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UNIVERSAL G-MANIFOLDS 


0. Introduction. In the mid sixties, the Hsiangs [13] and Jgnich 
[IS] defined an invariant for certain smooth G-manifolds with two orbit 
types. (See also [2], [7], and [12].) One requires that each singular isot- 
ropy group act transitively on the unit sphere of its normal representation 
and that the bundle of principal orbits of the G-manifold be (equivari- 
antly) trivial. In this case one can define an invariant called the "twist 
invariant" by the Hsiangs and the "characteristic reduction" by Janich, 
and Hirzebruch and Mayer. This twist invariant is the homotopy class 
of a map from the singular stratum of the orbit space to a certain homo- 
geneous space. It is an invariant of the G-manifold together with a 
homotopy class of trivialization of the bundle of principal orbits. In 
Section 2 of this paper, this invariant is generalized to a wider class of 
smooth G-manifolds. There are two conditions which we call "admissi- 
bility" and "trivializability." Trivializability means, as before, that the 
bundle of principal orbits is a trivial fiber bundle. (Actually, this con- 
dition is only used to simplify the technicalities.) Admissibility is a some- 
what complicated condition concerning the orbit space of the normal 
representation of each isotropy group. (However, there is some evidence 
for the conjecture that this condition is equivalent to the condition that 
the orbit space of the G-manifold be a topological manifold with bound- 
ary.) By a trivialized admissible G-manifold, we shall mean a pair 
(M, [f 1) where M is admissible and where [f ] is the homotopy class of 
a trivialization of the bundle of principal orbits of M. To each stratum 
of such a M we associate a "twist invariant," that is, the homotopy class 
of a map from the orbit space of the stratum to a certain homogeneous 
space (which depends only on the type of the stratum). 
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104 MICHAEL DAVIS 

A trivialized admissible G-manifold (X, [g]) is universal if it has the 
following property. Any (M, [f1) with the same type of strata as X must 
be the pullback of X in an essentially unique way. That is to say, there 
must exist an equivariant stratified map A:M + X such that h pulls 
back [g] to [f 1; moreover, h must be unique up to a homotopy through 
such maps. Our main result, Theorem 3.2.1, states that (X, [g]) is uni- 
versal if and only if each of its twist invariants is a homotopy equiva- 
lence. That such a result might be true was first suggested by work by 
Bredon [4] on bi-axial actions and by its subsequent generalization to 
k-axial actions in my thesis [5]. In practice it is straightforward to check 
if a G-manifold is admissible and trivializable and if the twist invariants 
are homotopy equivalences. Several examples are given in Sections 4 
and 5. 

The main application has been to the study of multi-axial actions. 
These are discussed in Section 4. Here G is O(n), U(n), or Sp(n) and X 
is the linear G-space consisting of k-tuples of vectors in n-space, with 
k 5 n. In 4.2 we verify that X is admissible and trivializable. It is 
proved in [7] that each twist invariant is a homotopy equivalence. Hence, 
X is universal. A smooth G-manifold with the same types of strata as X 
is called k-axial. The fact that X is both universal and linear has deep 
implications in the study of k-axial actions on homotopy spheres (for 
such actions the bundle of principal orbits is automatically trivial). In 
particular it enables one to apply the techniques of surgery theory to 
study such actions, as in [9] and [ I l l .  

For similar reasons it would be convenient if other admissible linear 
G-spaces happened to be universal. Unfortunately, this is not generally 
true. For example, consider the cases of bi-axial actions of S0(3) ,  SU(3) 
and G2.  The linear models are admissible and trivializable; however, 
the twist invariants fail to be homotopy equivalences. In Section 5 we 
prove that in these cases the universal examples are certain natural ac- 
tions on projective planes. Regarding SO(3) as the group of automor- 
phisms of the quaternions, we see that it acts on the quaternionic pro- 
jective plane. It is verified that this action is bi-axial and trivial and, as 
an application of our main result, it is shown in Theorem 5.6.4 that it is 
universal. The automorphism group of the Cayley numbers is denoted 
by G2.  In a similar fashion G2 acts on the Cayley projective plane. The 
subgroup of G2 which stabilizes the complex numbers is isomorphic to 
SU(3). The G2-action restricts to an action of SU(3) on the Cayley pro- 
jective plane. It is also proved in Section 5 that these actions are bi-axial, 
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trivializable and universal. Applications of these results to bi-axial actions 
of S0(3) ,  SU(3) and G2 on homotopy spheres will be given in a sub- 
sequent paper [a]. 

Some of this material appears in less detail in [7]. In particular, the 
main result of Section 5 is stated, without proof, on page 112 of [7]. 
Theorem 4.2.5, which states that the linear k-axial action is universal, 
was proved in 1974 in my thesis, by using some of the same ideas that 
go into the proof of the main theorem of this paper. The results are 
better organized here and the proof is clearer. 

1. Preliminaries. In this section we shall recall some definitions 
from [6] and [19] and make some minor modifications in them. 

1.1 Normal orbit types. Let G be a compact Lie group. A G-orbit 
type is defined as the conjugacy class of a closed subgroup of G. We 
shall now consider a finer concept. Consider pairs (H, V) where H is a 
closed subgroup of G and where V is an orthogonal G-module with no 
non-zero invariant vector. For i = 1, 2, suppose that (Hi, Vi) is such a 
pair and that pi:Hi + O(Vi) is the associated representation. Let 
Iso(V1, V2) denote the set of linear isomorphisms from V1 to V2 and 
let O(V1,  V2) be the subset of isometries. An equivalence from ( H I ,  V1) 
to (Hz,  V2) is a pair (k, a )  E G X Iso(V1, V2) such that 

and 

ap l (h)a- '  = p2(khk-1) for all h E H1. 

If, in addition, a E O(V1, V2), then (k, a )  is called an orthogonal 
equivalence. The equivalence class of (H, V), denoted by [H, V], is 
called a normal G-orbit type. The set of all such normal G-orbit types is 
denoted by X G .  

Associated to (H, V) there is the twisted product G X V, defined 
as the orbit space of G X V under the H-action h . (g ,  v) = (gh-', hv). 
The orbit of ( g ,  v) is denoted by [g, v]. The twisted product may also be 
regarded as the G-vector bundle over G/H associated to the representa- 
tion p :H + O(V). Associated to an equivalence (k, a )  :(H1, V1) + 

(Hz,  V2), there is an isomorphism of G-vector bundles O ( k , a , :G X H , V1 + 
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G XH,V2 defined by [g, v] + [gk-I, av]. Conversely, it is easy to see 
that any isomorphism must be of this form. Thus, X G  may also be 
described as the set of isomorphisms classes of G-vector bundles of the 
form G XH V. 

1.2 Polar decomposition. We recall some elementary notions from 
linear algebra. If b E Iso(V1, V2), then b has a unique left polar de- 
composition as b = Ab Qb  , where Ab E 0(V1, V2) and where Qb  E 
GL(V1) is symmetric and positive definite. Similarly, b has a unique 
right polar decomposition as b = PbOb where Ob E O(V1, V2) and 
where Pb E GL(V2) is symmetric and positive definite. Since b = 
(Ab e b A  ,-')Ab is another right polar decomposition, we conclude that 

Suppose that (k, a )  is an equivalence from (HI ,  V1) to (H2,  V2). 
Set a = PaQ, and use definition (1.l-1)to get 

The two sides of this equation are the right and left polar decompositions 
of the map b = p2(khk- ' )~ ,  E GL(V2). Hence, applying (1.2.1) and 
(1.2.2) to b we have 

for all h E H I .  In particular, the first of these equations means that 
(k, 0 , )  is an orthogonal equivalence from ( H I ,  V1 ) to (Hz,  Vz). There-
fore, we have proved the following lemma. 

1.2.6 LEMMA. TO any equivalence (k, a ) : (HI ,  Vl ) + (Hz,  v2 ) 
there is canonically associated the orthogonal equivalence (k, 0,). 

1.3 The group of orthogonal self-equivalences. A self-equivalence 
of (H, V) corresponds to the identity map on G XH V if and only if it 
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has the form (h, p(h)) E H X p(H) c G X GL(V). Denote by SlHfV1 
the group of orthogonal self-equivalences of (H, V) modulo those which 
act as the identity on G XH V, i.e., 

where H is embedded diagonally in G X O(V) via h + (h, p(h)). We 
next want to prove a lemma, which will be useful in computing SIH,V ) .  

First we need some notation. Suppose H is embedded as a closed sub-
group of a Lie group K. Let Aut(H) be the group of automorphisms of 
Hand  let Inn(H) be the subgroup of inner automorphisms. Let iK:NK(H) 
+ Aut(H) be the natural map. Clearly, i K - l ( l n n ( ~ ) )=H .CK(H)where 
CK(H) denotes the centralizer of H in K. Thus, we may write any 

-
x E iK ' ( ~ n n ( ~ ) )in the form x = h,c,, where h, E H and c, E CK(H). 
Moreover, if h c l  = h2c2are two such decompositions, then h h2-I = 
c2cl-l and h l  h2-' belongs to Z(H), the center of H. If K'  is another 
Lie group with H C K' , then let CK(H) XZ(H)CK'(H) denote the quotient 
of the direct product by the diagonally embedded Z(H). If (u, v) E CK(H) 
X CKl(H),then let [u, v] denote its image in the quotient. 

1.3.1 LEMMA. Suppose every automorphism of H is inner. Then 

For example the hypothesis of this lemma applies if H is one of the com-
pact classical groups, 0(n), U(n), or Sp(n). 

Proof. Suppose (k, a )  E G X O(V) normalizes H. Then k E NG(H), 
a E No(,(H), and iG(k) = io(V)(a). Since every automorphism is inner, 
we can write k = hkckand a = h,c,. Set E = hahk- ' .  Then E E Z(H). 
Define ri/:Ncxo(v)(H)+ CG(H)XZ(H)CO(V)(H),by (k. a )  + [ECI,,E-Ic,]. 
One checks routinely that $ is a well defined epimorphism with kernel 
H. The lemma follows. 

1.4 Stratification of smooth G-manifolds. Suppose that M is a 
smooth G-manifold and assume (as we may) that M is equipped with a 
G-invariant Riemannian metric. If x E M, then the tangent space T,M 
is an orthogonal G,-module. The slice representation S, is the G,-sub-
module of T,M orthogonal to the orbit passing through x. Let F, be the 
fixed subspace of S, and let N, be the orthogonal complement of F, 
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in S,. The orthogonal G,-module N, is called the normal representation 
at x and [G,, N,] is the normal G-orbit type of x. The correspondence 
x + [G,, N,] defines a map M + X G  which is constant on orbits. Its 
image is denoted XG(M).  

A partial ordering on X G  is defined by [H, V] 5 [K, W] if 
[K, W] E X G ( G  XH V), that is, if [K, W] occurs as a normal G-orbit 
type of G on G XH V. If 0 denotes the zero dimensional H-module, 
then [H, 61is a maximal element in 32,. Such a maximal element is 
called principal and will usually be denoted by the letter "nu. 

Let B(M)  denote the orbit space of G on M. The sheaf of germs of 
smooth functions on M pushes forward to a sheaf (in fact, a functional 
structure) on B(M)  called the quotient smooth structure on B(M).' 
(See [2], [6], or [18].) In this way it makes sense to discuss smooth func- 
tions on orbit spaces, smooth maps of orbit spaces, and functional 
structures on subsets of orbit spaces. 

If a E XG(M),  then the a-stratum of M, denoted by M,, consists 
of those x E M with [G,, N,] = a. Its image in B(M)  is denoted by 
B,(M) and is called the a-stratum of B(M). It follows from the Differ- 
entiable Slice Theorem that M, and B,(M) are smooth manifolds and 
that M, + B,(M) is a smooth fiber bundle. According to the Principal 
Orbit Theorem, if B(M)  is connected (we shall generally assume this), 
then X G ( M )  contains a (unique) maximum n of the form [K, 61 ,  called 
the principal orbit type of G on M. Also, M, is open dense in M. 

1.4.1 Definition. A smooth G-manifold M '  is said to be stably 
modeled on M if XG(M1) C XG(M).  It follows from the Slice Theorem 
that this condition is equivalent to the condition that every point in 
M ' ,  X R"' has a G-invariant open neighborhood isomorphic to an in- 
variant open neighborhood in M X R"'.(Here G acts trivially on the 
second factors and m and m' are chosen so that dim M '  + m' = 
dim M + m. ) 

1.5 Normal orbit bundles. Suppose that a = [H, V] is a normal 
orbit type of G on M. Let N,(M) denote the total space of the normal 
bundle of M, in M. The fiber of N,(M) at x E M, is N,. The compo- 
sition N,(M) M, B,(M) makes N,(M) into a smooth fiber bundle + + 

over B,(M) with fiber G XH V. The structure group can be canonically 

1 In general, B ( M )is not a smooth manifold. 



UNIVERSAL G-MANIFOLDS 109 

reduced to S,, the group of orthogonal G-vector bundle automorphisms 
of G XH V. Let P,(M) be the total space of the associated principal 
S,-bundle. The bundle P,(M) + B,(M) is called the principal a-normal 
orbit bundle of M. These are the basic building blocks of a smooth 
G-manifold. 

An equivariant map $: M + M '  is isovariant if G, = G+(,, for all 
x E M. If $ is smooth and isovariant, then its differential induces a 
G,-equivariant linear map $,: N, + N+(,, . If $, is an isomorphism, 
then $ is said to be normally transverse at x. (Note that x and $(x) will 
then have the same normal orbit type.) A smooth isovariant map $ is 
stratified if it is normally transverse at each point. If $ is stratified, 
then it restricts to a map $,:Ma + Ma' and $, induces a map 
B,($):B,(M) B,(M') of orbit spaces. Assume now that M and M '  + 

are equipped with G-invariant Riemannian metrics. Set a = $,: N, + 

Nicx,. Then a is G, -equivariant. Let a = P, 0, be the right polar de- 
composition, where 0, E O(N,, Ni(,,). It follows from (1.2.4) that 
0, is also G,-equivariant. Set N,($) = 0 ,  and let N,($) :N,(M) + 

N,(M1) be the map which is N,($) on N,. Clearly, Nu($) is also a 
bundle map when N,(M) and N,(M') are regarded as bundles over 
B,(M) and B,(M1), respectively. Let Pa($): P,(M) -t P,(M1) be the 
associated map of principal S,-bundles. (Obviously Pa($) covers B,($).)~ 

1.6 The orbit space sf a representation. Suppose that V is an 
orthogonal H-module. H. Weyl proved in [21] that the ring of invariant 
polynomials R [ v ] ~  is a finitely generated R-algebra. Let p l  , p 2 ,  . . . , ps 
be generators and let p = ( p ,  , p 2 ,  . . . , p,)  : V + RS. Then p(V)  in- 
herits a functional structure as a subset of Euclidean space. Since p is 
constant on orbits, it induces a map on the orbit space, B(V). G . Schwarz 
proved in [la],  that the induced map j?:B(V) + p(V)  is a smooth iso- 
morphism, i.e., j5 is a homeomorphism which induces an isomorphism 

*For each oi € XG,the correspondence M -* B,(M) is a functor from the category 
of smooth G-manifolds and equivariant stratified-maps to the category of smooth mani- 
folds and smooth maps. The correspondence M + P,(M) sends each G-manifold to a 
principal S,-bundle and each equivariant stratified map $ to a bundle map Pa($). Since 
the map GL(V) O ( V )  given by polar decomposition is not a homomorphism, this+ 

correspondence is not quite a functor: the bundle map P,($ $') may not equal Pa($) 0 0 

Pa($') .  However, it is a "homotopy functor" in the sense that Pa($ $') is homotopic to 0 

Pa($) Pa($ ' )  through bundle maps covering Be($) .  The reason for this is that GL(V) -*0 

O(V)  is an isomorphism of H-spaces. 
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of smooth structures. In this manner we identify B(V) with the semi- 
algebraic set p (V). 

Suppose that [H, V] is a normal G-orbit type. The inclusion V -t 
G X H  V defined by v + [I ,  v] induces a smooth isomorphism B(V) z 
B(G X H  V). (Here B(V) is the orbit space of V under H.) If a is the 
principal G-orbit type of G X H  V and T' is the principal H-orbit type 
of V, then according to [2], page 180, BJV) z B,(G X H  V). In 
general, however, the stratifications of B(V) and B(G X H  V) may differ 
in that different components of a single stratum in B(G X H  V) may 
have distinct labels in B(V). For example, if G = U(n), H = T" 
(a maximal torus) and V = C" with the standard action of T " ,  then 
B(V) may be identified with the quadrant in R"given by 

Each codimension one face of this quadrant is a distinct stratum of 
B(V); however, in B(G X H  V) they must be regarded as different com- 
ponents of a single stratum labelled [TI, C1]. 

1.7 Equivariant fiber bundles. Suppose that I and J are Lie groups 
and that I is a differentiable transformation group of a smooth manifold 
F. By a smooth (I, J)-bundle we shall mean a smooth fiber bundle 
E + B with fiber F and structure group I together with an action of J 
on E by bundle maps. For example, a smooth G-vector bundle is a 
smooth (GL (n), G)-bundle. An (I, J)-bundle map means a J-equivariant 
bundle map. An equivalence is an (I, J)-bundle map which covers the 
identity map on the base space and which is a diffeomorphism on each 
fiber. If f :A -t B is a smooth J-equivariant map of J-manifolds and 
E + B is an (I, J)-bundle, then the pullback f *(E) + A is obviously an 
(I, J)-bundle over A. A principal (I, J)-bundle over a point clearly just 
amounts to a homomorphism cp:J + I. The (I, J)-bundle E + B is 
trivial if it pulls back from an (I, J)-bundle over a point, i.e., if it is 
equivalent to B X F where J acts on B as before and on F via some 
representation cp:J -t I. For J compact, Bierstone proved in [22] that 
the Equivariant Covering Homotopy Theorem holds for (I,J)-bundles. 
Thus, i f f , :  B -,B is a smooth J-equivariant homotopy, then fo*(E) and 
fl*(E) are equivalent (I, J)-bundles. In particular, if A has the J-ho- 
motopy type of a point, then any (I, J)-bundle over it is trivial. 
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If E + B is an (I, J)-bundle and P + X is a principal J-bundle, 
then one can construct the twisted products E X P and B X P. The 
first twisted product is a fiber bundle over the second with structure 
group I. Also, both twisted products are bundles over X with structure 
group J. 

As an application of these ideas, suppose that a = [H, V] E X G  
and that 6 r a. Since S, acts on G XH V by equivariant diffeomor- 
phisms, it acts on Bo(G XH V). If x is a point in the @-stratum of 
G XH V, then its normal representation N, may be identified with a 
subspace of V and we may assume that the inner product on N, is induced 
by restricting the one on V. Since S, acts on G xH V by orthogonal 
equivalences it acts on NB(G XH V) + Bo(G X V) and hence on 
P,(G XH V) Bo(G XH V) through bundle maps. Therefore,+ 

Po(G XH V) + Bo(G XH V) is a principal (So, So)-bundle. If M is any 
smooth G-manifold, then there is a canonical isomorphism 

This induces for each 6 2 a an isomorphism 

Thus, Ps(N,(M)) has the structure of a bundle over Bo(N,(M)) and of 
a bundle over B,(M). 

1.8 Tubular maps. If a E Xc(M),  then let M ( a )  be the comple- 
ment of all the strata of M of index less than a. Then M, is a properly 
embedded invariant submanifold of M ( a )  with normal bundle N,(M). 
By a tubular map T :  N, (M) + M ( a )  we shall mean that 

a) T is an equivariant diffeomorphism onto its image, 
b) T 1 M, is the inclusion, 
c) for each x E M,, the map T, :N, + N, induced by the differential 

is the identity. (Recall that the normal bundle of the 0-section of 
N,(M) is canonically identified with N,(M).) 

By the Invariant Tubular Neighborhood Theorem (see [2]), such a T 

exists and is unique up to an equivariant isotopy. 
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2. Twist invariants. 

2.1 Admissibility. Suppose that E -+ B is a smooth (I, J)-bundle. 
Recall that this means that the structure group is I and that J acts on E 
by bundle maps. If B has the J-homotopy type of a point with J com-
pact, then E is equivalent to the product (I,J)-bundle F X B where 
J acts on F via a homomorphism p:J + I. 

Let a = [H, V] be a normal G-orbit type and let a be the principal 
orbit type of G on G X V. Then P,(G X V) B,(G X V) is an 
(ST, S,)-bundle. We shall say that a is admissible if B,(G XH V) has 
the S,-homotopy type of a point and if the associated homomorphism 

-+ 

p:S, -+ S, is injective. 
A smooth G-manifold is called admissible if each of its normal orbit 

types is admissible. 

2.1.1 Remark. An orthogonal H-module V is coregular if its ring 
of invariant polynomials R [ v ] ~  is regular, i.e., if R [ v ] ~  is a free poly- 
nomial algebra. The following are examples of coregular H-modules: 
1)H is a finite group generated by reflections, 2) the adjoint representa- 
tion of a compact Lie group H, 3) the natural action of O(n) on the 
space of k-tuples of vectors in R", with n 2 k. W. Y. Hsiang has tabu- 
lated coregular H-modules for H compact and connected. More gen- 
erally, a complete list of coregular representations of simple Lie groups 
has been published by G. Schwarz in [20]. 

Let S V  be the unit sphere in V. Several people have conjectured 
that V is coregular if and only if the orbit space B(SV) is homeomorphic 
to a disk with B,(SV) as its interior. This would imply that B,(V) is 
diffeomorphic to Euclidean space. Suppose that [H, V] is a normal 
G-orbit type with V a coregular H-module. The action of SLH,V1on 
B,(G XH V) GZ B,(V) factors through the action of No(V,(H)/H on 
B,(V) (supposedly, Euclidean space). It seems plausible to conjecture 
that this action of No(",(H)/H is equivalent to a linear action (provided 
V is coregular). This would obviously imply that B,(V) has the SIH,Vl-
homotopy type of a point. Thus we are led to the following conjecture. 

2.1.2 Conjecture. [H, V] E X G is admissible if and only if V is a 
coregular H-module. 

2.2 The bundles D, and E,. Suppose the a = [H, V] is an ad- 
missible normal G-orbit type. Set 
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R = P,(G XH V). 

Let T denote the fixed point set of S, on Q. Since Q has the S,-ho- 
motopy type of a point, T is contractible (in particular, it is non-empty 
and connected). Let U be the restriction R to T. Fix an (S,, S,)-bundle 
isomorphism r :R + S, X Q. Note that 11 restricts to an isomorphism 
U = S, X T. 

In (1.7.2), it was shown that for a smooth G-manifold M, both 
B,(N,(M)) and P,(N,(M)) may be regarded as bundles over B,(M) via 
the canonical isomorphisms, 

Hence, we may define sub-bundles D,(M) C B,(N,(M)) and E,(M) c 
P,(N,(M)) via the identifications, 

Note that E,(M) -+ D,(M) is a principal ST-bundle. Also, note that 
D,(M) + B,(M) is a trivial T-bundle. 

If P --+ P' is any S,-bundle map, then the induced map Q XSa P -r 
Q X, P' takes T Xsa P to T Xsu P'. Similarly, R Xsa P + R XSaP' 
takes U XSu P to U Xsa P'. Hence if $:M M' is an equivariant -+ 

stratified map of G-manifolds, then B, (N, ($)) and P, (N, ($)) restrict to 
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maps D,($): D,(M) + D,(M') and E,($): E,(M) + E,(M'). Thus, 
D,( ) and E,( ) are both "homotopy functors" in equivariant stratified 
maps in the sense discussed in the footnote following Section 1.5. 

2.3 Trivializations. An admissible G-manifold M is trivializable if 
P,(M) B,(M) is a trivial fiber bundle. A trivialized admissible -+ 

G-manifold is a pair (M, [f 1) where [f ] is the ST-homotopy class of a 
-+trivialization f :P,(M) + S, . A morphism IC, : (M, [f 1) (M', [ f 'I)  of 

trivialized admissible G-manifolds is an equivariant stratified map $ 
such that f and f '  0 P,($) are ST-homotopic as maps from P,(M) to ST, 

2.4 Twist invariants. We shall now show how to associate to each 
normal orbit type a! of a trivialized admissible G-manifold (M, [f 1) a 
map f,: B,(M) S,/S,, the homotopy class of which will be called -+ 

the "a-twist invariant" of (M, [f]). For each a E XG(M),  we must 
make two choices: 

a) a sections of the trivial T-bundle D,(M) -t B,(M), 
b) a tubular map T :N,(M) -,M(a!). 

Using the identifications 7: U = S, X T and E,(M) = U X s a P,(M) 
we obtain an identification 

Let i:P,(M) + S, Xsa  P,(M) denote the inclusion z -+ [I ,  z]. We 
regard i as a reduction of the structure group of E,(M) I s(B,(M)) from 
S, to S,. Let 8:  P,(M) - E,(M) denote the composition of i with the 
inclusion E,(M)Is(B,(M)) C E,(M). The tubular map T induces a 
bundle map P, (7) : P,(N, (M)) + P,(M). Denote the restriction of P,(T) 
toE,(M)byw:E,(M) -, P,(M).Finally, letf;, = f 0 w 08:P,(M)+S, .  
The map fa is clearly S, -equivariant (8 is S, -equivariant, w and f are 
ST-equivariant); hence, it covers a map f,: B,(M) -+ S,/S,. The 
homotopy class [fa] is called the a-twist invariant of (M, [f]). 
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Ostensibly, [ f a ]depends on the choice of section and on the choice 
of tubular map. Any two sections of D,(M) B,(M) are homotopic, -+ 

since the fiber T is connected. Hence, the effect of altering the section is 
to change 8 :P,(M) - E,(M) by an S, -homotopy. Since any two tubular 
maps are equivariantly isotopic, the effect of altering T is to change 
o : E , ( M )  + P,(M) by an ST-homotopy. In either case, the twist in- 
variant remains unchanged. 

2.4.1 PROPOSITION.If $: (M, [ f  ] (MI,  [ f  1) is a morphism of -+ 

trivialized admissible G-manifolds, then each twist invariant of M is the 
pullback of the corresponding twist invariant of M ' ,  i.e., for each 
a E 3 tG(M) ,  in the following diagram, 

the map f ,  is homotopic to f,' B,($). 

Proof. Choose a section s ' :B , (M1)  D,(M'). By the above-+ 

remarks we are free to choose s :B , (M)  D,(M) to be the pullback of -+ 

s f  via D,($) .  After using s and s' to define 8 :P,(M) -+ E,(M) and 
O1:P,(M') -+ E,(M'),  we see that the following square commutes 

Next choose tubular maps T :  N,(M) -) M ( a ) and T' :N, (M')  -+ M'(a) .  
The diagram 
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need not commute; however, recalling the proof of the uniqueness part 
of the Invariant Tubular Neighborhood Theorem (page 310 in [2]), we 
see that $ 0 T and T' N u ( $ )  are homotopic through equivariant strati- 0 

fied maps. Hence, In the diagram 

the maps P,($) w and w' 0 E,($) are ST-homotopic. Consider the 0 


diagram 

The map f;! is the composition across the top; while fa'  is the compo- 
sition across the bottom. Since both squares and the triangle commute 
up to homotopy, it follows that the maps f;, and fa' 0 Pa($) are 
S,,-homotopic and hence, that [j'a] = [fa' B,($)]. 0 

3. The Main Theorem 

3.1 Universality. A trivialized admissible G-manifold (X, [g]) is 
universal provided it has the following property: if (M, [ f 1) is any trivial- 
ized admissible G-manifold which is stably modeled on X, there is a 
morphism X : (M, [ f 1) + (X, [g]) of trivialized admissible G-manifolds, 
unique up to a homotopy through such morphisms. 

3.2 A necessary and sufficient condition for universality. Our main 
result is the following theorem. 

3.2.1 THEOREM.A necessary and sufficient condition for (X ,  [g] 
to be universal is that each twist invariant g,: B,(X) S,/S, be a -+ 

homotopy equivalence. 
The following observation is the key to the proof. Suppose that 

g, :B, (X) -+ S, /S, is a homotopy equivalence. Then the bundle map 
g,: P,(X) + S, has an S,-homotopy inverse ?,: S, P,(X). Also-+ 
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suppose that we have a morphism X :  (M, [ f1) (X ,  [g ] ) .  Then by -t 

Proposition 2.4.1, the bundle map f",:P, ( M )  ST  is S, -homotopic to -+ 

g, o ?, -homotopic to S ,isP,(h)Hence,P,(X). 0 f,:P,(M) P,(X).-+ 

Now suppose that we know that each twist invariant is a homotopy 
equivalence and that we are trying to construct the morphism X :(M, [f 1 )  + 

(X ,  [g]) .  Roughly speaking, the idea is to define X on a tubular neigh- 
borhood of each stratum to be the map induced by 

Proof of sufficiency. Suppose that each g,: B,(X) + S,/S, is a 
homotopy equivalence and that (M,  [ f ] )  is a trivialized admissible 
G-manifold with X G ( M )C X G ( X ) .We shall construct X : (M, [f 1 )  
(X ,  [ g ] )  by induction on X G ( X ) .First we need some notation. Suppose 
that J is a subset of X G ( X )which is closed from below, that is, if (I E J 
and y € X G ( X )is such that y < (I, then y € J. Let M J  be the union of 
all strata of M with indices in J and let R j (M)  be a closed invariant 
regular neighborhood of M~ in M. Let denote the closure of M -

R J ( ~ ) .Then aM = aR J ( ~ ) .Suppose a! is minimal in 3ZG(X)- J and 
set J' = J U ( a ] .Let T,(M) be a closed tubular neighborhood of 

in a, i.e., T,(M) is the image of the unit disk bundle of N,(M) 
under a tubular map. Then R J'  ( M )  = R j(M) U T,(M) is a closed 
invariant regular neighborhood of M J ' .  Define xJ ,R J ( x ) ,X, T,(X) 
and R J ' ( ~ )in a similar fashion. 

Suppose by induction that we have a morphism X :( RJ ( ~ ) ,[f 1 )  -t 
(RJ ( ~ ) ,[ g ] )mapping aR J ( ~ )to aR J ( ~ ) .Then it suffices to prove that 
we can extend X to a morphism 

mapping boundary to boundary. 

4 
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Let (2% be an invariant collared neighborhood of aM in M. The iso- 
morphism CM z M X [0, 11 induces a bundle isomorphism P , , (c~)z 
p,(aM) X [0, 11 for each y E XG(M).  Denote by af and by af;, the 
restrictions off  :P,(M) -,S, and f,:p,(M) -,S, to p,(aM) and to 
p,(aM), respectively. We may change f by a ST-homotopy so that 
f / P , ( c ~ )  is constant in the t-direction, i.e., so that f (z, t) = af (z) for 
all ( z ,  t)  E p,(aM) X [0, 11. When defining f;, if we choose the tubular 
map and the section to be compatible with the collared neighborhood 
structure, then we will have that f a /  P , ( c ~ )  is also constant in the 
t-direction. Finally, we can alter h by a homotopy through morphisms so 
that it maps T,(aM), the tubular neighborhood of a% in a@, into 
T,(aX) and so that the restriction of h to T,(aM) is induced by 
~ , ( hj aM). 

Since h is a morphism, P,, (h / aM):P, (aM) -,P,(X) is S, -homo-
topicto ?, 0 af;, . Let h :p,(aM) X [0, 11 -,P,(X) be such a homotopy. 
Let @ be the closure of @ - cM. Define k :P,(M) -,P,(Z) to be h-

on P , , ( c ~ )  and to be ?, 0 f;, on P,,(M). Since T,(M) is a fiber bundle 
associated to pa(%), we may use k to define a map k :T,(M) -,TJX) 
so that k agrees with h on T,(aM). Define A': R J ' ( ~ )-,R J ' ( ~ )to be 

It remains to check that h '  is a morphism, that is, we must show 
that in the following diagram 

the map f is ST-homotopic to g 0 P,(hl). By the induction hypothesis, 
the restrictions of these maps to P,(R J ( ~ ) )  are ST-homotopic. Also, we 
have arranged that they are equal on p,(aRJ(M)) = p,(aM). There-
fore, we are reduced to proving that in the following diagram 
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the map f is ST-homotopic to g P,(,&) re1 P,(T,(~@)). In Section 
2.4 we showed how to use a tubular map and a section of D,(M) -+ 

-+B,(M) to define an embedding o 0 8 : pa(@) P,(T,(M)). The map 
f;, was defined as the composition of f and o 0 19. We shall identify 
P,(M) with its image under o 8 (and similarly for P,(X)). Since CY iso 

admissible, B,(G X H  V) S,-deformation retracts to a point; hence, 
there is a (S,, S,)-bundle deformation retraction of P,(G X V) onto S,. 
This defines a fibenvise ST-deformation retraction of P,(T,(M)) onto 
S, X,, P,(M). Therefore, we may replace diagram (2) by the following 
diagram 

After restricting these maps to pa(%) and P,(Z), we obtain the following 

So it now suffices to find an S,-homotopy from fa to g, k re1 p,(aM), 0 


since-such a homotopy will induce an ST-homotopy in diagram (3). On 
P,(M), k = J, fa where J ,  is an S,-h~motopy inverse for g,. Hence,0 

we can construct the homotopy on P,(M). It remains to extend it to 
P,(c@) re1 acM = aM x (0, 1). 

This is trivial, since C@ X [0, 11 equivariantly deformation retracts 
onto (2% X (0) U ac%X [0, 11. This completes the verification of the 

mailto:P,(T,(~@))
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induction hypothesis for h' .  Hence, we have constructed a morphism 
h : (M, [ f 1) + (X, [g]). If 6 : (M, [ f 1) + (X, [g]) is another such mor- 
phism, then a relative version of the above construction can be used to 
build a homotopy from h to 6 through morphisms. It follows that (X, [g]) 
is universal. 

Proof of necessity. It remains to prove that if (X, [g]) is universal, 
then each twist invariant is a homotopy equivalence. Fix a normal orbit 
type CY = [H, V] in 3ZG(X) and consider the admissible G-manifold 

Clearly, 

= S,, 

and 

Let 6: P,(G X H  V) S, be a (S,, S,)-bundle trivialization. Denote a -+ 

typical point in P,(M) by [x, y] where x E P,(G X H  V) and y E S,, and 
define a trivialization f : P,(M) + S, by f ([x, y]) = ~ ( x ) y .  Choose a 
base point * E U, where as in 2.2, U denotes the restriction of P,(G X H  V) 
to the fixed point set of S, on B,(G X H  V). We may assume that 
E(*)= 1, and that fa : P,(M) + S, is given by the composition 

where i(y) = [*, y]. Thus, fa(y) = ~ ( * ) y= y. By the universal property 
of (X, [g]), there is a morphism h : (M, [ f 1) (X, [g]). By Proposition -+ 

2.4.1, in the diagram, 
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the map g, 0 P,(h) is So-homotopic to the identity. It remains to show 
that P,(h) is also a left inverse for g,. 

As before, let X denote the complement of an invariant regular 
neighborhood of the strata in X of index less than a and let T , ( X )  be a 
closed tubular neighborhood of 3,. Since f, is a homotopy equivalence, 
the proof of sufficiency shows that there is a morphism 6 : (T,(X), [g])+ 

(M, [f 1). As before, by 2.4.1, P,(6) is S,-homotopic to g,. Since the 
inclusion T,(X) c X and the composition h 6: To(X) X are both 0 -+ 

morphisms, we conclude that they are homotopic. Therefore, P,(h) is 
also a left S,-homotopy inverse for 2,. This completes the proof. ti 

4. Multi-axial actions. In this section A will denote an associative 
division algebra over R .  Of course, A is isomorphic to either the real, 
complex, or quaternionic numbers. 

4.1 The linear models. The canonical anti-involution on A is 
denoted by c + F. By a "A-module" we shall always mean a right 
A-module. By a hermitian inner product on a A-module V, we shall 
mean a R-bilinear map ( , ) : V X V -+ A such that for all (v, w) E 
V X V and q E A, the following conditions hold: 

(a) (vq, W )  = (v, w)q 
(b) (v,  wq) = ? ( v ,  W )  

(c) (v, w) = (w, v) 
(d) (v, V )  E [O, a)and (v, v) = 0 if and only if v = 0. 

The standard hermitian inner product on A" is defined by 

;=?I -
(a, b )  = C biai.

i= 1 

If V is a A-module with hermitian inner product, then denote by G"(v) 
the group of A-module automorphisms of V which leave the hermitian 
inner product invariant. Set GA(n) = G"(A"). Of course, as A = R ,  C 
or H ,  GA(n) is either O(n), U(n) or Sp(n). 

Consider the real vector space, MA(n, k )  = A"). We H O ~ " ( A ~ ,  
may identify ~ " ( n ,k) with the space of n by k matrices with coefficients 
in A. If x E MA(n, k), then define x* E MA(k, n) by the condition that 
(XV, W )  = (v, X*W) for all (v, w) E nk X A", i.e., x* is the conjugate 
transpose of x. The k by k matrix x*x is A-hermitian and positive semi- 
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definite. Define a real inner product on MA(n, k) by x . y  = l/2 trace 
(x*y + y*x). 

We shall consider the natural linear GA(n)-action on MA(n, k)  de- 
fined by matrix multiplication. If g E GA(n) and x E MA(n, k), then 
(gx)*(gx) = x*g*gx = x*x; whence, I gx I = I x I. k) is an Thus, ~ ~ ( n ,  
orthogonal GA(n)-module. It is isomorphic to the direct sum of k-copies 
of the GA(n)-module A". 

A smooth GA(n)-manifold is said to be k-axial if it is stably 
modeled on MA(n, k), i.e., if its normal orbit types occur among those 
of ~ " ( n ,  k). 

4.2 The universality of the linear models. To simplify notation we 
shall now set G = GA(n) and X = MA(n, k). From now on, we shall 
assume that n r k. Under this assumption, we propose to show that 
X is 1)a trivializable admissible G-manifold and 2) universal. 

First we calculate the normal G-orbit types of X. Regard x E X as a 
linear map nk + A". Denote by I, c An, the image of x and by 
K, C A ~ ,the kernel of x. Let W, be the orthogonal complement of I, 
in A". The isotropy group at x is clearly GA(W,). The normal repre- 
sentation at x is HomA(K,, W,) with the natural inner product and 
GA(W,)-action. (See page 18in [7].) The pair (GA(w,), HomA(K,, W,)) 
is obviously equivalent to (GA(n - i), MA(n - i, k - i)), where 
i = dimA(I,), (i is the rank of x). In summary, we have the following 
lemma. 

4.2.1 LEMMA. Suppose G = GA(n) and X = MA(n, k). Then 

XG(X) = {[Hi, Vi]10 I i I k ) ,  where Hi = GA(n - i)  and 


= MA(n - i, k - i). Obviously, [Hi, V,] < [H,, 51 if and only if 
i < j. Hence, the correspondence [Gi, &] - i sets up an isomorphism 
of partially ordered sets r tG(X)  - (0, 1, 2, . . . , k) .  Under this identi- 
fication, the map X + XG(X) is given by x rk(x).-+ 

Henceforth, we shall index the strata of a k-axial G-manifold by 
(0, 1, 2, . . . , k) .  However, in order to be consistent with our previous 
notation, we shall sometimes use the letter "T" (rather than "k") to 
denote the principal orbit type. 

Next we compute the orbit space of X as in 1.6. Let ~ ~ ( k )  be the 
real vector space of k by k A-hermitian matrices and let ~ ~ ( k )  c ~ ~ ( k )  
be the positive semi-definite cone. Consider the polynomial mapping 
p : X  -+ ~ " ( k )defined by x -+ x*x. Since p(gx) = x*g-Igx = p(x), the 
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mapping is G-invariant. The image of p is BA(k). Choose a linear system 
of coordinates on ~ ~ ( k )  and let pi denote the jth component of p. 
According to [20], the {qi } generate R[x]'. It follows from the re-
marks in 1.6, that the induced map p :B(X)  + BA(k) is a smooth iso- 
morphism. Let BiA(k) denote the positive semi-definite matrices of 
rank i. Since rk(p(x)) = rk(x), we see that p maps the i-stratum of X 
onto BiA(k), i.e., B,(X) = BiA(k). Henceforth, we shall identify B(X) 
with BA(k). 

Next we compute the group S; associated to the pair (H, V) = 
(GA(n- i), ~ " ( n  - i, k - i)). The group L = ~ " ( k- i) also acts on 
V by a . x  = xu-'. The L-action is orthogonal and clearly commutes 
with the H-action. In fact, L = Co(vj(H). Since every automorphism of 
H is inner, we have by Lemma 1.3.1 that 

Clearly, CG(H) = GA(i)X Z(H). Hence 

Suppose (u, v) E GA(i) X GA(k - i) and that (g, x) E G X V. The 
action of Sion G X V is given by 

(u, v). [g, XI = [gu-l, xv-'I. (4.2.3) 

According to Section 1.6, we may identify B(G XH V) with BA(k - i) 
and the orbit map with [g, x] + x*x. If z E ~ " ( k- i), then the 
action of Si on BA(k - i) is defined by (u, v) . z = vzv-'. Consider the 
Si-action on B,(G XH V) = BtWi(k- i) .  The space BtPi (k  - i )  is 
GA(k - i)-equivariantly diffeomorphic to ~ " ( k  - i). (The exponential 
map exp :~ ~ - (i) -+ k~ t - ~ ( k- i) is such an equivariant diffeomor- 
phism.) Thus, B,(G XH V) has the Sf-homotopy type of a point. 

Finally we must compute the homomorphism p :S i  -+ Sk = S, de-
fined in Section 2.1. Let 

be the matrix which is the (k - i) by (k - i) identity matrix followed by 
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(n - k)  rows of zeroes. Let (3 = {[g, el} be the orbit of [ I ,  el in 
G X H  V. Then (3 is a fixed point of Si on B,(G X H  V). Consider the 
principal bundle (over a point), P,( (3) .  Then S, acts freely and transi- 
tively on P,((3). The homomorphism p : S i  + S, is defined by con-
sidering the $;-action on P,((3). A point in P,((3) is an equivariant 
diffeomorphism from (3 to the standard principal orbit G/K, where 
K = GA(n - k)  is embedded in G = GA(n) as the lower right hand 
block. Embed S, = GA(k)  in GA(n)  via 

and define R,, an equivariant self-diffeomorphism of G/K by gK -+ 

gli-'K. Let c :  (3 -+ G/K be the equivariant diffeomorphism [g, el -+ gK. 
The canonical action of S, on P,((3) is defined by a . c  = c o R,. If 
(u, v) E GA(i) X GA(k - i) = S i ,  then p :  Si -+ S, is defined by the 
diagram 

We have that (u, v) . [ I ,  el = [u-' , ev-'1 = [g ,̂ el, where 

Hence, p : GA(i)X GA(k- i) -+ GA(k) is the standard embedding 

In particular, cp is injective. Thus, every [H, V] E XG(X)  is admissible. 
Since B,(X) = is contractible, the principal orbit bundle ~ ~ " ( k )  

P,(X) is trivial. Let g :  P,(X) S, be a trivialization and for each i, -+ 
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0 I i 5 k, let gi:Bi(X) -+ Sk/Sibe the associated twist invariant. 
(Note that Sk /Si = GA(k)/{GA(i)X GA(k - i)) is the Grassmann 
manifold of i-planes in Ak.) On page 36 of [7], it is proved that each gi  
is a homotopy equivalence. Therefore, as an application of our main 
result, Theorem 3.2.1, we have the following. 

4.2.5 THEOREM.If n 2 k, then MA(n, k) is a universal trivial- 
izable admissible GA(n)-manifold. 

4.2.6 Remarks. This result was proved in my thesis [5]; the proof 
is also sketched in [7]. There are many applications. For example, this 
result is the starting point for the classification, up to concordance, of 
k-axial GA(n)-actions on homotopy spheres in [9], [ l l ] .  

4.3 Actions of SO(n) and SU(n).  Suppose that A = R or C and 
set sGA(n)  = {g E GA(n)1 det(g) = 1) .  We now change our notation 
by setting G = sGA(n)  and G = GA(n). As before, X = MA(n, k). We 
shall sometimes write (X, G)  and (X, G )  in order to keep track of which 
group is acting. 

We consider the action of G on X. It turns out that there are three 
distinct situations depending on whether k = n, k = n - 1,  or 
k I n - 2. If k 5 n - 2, then the situation is exactly as before: (X, G )  
is admissible, trivializable and universal. (In fact, when k r n - 2 every 
k-axial G-action extends uniquely to a k-axial G-action.) If k = n - 1, 
then (X, G )  is admissible and trivializable but not universal (the twist 
invariants fail to be homotopy equivalences). If k = n, then the action 
is no longer admissible. 

Let us first dispose of the case k = n. 

X,(X) = {[Hi, V,]I0 I i 5 k - 1) ,  

where Hi = sGA(n  - i) and Vi = MA(n - i, k - i). The natural 
projection q :B(X, G )  + B(X, G)  has fiber over the top stratum equal 
to 2 points and fiber over the lower strata equal to 1 point. Also, the 
top stratum of B(X, G)  is mapped by q onto the top two strata of 
B(X, G). (Algebraically, R[x]' 5 R[x]'; R[x]' has an extra gen- 
erator and an extra relation.) It follows that B,(X, G)  is homotopy 
equivalent to the suspension of B:-, (k), i.e., it is homotopy equivalent 
to the suspension of l ipk- ' .  Since this is not contractible, [G, XI is not 
an admissible normal G-orbit type. 
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For i Ik - 2, we easily check that the homomorphism p : S ;  -+ S k  
sends (u,  v) E G A ( i )X G A ( k- i )to the matrix 

where y = (det(u)det(v))- ' .In particular, p is injective. It follows that 
[H, V ]  is admissible for i 5 k - 2. 

It remains to compute S k - , .  In this case, H = s G A ( 2 )  and 
V = ~ " ( 2 ,1). Thus, 

If A = C, then since every automorphism of S U ( 2 )  is inner, we can 
apply Lemma 1.3.1 to conclude that 

where 

and Z ( H )  = Z / 2 .  Suppose that (a, c )  E U ( k  - 1) X U ( 1 )is such that 
det(a) = c - 2  and that q € SU(2) .  Define 

i l / :Cc(H)X C o ( v ) ( H ) + S ( U ( k- 1) x U ( 2 ) )  by (a, c, q ) +  (a, [c, q ] )  

where [c, q ]  E U ( 1 )  XZ,, S U ( 2 )  r U(2) . The kernel of il/ is clearly 
Z ( H )  = {+  1 ) .  Hence, for A = C, Sk- '  = S ( U ( k  - 1)  X U(2) ) .We 
leave it to the reader to produce an argument similar to the proof of 
Lemma 1.3.1 to show for A = R we also have 
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and hence, that 

Also, it is easily checked that p:Sk-, + Skis the standard embedding 
s (GA(k- 1) X ~ ' ( 2 ) )C sGA(k+ 1). The orbit space of G X H  V is 
isomorphic to BA( l )  and the orbit map is defined by [g, x] -+ x*x. The 
action of Sk- on G X H  V is defined by (k, a )  . [g, x] = [gp(k, a)- ' ,  ax], 
where (k, a) E s (GA(k- 1) X ~ " ( 2 ) ) .Hence, (k, a ) .  (x*x) = x*aC1ax = 
x*x. Thus, Sk-, acts trivially on BA( l )  = [0, a)and in particular on 
the interior of BA(l ) ,  the set of principal orbits. It follows that [H, V] is 
also admissible when i = k - 1, and hence, that X is an admissible 
G-manifold. Since BkA(k) = B,(X) is contractible, X is also trivial- 
izable. The i-stratum of BA(k) has the homotopy type of the Grassman 
GA(k)/{G'(i) X ~ " ( k- i)). On the other hand, the i-twist invariant 
takes values in Sk/Si From (4.3.1), (4.4.1) and (4.4.2) we see that for 
i < k, the domain and range of the i-twist invariant have distinct 
homotopy types. Thus, X cannot be universal. In summary, we have 
proved the following result. 

4.4.3 PROPOSITION. ~ ' ( k  + 1, k)  is a trivializable admissible 
SG' (~  + 1)-manifold. However, it is not universal. 

In the next section we shall find the desired universal manifold 
for k = 2. 

5. Bi-axial actions on projective planes. In this section A denotes 
a (possibly non-associative) real division algebra of dimension d. Thus 
A is isomorphic to the algebra of real, complex, quaternion, or Cayley 
numbers. Denote these algebras by R ,  C,  H, and 0, respectively. 

5.1 The linear models. A real inner product on A is defined by 
x .  y = l/2(xY + yX),  where x + X is the canonical anti-involution. The 
subalgebra of real multiples of the identity is denoted by R C A and the 
perpendicular (d - 1)-dimensional subspace is denoted by w'. 

~ e t  denote the group of R-algebra automorphisms of A. ThenA' 
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Every automorphism commutes with the anti-involution. Hence, the 
inner product is invariant. Also, A" acts trivially on R .  Thus, W" is an 
orthogonal A A-module. 

The action of A A  on W" @ W" is called the linear bi-axial 
A"-action. A smooth A"-manifold is bi-axial if it is stably modeled on 
(w" @ w", AA) .  

The action of A H  on WH is equivalent to the standard action of 
SO(3) on R ~ .It  follows from Proposition 4.4.3, that (WH @ WH, SO(3)) 
is a trivializable admissible SO(3)-manifold. 

Next, consider the action of G 2  on 0.If x is a non-real Cayley 
number, then it generates a 2-dimensional subalgebra isomorphic to 
the complex numbers. The isotropy group at x is the stabilizer of this 
subalgebra. The subgroup of G 2  which fixes C may be identified with 
SU(3) and the action of SU(3) on C = c3is standard. In particular, 
this implies that the restriction of the bi-axial G2-action on W0 @ W0 
to SU(3) is bi-axial. If x and y are non-commuting Cayley numbers, 
then they generate a 4-dimensional subalgebra isomorphic to the qua- 
ternions. The isotropy group at (x, y) E 0 @ 0 is equal to the stabilizer 
of the subalgebra generated by x and y. The subgroup of G 2  which fixes 
H is isomorphic to SU(2). It follows that the normal G2-orbit type of 
(x, y )  E W0 @ W0 is given by 

[G2,  W0 @ WO]; if (x, y) = (0, 0) 

[SU(3), c 3 ] ;  if x and y commute 

[SU(2), 01; if x and y do not commute. 

Thus, W0 @ W0 has 3 strata and the principal isotropy type is SU(2). 

5.2 Reduction to a trivial principal isotropy group. We digress for 
a moment to discuss a well-known reduction principle in compact trans- 
formation groups (see [14]). Suppose that M is a smooth G-manifold 
with principal isotropy group K. If [H, V] E 3tG(M), then, after re- 
placing (H, V) by an equivalent pair (if necessary), we may assume that 
K C H .  Set 

Note that the equivalence class of (H', V') is determined by that of 
(H, V). G '  acts on the fixed point set of K in any G-space. In particular, 



130 MICHAEL DAVIS 

it acts on ( G / H ) ~ .  The GI-orbit containing the identity coset in ( G / H ) ~  
is precisely G ' /Hr .  The restriction of the vector bundle (G XH v ) ~to 
G r / H '  is G '  X H ,  V'. Let V,' stand for the points in V' with isotropy 
group equal to K. The intersection of (G X H  v ) ~with the principal 
orbits of G X V is G '  XH r  V,'. Hence, G' /H'  may be characterized 
as the union of those components of ( G / H ) ~  which are contained in the 
closure of the principal orbits in (G XH v ) ~ .  Denote by M '  the union 
of those components of M~ which intersect M, n M K .  Note that if 
M~ is connected (which is true, for example, if M is a linear G-space), 
then M~ = M'.  It follows from these observations and the results of 
[17], that the inclusion M '  - M induces a smooth isomorphism 
B(M1,  G') = B(M, G).  Also, the map E : 3ZG(M) + 3ZGt(Mr) defined 
by [H, V] + [H', V'] commutes with the normal orbit structure maps. 

This implies that if each stratum of B(M,  G) is connected, then E is 
bijective. 

Consider what happens to the structure groups of the normal orbit 
bundles under the correspondence .$ . Since S,,, vl acts through G-equi- 
variant isomorphisms on G X H  V, both the fixed point set of K and the 
top stratum are SIH,v~-invariant. Hence, their intersection, G '  XH, V', 
is also invariant. The action of S,H,Vl XH, V' is clearly effective on G '  
and through orthogonal equivalences. Hence, $IH, is a subgroup of the 
full group of such orthogonal equivalences S,Hr,V,l.We say that M has 
very fine structure if f;  is a bijection and if S, = St(,,. 

Let e c ( M )  be the category of smooth G-manifolds which are stably 
modeled on M. The morphisms are G-equivariant stratified maps. The 
correspondence X + X' clearly defines a functor 5: e G ( M )+ ec t (M ' ) .  
Suppose now that M has very fine structure. Then the normal orbit 
bundles and "attaching data" of X are identical with those of X'. It 
follows from [6] that 5 induces a bijection on isomorphism classes. (In 
the language of [6] the category of normal systems associated to e c ( M )  
is identical with the category of normal systems associated to eG , (Mr ) . )  
If I ) ' : X f  -+ Y' is any morphism, then we may alter it by a stratified 
homotopy so that it is a bundle map on a prescribed tubular neighbor- 
hood of each stratum. The new I)' can clearly be lifted (uniquely) to 
$ : X  -+ Y (since the structure groups of the tubular neighborhoods in X '  
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are identical with those of X). In fact, by using the Covering Homotopy 
Theorem of [19],we see that we could have lifted the original I)'. This 
proves the following result. 

5.2.1 PROPOSITION.If M has very fine structure, then 

is an equivalence of categories. 
Applying these general remarks to the case, 

(M, G )  = (wO@ wO,G 2 )  

we have, 

( M ' ,  G ' )  = (wH@ wH,SO(3))  

( H ' ,  V ' )  = ( S 0 ( 2 ) ,  C )  

It follows that the orbit space of W O  @ W O  under G 2 coincides with 
the orbit space of wH@ wHunder SO(3). As we saw in Section 4.3, 
the latter orbit space is BR(2) ,which is a solid 3-dimensional cone. 
Since each stratum of BR(2)is connected, 

is bijective. As we have seen in Section 4.4, the latter set is identified 
with ( 0 ,  1, 2 )  via 0 = [ S 0 ( 3 ) ,wHO wH] ,1 = [ S 0 ( 2 ) ,  C ] ,  2 = 
[ { I ) ,  T i ] .  We also identify 3 tG , (w0  @ wO)with ( 0 ,  1 ,  2 )  via 4-l, i.e., 
0 = [G,, W O  + wO],1 = [SU(3),c3] ,2 = [SU(2),T i ] .  Denote by S;  
the structure groups for W O  + W O  and by Si t  those for wH@ wH. 
Using the methods of Section 4,  we check immediately that 
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Hence, W O  @ W O  has very fine structure. Therefore, we have the 
following corollary to 5.2.1. 

5.2.3 COROLLARY. The functor X -+ x ~ ~ ( ~ )X '  is an equivalence = 
from the category of bi-axial G2-manifolds to the category of bi-axial 
S O  (3)-nzanifolds. 

In particular this implies that W O  @ W O  is a trivial admissible 
G2-manifold. Also, (X, G 2 )  is a universal bi-axial G2-manifold if and 
only if ( x ~ " ( ~ ) ,  SO(3)) is a universal bi-axial SO(3)-manifold. 

5.3 Jordan algebras and projective spaces. Let ~ " ( k )  be the real 
vector space of k by k 11-hermitian matrices. Define a multiplication on 
HA(k)  by A .B = l/2(AB + B A ) . ~A matrix A E ~ " ( k )is called positive 
semi-definite if it is a square and idernpotent if = A. The trace of A 
is a real number. Define B1'(k) to be the set of positive semi-definite 
elements in HA(k)  and define ~ " ( k )  to be the elements in B1'(k) of 
trace 1. Define A p k - '  to be the set of trace 1 idempotents in HA(k) .  
Obviously, A p k P 1  c ~ ~ ( k ) .  

If A is associative then the idempotents of trace 1 may be identified 
with the projections onto lines in Ak. Hence, for A associative, our defi- 
nition of projective space agrees with the usual one. Also, if A is associa- 
tive, then projection onto the line [I, x l  , x 2 ,  . . . , x k  ] corresponds to 
the idempotent 

wherep = 1 + lx ,  I 2  + . . - + lx,-, 1 2 .  
Set uiA= {A E ~ " ( k )A ~ , z 0) 17 A P ~ - ' .  Let $;: Ak-I --+I u lA 

be the map which takes (x , ,  . . ., x k - ~ )  to E. (This definition makes 
sense even for the Cayley numbers.) One checks immediately that 
~ ) ~ ( x , ,. . . , x k - ~ )  is an idempotent of trace 1 and that $, is a smooth 

31f A is associative o r  if k r 3, then ~ " ( k )is a forn~al ly  real Jordan algebra. This 
means that  A . B = B  . A ,  ( A 2 .  5 ).A = A ? . (B . A ), and  that  = 0 implies A = 0. 
See Chapter I1  in [ I ] .  
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embedding (look at the first column vector of E). In a similar fashion 
define maps q i :  hk-' + uiA.If A is associative, then the I)i are just the 
usual charts on A-projective space (in particular, if A is associative I), is 
a diffeomorphism). In fact, q i :  ok-I -+ uiOis also a diffeomorphism 
provided t h a t  k I3. (This is the reason it only makes good sense to 
talk of the Cayley projective line and the Cayley projective plane.) We 
shall now prove that 4 , :  o2+ u10is surjective (and similarly for 4, 
and q3).  SO suppose that k = 3 and A E u l O .  This means that trace 
A = 1 , = A ,  ~~ a n d A l l  $ 0. We may writeA as 

where p = A l l  and where a and b are both real. Since ( A ~ ) , ,  = A , 
p = 1 + Ix12 + ly12, and since traceA = 1,  p = 1 + a + b. If 
x and y are both zero, then let A' C 0 be the subalgebra generated by a. 
Otherwise, let A' C 0 be the subalgebra generated by x and y. If 
(x, y) = (0, O), then, obviously, A E u,"'. Otherwise we may suppose 
(by symmetry) that y $ =0. Then the equation ( A ~ ) , ~  A 1 2  becomes 
i? + Fa + ~ C Y pF. Hence, CY Since A' is associa- = E A' and A E ulA'. 
tive, it follows from our earlier discussion that A is in the image of 
I), 1 (A')'. Therefore, the embedding : o2 u1 is surjective and -+ 

hence, a diffeomorphism. Similarly, for I);,i = 2, 3. 

5.4 Orbit spaces of bi-axial actions on projective planes. We now 
assume that A is associative or that k 5 3. The group A" of automor- 
phisms of A is a subgroup of the full group of automorphisms of the 
algebra ~ " ( k ) .  Any automorphism preserves the idempotents and A A  
clearly preserves the trace. Hence, A" leaves iipk-' invariant. The charts 
4; : A ~ - '  + u;"are obviously AA-equivariant. In particular, the action 
on A P ~ - '  is (k - 1)-axial. Thus SO(3) acts bi-axially on H p 2  and G 2  
acts bi-axially on 0p2. Restricting the G2-action to SU(3) we get a 
bi-axial SU(3)-action on 0p2.In view of 5.2.2, discussion of G 2  on 
0p2is superfluous, since it reduces to SO(3) on H p 2 .  

If A' is a subalgebra of A then let wA>"':TA(3) -+ ~ " ' ( 3 )  be 
the map induced by the orthogonal projection of A onto A'. Let 
w :Hp2  + TR(3) denote the restriction of aHsRto H P ~and let 
19:0p2+ TC(3) be the restriction of wo9c to 0 p 2 .  
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5.4.1 PROPOSITION.The map T :HP' TR(3) is SO(3)-invariant -+ 

and induces a smooth isomorphism % :B(HP2)  e TR(3). 

5.4.2 PROPOSITION. The map 0 : OP2  -t ~ ' ( 3 )  is SU(3)-invariant 
and induces a smooth isonzorphism 8 :  B ( O P ~ )  z TC(3). 

5.4.3 Remark. The space TA(3) of 3 by 3 positive semi-definite 
A-hermitian matrices of trace 1 can be described quite easily (see pages 
23 and 36 in [7].) It is homeomorphic to a closed disk of dimension 
3d + 2, d = dimRA. It has 3 strata. The non-singular stratum is the 
open disk. The most singular stratum is AP2. The intermediate stratum 
is the complement of AP2 in the boundary sphere. This complement is 
diffeomorphic to a (d + 1)-plane bundle over Ap2.  

5.4.4 COROLLARY.H P 2  is a trivializable bi-axial SO(3)-manifold. 
OP' is a trivializable bi-axial SU(3)-manifold. Moreover, in both cases 
there is a unique homotopy class of trivialization. 

Proof. Let (X, G )  stand for ( H P ~ ,SO(3)) or ( 0 P 2 ,  SU(3)). Since 
B,(X) is an open disk, the bundle P,(X) -+ B,(X) is trivial. The struc- 
ture group STis SO(3) or SU(3). Since S, is therefore connected, such 
a trivialization is unique up to an ST-homotopy. g 

We shall prove only 5.4.2, the proof of 5.4.1 being similar and 
easier. 

Proof of Proposition 5.4.2. Since SU(3) fixes C C 0, the map 
0 : OP' TC(3) is obviously SU(3)-invariant and smooth. For i = 1, 2, 3, -+ 

let yA= { A  E TA(3)l~~~ # 01, and let uiA= viAn AP2. Let 
I)(:o2-+ u iO ,  i = 1, 2, 3 be the charts defined above. The image 
of 0 qi is contained in vjC.To prove that 8 : B ( 0 P 2 )  -+ ~ ' ( 3 )  is a 0 

smooth isomorphism it clearly suffices to show that each of the maps -
0 0 	 Ti :B(u i0)  viCis an isomorphism, or by symmetry, just that -+ -
0 	. is an isomorphism. 

Let c :  0 -+ C be the orthogonal projection. Then 
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where p = 1 + I x 1 1 + 1 x 2 1 2 .  Define a complex hermitian inner 
product on 0 by ( x , y )  = c ( x y ) . Let d = 1 - c :0 + C L  = c3be the 
orthogonal projection onto the orthogonal complement of C.  Note that 

The map (c,  d ) :  0 + C @ c3 is an isomorphism of SU(3)-spaces, 
where the action is trivial on C and standard on c3.It follows from the 
remarks in 4 . 2 ,  that the orbit space of C12 under S U ( 3 ) is c2X B C ( 2 )  
and that the orbit map p : o2+ c2X ~ ' ( 2 )is defined by 

where u = c ( x , ) , v = c ( x 2 ) and where (: ;] is the 2 by 2 complex 
hermitian matrix ( ( d ( x ; ) ,  d ( x , ) ) ) .  From ( 1 )  it follows that the map 
8 0 $,: c2X B C ( 2 )+ vICis defined by 

wherep = ( 1  + luI2 + Iv12 + e + f).Here we have also used ( 2 ) to 
deduce that 

Any matrix A E V 1  can be written in the form 

where a, b, and c are real, a ,  0,and y are complex, a # 0, and 
a ( 1  + b + c )  = 1.  The inverse map of 3 o is given by the equations: 
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as one can check by verifying that the image of this inverse mapping is 
contained in C 2  X ~ ' ( 2 ) .Therefore, 8 0 $, (and hence, 8) is a smooth 
isomorphism. 

5.5. The  twist invariants of  SU(3)  on the Cayley projective plane. 
In this section we consider only the bi-axial action of S U ( 3 )  on 0 p 2 .  
The strata are indexed by (0, 1,  2 )  where 0 - [SU(3) ;C3 @ C 3 ] ,  
1 - [SU(2) ,C 2 ]and 2 corresponds to the principal orbit type. Let B 
denote the orbit space. As we have just seen B G ~ ' ( 3 )which is a 
closed 8-disk. According to 5.4.3, B 2  is the open 8-disk, B 1  is a 3-plane 
bundle over C P ~ ,and B o  is CP2.  According to (4.3.1), (4.4.1) and 
(4.4.2), the structure groups are given by S o  = U ( 2 ) ,  S 1  = U ( 2 ) ,  
S 2  = S U ( 3 )and for i = 0, 1 the homomorphism S ;  + S 2  is the standard 
inclusion. Thus, for i = 0, 1,  the homogeneous space S 2/S i  is CP2.  

Let Pi + Bi denote the i-normal orbit bundle of S U ( 3 )  on 0 p 2 .  
Choose a trivialization f :P2 + S 2  and for i = 0, 1,  2 define twist in-
variants f i :  Bi + S 2 / S i  as in Section 2. We wish to verify that each f i  is 
a homotopy equivalence. For i = 2,  this is automatic since both the 
domain and range are contractible. For i = 0, 1, both the domain and 
range have the homotopy type of C p 2 .  Hence, it suffices to show that 
fi induces an isomorphism on cohomology. Sincef i  pulls back the bundle 
S 2  -+ S 2 / S i  to the bundle Pi -t Bi we can verify this by calculating 
characteristic classes. 

5.5.1 LEMMA. The U(2)-bundle S U ( 3 )  -t S U ( 3 ) / U ( 2 )  = C P ~  
has total Chern class 1 - a + a 2  where a is the canonical generator 
of H ' ( c P ~ ) .  

Proof. The bundle in question is the inverse of the canonical line 
bundle. 

5.5.2 LEMMA. The complement of CP2 in H P ~is diffeomorphic 
to a 3-plane bundle over s5. 

Proof. The group S p ( 3 )  acts transitively on H P ~ .Consider the 
restriction of the action to the subgroup U(3) .  The principal orbit type 
is U ( 3 ) / U ( l )X U ( 1 ) .  Since each principal orbit has codimension one, 
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H P 2 / u ( 3 )  is a compact connected 1-manifold. Hence, either it is a circle 
and all orbits are principal or it is an interval and there are exactly two 
singular orbits. The second possibility holds, since 

is singular. The isotropy group at [1, j, 0] is SU(2) X U(1). Hence, the 
other singular orbit is U(3)/SU(2) X U(1) = s5.In general, if M is a 
smooth G-manifold with M / G  an interval, then the complement of either 
singular orbit is diffeomorphic to a vector bundle over the other. (See 
page 206 in [2].) 

5.5.3 COROLLARY. The inclusion cP2- H P 2  induces an isornor-
phism H4(HP2)5 H 4 ( c P 2 ) .  

Proof. 

and 

5.5.4 COROLLARY. The Euler class of the normal bundle of cP2 
in H P 2  is a generator of H 4 ( c P 2 ) .  

Proof. By the previous result cP2has self-intersection number 1 
in H P 2 .  

Note that ( o P ~ ) ~ ~ ' ~ '= cP2= B and that ( o P ~ ) ~ ~ ( ~ )= H P 2 .  
It follows that Po + Bo is the principal U(2)-bundle associated to the 
normal bundle of cP2in H P 2 .  Therefore, its Euler class is the gener-
ator of H 4 ( c P 2 ) .  By 5.5.1, the Euler class of S2 -+ S2/Sois also a 
generator. Since Po is the pullback of this bundle via f o ,  we conclude 
that f o :Bo + S2/Sois a homotopy equivalence. 

If M is any bi-axial SU(3)-manifold, then the orbit bundle M I  + B 1  
has associated principal U(1)-bundle M ~ ~ ( ~ )- M ~ ~ ( ~ )-+ B l  (M). This 
bundle may also be identified with PI(M)/SU(2) + B I (M). In our case 
this yields, 
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Since H P 2  - cP2is homotopy equivalent to S' and since B1is hon~otopy 
equivalent to c P 2 ,  we see that the U(1)-bundle PI/SU(2) -+ B ,  has 
first Chern class a generator of H 2 ( ~ , ) .The first Chern class of the 
bundle SU(3)/SU(2) -+ SU(3)/U(2) is obviously also a generator of 
H2(cP2) .We deduce, as before, that f l : B ,  -+ S2/SIis a homotopy 
equivalence. Applying our main theorem we get the following result. 

5.5.5 THEOREM. The bi-axial SU(3)-actioiz oil the Cayley projec-
tive plane is universal. 

5.6 The twist invariants of SO(3) on the quaternionic projective 
plane. In this section B stands for ~ ~ ( 3 ) ,the orbit space of SO(3) on 
Hp2 .  According to 5.4.3, B is a closed 5-disk, B2 is the open 5-disk, 
B ,  is a (non-orientable) 2-plane bundle over R P 2 ,  and Bo is RP2 .  Ac-
cording to (4.3.1), (4.4.1) and (4.4.2) the structure groups are So= O(2), 
S, = O(2) and S2 = S0(3) ,  and for i = 0, 1, the homomorphism 
S, 4 S2is the standard inclusion. Choose a trivialization f : P 2  -+ S2 
and define twist invariants f, :B2 -+ S2/Si.As before, f 2  is a homotopy 
equivalence since both spaces are contractible and for i = 0, 1 both the 
domain and range have the homotopy type of R p 2 .  Hence to prove the 
twist invariants are homotopy equivalences it suffices to show, for i = 0, 1, 
that f i  induces an isomorphism on H'( ; Z/2) and on HZ(; Z-) .  Here 
Z - denotes twisted integer coefficients. 

5.6.1 LEMMA. The O(2)-bundle SO(3) -+ S 0 ( 3 ) / 0  (2) = RP2has 
non-zero first Stiefel- Whitney class and has as twisted Euler class a 
generator of H2(Rp2;Z- )  G Z. 

Proof. This bundle is associated to the tangent bundle of RP2 .  Cl 

5.6.2 LEMMA. cP2- R p 2  is diffeomorphic to a 2-plane bundle 
over s2. 

Proof. Consider the natural action of O(3) on cP2and proceed 
as in 5.5.1. 

5.6.3 LEMMA. The twisted Euler class of the normal burzdle of 
RP2in C P ~is a generator of H2(RP2;Z-) .  

Proof. Apply the G-signature Theorem to conjugation on cP2. 

Since the O(2)-bundle Po -+ Bo is associated to the normal bundle 
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of R p 2  in c P 2 ,  it follows from 5.6.1 and 5.6.3 that fO :Bo  -+ S2/S0is a 
homotopy equivalence. 

Next, consider B = PI/SO (2). Then B + B is a double cover. 
Let Y be the 1-stratum of HP2 .  Since B, = = cP2-Y ~ ~ ( ~ )  R P 2 ,  
we see that B I  is homotopy equivalent to s2and therefore, that BI  + B 1  
is a non-trivial double covering. This means that the first Stiefel-Whitney 
class of PI is non-zero. 

It remains to show that the non-orientable circle bundle PI/0(1) +B 
has twisted Euler class a generator of H ~ ( B ,; Z- )  r Z. We shall prove 
this by showing that the pullback of this bundle to Bl  has (untwisted) 
Euler class equal to twice a generator of H ~ ( B ,; Z) G H ~ ( s ~ ;Z). The 
total space of this pullback is PI and the base space is B, . Let E be the 
normal 2-plane bundle of Y in HP2.  Then PI + E l  is the principal 
bundle associated to E / E l .  Let Q be the normal bundle of cP2in HP2  
and let R be the normal bundle of B l  in Y. Then 

The SO(2)-action on H P 2  induces an action on Q which is trivial on 
zero-section and free off the zero-section. The bundles E I BI  and R are 
SO (2)-invariant sub-bundles of Q 1 B l . Hence, (1) can be interpreted as 
giving an isomorphism of a complex 2-plane bundle with the Whitney 
sum of two complex line bundles. 

If M is any G-manifold with only one orbit type, say G/H, then 
M + G/NG(H) is a fiber bundle with fiber M ~ .This implies, in par- 
ticular, that the normal bundle of M" in M is trivial. Applying this 
observation to the case M = Y, we see that R is a trivial bundle. Hence, 

In the previous section we showed that Q had associated principal 
U(2)-bundle SU(3) + SU(3)/U(2) and that this bundle had total Chern 
class 1 - a + a2E H * ( c p 2 ) .  Let i : B l  = cp2- R p 2  + cP2be the 
inclusion. Since H 3 ( c P 2 ,  cP2- R P ~ ;  Z)  = H 1 ( R P 2 ;  Z - )  2 Z/2, 
we see that i*: H 2 ( c P 2 ;  Z)  + H2(cP2- R P 2 ;  Z)  is multiplication by 2. 
Hence, c l ( g l  B1 )  = X ( ~ I  aB I )  is twice generator of H ~ ( B , ;  Z). It 
follows from 6.5.1, that f : B l  + S2/SIis a homotopy equivalence. 
Applying our main theorem, we therefore, get the following result. 
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5.6.4 THEOREM. The bi-axial SO (3)-action on the quater~zionic 
projective plane is universal. 

Combining this result with 5.2.3 yields the following. 

5.6.5 THEOREM. The bi-axial G2-action on the Cayley projective 
plane is universal. 

COLUMBIA 	UNIVERSITY 

REFERENCES 

[ l ]  A. Ash, D. Mumford, M. Rapoport, Y. Tai, 	Snlooth Con~pacrijicarioti oj' Locully 
Symnletric Varieties. Math. Sci. Press, Brookline, Mass., 1975. 

[2] G. Bredon, Inrroducriorr to Con~pucr Trurrsformatiorr Groups, Academic Press, 
New York, 1972. 

[3] , "Regular O(n)-manifolds, suspension of knots, and knot periodicity," Bull. 
Anler. Marli. Soc.. 78 (1973), pp. 87-91. 

[4] , 	 Biaxial acriorrs, mimeographed notes, 1973. 
[5] M. Davis, "Snlooth actions of the classical groups," thesis, Princeton University, 1974. 
[6] , "Smooth G-manifolds as collections of fiber bundles," Pac. J.  of Murli., 

77 NO. 2 (1978), pp. 315-363. 
[7] , Mulriuxial Actiorrs or1 Manifblds, Lecture Notes in Math., No. 643 Springer- 

Verlag, Berlin and New York, 1978. 
[8] , "Some group actions on homotopy spheres of dimension seven and fifteen," 

(to appear). 
[9] M. Davis and 	W .  C. Hsiang, "Concordance classes of regular U,,  and Sp,, actions on 

homotopy spheres," Artti. Marh.. 105 (1977), pp. 325-341. 
[ l o ]  M.  Davis, W .  C. Hsiang and W .  Y .  Hsiang, "Differentiable actions of conlpact simple 

Lie groups on homotopy spheres and Euclidean spaces," A M S  Proceeditigs 
qf'Syniposiu in Pure Mathenlurics. 32 (1978), pp. 313-323. 

[ l l ]  M. Davis, 	W. C. Hsiang and J. W. Morgan, "Concordance classes of regular 0 ( n ) -
actions on homotopy spheres," Acra Murli. (to appear). 

[12] F. Hirzebruch and 	K. H. Mayer, O(rr)-Matit~igfbltigkeiterr.Exorische Sphurerr urld 
Sirzgularitureri, Lecture Notes in Math., No. 57 (1968). 

[13] 	W.  C. Hsiang and W. Y. Hsiang, "Differentiable actions of compact connected 
classical groups: I ,"  Amer. J.  Marh.. 89 (1967), pp. 705-786. 

[14] 	W. Y. Hsiang, Cohoniology Tlieory oj'Topologicu1 Trarzsformurioti Groups, Ergebnisse 
der Math. und ihrer Grenzgebiete, Band 85, Springer-Verlag, Berlin and 
New York. 1975. 



141 UNIVERSAL G-MANIFOLDS 

[IS] K. Janich, "Differenzierbare Mannigfaltigkeiten mit Rand als Orbitraume differen- 
zierbare G-Mannigfaltigkeiten ohne Rand," Topology. 5 (1966), pp. 301-320. 

[16] , "On the classification of 0(1z)-manifolds," Math. Anlz.. 176 (1968), pp. 
53-76. 

[17] D. Luna, "Adherences d'orbite et invariants," I~zvent. Math., 29 (1975), pp. 231-238. 
[18] G. Schwarz, "Smooth functions invariant under the action of a compact Lie group," 

Topology, 14 (1975), pp. 63-68. 
[19] , "Lifting homotopies of orbit spaces," Inst. Hautes Etudes Sci. Publ. Math. 

No. 51 (1980). 
[20] , "Representations of simple Lie groups with regular rings of invariants," 

I~zve~zt.Math.. 49 (1978), pp. 167-191. 
[21] H. Weyl, The Classical Groups. 2nd edition, Princeton Univ. Press, Princeton, 1946. 
[22] E. Bierstone, "The equivariant covering homotopy property for differentiable G-fibre 

bundles," J. Dg]:Geonz., 8 (1973), pp. 615-622. 


