
R U T H  C H A R N E Y  A N D  M I C H A E L  D A V I S  

R E C I P R O C I T Y  O F  G R O W T H  F U N C T I O N S  O F  C O X E T E R  

G R O U P S *  

Ans~cT. The growth series W(t) of a Coxeter system (IV,, S) is always a rational function. We 
prove that for a very general class of infinite Coxeter groups, this function satisfies 
W(t -  1) = -I- W(t). 

Suppose that (W, S) is a Coxeter system ([1, p. 1 i]) with S finite. (In particular, 
W is a Coxeter group and S is a distinguished set of involutions which 
generate W.) For  each w in IV,, l(w) denotes its word length with respect to the 
generating set S. 

The growth function of (W, S) is the power series in t defined by 

W(t) = E t'~w)" 
w6W 

For a survey on these series, see [4]. It is known that W(t) is always a rational 
function. In this paper, we show that for a very general class of infinite 
Coxeter groups, this rational function satisfies W(t-  1) = + W(t). 

If X is any subset of W, put 

X(t) = ~ d ~w~. 
w~X 

If a is a subset of S, then W~ denotes the subgroup of W generated by a. (By 
convention, W, = {1}.) 

In what follows, set theoretic inclusion is denoted by '~<' and strict 
inclusion by '< ' .  Also, if Y is a finite set, then put 

8(Y)  = ( - -  1) Card(Y). 

The following lemma is proved in [8]. (Part (A) was originally proved in [7].) 
The proof is also outlined in [1, Exer. 26, p. 45]. 

LEMMA 1. (A) Suppose that W is finite and that the element of longest length 
in W has length m. Then W(t) is a polynomial and the following two formulas 
hold: 

(1) W(t) = tmw(t -1) 

(2) t ' =  Z w(t__)_) 
¢<s W~(t) " 
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(B) I f  W is infinite, then the following formula holds: 

1 
(3) o = 

,<.s We(t) 

This lemma implies that W(t) is the power series expansion of some rational 
function of t (which we shall continue to denote by W(t)). 

DEFINITION. The nerve of (W, S), denoted by N, is the partially ordered 
set of those subsets a of S such that the group W e is finite. The partial ordering 
is by inclusion. 

For any a • N, put L~ = N > ~, where N > ~ = {z • N [ a < z}. The poset N > 
(consisting of the nonempty subsets a of S such that We is finite) is called the 
proper nerve of (W, S). Clearly, N > ~ is a simplicial complex. (More precisely, it 
is isomorphic to the poset of simplices of a simplicial complex with vertex set 
S.) Moreover, for a ¢ ¢, the simplicial complex L, can be identified with the 
link of a in N > ~. 

REMARK. Any finite polyhedron can occur as the proper nerve of some 
Coxeter system. In fact, if X is a finite simplicial complex, then there is a 
Coxeter system whose proper nerve is the barycentric subdivision of X (I-2, 
Lemma 11.3, p. 313]). 

For any finite poset K, x(K) denotes the Euler characteristic of its 
geometric realization. 

In the next lemma, we give two formulas. Although both are easy 
consequences of Lemma 1, we postpone the proof to the end of the paper. The 
first formula is due to Steinberg ([8, Cor. 1.29, p. 14]); the second is the main 
technical contribution of this paper. 

LEMMA 2. 

1 e(a) 
(4) W ( t - 1 ) -  ~N W---~) 

1 _ X "  1 - z (L~, )  
(5) 

w(t) , ~  we(t) 

COROLLARY. 

1 
( 6 ) ) t W ' ° o - - - -  ~ = 1 - z(N>~) 

1 
(7) - z(W). 

w(1) 

Formula (7) is due to Serre ([6, Prop. 17, p. 1123). 
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Proof Substituting t = 0 into (4), we get 

1 

w(o~) ~o,,E ~(°) 
= 1 -  E ( - l)dim~ 

= 1 - z ( N  >,). 

This proves (6). To prove (7) we recall a construction of [2]. The group W acts 
properly on a contractible complex q /wi th  fundamental chamber INI (the 
geometric realization of the poset N). The orbit space can also be identified 
with INI. The isotropy subgroup at a point in IN[ is of the form W~, for some 
a eN. In fact, the set of points with isotropy group W~ is precisely 
IN~I -IN>~I.  Since IN~I is a compact cone, its Euler characteristic is 1. 
Hence, the alternating sum of the cells in IN~I - IN>~I is 

1 - z ( I N > , , I )  = 1 - z ( L , , ) .  

The Euler characteristic of W (a rational number) is the 'orbihedral Euler 
characteristic' of INI, i.e. 

1 - -  z ( L ~ , )  

1 - z ( L , )  =E 
~,N w41) 

=l/W(1) by (5). 

Hence, (7) holds. [] 

DEFINITION. Let 3 = _+1. We say that W(t) is 67reciprocal if 
w ( t -  ') = ,~w(t). 

On the basis of a result of Serre ([6, Prop. 26(d), p. 145]) as well as results of 
Floyd and Plotnick [3] and Parry [5], it is natural to conjecture that W(t) 
should be ( -  1)"-reciprocal whenever W acts properly and cocompactly as a 
group generated by reflections on a contractible n-manifold. It follows from 
[2] that this conjecture is equivalent to the conjecture that W should be 
(-1)"-reciprocal whenever IN>oI is a 'generalized homology (n - D-sphere' 
(in the sense that for each a aN, IL, I has the homology of a sphere of 
dimension n -  2 - dim a). The result of Serre mentioned above proves this in 
the case that N>¢ is the boundary of an n-simplex. According to the 
introduction of [3], Floyd, Parry and Plotnick can prove it in the above 
generality. Actually, a stronger result holds: all that one needs is that IN>el 
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resemble S"-1 up to Euler characteristics, that is, for each a s N, we require 
that L,  have the same Euler characteristic as s"-z-eimL 

DEFINITION.  Let K be a locally finite simplicial complex. For each a e K, 
let L,(K)  denote the link of a in K. By convention, put L, (K)  = K and 
dim q~ = - 1. Let 6 = _+ 1. Then K is an Euler complex of type fi if 

z(L,,(K)) = 1 + f i ( -1)  dima 

for all a e K. If, in addition, K is a finite complex and the above equation also 
holds for a = ~b then K is an Euler sphere of type fi. 

Thus, an Euler sphere of type ( -  1)" resembles an ordinary (n - 1)-sphere 
up to Euler characteristics. 

REMARK. A finite Euler complex K of type (+  1) must have z(K) = 0 and, 
hence, is automatically an Euler sphere. (Proof. [K[ = kI [K>~,] -- ]K>~[; hence, 
z(K) = E 1 - z(L~(K)) = X 1 -- (1 + ( - 1 )  dima) = - - • ( - - 1 )  dima = -z(K) . )  

THEOREM.  If N>~ is an Euler sphere of type (5, then W(t) is fi-reciprocal. 
Proof By hypothesis, for all a~N,  1 - x(L,) = 1 - (1 + f i ( -1)  aim') 

6 ( - 1 )  card~ = fe(a). Hence, Lemma 2 gives 1/W(t) = fi/W(t-1). [] 

COROLLARY. I f  W acts properly and cocompactly, as a group generated by 
reflections on a contractible n-manifold, then W(t) is (-1)"-reciprocal. 

REMARKS. (i) There is a partial converse to the theorem. If W(t) is fi- 
reciprocal, then 1 = 1 / W ( O ) = f i / W ( ~ ) = f i ( 1 - z ( N > , ) )  by (6).  Hence, 
z(N > ~) = 1 -- 6. 

(ii) If N>o is only required to be an Euler complex of type ( -  1) (rather 
than an Euler sphere), then 1/W(t)+ 1/W(t -1) is the constant function 

2 - z ( N  >,). 
(iii) If N > ,  is an Euler sphere of type 6, then the contractible complex 

(mentioned in the proof of the corollary) is an Euler complex of type ( -  fi). 
(iv) If W(t) is (-1)-reciprocal,  then, by (7), z(W) = 0. 
(v) One can define a growth function W(t) in a family of indeterminates 

t = (ti)i~1 where I is the set of conjugacy classes of elements of S (I-6, p. 144]). 

Our arguments work equally well in this generality, in particular, the obvious 
analogs of Lemma 2 and the above theorem hold in this more general 

situation. 

It remains to prove Lemma 2. The proof will use the following fact. 

LEMMA 3. Suppose that A is a proper subset of a finite set X. Then 

e(Y) = O. 
Y 

A<~Y<~X 
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As for the proof of Lemma 3, it suffices to remark that the lemma is equivalent 

to the fact that the Euler characteristic of a simplex is 1. 

P R O O F  OF LEMMA 2. Case 1: Wis finite. By (1), 1/W(t -1) = t"/W(t) and 
by (2), tm/w(t) = E,~S e(a)/W,(t). Hence, (4) holds in this case. For  tr ~ S, L ,  is 

a simplex, while L s = ~b Hence, z(L,) = 1 for a # S, while Z(Ls) = 0. Thus, 
when W is finite all the terms but one on the right-hand side of (5) vanish and 
(5) reduces to the tautology: 1/W(t) = 1/W(t) 

Case 2: W is infinite. Formula (3) can be rewritten as: 

1 ~(r) 
(8) w(t~- e(S) r.s ~ Wr(t)' 

o r  

1 e(Y) 
(9) W ( t _ l ) -  -e(S) r-CKs Wy(t-1) ' 

The proof proceeds by induction on Card(S). By Case 1 and the inductive 
hypothesis we may assume that (4) and (5) hold for Wr(t), Y < S. First 
consider (4). Using (9), we get 

(10) 1 e(a) 
W(t_a~ ) - - e ( S )  r<s2 e(Y) ~N~r2 W~(t)" 

The coefficient of 1/W,(t) on the right-hand side of (10) is: 

-~(s)~(~) Y~ ~(r) 
¥ 

a<~Y<S 

and by Lemma 3, this coefficient is e(a). Thus, (10) can be rewritten as (4). The 
proof of (5) is similar. Using (8), 

(11) 1 W(t)- e(S) ~, e(Y) ~ 1-z(L~(Y)) 
r <s ~N~r W~(t) 

where L~(Y) = L~ c~ Y. The coefficient of 1/W~(t) on the right-hand side of(11) 
is 

-e(S) ~ e(Y)(1 - z(L.(Y)). 
Y 

a<~Y<S 

We want to prove this coefficient is equal to 1 - z(L~); that is, we must prove 

(12) ~ e(Y)(1 -- z(L.(Y)) = O. 
Y 

~<~Y<~S 
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By Lemma 3, E.~<r~ss(Y) = 0, hence, (12) is equivalent to 

(13) ~ s(Y)z(L~(Y)) = O. 
~<~Y<~S 

Let z be a simplex in L~. The contribution of z to the left-hand side of (13) is 

( -1 )  dim  E 
z<~y<~s 

which, by Lemma 3 again, vanishes. Thus, (12) holds and hence (11) can be 
rewritten as (5). 
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