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ABSTRACT

We study topological invariants related to the !2-homology of low dimensional regu-

lar right-angled buildings. By definition, such buildings admit a chamber transitive

automorphism group G. In this setting, we provide several formulas for the !2-

Euler characteristic with respect to G and compute !2-Betti numbers for a variety

of 2-dimensional right-angled buildings. One of these formulas relates the !2-Euler

characteristic to the h-polynomial of the nerve of the associated right-angled Coxeter

group. Particularly interesting is the case where this nerve is a triangulation of a

n-sphere. We prove that the h-polynomial associated with a flag triangulation of a

n-sphere has real roots for n ≤ 3.
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CHAPTER 1

INTRODUCTION

In geometric group theory there is a strong connection between the study of certain

infinite groups and certain spaces on which such groups act. Coxeter groups and

buildings give examples of this relationship. The buildings we are considering are

not the classical Bruhat-Tits buildings associated to algebraic groups. The Coxeter

groups Γ associated to the buildings of interest to us are arbitrary right-angled Cox-

eter groups - and these are generally not Euclidian or spherical reflection groups.

Several constructions by Davis and others provide examples of complexes on which

such groups act. In Chapter 2 we recall definitions and basic constructions related

to Coxeter groups and buildings. Chapter 3 introduces the related concept of growth

series of a Coxeter system in several variables.

In Chapter 4 we discuss Hilbert Γ-modules, their Γ-dimension and !2-homology

theory. The linear algebra on which !2-homology theory is based is the category of

Hilbert Γ-modules and the theory of their Γ-dimension (also called “von Neumann
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dimension”). For such a Hilbert Γ-module a Γ-dimension (which is a real number,

not an integer!) is defined (the usual dimension as a vector space is infinite in this

case). This leads to nice applications in topology. For a special type of non-compact

spaces (cellular complexes on which Γ acts cellularly, properly and cocompactly) a

!2-homology theory may be introduced by a minor modification of the usual definition

of the homology of a chain complex. This, coupled with the existence of Γ-dimension,

leads to the introduction of numerical invariants such as !2-Betti numbers. In Chapter

5 we introduce definitions, notations and basic !2-topological properties specifically

written for right-angled buildings.

Chapter 6 contains the most important contributions of this thesis. Associated

to any simplicial complex there is a certain polynomial called its h-polynomial, the

coefficients of which are certain linear combinations of the number of simplices in each

dimension. It is a conjecture of Januszkiewicz that if the simplicial complex is a flag

complex and if it is homeomorphic to the sphere, then the roots of the h-polynomial

should all be real. We show this conjecture to be true in dimensions less then 4, relate

it to the Flag Complex Conjecture and reduce it to some combinatorial inequalities

in dimensions less then 6. This is also related to the Concentration Conjecture of

Dymara-Januskiewicz which states that the !2-Betti numbers of the Davis complex

associated to a triangulation of a sphere as a flag complex are concentrated in one
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dimension and increase monotonically in t. The Concentration Conjecture was proved

to be true in dimensions 2 and 3 but fails in dimension 4 (by recent work of Davis,

Dymara, Januskiewicz and Okun).

An important part of Chapter 6 is devoted to computing !2-Betti numbers for two

dimensional right-angled buildings of arbitrary thickness. We discuss several classes

of examples as well as some concrete examples of interest. The alternating sum of

the !2-Betti numbers coincides with the orbihedral Euler characteristic of X/G. This

is proved to coincide with the reciprocal of the growth function of the associated

Coxeter group. We discuss a more general approach using the growth function in

several variables. We introduce a several variables version of the h-polynomial and

prove its connection with the !2-Euler characteristic.
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CHAPTER 2

REGULAR RIGHT-ANGLED BUILDINGS

In this chapter we recall some basic definitions and important facts about buildings,

Coxeter groups and their associated complexes. Besides the usual notion of Coxeter

complex Michael Davis introduced a different (inequivalent) notion of Coxeter com-

plex (referred to as a Davis complex) in [9]. The Davis realization of a building was

introduced in [10]. Excellent references for Coxeter groups and buildings are [5], [4]

and [26].

Coxeter Groups

The theory of abstract reflection reflection groups was developed by Tits who intro-

duced the terminology Coxeter groups for these objects.

Let I be a set (usually a finite set). A Coxeter matrix M = (mij) over I is a

symmetric I by I matrix with entries in N ∪ {∞} such that mii = 1 and mij ≥ 2

whenever i &= j. Introduce symbols si, i ∈ I and put S = {si}i∈I . The Coxeter group
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(over M) is the group defined by the presentation:

W =< S | (sisj)
mij = 1, (i, j) ∈ I × I >

The pair (W, S) is called a Coxeter system.

Definition 2.1. A Coxeter system (W, S) is called a right angled Coxeter system if

mij = 2 or ∞ for all i &= j.

If J is any subset of I, then MJ denotes the J by J matrix formed by restricting

M to J . Let s : I −→ S be the bijection i +→ si and denote by WJ the subgroup

generated by s(J). It turns out that WJ is also a Coxeter group (see [5]). If (W, S)

is a right angled Coxeter system again it turns out that the situation is as nice as

possible: each (WJ , s(J)) is a right angled Coxeter system corresponding to the sub-

Coxeter matrix (mij)(i,j)∈J×J (see page 20 of [5]). The subset J is called spherical if

WJ is a finite group.

Associated to a Coxeter system (W, S), there are three simplicial complexes, L,

K and the Davis complex Σ. Let S denote the set of spherical subsets of S, partially

ordered by inclusion and let

S(i) = {T ∈ S | Card(T ) = i}

S has a minimum element, namely, ∅. S>∅ is the poset of simplices of a simplicial

complex denoted by L(W, S) (or L for short) and called the nerve of (W, S). In other
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words, the vertex set of L is S and a nonempty subset T ⊆ S spans a simplex if and

only if it is spherical. Moreover, S(i) is the set of (i− 1)-simplices in L.

We are also interested in WS, the poset of spherical cosets. It is defined as the

disjoint union of the sets W/WT , T ∈ S. Thus, a typical element of WS is a coset

wWT for some T ∈ S. The partial order is inclusion.

The geometric realization of S is denoted K and the geometric realization of WS

by Σ. The group W acts properly on the simplicial complex Σ; the orbit space is the

finite complex K. The main features of Σ are:

• W acts on Σ with finite isotropy subgroups and with K as a strict fundamental

domain,

• Σ is contractible.

L and K are finite simplicial complexes. The complex Σ is infinite whenever W is

infinite.

The complex Σ also has a description in terms of a different construction . For

each s ∈ S define the mirror Ks to be the following subcomplex of K:

Ks := |S≥{s}|

We can then form the space U(W, K) in the following way: it will be another
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CW complex with a W -action for which K is a strict fundamental domain. For each

subset T of S, set

KT = K ∩
⋂

s∈T

Ks,

KT =
⋃

s∈T

KS

For each cell c of K and each point z ∈ K, set

S(z) = {s ∈ S | z ∈ Ks}

S(c) = {s ∈ S | c ⊆ Ks}

Define U(W, K) := (W × K)/ ∼ where the equivalence relation ∼ is defined by

(w, z) ∼ (w′, z′) if and only if z = z′ and the cosets wWS(z) and w′WS(z) are equal.

Thus, U(W, K) is the space formed by gluing together copies of K one for each element

of W , the copies w×K and ws×K being glued together along the subspaces w×Ks

and ws×Ks. Write [w, z] for the image of (w, z) in U . The group W acts on U and

K is a strict fundamental domain. Identify K with the image of 1 ×K in U . Then

wK is identified with the image of w × K. The CW structure on U is defined by

declaring the family (wc), where w ∈ W and c is a cell of K, to be the set of all cells

in U . (Note that wc is the image of w × c in U .) The setwise stabilizer of a cell c of

K is the special subgroup WS(c). Moreover, WS(c) fixes each point of c.

7



The natural map W × S → WS, defined by (w, T ) → wWT , induces a map

of geometric realizations W × K → Σ and this descends to W-equivariant map

U(W, K) → Σ. As in [9], it is easily seen that this map is a simplicial isomorphism,

i.e.,

Σ ∼= U(W, K)

Remark 2.2. Although we are interested in the above constructions in the case of

right-angled Coxeter systems we preferred to reproduce them here for arbitrary Cox-

eter systems.

Remark 2.3. Suppose L is a flag complex. We refer the reader to Appendix A for

definitions regarding flag complexes. The right-angled Coxeter group associated to

L, denoted WL, is defined as follows. The set of generators is the vertex set of L and

the edges of L give relations: s2 = 1 and (st)2 = 1, whenever {s, t} spans an edge in

L. Then L is exactly the nerve of (WL,S0(L)). The corresponding complexes K and

Σ are denoted KL and ΣL.

Buildings

Buildings were created by Tits as a tool for understanding real semisimple groups and

their p-adic analogs. While classical (spherical or euclidian) buildings correspond to
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spherical or euclidian reflection groups, we are mainly interested in buildings related

to other (infinite) reflection groups.

An abstract definition of buildings can be given as follows. Let M be a Coxeter

matrix over a set I. Let I∗ denote the free monoid on I. An element of I∗ is a word

i = i1...ik, where each ij ∈ I. Denote by W the Coxeter group determined by M .

Suppose i = i1...ik is an element of I∗. Its value s(i) is the element of W defined by

s(i) = si1 ...sik . Two words i and i’ are equivalent (with respect to M) if s(i) = s(i′).

The word i is reduced if the word length of s(i) is k. We refer the reader to [26] for

the definition of a chamber system.

Definition 2.4. Let I, I∗, M and W be as above. A building of type M is a chamber

system C over I such that

(B’1) for each i ∈ I, each subset of the partition corresponding to i contains at

least two chambers

(B’2) there exists a W -valued distance function δ : C × C +→ W such that if i is

a reduced word in I∗ (with respect to M), then chambers c and c′ can be joined by

a gallery of type i if and only if δ(c, c′) = s(i).

9



The Davis realization of a building

We proceed now to introduce right-angled buildings and their Davis realizations. Let

L be a flag complex with vertex set I and let WL be the associated right-angled

Coxeter group. Suppose we are given a family of groups (Pi)i∈I such that each Pi

is a cyclic group of order qi + 1. Associated with such data we have a group GL

defined as the quotient of the free product of the (Pi)i∈I by the normal subgroup

generated by all commutators of the form [gi, gj], where gi ∈ Pi, gj ∈ Pj and mij = 2.

Alternatively, GL could be defined as the graph product of the (Pi)i∈I with respect

to L.

Let q = (qi)i∈I . We define a building of type WL, denoted C = C(q, L), in the

following way. Its set of chambers is GL(defined above) and g and g′ are i-adjacent

if and only if they have the same image in GL/Pi. We now produce the WL-valued

distance function δ : GL × GL +→ WL following [10]. If g = gi1 ...gik and i = i1...ik,

then define δ(1, g) = s(i) and then extend this by δ(g, g′) = δ(1, g−1g′). For more

details see [10], page 5.

We now describe the Davis realization of a building C(q, L) which is denoted by

Σ(q, L). We have defined in the previous section the complex KL and its mirrors

(KL)s. On C × K define an equivalence relation by (c, x) ∼ (c′, x′) if and only if

x = x′ and δ(c, c′) ∈ (WL)S(x). The Davis realization of C(q, L) is defined to be the

10



quotient space:

Σ(q, L) = (C ×K)/ ∼
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CHAPTER 3

THE GROWTH SERIES OF A GROUP

In this chapter we recall definitions and basic results about the growth series of a

group (the one variable version as well as the several variables version). Most of the

material can be found in [5], [27] and [25]. For a survey on growth series, discussing

finitely generated groups in general as well as Coxeter groups we refer the reader to

[29].

Let W be a finitely generated group and S be a finite symmetric generating set

of W (i.e S is finite, generates S and, if s ∈ S then s−1 ∈ S). The set S determines

a length on W , called word length. It is defined by:

l(w) = min{r|w = s1 . . . sr, si ∈ S}

for w ∈ W . The growth series of W with respect to S is the formal power series:

W (t) =
∑

w∈W

tl(w)

For Coxeter systems, a several variables version of the growth series is defined by

Serre in [27]. Let (W, S) be a Coxeter system with S a finite set. Let t = (ti)i∈I

12



be a family of indeterminates and s +→ i(s) a mapping of S into I that satisfies the

condition: i(s) = i(s′) if s and s′ are conjugate in W

For s ∈ S we write ts instead of ti(s).

Let w ∈ W . Choose a reduced decomposition (s1, . . . , sq) of w; the monomial

tw = ts1 . . . tsq is independent of the choice of (s1, . . . , sq). The total degree of tw is

equal to the length l(w) of w. The growth series of W with respect to S is the formal

series:

W (t) = W ((ti)i∈I) =
∑

w∈W

tw

If X is any subset of W , put :

X(t) = X((ti)i∈I) =
∑

w∈X

tw

When I consists of just one element we obtain the growth series in one variable.

Another case of interest to us, since we use only right-angled Coxeter groups, is when

I = S and the mapping s +→ i(s) is the identity map.

As an example we compute the growth series for the infinite dihedral group W =

Z2 ∗ Z2 =< s1, s2|s2
1 = s2

2 = 1 >. The growth series in one variable is :

W (t) = 1 + 2t + 2t2 + 2t3 + . . .

=
1 + t

1− t

13



while the growth series in several variables is :

W (t) = W (t1, t2) = 1 + t1 + t2 + t1t2 + t2t1 + t1t2t1 + t2t1t2 + . . .

= 1 + (t1 + t2) + 2t1t2 + t1t2(t1 + t2) + 2(t1t2)
2 +

+(t1t2)
2(t1 + t2) + 2(t1t2)

3 + (t1t2)
3(t1 + t2) + . . .

= 1 + 2t1t2(1 + t1t2 + (t1t
2
2) + . . . )

+(t1 + t2)(1 + t1t2 + (t1t
2
2) + . . . )

= 1 +
2t1t2

1− t1t2
+

t1 + t2
1− t1t2

=
(1 + t1)(1 + t2)

1− t1t2

Theorem 3.1. (Serre [27] ) Let (W, S) be a Coxeter system with S finite.Then W (t)

is a rational function in ti, that is

W (t) =
f(t)

g(t)

where f, g ∈ Z[t] are polynomials with integer coefficients.

Proof. For a complete proof we refer the reader to Proposition 26, page 145 of

[27](compare [5], Exercise 26, page 45). The proof goes by induction on Card(S)

and uses the following formula:

0 =
∑

T⊆S

(−1)Card(T )

WT (t)

14



Let ρW denote the radius of convergence of W (t) and denote by RW the region of

convergence of W (t). Since W (t) is a rational function ρW = min{t|g(t) = 0}. For

example, if W = Z2 ∗ Z2 the computation above yields ρW = 1.

Remark 3.2. If W = Z2 it is easy to see that W (t) = t+1. If G = Zt+1 then obviously

W (t) = |G| ( where |G| denotes the order of G). More general, if W = (Z2)k then

W (t1, t2, ..., tk) = (t1 + 1)(t2 + 1)...(tk + 1)

This can be verified directly but we also mention that the growth series is multiplica-

tive under finite products of groups. Let G = Zt1+1 × ... × Ztk+1. Then obviously

W (t1, t2, ..., tk) = |G|. With t = (t1, t2, ..., tk) we have

W (t) = |G|

The following lemmas are proved in [6] (see Lemma 2 and Remark v), page 376).

The first lemma is originally due to Steinberg (see [28]).

Lemma 3.3. Let (W, S) be a right-angled Coxeter system and denote by S the set of

spherical subsets of S (including T = ∅). Then:

1

W (t)
=

∑

T∈S

(−1)Card(T )

WT (t−1)

15



Lemma 3.4. Let (W, S) be a right-angled Coxeter system and denote by S the set of

spherical subsets of S (including T = ∅). Then:

1

W (t)
=

∑

T∈S

1− χ(∂KT )

WT (t)

where χ(KT ) denotes the ordinary Euler characteristic of KT .
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CHAPTER 4

HILBERT Γ-MODULES AND !2-HOMOLOGY

In this chapter we recall definitions, notation and basic results concerning the cate-

gory of Hilbert Γ-modules and !2-homology theory. !2-invariants were introduced in

topology and geometry by Atyiah in [1]. All this material (and much more) can be

found in [21] or [17].

Hilbert Γ-modules and their Γ-dimension

In this section we introduce the category of Hilbert Γ-modules. Athough it is not a

typical category for homological algebra purposes (it is not an abelian category; it is,

however, an additive category) it has enough features, some quite exotic, that lead to

nice applications to topology. The richness of this category comes from the following

three facts:

• the existence of the Γ-dimension (sometimes called von Neumann dimension)

which is a real number (and conjectured to be a rational number for Hilbert Γ-modules

17



of interest in topology) instead of a positive integer. It applies to Hilbert spaces for

which the usual dimension as vector spaces is infinite.

• the existence of weak isomorphisms. Weak isomorphisms would not exist if the

category were abelian.

Let Γ be a countable group. We define !2(Γ) as the the Hilbert space with Hilbert

basis {g|g ∈ Γ}. Thus !2(Γ) consists of formal sums
∑

g∈Γ λgg where λ ∈ C and

∑
g∈Γ |λg|2 <∞. The inner product is given by:

<
∑

g∈Γ

λgg,
∑

g∈Γ

µgg >=
∑

g∈Γ

λgµg

The group algebra C[Γ] consists of elements α =
∑

g∈Γ αgg ∈ !2(Γ) such that

αg = 0 for all but finitely many g. For α ∈ C[Γ] and β =
∑

g∈Γ βgg ∈ C[Γ] the

multiplication is given by:

αβ =
∑

g∈Γ

γgg, where γg =
∑

h∈Γ

αgh−1βh

The group algebra C[Γ] is a dense subspace of !2(Γ); however, its multiplication does

not extend to !2(Γ).

The group von Neumann algebra N (Γ) is defined as the algebra of Γ-invariant

bounded operators from l2(Γ) to itself:

N (Γ) = B
(
!2(Γ), !2(Γ)

)Γ

18



where l2(Γ) is equiped with the obvious Γ-action. If H is a Hilbert space we denote

by B(H, H) the space of bounded linear operators from H to itself. We also consider

the von Neumann algebra of n× n matrices with entries in N (Γ):

Mn×n

(
N (Γ)

)

The involution ∗ : !2(Γ) −→ !2(Γ) is defined by

( ∑

g∈Γ

αgg
)∗

=
∑

g∈Γ

λgg
−1

This extends to matrices A = (aij) ∈Mn×n

(
N (Γ)

)
by A∗ = (a∗ji).

The definition we use for N (Γ) is not the original one but is equivalent to it. The

original definition for N (Γ) is the weak closure of C[Γ] in B(!2(Γ), !2(Γ)); equivalently

N (Γ) is the von Neumann algebra generated by C[Γ] in B(!2(Γ), !2(Γ)). Another

description of N (Γ) is as the double commutant C[Γ]′′ of C[Γ] in B(!2(Γ), !2(Γ)),

where for any subset S of B(!2(Γ), !2(Γ)) its commutant is:

S ′ = {u ∈ B(!2(Γ), !2(Γ))|us = su for all s ∈ S}

We have a ∗-homomorphism N (Γ) −→ !2(Γ) defined by u +→ u1. Thus N (Γ) can be

identified with a subspace of !2(Γ) where the action of N (Γ) on !2(Γ) is left multipli-

cation. Similarly, Mn×n

(
N (Γ)

)
can be identified with B

(
⊕n

i=1 !2(Γ),⊕n
i=1!

2(Γ)
)Γ

. For

19



the proof of this fact we refer the reader to Lemma 5 of [20]. In view of these iden-

tifications, ∗ coresponds to the operation of taking the adjoint of a linear operator.

We recall that if A ∈ B(H, H ′), then A∗ ∈ B(H ′, H) is uniquely defined by

< Au, v >=< u,A∗v > for u ∈ H and v ∈ H ′

An element P ∈ B(H, H) is an orthogonal projection if P ∗ = P (i.e. P is self-adjoint)

and P 2 = P .

We now proceed to introduce the category CΓ of Hilbert Γ-modules.

Definition 4.1. A Hilbert Γ-module is a Hilbert space V together with a left action

of Γ by linear isometries such that there is a Hilbert space H and a Γ-equivariant iso-

metric embedding of V into the tensor product of Hilbert spaces !2(Γ)⊗̂H. A Hilbert

Γ-module is of finite type if there is a surjective bounded Γ-equivariant operator from

⊕n
i=1!

2(Γ) onto V for an appropriate positive integer n. This is equivalent to the

existence of an isometric Γ-equivariant embedding of V into ⊕n
i=1!

2(Γ) for an appro-

priate positive integer n or to the existence of an orthogonal Γ-equivariant projection

P : ⊕n
i=1!

2(Γ) −→ ⊕n
i=1!

2(Γ) whose image is isometrically Γ-isomorphic to V for an

appropriate positive integer n.
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Definition 4.2. A morphism of Hilbert Γ-modules f : U −→ V is a bounded Γ-

equivariant operator. f : U −→ V is called a weak isomorphism if its kernel is trivial

and its image is dense.

The category CΓ is not abelian. Indeed, any morphism f : U −→ V which is

injective and has dense image is both monomorphic and epimorphic (a morphism u

is called epimorphism if uu1 = uu2 implies u1 = u2; similarly, a morphism u is called

monomorphism if u1u = u2u implies u1 = u2); it is not an isomorphism unless f is

onto.

We now take a look at homological algebra concepts in the category of Hilbert

Γ-modules CΓ. A Hilbert Γ-chain complex C = (C∗, c∗) is a sequence of Hilbert

Γ-modules

. . .
cn+1−−→ Cn

cn−→ Cn−1
cn−1−−→ . . .

such that cn+1cn = 0 holds for n ∈ Z. The homology of C is defined by

Hn(C) = Ker(cn)/Im(cn+1)

and the reduced homology of C is defined by

Hn(C) = Ker(cn)/Im(cn+1)

C is called exact at Cn if Ker(cn) = Im(cn+1) while C is called weakly exact at Cn
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if Ker(cn) = Im(cn+1). Analogous statements are used to define the corresponding

concepts for cohomology.

We now introduce the notions of Γ-trace and Γ-dimension of a Hilbert Γ-module.

The standard trace trΓ : N (Γ) −→ C of the group von Neumann algebra N (Γ) is

defined by:

α =
∑

g∈Γ

αgg +−→ α1

where 1 ∈ Γ is the unit element of the group Γ. This trace extends to matrices:

trΓ : Mn×n

(
N (Γ)

)
−→ C

by sending a matrix to the sum of the traces of the diagonal entries.

Definition 4.3. Let V be a Hilbert Γ-module of finite type. The Γ-dimension of V

is defined by:

dimΓ(V ) = trΓ(p) ∈ [0,∞)

where p : ⊕n
i=1!

2(Γ) −→ ⊕n
i=1!

2(Γ) is any orthogonal N (Γ)-projection whose image is

isometrically N (Γ)-isomorphic to V .

It is not hard to check that the definition above is independent of the choice

of the projection. We next list some properties of the Γ-dimension that show why

this invariant is called a dimension. The next lemma is well-known; for a proof see

Theorem 1.12 of [21] or [17].
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Lemma 4.4. Let U , V and W be Hilbert Γ-modules of finite type. Then:

i) Faithfulness:

dimΓ(U) = 0 iff U = 0

ii) Monotonicity:

If U ⊆ V then dimΓ(U) ≤ dimΓ(V )

iii) Continuity: If U1 ⊇ U2 ⊇ . . . is a nested sequence of Hilbert Γ-modules of U then:

dimΓ

( ∞⋂

n=1

Un

)
= lim

n→∞
dimΓ(Un)

iv) Additivity: If

0→ U
j−→ V

q−→W → 0

is weakly exact then

dimΓ(V ) = dimΓ(U) + dimΓ(W )

v) Multiplicativity: If H is a subgroup of finite index m in Γ then

dimH(U) = mdimΓ(U)

We give some examples. First, we have dimΓ(!2(Γ)) = 1 and dimΓ(⊕n
i=1!

2(Γ)) = n.

If Γ is a finite group of order |Γ| and U is a Hilbert Γ-module of finite type then

dimΓ(U) = 1
|Γ|dim U (where dim U denotes the usual dimension of a finite dimensional

vector space).
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If F is a finite subgroup of Γ, then !2(Γ/F ), the space of square summable

functions on Γ/F , can be identified with the subspace of !2(Γ) consisting of the

square summable functions on Γ which are constant on each coset. This subspace

is clearly closed and Γ-invariant; hence, !2(Γ/F ) is a Hilbert Γ-module. We have

dimΓ(!2(Γ/F )) = 1/|F | (see 3.2.13 on page 16 of [13]).

In the case Γ = Z we have a good understanding of the Γ-dimension because

of the existence of the Fourier transform. The Fourier transform is an isomorphism

of !2(Γ) with L2(S1) where n ∈ Z acts on L2(S1) by f(z) +→ znf(z). Consider on

the unit circle S1 ⊂ C the Lebesgue measure renormalized such that m(S1) = 1. If

A ⊂ S1 is measurable then the subspace EA of functions in L2(S1) that vanish outside

A is closed and invariant. Then one can show dimΓ(EA) = m(A). As a consequence,

measure theory on the circle is a particular case of Γ-dimension theory.

!2-homology and !2-Betti numbers

Let G be a discrete group. A G-complex is a CW complex X together with a cellular

action of G on X. This means that each g ∈ G permutes the cells of X. A G-complex

is called a geometric G-complex if the action is proper (i.e., each cell stabilizer is finite;

if σ is an i-cell of X we denote by Gσ the stabilizer of σ) and cocompact (i.e., X/G
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is compact). A CW complex X is called regular if the characteristic map of each cell

is an embedding (so that the boundary of each cell is an embedded sphere).

Let Y be a geometric G-complex. Define C(2)
i (Y ) to be the vector space of (infinite)

cellular i-chains on Y with square summable coefficients. Equivalently,

C(2)
i (Y ) = Ci(Y )⊗Z[G] !

2(G) = Ci(Y ; !2(G))

where Ci(Y ) denotes the ordinary i-chains on Y . As a Z[G]-module, Ci(Y ) can be

decomposed as

Ci(Y ) =
∑

Z[G/Gσ]

where the sum runs over G-orbits of i-cells σ and Z[G/Gσ] denotes the permutation

module Z[G]⊗Z[Gσ ] Z. Similarly, C(2)
i (Y ) can be decomposed as

C(2)
i (Y ) =

∑
!2(G/Gσ)

where the sum runs over G-orbits of i-cells σ and !2(G/Gσ) = !2(G) ⊗C[Gσ ] C can

be thought as the Hilbert space of all l2-functions on G/Gσ. Since there are a finite

number of such orbits, C(2)
i (Y ) is the direct sum of a finite number of such spaces.

Hence, C(2)
i (Y ) is a Hilbert G-module.

Since dual Hilbert spaces are canonically isomorphic, there is a canonical isomor-

phism between !2-chains and !2-cochains:

C(2)
i (Y ) ∼= Ci

(2)(Y )
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Define the boundary map di : C(2)
i (Y ) → C(2)

i−1(Y ) and the coboundary map

δi : C(2)
i (Y )→ C(2)

i+1(Y ) by the usual formulae. Then the boundary and the cobound-

ary maps are G-equivariant, bounded linear maps. The coboundary map δi can be

identified with d∗i+1 (the adjoint of di+1).

Thus, (C(2)
∗ (Y ), d∗) is a G-Hilbert chain complex and (C(2)

∗ (Y ), δ∗) is a G-Hilbert

cochain complex. The reduced !2-homology of Y is defined as the reduced !2-

homology of (C(2)
∗ (Y ), d∗) and is denoted by Hi(Y ). The cohomological version is

defined similarly and is denoted Hi(Y ). Since we will make no use of the unreduced

!2-homology we drop the word reduced but we always mean reduced when we talk

about !2-homology or cohomology.

The subspaces of C(2)
i (Y ): Ker di, Ker δi, Im di+1 and Im δi−1 consist of !2-cycles,

!2-cocycles, !2-boundaries and !2-coboundaries, respectively.

If X is a G-stable subcomplex of Y , then (Y,X) is called a pair of geometric

G-complexes. The (reduced) !2-homology (or !2-cohomology) Hi(Y,X) is defined

in the usual manner. Versions of most of the Eilenberg-Steenrod Axioms such as

functoriality, weak exact sequence of a pair, excision, Mayer-Vietoris sequences and

the Künneth Formula hold for Hi(Y,X). Similar results hold for the contravariant

!2-cohomology functor. We refer the reader to [21] for a detailed explanation of all

these properties. In the next chapter we state some of these results in our notation.
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CHAPTER 5

!2-HOMOLOGY OF BUILDINGS

In this chapter we recall definitions, notations and basic results related to !2-homology

of buildings. Davis and Okun started in [13] the study of !2-homology of right-angled

buildings of constant thickness 2. Almost all material in this chapter is a direct

reformulation of definitions, notations and basic results from [13] in the more general

case of right-angled buildings of thickness t = (ti)i∈I .

Definitions, notation and the !2-Euler characteristic

Let L be a flag complex. Associated to L we have a right-angled Coxeter system

(WL, S) and two other simplicial complexes, KL and the Davis complex ΣL. Given

t = (ti)i∈S, where ti are positive integers, we have constructed a group GL and the

Davis realization Σ(t, L) of a building of thickness t (whose apartments are copies of

ΣL).

ht
i (L) := Hi(Σ(t, L))
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If A is a full subcomplex of L

ht
i (A) := Hi(GLΣ(t, A))

If (L, A) is a pair of flag complexes

ht
i (L, A) := Hi(Σ(t, L), GLΣ(t, A))

The !2-Betti numbers are defined as follows:

βt
i (L) := dimGL(ht

i (L))

βt
i (A) := dimGL(ht

i (A))

βt
i (L, A) := dimGL(ht

i (L, A))

The notation in the previous two definitions is not confusing since Hi(GLΣ(t, A)

is the induced representation from Hi(Σ(t, A) (see 2.4.5 and 6.1.4 of [13]) and (see

3.2.12 of [13]) dimGL(Hi(GLΣ(t, A))) = dimGA(Hi(Σ(t, A))).

The !2-Euler characteristic is defined as expected:

χt(L) :=
∑

(−1)iβt
i (L)

The following result is well-known.

Theorem 5.1. (Atiyah’s Formula) Let L be a flag complex and let G the group

associated to Σ(t, L). Then

χt(L) =
∑

σ

(−1)dim(σ)

|Gσ|
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where the sum runs over all orbits of cells in Σ(t, L) and Gσ denotes the stabilizer of

the cell σ.

Proof. A standard homological algebra argument shows that

∑

i

(−1)iβt
i (L) =

∑

i

(−1)icti (L)

where cti (L) = dimG(C(2)
i (Σ(t, L))) = dimG(⊕σ!2(G/Gσ))(the last sum runs over

orbits of i-cells). Since dimG(!2(G/Gσ)) = 1/|Gσ| the result follows.

A surprising connection between the !2-Euler characteristic and the growth series

of WL was proved by Dymara in [16].

Theorem 5.2. Let L be a flag complex and denote by WL(t) the growth series of the

group WL. Then

χt(L) =
1

WL(t)

Proof. We look at the formula for χt(L) given by the previous theorem. By Remark

3.2 we have |Gσ| = WS(σ)(t) for each simplex σ in K. But

∑

σ

(−1)dim(σ)

WS(σ)(t)
=

∑

T⊂S

( ∑

σ:S(σ)=T

(−1)dim(σ)

WT (t)

)

by grouping together simplices σ that have the same S(σ) and summing over T ⊂ S.

On the other hand we have

∑

σ:S(σ)=T

(−1)dim(σ)

WT (t)
=

1

WT (t)

∑

σ:S(σ)=T

(−1)dim(σ) =
1− χ(∂KT )

WT (t)
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So we get

χt(L) =
∑

T∈S

1− χ(∂KT )

WT (t)
=

1

WL(t)

where the last equality is given by Lemma 3.4.

Properties

The first four theorems are reformulations of properties from [13] which were proved

there in the case t = 1.

Theorem 5.3. (The exact sequence of a pair) Let L be a flag complex and A a full

subcomplex of L. The sequence

→ ht
i (A)→ ht

i (L)→ ht
i (L, A)→

is weakly exact.

Theorem 5.4. (Excision) Let L be a flag complex and A a full subcomplex of L. Let

T be a set of vertices of A such that the open star of any vertex in T is contained in

the interior of A. Then,

ht
i (L, A) ∼= ht

i (L− T, A− T )

Theorem 5.5. (The Mayer-Vietoris sequence) Suppose L = L1 ∪L2, where L is flag

complex and L1 and L2 (and therefore, L1 ∩ L2) are full subcomplexes of L.

30



i) The Mayer-Vietoris sequence

→ ht
i (L1 ∩ L2)→ ht

i (L1)⊕ ht
i (L2)→ ht

1(L)→

is weakly exact.

ii) ht
i (L, L1 ∩ L2) ∼= ht

i (L1, L1 ∩ L2)⊕ ht
i (L2, L1 ∩ L2)

iii) χt(L) = χt(L1) + χt(L2)− χt(L1 ∩ L2)

Lemma 5.6. (The Künneth Formula) Let L1 and L2 be flag complexes and denote

by L1 ∗ L2 their join. Then,

βt
k(L1 ∗ L2) =

∑

i+j=k

βt
i (L1)β

t
j (L2)

Lemma 5.7. (0-dimensional Betti number) Let L be a flag complex.

i) If WL is finite then βt
0(L) =

1

W (t)
and βt

i (L) = 0, for i &= 0.

ii) If WL is infinite then βt
0(L) = 0.

Proof. i) We give a direct proof of this fact. If WL (and therefore GL) is finite the

complex Σ(t, L)) is finite. Being contractible the only non-trivial !2-Betti number is

in dimension zero and equal to 1/|GL|. By Remark 3.2 |GL| = W (t).

ii) This follows from 2.5.1 of [13].
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Lemma 5.8. i) When L = ∅ we have

βt
i (∅) =






1 if i = 0,

0 if i &= 0.

ii) When L = P1 is one point we have

βt
i (P1) =






1

t + 1
if i = 0,

0 if i &= 0.

iii) Given a k-simplex σ we have

βt
i (σk) =






∏k
j=0

1

tj + 1
if i = 0,

0 if i &= 0.

Proof. Since W∅ is trivial, WP1 = Z2 and Wσk
= (Z2)k+1 the result follows immedi-

ately from i) of the previous lemma and Remark 3.2.

Lemma 5.9. Suppose that L = L1 ∪ L2 and L1 ∩ L2 equals ∅ or P1 or σ1. Then:

(i) For i ≥ 2 we have βt
i (L) = βt

i (L1) + βt
i (L2)

(ii) For i = 1, if L1 and L2 are not simplices then

βt
1(L) =






βt
1(L1) + βt

1(L2) + 1 if L1 ∩ L2 = ∅,

βt
1(L1) + βt

1(L2) +
1

t1 + 1
if L1 ∩ L2 = P1,

βt
1(L1) + βt

1(L2) +
1

(t1 + 1)(t2 + 1)
if L1 ∩ L2 = σ1
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Proof. i) This follows easily from the Mayer-Vietoris sequence and the fact that

βt
i (L1 ∩ L2) = 0 for i ≥ 1.

ii) This follows from the Mayer-Vietoris sequence and the previous lemma.

Lemma 5.10. Let P2 denote the disjoint union of 2 points. Then

βt
i (P2) =






t1t2 − 1

(t1 + 1)(t2 + 1)
if i = 1,

0 if i &= 1.

Proof. Since P2 = P15P1 we have WP2
∼= Z2∗Z2 which is infinite. So βt

0(P2) = 0. The

only possible non-trivial !2-Betti number is in dimension one and equal to −χt(P2).

But χt(P2) = χt(P1) + χt(P1)− χt(∅) and the formula follows.

Lemma 5.11. (The !2-Betti numbers of a suspension) Let L be a flag complex and

let SL denote the suspension over L. Then

βt
i (SL) =

t1t2 − 1

(t1 + 1)(t2 + 1)
βt

i−1(L)

Proof. Note that SL = P2 ∗ L. The result follows from the Kuneth Formula and the

previous lemma.

As an example, let ! = SP2 denote a 4-gon. Then

βt
i (!) =






(t1t3 − 1)(t2t4 − 1)

(t1 + 1)(t2 + 1)(t3 + 1)(t4 + 1)
if i = 2,

0 if i &= 2.
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Lemma 5.12. Let Pk denote the disjoint union of k points, k ≥ 2. Then all !2-Betti

numbers are trivial except in dimension 1, where

βt
1(Pk) = −1 +

k∑

i=1

ti
ti + 1

Proof. Since the group is infinite and Σ(t, Pk) is one-dimensional, the only non-trivial

!2-Betti number is in dimension 1 and equals −χt(Pk). An easy inductive argument

shows the formula to be true (since Pk is obtained by a disjoint union of Pk−1 and P1).

For k = 2 it easily seen that this formula agrees with the previously obtained formula

for βt
1(P2). The result follows in general since χt(Pk) = χt(Pk−1)+χt(P1)−χt(∅) and

χt(P1)− χt(∅) =
1

tk + 1
− 1 = − tk

tk + 1

Remark 5.13. Elementary algebraic manipulations show that βt
1(Pk) can also be writ-

ten as

βt
1(Pk) = k − 1−

k∑

i=1

1

ti + 1

Lemma 5.14. (The !2-Betti numbers of a cone) Let L be a flag complex and let CL

denote the cone over L. Then

βt
i (CL) =

1

t1 + 1
βt

i (L)
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Proof. As CL = P1∗L, the result follows from the Künneth Formula and the !2-Betti

numbers of P1.
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CHAPTER 6

LOW DIMENSIONAL RESULTS

This chapter contains the most important contributions of this thesis.

The f-polynomial, h-polynomial and !2-Euler characteristic

In this section we introduce a several variables version of the f -polynomial and h-

polynomial. In this more general context the ”h-polynomial” is actually a rational

function but has many properties that show that indeed this is the correct version

of the h-polynomial in several variables. We establish connections with the !2-Euler

characteristic. When L is a flag triangulation of a sphere we obtain a new formula

for the !2-Euler characteristic.

Let us recall the definitions of the f -polynomial and h-polynomial. Suppose L is

a finite simplicial complex of dimension m − 1, that fi is the number of i-simplices

in L and that f−1 = 1. The f -vector of L is the m-tuple (f−1, f0, . . . , fm−1) and the
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h-vector (h0, . . . , hm) is defined by the equation :

m∑

i=0

fi−1(t− 1)m−i =
m∑

i=0

hit
m−i.

The f -polynomial f(t) = fL(t) and the h-polynomial h(t) = hL(t) are defined by :

f(t) =
m∑

i=0

fi−1t
i

h(t) =
m∑

i=0

hit
i

Remark 6.1. It is immediate (in the equation defining the h-vector replace t by t−1

and multiply both sides by tm) that the relation between the f -polynomial and h-

polynomial can be written as:

h(t) = (1− t)mf
( t

1− t

)

or, replacing t by −t:

h(−t) = (1 + t)mf
( −t

1 + t

)

It is h(−t) that is of interest to topology.

As an example, let’s compute the f -polynomial and h-polynomial for a triangu-

lation of a 1-sphere as a 4-gon. Then :

f(t) = 1 + 4t + 4t2

h(t) = t2 + 2t + 1
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We now proceed to define the corresponding concept of f -polynomial and h-polynomial

in several variables. Given a finite simplicial complex L as above, denote by S(L) the

set of simplices in L together with the empty set ∅. Let v1, v2, ..., vn be the vertices of

L and t = (t1, t2, ..., tn). If σ ∈ S(L) let I(σ) = {i|vi ∈ σ}. We define the monomials:

tσ =
∏

i∈I(σ)

ti and t∅ = 1

Similarly,
(
−t

1 + t

)

σ

=
∏

i∈I(σ)

−ti
1 + ti

In this several variables context the correct definition of the f -polynomial f(t) = fL(t)

is defined by:

f(t) =
∑

σ∈S(L)

tσ

while the ”h-polynomial” H(t) = HL(t) is defined by:

H(t) = f

(
−t

1 + t

)

As an example, if L is a 4-gon then t = (t1, t2, t3, t4) and

f(t) = 1 + t1 + t2 + t3 + t4 + t1t2 + t2t3 + t3t4 + t4t1

while

H(t1, t2, t3, t4) = f

(
−t1

1 + t1
,
−t2

1 + t2
,
−t3

1 + t3
,
−t4

1 + t4

)
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Remark 6.2. When t1 = t2 = ... = tm = t we obtain the one variable version of the

f -polynomial but

H(t) =
h(−t)

(1 + t)m

Theorem 6.3. Let L be a flag complex and Σ(t, L) the Davis realization of a building

of thickness t. Then:

χt(L) = fL

(
−t

1 + t

)

Proof. The following formula is given by Lemma 3.3:

1

W (t)
=

∑

T∈S

(−1)Card(T )

WT (t−1)

where W denotes the right-angled Coxeter group associated to Σ(t, L) and S denotes

the poset of spherical subsets of S.

The left hand side of the formula above equals χt(L) by Theorem 5.2. We look

at the right hand side of the formula above. The spherical subsets T can be viewed

as simplices in L. Fix T and suppose T corresponds to σ. We have I(σ) = T and

WT (t) =
∏

i∈T

(ti + 1)

Since

1

(t−1
1 + 1)(t−1

2 + 1)...(t−1
k + 1)

=
t1t2...tk

(t1 + 1)(t2 + 1)...(tk + 1)
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we get

(−1)Card(T )

WT (t−1)
=

∏

i∈T

−ti
1 + ti

=

(
−t

1 + t

)

σ

Summing over all T ∈ S we obtain the sought for formula.

We now restrict our attention to triangulations of spheres. We prove another

formula for the !2-Euler characteristic but here we take a ”dual” approach.

Let P n be an n-dimensional simple convex polytope (an n-dimensional convex

polytope is simple if the number of codimension-one faces meeting at each vertex

is n; equivalently, P n is simple if the dual of its boundary complex is an (n − 1)-

dimensional simplicial complex). The f -polynomial and h-polynomial (as well as their

several variables analogue) associated to a finite simplicial complex were defined in

this chapter. Similarly, for an n-dimensional simple convex polytope the associated

f -polynomial and h-polynomial are defined as those associated to the dual of its

boundary complex.

Let P n be an n-dimensional simple convex polytope. Let F1, F2,... , Fm be the

codimension-one faces of P n (also called facets). Let F denote the set of all faces of

P n and t = (t1, t2, ..., tm). If F ∈ F then I(F ) = {i|F ⊂ Fi}. We have:

tF =
∏

i∈I(F )

ti and tP = 1
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Similarly,
(
−t

1 + t

)

F

=
∏

i∈I(F )

−ti
1 + ti

We now proceed to introduce a different formula for the h-polynomial in several

variables. The vertices and edges of a polytope form in an obvious way a non-

oriented graph. Following [2] (pp 93-96) we introduce an orientation on the edges

of P n using an admissible vector. A vector w ∈ Rn is called admissible for P n if

< x,w >&=< y,w > for any two vertices x and y of P n. Geometrically, this means

that no hyperplane in Rn with w as a normal contains more than one vertex of P n.

It is shown in [2] (Theorem 15.1, page 93) that the set of admissible vectors is dense

in Rn. Any vector w which is admissible for P n induces an orientation of the edges

of P n according to the following rule: An edge determined by vertices x and y is

oriented towards x (and away from y) if

< x,w >≥< y,w >

For each vertex v ∈ P n, denote by F in
v ∈ F the face determined by the inward-

pointing edges at v and by F out
v ∈ F the face determined by the outward-pointing

edges at v. We have I(v) = {i|v ∈ Fi}. Moreover:

I(F in
v ) = {i|F in

v ⊂ Fi} and I(F out
v ) = I(v)− I(F in

v )
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Using an admissible vector w we now define:

Hw(t) =
∑

v

(−t)F out
v

(1 + t)v
=

∑

v

∏
i∈I(F out

v )(−ti)∏
i∈I(v)(1 + ti)

As an example, if P 2 is a 4-gon then

Hw(t1, t2, t3, t4) =
(−t1)(−t2)

(1 + t1)(1 + t2)
+

(−t2)

(1 + t2)(1 + t3)

+
(−t1)

(1 + t1)(1 + t4)
+

1

(1 + t3)(1 + t4)

which can be simplified to

Hw(t1, t2, t3, t4) =
(1− t1t3)(1− t2t4)

(1 + t1)(1 + t2)(1 + t3)(1 + t4)

To prove the next theorem we need the following combinatorial lemma.

Lemma 6.4. Let X be an index set with n elements. Then:

∑

A⊂X

(−1)n−|A|(1 + t)A = (−t)X

Proof. The following identity is well-known:

(x− u)X =
∑

A⊂X

xn−|A|(−u)A

where x = (x, ..., x). Let u = 1 + t and evaluate the above identity when x = 1.

Theorem 6.5. Let P n be an n-dimensional simple convex polytope and denote by

L the dual of its boundary complex. Suppose L is a flag complex and let w be an

admissible vector for P n. Then

χt(L) = Hw(t)
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Proof. To prove this formula we use a different ”cell” structure on Σ(t, L) obtained

with the help of an admissible vector. We refer the reader to [11] for more details on

this construction. There is one orbit of (open) ”cells” for each vertex v ∈ P n. The

dimension of Cv is dim(F in
v ). Cv is constructed as follows. Let F̂ in

v denote the union

of the relative interiors of those faces F ′ ∈ F which are contained in F in
v and contain

v. The ”cell” Cv consists of F̂ in
v and all its translates under GF in

v
. To prove our

formula we have to show that the contribution cv of Cv to the !2-Euler characteristic

is exactly

(−t)F out
v

(1 + t)v

For a face F we denote by GF its stabilizer. If I is an index set put |GI | =
∏

i|∈I(ti+1).

Then |GF | = |GI(F )|. We have:

cv =
∑

F ′⊂F̂ in
v

(−1)(dim(F ′)

|GF ′| =
∑

F ′⊂F̂ in
v

(−1)(dim(F ′) |Gv |
|GF ′ |

|Gv|
=

∑

F ′⊂F̂ in
v

(−1)(dim(F ′)|GI(v)−I(F ′)|
|Gv|

Since |Gv| = (1 + t)v the proof is complete if

∑

F ′⊂F̂ in
v

(−1)(dim(F ′)|GI(v)−I(F ′)| = (−t)F out
v

Written explicitly, the above formula coincides with the identity proved in the previ-

ous lemma. Summing over vertices of P n, the proof is completed.

Remark 6.6. It follows from the previous theorem that Hw(t) does not depend on the

choice of the admissible vector w.
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Remark 6.7. Let L be a flag complex, P n its dual simple polytope and w an admissible

vector for P . Then the !2-Euler characteristic, the growth series of the associated

Coxeter group W , the associated f and ”h”-polynomials are related as follows:

χt(L) =
1

W (t)
= f

(
−t

1 + t

)
= Hw(t) = H(t)

This follows from Theorems 5.2, 6.3 and 6.5

Remark 6.8. Writing the corollary above in one variable we get:

χt(L) =
1

W (t)
= f

(
−t

1 + t

)
=

hw(−t)

(1 + t)n
=

h(−t)

(1 + t)n

where hw(t) =
∑

v tind(v) where ind(v) denotes the index of the vertex v with respect

to w in P .

Are the roots of the h-polynomial real ?

In this section we look at a conjecture due to Januszkiewicz and its connection with

The Flag Complex Conjecture.

As an example, let’s compute the h-polynomial for a triangulation of a 1-sphere

as a flag complex. This means we have a p-gon with p ≥ 4. Then :

h(−t) = t2 − (p− 2)t + 1

It is easy to see that this polynomial has real roots if and only if (p− 2)2 − 4 ≥ 0 i.e

p ≥ 4.
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For a second example, if L2 is a triangulation of a 2-sphere we have :

h(−t) = −t3 + f−2
2 t2 − f−2

2 t + 1

where f denotes the number of 2-simplices of L2. This can be simplified to:

h(−t) = (1− t)(t2 + 4−f
2 t + 1)

and this polynomial has real roots if and only if (4−f
2 )2 − 4 ≥ 0 i.e f(f − 8) ≥ 0.

Following [6] (page 136), if Lm−1 is a triangulation of a (m− 1)-sphere then :

h(t) = tmh(t−1)

This formula (which means that hi = hm−i) is equivalent to the Dehn-Sommerville

Relations. It also implies that if α is a root of h(t) then α−1 is a root, as well.

We now state the two conjectures that we look at in this section.

Conjecture 6.9. (Januszkiewicz) If Lm−1 is a triangulation of a (m − 1)-sphere

as a flag complex then the roots of h(−t) are real numbers.

Conjecture 6.10. (The flag complex conjecture)(Charney, Davis) Suppose

L2n−1 is a generalized homology sphere. If K is a flag complex, then (−1)nh(−1) ≥ 0.

The Flag Complex Conjecture was shown to be true for m = 2n = 4 in [13], page

47, Theorem 11.2.1.

The following lemma is a purely elementary algebraic result.
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Lemma 6.11. Let p(t) = t4−at3 + bt2−at+1 be a polynomial with a, b ∈ R+. Then

all the roots of p(t) are real if :

a ≥ 4 , p(1) = −2a + b + 2 ≥ 0 and a2 − 4b + 8 ≥ 0

Proof. Suppose α, α−1, β, β−1 are the roots of p(t). Then :

p(t) = (t− α)(t− α−1)(t− β)(t− β−1)

which can be rewritten as

p(t) = (t2 − α′t + 1)(t2 − β′t + 1)

= t4 − (α′ + β′)t3 + (2 + α′β′)t2 − (α′ + β′)t2 + 1

where α′ = α + α−1 and β′ = β + β−1. Identifying the coefficients of p(t) we obtain

α′ + β′ = a and α′β′ = b− 2 and therefore (as roots of a quadratic equation)

α′ =
a +

√
a2 − 4b + 8

2
and β′ =

a−
√

a2 − 4b + 8

2

So, a first condition for the roots of p(t) to be real is a2 − 4b + 8 ≥ 0.

We now look at α. Since α + α−1 = α′ we get a quadratic equation in α which

has real roots if and only if

(α′)2 − 4 =
(a +

√
a2 − 4b + 8− 4

2

)(a +
√

a2 − 4b + 8 + 4

2

)
≥ 0

This is obviously the case if a ≥ 4.
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Similarly, for β, since β + β−1 = β′ we get a quadratic equation in β which has

real roots if and only if

(β′)2 − 4 =
(a−

√
a2 − 4b + 8− 4

2

)(a−
√

a2 − 4b + 8 + 4

2

)
≥ 0

If a ≥ 4 we have

a−
√

a2 − 4b + 8− 4 ≥ 0⇐⇒

a− 4 ≥
√

a2 − 4b + 8 ⇐⇒

a2 − 8a + 16 ≥ a2 − 4b + 8 ⇐⇒

4(−2a + b + 2) ≥ 0

which gives the third inequality needed to ensure that the roots of p(t) are real

numbers.

Theorem 6.12. The Januszkiewicz Conjecture is true for m ≤ 4.

Proof. For m = 1 the h-polynomial is h(−t) = −t + 1. The cases m = 2 and m = 3

follow from the first two examples of this section. In the case m = 3 we mention that

a flag complex has at least 8 2-simplices by Lemma A.2.

The case m = 4. In this case the h-polynomial is

h(−t) = t4 − at3 + bt2 − at + 1
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where a = f0 − 4 and b = 6 + f3 − 2f0. By the previous lemma is enough to

check three inequalities. We have a − 4 = f0 − 8 ≥ 0 because a flag complex that

triangulates a 3-sphere has at least 8 vertices by Lemma A.2. Also, a2 − 4b + 8 =

(f0 − 4)2 − 4(6 + f3 − 2f0) + 8 = f 2
0 − 4f3 ≥ 0 because of the following argument. It

is enough to show that f3 ≤ f 2
0 /4. The Upper Bound Theorem (Theorem 18.1, page

113 in [2]) guarantees that f3 ≤ 3f0− 10. But 3f0− 10 ≤ f 2
0 /4 (since 3x− 10 ≤ x2/4

is equivalent to x2 − 12x + 40 ≥ 0 which is obviously true for all real x) so the third

condition is satisfied.

Finally, h(−1) ≥ 0 by the Flag Complex Conjecture which is true for m = 4.

Our next result gives a sufficient condition for The Januszkiewicz Conjecture to

hold in dimension 5, i.e. for m = 5.

Lemma 6.13. If L4 is a triangulation of a 4-sphere as a flag complex and

f4 − 8f0 + 48 ≥ 0

then The Januszkiewicz Conjecture is true for m = 5.

Proof. In this case the h-polynomial is:

h(−t) = (1− t)(t4 − at3 + bt2 − at + 1)

where a = f0 − 6 and b = 10 − 2f0 + 1
2f4. By the previous Lemma is enough to

check three inequalities. We have a − 4 = f0 − 10 ≥ 0 because a flag complex that
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triangulates a 4-sphere has at least 10 vertices. Also, a2 − 4b + 8 = (f0 − 6)2 −

4(10− 2f0 + 1
2f4) + 8 = (f0 − 2)2 − 2f4 ≥ 0 because of the following argument. It is

enough to show that f4 ≤ (f0 − 2)2/2. The Upper Bound Theorem (Theorem 18.1,

page 113 in [2]) guarantees that f4 ≤ 4f0 − 18. But 4f0 − 18 ≤ (f0 − 2)2/2 (since

4x − 18 ≤ (x − 2)2/2 is equivalent to x2 − 12x + 40 ≥ 0 which is obviously true for

all x) so the third condition is satisfied.

Thus, the only remaining condition is −2a + b + 2 = −2(f0 − 6) + (10 − 2f0 +

1
2f4) + 2 = 1

2(f4 − 8f0 + 48) ≥ 0 i.e.

f4 − 8f0 + 48 ≥ 0

Remark 6.14. Analyzing the results we obtained thus far we see a pattern emerging.If

Lm−1 is a triangulation as a flag complex of a (m − 1)-sphere and h(t) denotes its

h-polynomial then a sufficient condition for The Januszkiewicz Conjecture to hold is

the following:

Case 1. For m = 2n is enough to check that (−1)nh(−1) ≥ 0 i.e The Flag Complex

Conjecture holds.

Case 2. For m = 2n − 1 is enough to have that (−1)nh1(−1) ≥ 0 where h1(t) is

the polynomial defined by h1(−t) = (1 − t)−1h(−t) (since t = 1 is a root of h(−t)
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when m is an odd number because h(−t) = (−t)mh(−t−1) ). It is easy to see that

this condition is equivalent to (−1)nh′(−1) ≥ 0 where h′(t) denotes the derivative of

h(t)(if p(t) = (t−1)p1(t) then p′(t) = p1(t)+(t−1)p′1(t) and therefore p′(1) = p1(1)).

We are now in position to state the following Conjecture.

Conjecture 6.15. If Lm−1 is a triangulation as a flag complex of a (m − 1)-sphere

, h(t) denotes its h-polynomial and h′(t) denotes its derivative then a sufficient con-

dition for The Januszkiewicz Conjecture to hold is one of the following:

(−1)nh(−1) ≥ 0 if m = 2n

or

(−1)nh′(−1) ≥ 0 if m = 2n− 1

A reformulation of our previous results gives the following Lemma.

Lemma 6.16. Conjecture 6.7 is true for m ≤ 5

Next, we want to discuss the case m = 6. Again, the corresponding technical

lemma is purely elementary.

Lemma 6.17. Let p(t) = t6 − at5 + bt4 − ct3 + bt2 − at + 1 be a polynomial with

a, b, c ∈ R+. Then all the roots of p(t) are real if :

a ≥ 6
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−4a + b + 9 ≥ 0

a2 − 3b + 9 ≥ 0

p(1) = −2a + 2b− c + 2 ≤ 0

(−2a3 + 9ab + 27a− 27c) + 2(a2 − 3b + 9)3/2 ≥ 0

(−2a3 + 9ab + 27a− 27c)− 2(a2 − 3b + 9)3/2 ≤ 0

Proof. Suppose α, α−1, β, β−1, γ, γ−1 are the roots of p(t). Then :

p(t) = (t− α)(t− α−1)(t− β)(t− β−1)(t− γ)(t− γ−1)

which can be rewritten as

p(t) = (t2 − α′t + 1)(t2 − β′t + 1)(t2 − γ′t + 1)

= t6 − (α′ + β′ + γ′)t5 + (3 + α′β′ + β′γ′ + γ′α′)t4 −

−[2(α′ + β′ + γ′) + α′β′γ′]t3 +

+(3 + α′β′ + β′γ′ + γ′α′)t2 − (α′ + β′ + γ′)t + 1

where α′ = α + α−1 , β′ = β + β−1 and γ′ = γ + γ−1. Identifying the coefficients of

p(t) we obtain

α′ + β′ + γ′ = a

α′β′ + β′γ′ + γ′α′ = b− 3
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α′β′γ′ = c− 2a

We now form the polynomial q(t) which has the roots α′, β′ and γ′:

q(t) = t3 − at2 + (b− 3)t− (c− 2a)

If the roots of this polynomial are all real and greater than 2 then the roots of p(t) are

all real. A set of sufficient conditions such that the roots of q(t) are real and greater

than 2 consists of:

1) q(2) ≤ 0

2) The roots of q′(t) are real and greater than 2.

3) The value of q(t) at the smallest root of q′(t) is non-negative and the value of

q(t) at the largest root of q′(t) is non-positive.

We now analyze these conditions:

1) q(2) = −2a + 2b− c + 2 = p(1), so a first condition is

−2a + 2b− c + 2 ≤ 0

2) The derivative of q(t) is:

q′(t) = 3t2 − 2at + (b− 3)

and its roots are:

t1 =
a−

√
a2 − 3b + 9

3
and t2 =

a +
√

a2 − 3b + 9

3
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A first obvious condition is a2 − 3b + 9 ≥ 0 while, if a ≥ 6 then the condition t1 ≥ 2

is equivalent to −4a + b + 9 ≥ 0. So, 2) is implied by the following three conditions:

a ≥ 6

a2 − 3b + 9 ≥ 0

−4a + b + 9 ≥ 0

3) Using Maple to compute and simplify the values of p(t) at t1 and t2 we obtain:

p(t1) =
1

27
(−2a3 + 9ab + 27a− 27c) +

2

27
(a2 − 3b + 9)3/2

and

p(t2) =
1

27
(−2a3 + 9ab + 27a− 27c)− 2

27
(a2 − 3b + 9)3/2

We note that:

1

27
(−2a3 + 9ab + 27a− 27c) = q(

a

3
)

and

a2 − 3b + 9 = −3q′(
a

3
)

Multiplying by 27 the inequalities p(t1) ≥ 0 and p(t2) ≤ 0 we obtain:

(−2a3 + 9ab + 27a− 27c) + 2(a2 − 3b + 9)3/2 ≥ 0

(−2a3 + 9ab + 27a− 27c)− 2(a2 − 3b + 9)3/2 ≤ 0
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Remark 6.18. Some of the conditions in the previous Lemma are automatically satis-

fied for the h-polynomial of a triangulation as a flag complex of a 5-sphere but some

reduce to stronger versions of The Upper Bound Theorem and The Lower Bound

Theorem.

In this case the h-polynomial is:

h(−t) = t6 − at5 + bt4 − ct3 + bt2 − at + 1

where a = f0 − 6, b = f1 − 5f0 + 15 and c = 20− 10f0 + 4f1 − f2

The first condition of the previous Lemma is a ≥ 6, which is equivalent to f0 ≥ 12.

But a flag complex that triangulates a 5-sphere has at least 12 vertices so the first

condition is satisfied.

The second condition of the previous Lemma is −4a+b+9 ≥ 0, which is equivalent

to f1 ≥ 9f0− 48. The corresponding inequality given by The Lower Bound Theorem

is f1 ≥ 6f0 − 48. It is obvious that our condition is not a consequence of this later

condition.

The third condition of the previous Lemma is a2− 3b+9 ≥ 0, which is equivalent

to f 2
0 + 3f0 − 3f1 ≥ 0. The corresponding inequality given by The Upper Bound

Theorem is f 2
0 − f0 − 2f1 ≥ 0. It is obvious that our condition is not a consequence

of this later condition.
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Computation of !2-Betti numbers

In this section we attempt to begin a systematic study of !2-Betti numbers for build-

ings for which L is a 1-dimensional flag complex. The first case we analyze is when

L is a tree.

Proposition 6.19. (!2-Betti numbers of a tree) Let T be a tree with at least 2 edges.

Then:

βt
i (T ) =






− 1

W (t)
if i = 1,

0 if i &= 1.

Proof. βt
0(T ) = 0 because G is infinite. The fact that βt

i (T ) = 0 for i ≥ 2 follows by

induction on the number of edges of the tree. Any tree T is obtained by one point

union of an one simplex σ1 and another tree T ′ (with one less edge than T ). By

Lemma 5.9, for i ≥ 2 we have βt
i (T ) = βt

i (T
′) + βt

i (σ1) = 0. Thus, the only non-zero

Betti number is βt
1(T ) = −χt(T ) = − 1

W (t)
.

When T is a tree with k edges and t = t we obtain a very simple formula.

Corollary 6.20. Let Tk be a tree with k edges, k ≥ 2. Then:

βt
i(Tk) =






(k − 1)t− 1

(t + 1)2
if i = 1,

0 if i &= 1.
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Proof. By the previous lemma we analyze only the case i = 1. We proceed by

induction on k. For k = 2, a tree with two edges is just a cone over P2. Hence,

βt
1(T2) =

1

t + 1

t− 1

t + 1
=

t− 1

(t + 1)2

Tk is obtained by one point union of an one simplex σ1 and another tree Tk−1. We

have χt(Tk) = χt(Tk−1) + χt(σ1)− χt(P1) i.e.

χt(Tk) =
−(k − 2)t + 1

(t + 1)2
+

1

(t + 1)2
− 1

t + 1
= −(k − 1)t− 1

(t + 1)2

The general case of a tree is treated next.

Lemma 6.21. Let T be a tree with at least 2 edges. The only non-zero !2-Betti

number of T is given by:

βt
1(T ) = −1 +

∑

i

ti
1 + ti

−
∑

(i,j)

titj
(1 + ti)(1 + tj)

where the first sum runs over all vertices of T and the second sum runs over all pairs

(i, j) such that {ti, tj} spans an edge of T .

Proof. Just like for the previous result we proceed by induction on the number of

edges of the tree. A tree with two edges is a cone over P2. It is easily verified that

this formula agrees with the formula previously obtained for the !2-Betti numbers of
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a cone. In general, whenever we add an edge ( corresponding to (tk−1, tk)) at a vertex

( corresponding to tk−1) the contribution to χt(T ) is

1

(tk−1 + 1)(tk + 1)
− 1

tk−1 + 1

which is easily seen to coincide to

− tk
tk + 1

+
tktk−1

(tk−1 + 1)(tk + 1)

The next case of interest is when L is n-gon, n ≥ 4. This case was solved by

Dymara in [15] in a more general setting. It states that !2-Betti numbers are concen-

trated in one dimension. Recall that R denotes the region of convergence of W (t).

Lemma 6.22. (!2-Betti numbers when L is a n-gon) Let L denote an n-gon, n ≥ 4.

We have:

(i) If t−1 ∈ R then the only non-trivial !2-Betti number is in dimension 2 and

βt
2(L) = 1−

∑

i

ti
1 + ti

+
∑

(i,j)

titj
(1 + ti)(1 + tj)

where the first sum runs over all vertices of L and the second sum runs over all

pairs (i, j) such that {ti, tj} spans an edge of L, i.e. (i, j) ∈ {(1, 2), (2, 3), ..., (n −

1, n), (n, 1)}.
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(ii) If t−1 /∈ R then the only non-trivial !2-Betti number is in dimension 1 and

βt
1(L) = −1 +

∑

i

ti
1 + ti

−
∑

(i,j)

titj
(1 + ti)(1 + tj)

where the first sum runs over all vertices of L and the second sum runs over all

pairs (i, j) such that {ti, tj} spans an edge of L, i.e. (i, j) ∈ {(1, 2), (2, 3), ..., (n −

1, n), (n, 1)}.

Proof. When L is an n-gon the only possibly non-trivial !2-Betti numbers are in

dimension 1 and 2. The result follows from Theorems 1 and 2 of [15] and the fact

that χt(L) can be rewritten as shown. We include here a sketch of the proof of

Dymara’s result.

If we determine βt
2(L) then βt

1(L) is completely determined since we can compute

χt(L). Therefore, we turn our attention to studying βt
2(L). We have C2

(2)(Σ(t, L)) ∼=

!2(GL). There is a bijection between the set of chambers of Σ(t, L) and elements

of GL. 1 ∈ GL corresponds to the fundamental chamber b of Σ(t, L) under this

bijection. Let p : GL +→ WL be the obvious map. In top dimension we have the

following harmonic cochain: for g ∈ GL put

φ(g) = (−tp(g))
−1

One can calculate that ||φ||2 =
∑

w∈W (tw)−1. Therefore, φ ∈ !2(GL) if and only

if t−1 ∈ R. Moreover, if φ ∈ !2(GL) then ||φ||2 = W (t−1). One can show that
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H2
(2)(Σ(t, L)) (realized here as the space of square-summable harmonic 2-cochains) is

non-zero if and only if t−1 ∈ R. So, if t−1 /∈ R then βt
2(L) = 0.

Suppose t−1 ∈ R. Define P ∈ N (GL) ⊂ !2(GL) by

P =
1

W (t−1)

∑

g∈GL

(−tp(g))
−1g

One can show that P is the orthogonal projection on the space of square-summable

harmonic 2-cochains. We have

βt
2(L) = trGL(P ) =

1

W (t−1)
=

1

W (t)
= χt(L)

This completes the sketch of this proof.

Again, when t = t we obtain explicit formulas (as in [15]). For an n-gon

W (t) =
(1 + t)2

1 + (2− n)t + t2

and the radius of convergence lies between (n − 2)−1 and (n − 3)−1. This gives the

following:

Corollary 6.23. Let L denote an n-gon, n ≥ 4. We have:

(i) If t ≥ n− 2 then the only non-trivial !2-Betti number is in dimension 2 and

βt
2(L) = 1− nt

(1 + t)2
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(ii) If t < n− 2 then the only non-trivial !2-Betti number is in dimension 1 and

βt
1(L) = −1 +

nt

(1 + t)2

We are now in position to compute !2-Betti numbers when L is any one-dimensional

flag complex that contains exactly one circuit. We begin with the following lemma.

Lemma 6.24. Let L′ = L ∪ T such that L ∩ T = P1 (with vertex coresponding to

ti1), where T is a tree and L is not a simplex. Then for i &= 2

βt
i (L

′) = βt
i (L)

and

βt
1(L

′) = βt
1(L) +

∑

i,=i1

ti
1 + ti

−
∑

(i,j)

titj
(1 + ti)(1 + tj)

where the first runs over all vertices of T except P1 and the second sum runs over all

pairs (i, j) such that {ti, tj} spans an edge of T .

Proof. This follows from Lemma 5.9 and Lemma 6.21. The terms

−1 +
ti1

1 + ti1
and

1

1 + ti1

cancel out.

Let L be a one-dimensional flag complex that contains only one circuit. This

means that L is obtained from an n-gon P , n ≥ 4 by repeated one point unions with
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trees T1, T2, ..., Tn at all vertices of P . Let R denote the region of convergence of the

growth series corresponding to P .

Proposition 6.25. (!2-Betti numbers when L contains only one circuit) Suppose L

is as above. We have:

i) If t−1 /∈ R then the only non-trivial !2-Betti number is in dimension 1 and

βt
1(L) = −1 +

∑

i

ti
1 + ti

−
∑

(i,j)

titj
(1 + ti)(1 + tj)

where the first sum runs over all vertices of L and the second sum runs over all pairs

(i, j) such that {ti, tj} spans an edge of L.

(ii) If t−1 ∈ R then non-trivial !2-Betti numbers appear in dimension 1 and 2:

βt
1(L) =

∑

i

ti
1 + ti

−
∑

(i,j)

titj
(1 + ti)(1 + tj)

where the first sum runs over all vertices of L−P , the second sum runs over all pairs

(i, j) such that {ti, tj} spans an edge of some Ti and

βt
2(L) = 1−

∑

i

ti
1 + ti

+
∑

(i,j)

titj
(1 + ti)(1 + tj)

where the first sum runs over all vertices of P and the second sum runs over all pairs

(i, j) such that {ti, tj} spans an edge of P .

Proof. Both parts follow from the previous lemma and Dymara’s result on !2-Betti

numbers of an n-gon.
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The above formulas are much simpler when t = t. An interesting case is when

t ≥ n− 2. Suppose that the number of edges of L not in P is k. Then

βt
i(Tk) =






1− n
t

(t + 1)2
if i = 2,

k
t

(t + 1)2
if i = 1,

0 if i &= 1, 2.

We begin discussing the case where L contains two circuits. Let P be an n-gon

and P ′ be an m-gon, n ≥ 4, m ≥ 4. The first three cases we analyze are disjoint

unions, one point unions and union of two polygons that have one edge in common.

It seems interesting to note that in all these cases βt
1(L) is non-zero, no matter the

value of t.

Lemma 6.26. (!2-Betti numbers of a disjoint union of two polygons) Let L = P ∪P ′

such that P ∩ P ′ = ∅ . Then

βt
i (L) =






βt
2(P ) + βt

2(P
′) if i = 2,

βt
1(P ) + βt

1(P
′) + 1 if i = 1,

0 if i &= 1, 2.

Proof. The result follows immediately from the Mayer-Vietoris sequence.
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Lemma 6.27. (!2-Betti numbers of a one point union of two polygons) Let L = P∪P ′

such that P ∩ P ′ = P1 (with t being the variable corresponding to P1). Then

βt
i (L) =






βt
2(P ) + βt

2(P
′) if i = 2,

βt
1(P ) + βt

1(P
′) +

1

t + 1
if i = 1,

0 if i &= 1, 2.

Proof. The result follows immediately from the Mayer-Vietoris sequence.

Lemma 6.28. (!2-Betti numbers of two polygons which have a common edge) Let

L = P ∪ P ′ such that P ∩ P ′ = σ1 (with (t1, t2) being the variables corresponding to

σ1). Then

βt
i (L) =






βt
2(P ) + βt

2(P
′) if i = 2,

βt
1(P ) + βt

1(P
′) +

1

(t1 + 1)(t2 + 1)
if i = 1,

0 if i &= 1, 2.

Proof. The result follows immediately from the Mayer-Vietoris sequence.

Remark 6.29. In all these cases the process can be iterated and corresponding formulas

can be written.

Before analyzing other cases when L contains more then one circuit we discuss !2-

Betti numbers and !2-homology of pairs (L, A), where L is as before a one-dimensional

flag complex and A is a full subcomplex.
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Lemma 6.30. Let Ik denote a triangulation of a 1-disc (with k edges, k ≥ 2) and let

∂Ik be its boundary. Then:

i) If t ≥ k − 1, βt
2(Ik, ∂Ik) =

t2 − (k − 1)t

(t + 1)2
and all other !2-Betti numbers are

trivial.

i) If t ≤ k − 1, βt
1(Ik, ∂Ik) = −t2 − (k − 1)t

(t + 1)2
and all other !2-Betti numbers are

trivial.

Proof. We compute

χt(Ik, ∂Ik) = χt(Ik)− χt(∂Ik) =
(k − 1)t− 1

(t + 1)2
− t− 1

t + 1
=

t2 − (k − 1)t

(t + 1)2

By Corollary 10.4 of [16] we have βt
2(Ik, ∂Ik) = 0 for t ≤ k − 1 and βt

2(Ik, ∂Ik) =

χt(Ik, ∂Ik) for t ≤ k − 1. The result follows since βt
0(Ik, ∂Ik) = 0.

Lemma 6.31. Let I denote a triangulation of a 1-disc and let P = {v0, ..., vn} be a

subset of the vertex set of I such that P is a full subcomplex of I and ∂I = {v0, vn}.

Denote by Ii the 1-disc that joins two consecutive points, vi−1 and vi of P . Then

ht
∗(I, P ) =

n⊕

i=1

ht
∗(Ii, ∂Ii)

Proof. The result follows by induction on n. For n = 3, let L1 = {v0} ∪ I2 and

L2 = {v2} ∪ I1. We have L1 ∪ L2 = I and L1 ∩ L2 = P . By ii) of Lemma 5.5 we get

ht
∗(I, P ) = ht

∗(L1, P )⊕ ht
∗(L2, P )
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By Excision, ht
∗(L1, P ) ∼= ht

∗(I1, ∂I1) and ht
∗(L2, P ) ∼= ht

∗(I2, ∂I2). Thus, the result

follows for n = 3.

Let n be arbitrary. Let L1 = {v0} ∪ I2 ∪ ... ∪ In and L2 = I1 ∪ {v2, ..., vn}. We

have L1 ∪ L2 = I and L1 ∩ L2 = P . By ii) of Lemma 5.5 we get

ht
∗(I, P ) = ht

∗(L1, P )⊕ ht
∗(L2, P )

By Excision, ht
∗(L1, P ) ∼= ht

∗(I2 ∪ ... ∪ In, {v1, ..., vn}) and ht
∗(L2, P ) ∼= ht

∗(I1, ∂I1).

Using the induction hypothesis for the first summand the result follows.

The lemma above can be used to compute the relative !2-homology for a pair (S, A)

when S is a polygon (i.e a triangulation of a 1-sphere) and A is a full subcomplex

consisting of points.

Proposition 6.32. Let S be a triangulation of a 1-sphere as a flag complex and let

Pk = {v1, ..., vk}, k ≥ 2, be a full subcomplex. Denote by Ii the 1-disc that joins two

consecutive points, vi and vi+1 of Pk. Then

ht
∗(S, Pk) =

k⊕

i=1

ht
∗(Ii, ∂Ii)

Proof. For k = 2, let L1 = I1 and L2 = I2. We have L1 ∪ L2 = S and L1 ∩ L2 = Pk.

By ii) of Lemma 5.5 we get

ht
∗(S, P2) = ht

∗(I1, ∂I1)⊕ ht
∗(I2, ∂I2)
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When k is arbitrary, let L1 = I1 ∪ {v3, ..., vk} and L2 = I2 ∪ ... ∪ Ik. We have

L1 ∪ L2 = S and L1 ∩ L2 = Pk. By ii) of Lemma 5.5 we get

ht
∗(S, P ) = ht

∗(L1, Pk)⊕ ht
∗(L2, Pk)

By Excision, ht
∗(L1, Pk) ∼= ht

∗(I1, ∂I1). Using the previous lemma to rewrite the second

term the result follows.

The following lemma is a good source of interesting examples. Let P2 denote, as

usual, two distinct points. Attach to P2 several 1-discs Ii (each Ii contains at least

two edges), i = 1, ..., k, along the boundary ∂Ii and denote by Lk the one-dimensional

flag complex obtained this way.

Lemma 6.33. With Lk defined as above we have:

ht
∗(Lk, P2) =

k⊕

i=1

ht
∗(Ii, ∂Ii)

Proof. The result follows by induction on k. The case k = 2 coincides with the case

k = 2 of the previous lemma.

Let k be arbitrary. With A = Lk−1 and B = Ik we have A ∪ B = Lk and

A ∩B = P2. By ii) of Lemma 5.5 we get

ht
∗(Lk, P2) = ht

∗(Lk−1, P2)⊕ ht
∗(Ik, ∂Ik)

Using the induction hypothesis to rewrite the first term we obtain the desired formula.
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Remark 6.34. We discuss in detail, for t = t, the following example. Let S denote a

4-gon and Ik, k ≥ 2 denote a tringulation of a 1-disc. Let L = S ∪ Ik such that S ∩ Ik

is a disjoint union of two opposite vertices in S. We compute the !2-Betti numbers

of L. Clearly, the only possibly non-trivial !2-Betti numbers of L are in dimension

1 and 2. Recall that βt
i(S) = 0 for i &= 2 and βt

i(Ik) = 0 for i &= 1. Consider the

following portion of the Mayer-Vietoris sequence:

→ ht
1(S ∩ Ik)→ ht

1(S)⊕ ht
1(Ik)→ ht

1(L)→

Since ht
1(S) = 0, the first map coincides with the map induced by the inclusion

P2 ↪→ Ik. But we have seen (see Lemma 6.30) that this map is surjective for t ≥ k−1

and injective for t ≤ k − 1. Hence, if t ≥ k − 1 we have βt
1(L) = 0 while if t ≤ k − 1

we have βt
2(L) = βt

2(S). On the other hand, an easy computation shows that

χt(L) =
2t2 − (k + 1)t + 1

(t + 1)2

Summarizing:

i) If t ≥ k − 1 then

βt
i(L) =






t2 − (k + 1)t + 1

(t + 1)2
if i = 2,

0 if i &= 2.
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ii) If t ≤ k − 1 then

βt
i(L) =






t2 − 2t + 1

(t + 1)2
if i = 2,

−t2 + (k − 1)t

(t + 1)2
if i = 1,

0 if i &= 1, 2.

When L contains more then two circuits, aside from disjoint unions, one point

unions and union of several polygons that have one edge in common we can also

discuss the case of joins of Pn and Pm. It is interesting to note that in this case the

only non-trivial !2-Betti number is in dimension 2.

Lemma 6.35. (!2-Betti numbers of the join of n points and m points) The only

non-trivial !2-Betti number of Pn ∗ Pm is in dimension 2 and is given by

βt
2(Pn ∗ Pm) =

(
− 1 +

n∑

i=1

ti
ti + 1

)(
− 1 +

m∑

j=1

tn+i

tn+i + 1

)

Proof. Recall that the only non-trivial !2-Betti number of Pn (and Pm) is in dimension

1. The result follows from The Künneth Formula.
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APPENDIX A

SIMPLICIAL COMPLEXES AND FLAG COMPLEXES

In this section we recall definitions and notations regarding simplicial complexes and

flag complexes for the reader’s convenience. All this material can be found in [13].

Given a simplicial complex L, denote by S(L) the set of simplices in L together

with the empty set ∅. It is partially ordered by inclusion. Si(L) denotes the subset

of S(L) consisting of the simplices of dimension i. For notational purposes it will be

convenient to regard ∅ as an element of dimension −1 in S(L). S0(L) is the vertex

set of L.

A subcomplex A of L is a full subcomplex if whenever σ ∈ S(L) is such that the

vertex set of σ is contained in S(A), then σ ∈ S(A).

Suppose L1 and L2 are simplicial complexes. Define a partial order on S(L1) ×

S(L2) by (σ, τ) ≤ (σ′, τ ′) if and only if σ ≤ σ′ and τ ′ and τ ≤ τ ′. For example, if σ and

τ are simplices of dimension i and j, respectively, then S(σ)× S(τ) is isomorphic to

the poset of faces of a simplex of dimension i+j +1. We denote this simplex by σ ∗τ .
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It follows that there is a unique simplicial complex L1 ∗ L2, called the join of L1 and

L2, characterized by the property that S(L1∗L2) is isomorphic to S(L1)×S(L2). The

empty element of S(L1 ∗L2) corresponds to (∅, ∅) ∈ S(L1)×S(L2) and the vertex set

of L1∗L2 coresponds to (S0(L1)×{∅})({∅}×S0(L2)). As is well known, the geometric

realization of L1 ∗ L2 is homeomorphic to the space formed from L1 × L2 × [−1, 1]

by identifying points of the form (x1, x2,−1) with (x′1, x2,−1) and those of the form

(x1, x2, +1) with (x1, x′2, +1).

The cone on a simplicial complex L is the join of L with a single point, say v. We

will denote it by CL (or by CvL whe we wish to distinguish the cone point v).

The suspension of L, denoted by SL, is the join of L with a 0-sphere S0.

A symmetric and reflexive relation is an incidence relation. Suppose Q is a set

equipped with an incidence relation. A flag in Q is a nonempty finite subset of

pairwise related elements. There is an associated simplicial complex, Flag(Q), the

i-simplices of which are flags of cardinality i+1. (The vertex set of Flag(Q) is Q and

two vertices are connected by an edge if and only if they are incident.) An important

special case is where the incidence relation is given by symmetrizing the partial order

on a poset P . A flag in P is then a nonempty finite totally ordered subset. In

this case, Flag(P ) is called the derived complex of P . When P is the poset of cells

of a regular CW complex X, then Flag(P ) can be identified with the barycentric
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subdivision of X. As another example, if L is a simplicial complex, then Flag(S(L))

is the cone on the barycentric subdivision of L. The vertex corresponding to ∅ is the

cone point.

Given a poset P and an element x ∈ P , define a subposet by P≤x = {y ∈ P | y ≤

x}. Subposets P≥x, P<x and P>x are defined similarly. Associated to any poset P

there is a simplicial complex |P |, called its geometric realization; its vertex set is P

and a nonempty finite subset of P spans a simplex if and only if is totally ordered.

If v is a vertex of L, then Lv, the link of v in L, is the union of all simplices σ

such that

(a) v is not a vertex of σ and

(b) σ and v span a simplex of L.

The subcomplex Lv is characterized by the condition that

S(Lv) ∼= S(L)≥v.

The star of v in L, denoted St(v, L), is the union of all simplices which containv.

Thus, St(v, L) = CvLv. The open star of v is the complement of Lv in St(v, L). It is

an open subset of L.

Recall that a simplicial complex L is a flag complex if any nonempty finite set of

vertices which are pairwise connected by edges span a simplex in L. In other words,

71



L is a flag complex if and only if whenever a subcomplex isomorphic to the 1-skeleton

of a simplex is in L, then the entire simplex lies in L. (In [18] Gromov used the

terminology that L satisfies the ”no ∆ condition” for this property.)

If Q is a set with an incidence relation, then Flag(Q) is a flag complex. Conversely,

any flag complex arises from this construction. (Indeed, given a flag complex L, define

two vertices in S0(L) to be incident if they are connected by an edge. Then L ∼=

Flag(S0(L)).)

An m-gon (i.e., a triangulation of a circle into m edges) is a flag complex if and

only if m ≥ 4.

Any full subcomplex of a flag complex is a flag complex.

If v is a vertex of a flag complex L, then its link Lv and its star St(v, L) are both

full subcomplexes. Hence, they are both flag complexes.

The join of two flag complexes is again a flag complex. In particular, the cone

on a flag complex is a flag complex and the suspension of a flag complex is a flag

complex.

For any set of vertices T of L, let N(T ) be the union of all open stars of vertices

in T . We will use L − T to denote the complement of N(T ) in L. In other words,

L− T is the full subcomplex of L spanned by S0(L)− T . For example,for any vertex
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s of L, L − s denotes the complement of the open star of s in L. Similarly, if A is

any subcomplex of L, then we will write L− A for L− S0(A).

Lemma A.1. If Km−1 is a triangulation of a (m− 1)-sphere as a flag complex then

#(S0(K
m−1)) ≥ 2m

i.e. the number of vertices of Km−1 is no less then 2m.

Proof. We proceed by induction on m. If m = 2, as was pointed out above, a p-gon

is a flag complex if and only if p ≥ 4. But p also represents the number of vertices of

a p-gon.

Let v be a vertex of Km−1. Its link in Km−1, denoted Km−1
v , is a full subcomplex

which triangulates a (m− 2)-sphere. By the induction hypothesis, Km−1
v contains at

least 2(m− 2) vertices. But, besides v, Km−1 should contain at least another vertex.

Hence, Km−1 contains at least 2(m− 1) + 1 + 1 = 2m vertices.

In a similar way we obtain a lower bound for the number of codimension-one

simplices in the same setting.

Lemma A.2. If Km−1 is a triangulation of a (m− 1)-sphere as a flag complex then

#(Sm−1(K
m−1)) ≥ 2m

i.e. the number of top dimensional simplices of Km−1 is no less then 2m.

73



Proof. We proceed by induction on m. If m = 2, as was pointed out above, a p-gon is

a flag complex if and only if p ≥ 4. But p represents the number of top dimensional

simplices of a p-gon. Let v be a vertex of Km−1. Its link in Km−1, denoted Km−1
v , is

a full subcomplex which triangulates a (m− 2)-sphere. By the induction hypothesis,

Km−1
v contains 2m−1 (m− 2)-simplices. The star of v in Km−1, denoted St(v, Km−1)

is the cone over Km−1
v and hence contains exactly 2m−1 top dimensional simplices.

But, besides v, Km−1 should contain at least another vertex. Hence, Km−1 contains

at least 2m−1 more top dimensional simplices. Therefore, the total number of top

dimensional simplices is at least 2m−1 + 2m−1 = 2m simplices.
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