e(F)* it follows that o;e F'. Consc-
quently, §; = 2 — «; is in F'. Finally, ; = («;6; — 1)/y; is also in F". This
proves that except in the case for which F' has order 3, G « PSL,(F).

If F' has order 3, then the argument above shows that each nonidentity
coset of N, contains an element of the form

+ aj ﬁj
T\l 2o/

Multiplying by +(} *!)e N, we change this cosel representative to

i((a,) F( + af)).
+ 1 —o;

Conjugate G by +(g *3). As the reader can easily check, the resulting group
(which we continue to call G) has the following properties.

(a) The lower left-hand entry of every eclement of G is contained in F’ and
(b) £ "9)eG.

Any group with thesc two properties is easily seen to be contained in PSL,(F").
We have shown that in all cases under Case 1A, G is contained in PSL,(F")
(after conjugation). The order of G is (1 + fp")p"(p" — 1)/2, and the order

of PSL,y(F') is (p> — 1)p’/2. Thus f = | and G = PSL,(F’). This completes
Case I1A.

Case 1IB. If p> 3 and d = (p" — 1), then n/r is even and G consists of
all products (5 §)(5 - 1) where £(2 %) is in PSLy(F") and x € F* with x2 € F'.
T!tus Gis a Z[2Z-extension of PSL,(F'). Wesaw in (A8)thatifd = (p" - 1)
with p odd, then n/r is even. We also saw that N is the group of all products

no 1 2 .
{i(On")(O I)Mef andnze(F')*}.
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Since n/r is even, cvery element of (F')* has a square root in F. In particular,

n=./—1isin F. Thus
— 4 V-1 0
TV -/

is an element of N, < G. Its normalizer in G is all diagonal matrices
{+@° "- e (F )*} unless G contains an element of the form +(% 7§57 ").
In the latter case, the normalizer of t is the Z/2Z.-extension of the group of
diagonal matrices generated by any such element. Depending on which of
the two cases obtains, there are cither (1 + fp)p” or (1 + fp")p’/2 elements in
G conjugate to t. (In the second case, note that f must be odd.) Of these
conjugates, fp*" or (fp" — 1)p'/2 are outside N,. All conjugates of ¢ have
trace 0. If an element in the coset V; N, has trace 0, then it is a product

(0‘1' ﬁj) (’I na )
vi 6;/\0 7))’

where o;n + y;nAd + 6;n7 "' = 0. For j fixed and » fixed, there is at most one
solution A€ F'. Thus G — N, contains at most (fp")(p" — 1) elements of
trace 0. This means t has (fp" — 1)p'/2 conjugates in G, and hence in G there
is an element of the form +© 5.

We now count the elements of trace 0 (i.c., the elements of order 2) in
G — N,. For cach coset V; N, that contains such an element we choose the
coset representative V; to be of trace 0:

VJ.:(aj B])‘ -)7j:’é0_

A, — o
7i TQ;

1

Some of these cosets can contain more than onc element of trace 0. For
V;- N, to contain two such elements, there must be y € F* with 52 € F’ and
Ae F’ with either A # 0 or 5 # +1 so that

(A9) ain—n"')+ y;nd =0.

If there are such 5 and A, then «;/y; = n*A(1 — »?). Thus a;/y;€ F’. Con-
versely, il a;/y;€ F' and 5 e F* is any clement with »? € F’, then there is a
unique solution to A9 with A€ I'. This proves

(A10) Each nonidentity right coset of N, that contains two distinct
elements of trace O contains exactly (p* — 1) such elements.

Let A be the number of nonidentity cosets of N, that contain (p" — 1)
elements of tr 0, and let B be the number that contain exactly 1. Then

ALy ("= 2< AP — 1)+ B< A(p" — N+ fp — A
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LEMMAAL2. Let V= _Hand V' = _BY be elements of trace 0 in G.
Suppose that «/y and o'/y" both belong to F'. The elements Vand V' are in the
same coset of N, if and only if afy = o'/y".

Proof. The only if part of the lemma is clear. Conversely, il Vand V'
belong to different cosets of N ., then V' = VvV~ !is not an element of

N . Thus
« B\ [« B\ _ (e + B Po— [)’oz')
y —a)\y =o'} \ay—ay 8 + o

is not upper triangular. Hence o'y # ay’. This implies that ofy #aly. A
Applying Lemma A12 we see that 4 < p", and hence
AP — D+ — A< p" — P +fpf = p =P + /=2
In light of inequality A11 we have
(= Dp2=<p (P + [ —2)

or

(Pr=D2=<@p'+f-2)

Since fis odd. there are only two possibilities: either f = 1,or /=3 and p" = 3.
In the hypothesis of Case 1IB we assume p > 3. Thus we conclude that in
this case /= 1.
Recall that there is an element of the form +(° ~§ ) in G. Let us consider
its p" conjugates by all elements of G N B, :
XE F'} .

{ (xr —x27 — r"‘)
+
T — %1

These are all elements of trace 0. The ratios «;/y; run through the p" clements
of F'. By Lemma A12, this implies that these p" clements are in p" distinct
right cosets of N, . Since /' = 1, there are exactly p" such cosets. Thus we can
use these elements as the coset representatives for all the nonidentity cosets
of N_ . It follows that G is generated by N and +(° ~§ ). Also notice that
cach nonidentity coset of N, in G has a representative of the form + (%2 ),
where «;/y; is in I, Consequently, all elements of G — N, are of the form
+ (% ), where o/y is in F'. In particular,

L Y L Q)

has this property. This proves that 2 € F’. Clearly, then, both N_ and

g = . i ~ . i - . .
+(Y 7§ ) arc contained in the Z/2Z-extension of PSL,(}') described in
Casc 1IB. This implies that G is contained in this extension. The order of &
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is twice that of PSL,(F"). This implies that G is equal to this extension. This
completes Case 11B.

Case 11IA. If p =2 and p" > 2, then G = PSL,(F'). We know by A8
that N, consists of all upper triangular matrices in PSL,(F"), order F' = 2"
for r > 1. We also know, by A6, that cach coset of N contains at most
(p" — 1)elements of order 2. Since there are a total of fp"(p” — 1) such elements
in G — N, each coset contains exactly (p" — 1) clements of order 2. For
each nonidentity coset of N, choose a representative of order 2:

o; B . L,
l/jz(l J)’ }"i#o’ j=l,'-'a>/p'

ar ., .
Yi %

If V;- N, contains p” — 1 elements ol order 2 (i.e., of trace 0), then for each
n € (F')* there is an element x € F’, so that

ajn + yinx +o;n~ 't =0,

Since F’ has more than two elements, there is y € (F')* with 5 # n~!. For
any such », we have

a;/y; = nx/(n + n~ ')

This proves that «;/y;€ F' for j = 1,..., fp". Thus for every ¢ §)e G — N
the quotient a/y is in F'. Il i % j, then V;V; = V,¥; 'isin G — N . Hence
(o0 + vy o, + o)

= (o /y)a;/y;) - [(oi/y:) + (aj/}’j)]_l + Lo /i) + (/7)1 lﬂj/}’j
is in F". It [ollows easily that f8;/y; is in F’. Since (2;)* — Byy; = 1 and o;/y;
and B;/y; belong to F, it results that (yj)2 € F'. Since F' is of characteristic 2,
7; also belongs to F'. Thus «;, f3;, and y; belong to F'. This proves that G =

PSL,(F"). On the other hand, the order of G is (1 + fp")(p’)(p* — 1) and the
order of PSL,(F)is (1 + p")p"(p" — 1). Hence G = PSL,(F).

Case [11B. If p" = 2, then G is a dihedral group of order 2(1 + 2f). (If
S=1,then G = PSL,(F,).) We know thatd = [, and hence that the order

of G is :2(] + 2f’). The subgroup G n B, is cyclic of order 2 and is its own
normalizer N . Thus G contains (1 + 2f) conjugates of (3 !):

11
O l Y Vl""’sz‘

V, = (aj ﬂj) , where y; 0.
Yj 0,

Let
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Since V; is of order 2, §; = a;. We claim that each nonidentity coset of N
contains exactly one element of order 2. If this is true, then the V; are repre-
sentatives for the nonidentity cosets of N . The reason that each nonidentity
coset of N contains at most one clement of trace O is that

(a,. /3,) (1 1) B (a,. o + ﬁ,-)

yj o/ \0 1 yi Vit o

which does not have trace 0 if y; # 0. This proves that U; = V(6 1) is not of

order two. _ '
Consider now a product V;- V;, i # j. We claim that this product is not of

order 2. If it is, say V; ¥, = Vj, then since all the V; are conjugate to Vo = (g 1),

we have

(9 Vogi_l) : (gj Vogf h = gy Vogt_l

for some g;, g;, and g, in G. Conjugating by g; ' gives
(91 'gdVolai 'a)ar ‘g Volg; g = Vo

or V{- ¥/ = V,. As we have already seen, this is impossible. Thus we have a
homomorphism from G onto Z/2Z that sends each V; nontrivially and each
Uj; to the identity. In particular, the {U,, ..., U,,} lorm a normal subgroup
of G. The action of V, on this subgroup sends U, to U; !. For the function
U; = U; ! to be a homomorphism of the group of the U;, that group must
be abelian. Thus the group of the U; is an abelian subgroup of odd order in

PSL,(F). Since F is of characteristic 2, the only such groups arc cyclic. Thus
G itsclf is dihedral.

Case I1IC. Ifp=3andd = p" — 1, then G is either the Z/2Z-extension
of PSL,(F’) or an icosahedral group. As we saw in Case IIB, either =1,
or f =3 and p" = 3. If f = 1, then the argument given in Case IIB is valid
o show that G is the given Z/2Z-extension of PSL,(F). The remaining
case is p" = 3 and f = 3. The order of G is (1 + 3-3)(3)(2) = 60. A straight-
forward argument shows that G is isomorphic to A5. All such groups turn
oul to be conjugate by an upper triangular matrix of the form +(} ?) for
a* € F. This completes all possible cases and finishes the classification.

Notice that if G = PSL,(F) is normally gencrated by u = +({ }) then
G is of one of the following types:

(I) G iscyclic.
(Il') G is conjugate to PSL,(F’) for F’ a subfield of F.

(!ll’) p = 3 and G is isomorphic to A5 or p = 2 and G is isomorphic to
a dihedral group of order (1 + 2f)- 2.
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