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Abstract. We construct examples of 4-dimensional manifolds M support-

ing a locally CAT(0)-metric, whose universal covers M̃ satisfy Hruska’s iso-
lated flats condition, and contain 2-dimensional flats F with the property that

∂∞F ∼= S1 ↪→ S3 ∼= ∂∞M̃ are nontrivial knots. As a consequence, we obtain

that the group π1(M) cannot be isomorphic to the fundamental group of any
Riemannian manifold of nonpositive sectional curvature. In particular, if K is

any locally CAT(0)-manifold, then M ×K is a locally CAT(0)-manifold which

does not support any Riemannian metric of nonpositive sectional curvature.

1. Introduction

Riemannian manifolds of nonpositive sectional curvature are a class of manifolds
featuring a rich interplay between their geometry, their topology, and their dynam-
ics. In the broader setting of geodesic metric spaces, we have the notion of a locally
CAT(0)-metric. These provide a metric space analogue of nonpositively curved
Riemannian manifolds, and many classic results concerning Riemannian manifolds
of nonpositive sectional curvature have now been shown to hold more generally for
locally CAT(0)-spaces. We are interested in understanding the difference, within
the class of closed manifolds, between (1) supporting a Riemannian metric of non-
positive sectional curvature, and (2) supporting a locally CAT(0) metric. A closed
topological manifolds equipped with a locally CAT(0)-metric will be called a locally
CAT(0)-manifold.

In low dimensions, there is no difference between these two classes. In two
dimensions, this follows easily from the classification of surfaces, while in three
dimensions, this follows from Thurston’s geometrization theorem (recently estab-
lished by Perelman). In contrast, Davis and Januszkiewicz [DJ] have constructed
examples, in all dimensions ≥ 5, of locally CAT(0)-manifolds which do not support
any Riemannian metric of nonpositive sectional curvature. In this paper, we deal
with the remaining open case.

Main Theorem: There exists a 4-dimensional closed manifold M with the follow-
ing four properties:

(1) M supports a locally CAT(0)-metric,

(2) M is smoothable, and M̃ is diffeomorphic to R4,
(3) π1(M) is not isomorphic to the fundamental group of any Riemannian

manifold of nonpositive sectional curvature.
(4) if K is any locally CAT(0)-manifold, then M × K is a locally CAT(0)-

manifold which does not support any Riemannian metric of nonpositive
sectional curvature.
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Let us briefly outline the idea behind the proof of our main result. First of all,
we introduce the notion of a triangulation of S3 to have isolated squares. Any such
triangulation has a well-defined type, which is the isotopy class of an associated link
in S3. In Section 3, we provide a proof that any given link in S3 can be realized
as the type of a suitable flag triangulation of S3 with isolated squares. In Section
4, we start with a flag triangulation L of S3 with isolated squares, whose type is
a nontrivial knot, and use it to construct the desired 4-manifold. This is done by
considering the right angled Coxeter group ΓL associated to the triangulation L, and
defining M to be the quotient of the corresponding Davis complex by a torsion free
finite index subgroup Γ ≤ ΓL. Standard properties of the triangulation L ensure
that M is smoothable, and that the Davis complex is CAT(0) and diffeomorphic to
R4. The isolated squares condition on the flag triangulation L ensures the Davis
complex satisfies Hruska’s isolated flats condition. The fact that the type of L is a
nontrivial knot ensures that the Davis complex contains a periodic 2-dimensional
flat F which is knotted at infinity. But now if M supported a Riemannian metric
g of nonpositive sectional curvature, the flat torus theorem ensures that one could
find a corresponding flat F ′ (in the g-metric) which is Γ-equivariantly homotopic
to F , and the isolated flats condition then forces F ′ to also be knotted at infinity.
However, in the Riemannian setting, it is easy to see that a codimension two flat
must be unknotted at infinity, yielding a contradiction.
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2. Previously known obstructions.

Our Main Theorem provides a new obstruction to the problem of finding a
Riemannian smoothing on a manifold M supporting a locally CAT(0)-metric. More
precisely, we say that such a manifold supports a Riemannian smoothing provided
one can find a smooth Riemannian manifold (N, g), with g a Riemannian metric
of nonpositive sectional curvature, and a homeomorphism f : N → M . In this
section, we briefly summarize the known obstructions to Riemannian smoothing.

2.1. Example: no smooth structure. Given a Riemannian smoothing f : N →
M of a locally CAT(0)-manifold M , one can forget the Riemannian structure and
simply view N as a smooth manifold. This immediately tells us that, if M has
a Riemannian smoothing, then it must be homeomorphic to a smooth manifold,
i.e. the topological manifold M must be smoothable. The first examples of as-
pherical topological manifolds not homotopy equivalent to smooth manifolds were
constructed (in all dimensions ≥ 13) by Davis and Hausmann [DH] by using the
reflection group trick. Non-smoothable aspherical PL-manifolds were constructed
(in all dimensions ≥ 8) in the same paper. For the sake of completeness, we now
sketch out a (slightly different) construction of a closed 8-dimensional locally CAT(-
1)-manifold M8 which is not homotopy equivalent to any smooth 8-manifold.

Recall that Milnor constructed [Mi] an 8-dimensional PL-manifold N8 which
is not homotopy equivalent to any smooth 8-manifold. Milnor’s example had the
property that the second rational Pontrjagin class p2(N8) was not an integral class,
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and hence cannot be homeomorphic to a smooth manifold. Let us take N8 equipped
with a PL-triangulation. Charney and Davis [CD] developed a strict hyperbolization
process, which inputs a triangulated manifold M and outputs a piecewise hyperbolic
manifold h(M) equipped with a locally CAT(-1)-metric. Furthermore, they showed
that the hyperbolization process preserves rational Pontrjagin classes. In particular,
applying their strict hyperbolization process to N8, we obtain a locally CAT(-1)-
manifold h(N8), having the property that p2(h(N8)) fails to be integral, and hence
forcing h(N8) to be non-smoothable. Finally, we note that the Borel Conjecture
is known to hold for this class of aspherical manifolds (see [BL]), so if h(N8) was
homotopy equivalent to some smooth manifold, it would in fact be homeomorphic
to the smooth manifold (contradicting non-smoothability). Similar examples can
be constructed in all dimensions of the form n = 4k, with k ≥ 2 (see also the
discussion in [BLW, Section 5]).

2.2. Example: no PL structure. In a similar vein, it is also possible to construct
(topological) locally CAT(0)-manifolds that do not even support any PL-structures.
We recall such an example from [DJ, Section 5a]. We let M4(E8) denote the E8

homology manifold. Recall that this space is constructed by first plumbing together
eight copies of the tangent disk bundle to S2, according to the pattern given by
the E8 Dynkin diagram. This results in a smooth 4-manifold with boundary N4,
whose boundary ∂N4 is homeomorphic to Poincaré’s homology 3-sphere. Coning
off the boundary gives the space M4(E8), a simply connected homology manifold of
signature 8 with one singular point. Taking a triangulation of N4, one can extend
it (by coning on the boundary) to a triangulation of M4(E8), which we can then
hyperbolize to obtain a space H4.

The space H4 is now a homology 4-manifold of signature 8 with one singular
point, and comes equipped with a locally CAT(0)-metric. It follows from Edward’s
Double Suspension Theorem that H4×T k is a topological (4 + k)-manifold (where
T k denotes the k-torus and k ≥ 1). The manifolds H4 × T k come equipped with a
(product) locally CAT(0)-metric, but it follows from the arguments in [DJ, Section
5a] that they do not admit a PL structure. Thus, in each dimension ≥ 5 there is a
locally CAT(0)-manifold with no PL structure.

2.3. Example: universal cover distinct from Rn. For a third family of ex-
amples, we recall that the classic Cartan-Hadamard theorem asserts that the uni-
versal cover of a Riemannian manifold of nonpositive sectional curvature must be
diffeomorphic to Rn. In particular, a CAT(0)-manifold M with the property that

M̃ is not diffeomorphic to Rn can not support a Riemannian smoothing. Davis
and Januszkiewicz constructed (see [DJ, Thm. 5b.1]) examples of locally CAT(0)-

manifolds Mn (for n ≥ 5), with the property that their universal covers M̃n are
not simply connected at infinity (and hence, not homeomorphic to Rn). Further
examples of this type are described in [ADG].

2.4. Example: boundary at infinity distinct from Sn−1. In the previous
three families of examples, topological properties (smoothability, PL-smoothings,
topology of universal cover) were used to obstruct the existence of a Riemann-
ian metric of nonpositive sectional curvature. The next family of examples have
obstructions that arise from the large scale geometry of the universal covers. As-
sociated to a CAT(0)-space X, we have a topological space called the boundary at
infinity ∂∞X. If X is Gromov hyperbolic, then the homeomorphism type of ∂∞X
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is a quasi-isometry invariant of X. In particular, if X is the universal cover of a
locally CAT(-1)-space Y , then ∂∞X depends only on π1(Y ). When X is the univer-
sal cover of an n-dimensional closed Riemannian manifold of nonpositive sectional
curvature, the corresponding ∂∞X is homeomorphic to the standard sphere Sn−1.

Now consider the locally CAT(-1) 5-manifold M5 obtained by applying a strict
hyperbolization procedure (from [CD]) to the double suspension of a triangulation of
Poincaré’s homology 3-sphere. Denote by X5 its universal cover, and observe that,
although ∂∞X5 has the homotopy type of S4, it is proved in [DJ, Section 5c] that
∂∞X5 is not locally simply connected. So ∂∞X5 cannot be homeomorphic to S4 (in
fact, is not even an ANR). Thus, M5 is not homotopy equivalent to a Riemannian
5-manifold of strictly negative sectional curvature. The same argument applies to a
strict hyperbolization of the manifold M4(E8)×S1 discussed in Section 2.2. There
are similar examples in higher dimensions n > 5 obtained by strictly hyperbolizing
double suspensions of homology (n − 2)-spheres. Thus, in each dimension n ≥ 5
there are closed locally CAT(-1) manifolds Mn with universal cover homeomorphic
to Rn but which are not homotopy equivalent to any Riemannian n-manifold of
strictly negative sectional curvature.

2.5. Example: stability under products. Finally, we point out one last method
for producing manifolds which do not have Riemannian smoothings:

Proposition 1. Let Mn be a locally CAT(0)-manifold which does not support any
Riemannian smoothing, and assume that n ≥ 5. Then for K an arbitrary locally
CAT(0)-manifold, the product M ×K is a locally CAT(0)-manifold which does not
support any Riemannian smoothing.

Proof. To see this, we first note that the product of the locally CAT(0)-metrics
on M and K provide a locally CAT(0)-metric on M × K. Now assume that
M × K supported a Riemannian smoothing f : N → M × K, and let g be
the associated Riemannian metric of nonpositive sectional curvature on N . Since
π1(N) ∼= π1(M) × π1(K), the classical splitting theorems (see Gromoll and Wolf
[GW], Lawson and Yau [LY], and Schroeder [Sc]) imply that we have a correspond-
ing geometric splitting (N, g) ∼= (M ′, g1)× (K ′, g2), having the property that:

• each factor can be identified with a totally geodesic submanifold of (N, g),
• the factors satisfy π1(M) ∼= π1(M ′), and π1(K) ∼= π1(K ′).

So we see that M ′ is a Riemannian manifold of nonpositive sectional curvature,
of dimension ≥ 5, and satisfying π1(M) ∼= π1(M ′). Since the Borel conjecture is
known to hold for this class of manifolds (see Farrell and Jones [FJ]), there exists a
homeomorphism M ′ →M realizing the isomorphism of fundamental groups. This
provides a Riemannian smoothing of M , giving us the desired contradiction. �

We remark that property (4) in our Main Theorem can be deduced from a
virtually identical argument: instead of appealing to the Borel Conjecture to obtain
a contradiction, we resort instead to property (3) in our Main Theorem.

3. Special triangulations of S3.

Recall that a simplicial complex is flag provided it is determined by its 1-skeleton,
i.e. every k-tuple of pairwise incident vertices spans a (k − 1)-simplex σk−1 (for
k ≥ 3). A subcomplex Σ′ of a simplicial complex Σ is full provided every simplex
σ ⊂ Σ whose vertices lie in Σ′ satisfies σ ⊂ Σ′. We will say a cyclically ordered
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Figure 1. Basic triangulation of a triangular prism.

4-tuple of vertices (v1, v2, v3, v4) in a simplicial complex forms a square provided
each consecutive pair of vertices determines an edge in the complex, while the pairs
(v1, v3) and (v2, v4) do not determine an edge.

Definition 2. A flag triangulation of S3 is said to have isolated squares provided
no two squares in the triangulation intersect (i.e. each vertex lies in at most one
square). For such a triangulation, the collection of squares form a link in S3. We
call the isotopy class of this link the type of the triangulation.

In this section, we establish:

Theorem 3. Let k ⊂ S3 be any prescribed link in the 3-sphere. Then there exists
a flag triangulation of S3, with isolated squares, and with type the given link k.

We establish this result in several steps, gradually building up the triangulation
to have the properties we desire.

Step 1: Triangulating the solid torus.

As a first step, we describe a triangulation on a solid torus D2 × S1. Recall
that there is a canonical decomposition of the 3-dimensional cube [0, 1]3 ⊂ R3 into
six tetrahedra. This triangulation is determined by the inequalities 0 ≤ xσ(1) ≤
xσ(2) ≤ xσ(3) ≤ 1, where σ ranges over the six possible permutations of the index set
{1, 2, 3}. Now if we restrict to the region where x1 ≤ x2, we obtain a triangulation
of the triangular prism ∆2 × [0, 1] into exactly three tetrahedra. Let us denote by
F,G the two square faces of the triangular prism defined via the hyperplanes x1 = 0
and x1 = x2 respectively. The triangulation of the prism cuts each of these squares
into two triangles, along the diagonal originating at the origin. We call the bottom
of the prism the triangle corresponding to the intersection with the hyperplane
x3 = 0, and call the top of the prism the triangle arising from the intersection with
the hyperplane x3 = 1. Figure 1 contains an illustration of this decomposition of
the triangular prism (drawn to respect the orientation of the “bottom” and “top”).
In the picture, the two square sides facing us are F and G respectively.

We can now take three copies of the triangular prism, and cyclically identify each
Fi to the corresponding Gi+1. This gives a new triangulation of a triangular prism
(with nine tetrahedra), with an inherited notion of “top” and “bottom”. This new
triangulation has the following key properties:
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• there exists a unique edge e of the triangulation joining the center of the
bottom triangle to the center of the top triangle,
• the center of the bottom triangle is adjacent to every vertex in the trian-

gulation, and
• aside from the center of the bottom triangle, the center of the top triangle

is adjacent to no other vertices in the bottom of the prism.

We will call a copy of this canonical triangulation of the triangular prism a block.
Fixing an identification of D2 with the base of the triangular prism, we can think
of a block as a triangulation of D2 × [0, 1].

To obtain the desired triangulation of the solid torus D2 × S1, we “stack” four
blocks together. More precisely, we take four blocks and cyclically identify the top
of each block with the bottom of the next block. This gives us a triangulation
of the solid torus D2 × S1 into thirty-six tetrahedra. We say blocks are adjacent
or opposite, according to whether they share a vertex or not. Corresponding to
the above properties for the individual blocks, this triangulation of the solid torus
satisfies:

• the triangulation contains a canonical, unique square having the property
that it is entirely contained within the interior of D2×S1; the four vertices
of this square will be called interior vertices.
• all the remaining vertices of the triangulation lie on the boundary of D2×S1,

and will be called boundary vertices.
• every tetrahedron in the triangulation contains at least one interior vertex.
• every interior vertex has the property that, if one looks at all adjacent

boundary vertices, these vertices are all contained in single block (the
unique block whose bottom contains the given interior vertex).

We call the unique square in the interior of this triangulation of D2 × S1 the core
of the solid torus. Observe that, out of the thirty-six tetrahedra occuring in the
triangulation, exactly twenty-four of them arise as the join of a triangle in ∂D2×S1

with an interior vertex, while the remaining twelve occur as the join of an edge in
∂D2 × S1 with an edge in the core.

Step 2: Getting squares realizing the link k.

Next, let us take the desired link k, and take pairwise disjoint regular closed
neighborhoods N̂i of the individual components of the link. Each of these neigh-
borhoods is homeomorphic to a solid torus, and we denote by Ni ⊂ N̂i the slightly
smaller solid torus of radius half as large. We proceed to construct a triangula-
tion of S3 as follows: first, within each of the tori Ni, we use the triangulation
described in Step 1, identifying the components of the link with the cores of the
various triangulated solid tori. Secondly, removing the interiors of all of the N̂i, we
obtain a compact 3-manifold M with boundary ∂M =

∐
∂N̂i. Since 3-manifolds

are triangularizable, we now choose an arbitrary triangulation of this 3-manifold
M , obtaining a triangulation of M ∪

∐
Ni ⊂ S3. The closure of the complementary

region is a disjoint union of the sets N̂i\Ni, each of which is topologically a fattened
torus S1 × S1 × [0, 1]. Furthermore, we are given triangulations T0, T1 of the two
boundaries S1 × S1 × {0}, S1 × S1 × {1} (coming from the triangulations of ∂Ni
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and ∂M respectively). But any two triangulations of the 2-torus S1×S1 have sub-
divisions which are simplicially isomorphic. Letting T ′ denote such a triangulation,
we assign this triangulation on the level set S1 × S1 × {1/2}.

Finally, we extend the triangulation into the two regions S1 × S1 × [0, 1/2] and
S1 × S1 × [1/2, 1] using the following procedure. On each of these two regions,
we have a triangulation Ti on one of the boundary components, and a subdivi-
sion T ′ of the triangulation on the other boundary component. We proceed to
inductively subdivide each of the regions σ × I, where σ ranges over the simplices
of the triangulation Ti. First of all, we add in edges σ0 × I for each vertex in
the triangulation Ti. Now assuming that we have already triangulated the prod-

uct T (k−1)
i × I of the (k − 1)-skeleton of Ti with the interval, let us extend the

triangulation to T ki × I. Given a k-simplex σk, we have that the region σk × I is
topologically a closed (k+1)-dimensional ball, with boundary that can be identified
with (σk × {0})

∐
(σk × {1})

∐
(∂σk × I). Furthermore, the bottom level consists

of a simplex (the original σk ∈ Ti), the top level consists of a subdivision of the
simplex (the subdivision of σk inside T ′), and each of the faces have already been
triangulated. In other words, we see that we have a topological Dk+1, along with
a given triangulation of ∂Dk+1. But it is now easy to extend: just cone the given
triangulation on the boundary inwards. Performing this process on each of the
σk × I now provides us with a triangulation of the set T ki × I. This results in a
triangulation of the 3-sphere with the following two properties:

• the triangulation contains a collection of squares, whose union realize the
given link k,

• for each of the squares, the union of the simplices incident the the square
form a regular neighborhood D2 × S1, triangulated as in Step 1, and

• all of these regular neighborhoods are pairwise disjoint.

Step 3: Getting rid of all other squares.

At this stage, we have constructed a triangulation of S3, which contains a collec-
tion of squares realizing the given link k. However, there are still two problematic
issues: our triangulation might not be flag, and it might fail the isolated squares
condition. The third step is to modify the triangulation in order to ensure these
two additional conditions. To fix some notation, we will keep using Ni to denote
the regular neighborhood of the squares we are interested in keeping. Recall that
each of these is topologically a solid torus D2×S1, with triangulation combinatori-
ally isomorphic to the triangulation given in Step 1. We will first modify the given
triangulation in the complement of the Ni, and subsequently change it within the
regions Ni.

Let us denote by X the closure of the complement of the union of the Ni. This is
topologically a 3-manifold with boundary, equipped with a triangulation (from the
previous two steps). Now the standard method of obtaining a flag triangulation is
to take the barycentric subdivision of a given triangulation. But unfortunately, this
process creates lots of squares. Recently, Przytycki and Świ

‘
atkowski [PS], building

on earlier work of Dranishnikov [Dr], have found a different subdivision process that
takes a 3-dimensional simplicial complex and returns a subdivision of the complex
that is flag and has no squares. For an arbitrary simplicial complex Z, we will
denote by Z∗ the simplicial complex obtained by applying this procedure to Z. We
modify the given triangulation of S3 in two stages: first we modify the triangulation
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Figure 2. Dranishnikov subdivision of triangles.

in X, by replacing X by X∗. Next, we describe the extension of this triangulation
into the various components Ni. For the original triangulation of each of the Ni,
we see that the thirty-six tetrahedra are of one of two types:

(a) twenty-four of them are the join of one of the interior vertices with a triangle
on ∂Ni, and

(b) twelve of them are the join of one of the four edges on the core square with
an edge on ∂Ni.

Now the subdivision X∗ restricts to a subdivision on each simplex in ∂Ni, which
changes the simplicial complex ∂Ni into (∂Ni)

∗. The effect of this subdivision on
simplices in ∂Ni is to subdivide each edge in ∂Ni into two, and to replace each
original triangle by the subdivision in Figure 2. We extend the subdivision (∂Ni)

∗

of ∂Ni to a subdivision N ′i of the original Ni in the most natural way possible:

(a) each tetrahedron in Ni that was a join of an interior vertex with a triangle
σ ⊂ ∂Ni gets replaced by the join of the same vertex with σ∗ (i.e. we
cone the subdivision of σ to the interior vertex), subdividing the original
tetrahedron into ten new tetrahedra (the cone over Figure 2), and

(b) each tetrahedron that was a join of an edge on the square with an edge on
∂Ni gets replaced by two tetrahedra (i.e. the join of the internal edge with
each of the two edges obtained from subdividing the boundary edge).

This changes the original triangulation on each Ni into a new triangulation N ′i with
a total of 264 tetrahedrons. We will continue to use the term block to refer to the
subcomplexes of the N ′i that are subdivisions of the original blocks in Ni. Observe
that, in each of the Ni, our subdivision process did not introduce any new vertices
in the interior of the Ni. As such, the core squares have been left unchanged (and
we will still refer to them as the cores of the N ′i).

Finally, we note that by construction the two subdivisions N ′i of Ni, and X∗ of
X coincide on their common subcomplex ∂Ni = Ni ∩X. In particular, they glue
together to give a well defined triangulation Σ of S3.

Step 4: Verifying that Σ has the desired properties.

Note that the triangulation Σ contains a copy of X∗, as well as copies of each
N ′i . These partition the triangulation Σ into various pieces.
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Lemma 4. The complex X∗, the individual N ′i , and the intersections X∗∩N ′i , are
all full subcomplexes of Σ.

Proof. This follows easily from the following two facts:

• each of the intersections X∗ ∩N ′i = (X ∩Ni)∗ is a full subcomplex of X∗,
• each of the intersections X∗ ∩N ′i = ∂N ′i is a full subcomplex of the corre-

sponding N ′i .

The first statement is a direct consequence of [PS, Lemma 2.10], where it is shown
that if U is any subcomplex of W , then U∗ is a full subcomplex of W ∗. The second
statement is a consequence of the construction of the triangulation N ′i , since by
construction, each simplex of N ′i which is not contained in ∂N ′i contains a vertex
in the interior of N ′i (and hence in N ′i − ∂N ′i). �

Lemma 5. The triangulation N ′i is flag.

Proof. Given a collection of pairwise incident vertices V , there are three possibili-
ties: V contains either two, one, or no interior vertices of N ′i . We consider each of
these three cases in turn.

If V contains no interior vertices, then V ⊂ ∂N ′i , and since the latter is a full
subcomplex of N ′i (see Lemma 4), V is in fact a collection of vertices in ∂N ′i which
are pairwise adjacent within ∂N ′i . But recall that ∂N ′i is just the triangulation
(∂Ni)

∗, hence is flag. This implies that V spans out a simplex in ∂N ′i .
If V contains one interior vertex v, then, by the previous argument, V − {v}

spans a simplex in ∂N ′i = (∂Ni)
∗ which is contained within some (maximal) 2-

dimensional simplex σ in (∂Ni)
∗. Note that, since all vertices V −{v} are adjacent

to the interior vertex v, they must lie in the block B corresponding to v. So the
2-dimensional simplex σ ⊂ (∂Ni)

∗ can additionally be chosen to lie within that
same block B. This means that there exists a 2-dimensional simplex τ ∈ ∂Ni with
the property that σ is one of the 10 triangles in τ∗ (see Figure 2). Finally, observe
τ must lie within the block B, so the join of τ with the interior vertex v defines
a tetrahedron inside the original triangulation Ni (of type (a) in the terminology
of Step 3). But recall how the subdivision (∂Ni)

∗ of the triangulation ∂Ni was
extended into Ni: for tetrahedra of type (a), the subdivision on the boundary was
coned off to the interior vertex. This implies that the join of σ and the vertex v
defines a tetrahedron in N ′i , and as the set V is a subset of the vertex set of this
tetrahedron, we deduce that V spans a simplex in N ′i .

Finally, if V contains two interior vertices v, w, let Bv, Bw denote the corre-
sponding blocks. Since V −{v, w} is a collection of vertices in ∂N ′i = (∂Ni)

∗ which
are adjacent to both interior vertices, we see that the set V −{v, w} must lie within
Bv ∩ Bw, which is a 1-dimensional complex homeomorphic to S1 (subdivided into
6 consecutive edges). Since V − {v, w} are pairwise adjacent, there is an edge σ in
Bv ∩ Bw whose vertex set contains V − {v, w}. This edge is contained in a subdi-
vision of an edge τ from the original triangulation ∂Ni, where τ is an edge which
is common to the two blocks Bv and Bw. In particular, the join ω ∗ τ of τ with the
edge ω in the core joining v to w defines a tetrahedron in the original triangulation
Ni (of type (b) in the terminology of Step 3). Again, from the way the subdivision
(∂Ni)

∗ was extended inwards, we recall that the tetrahedra ω ∗τ , being of type (b),
gets replaced by two tetrahedra ω ∗ σ and ω ∗ σ′, where τ∗ = σ ∪ σ′. Since the join
of σ and ω defines a tetrahedron in N ′i , and the set V is a subset of the vertex set
of this tetrahedron, we again deduce that V spans a simplex in N ′i . �
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Corollary 6. The triangulation Σ is flag.

Proof. If all of the vertices are contained in X∗, then the claim follows immediately
from the fact that X∗ itself is flag (see [PS, Proposition 2.13]). So we can now
assume that at least one of the vertices is contained in the interior of one of the N ′i .

Note that an interior vertex in one of the N ′i has its closed star entirely contained
within the same N ′i . So we see that the tuple of pairwise adjacent vertices must be
entirely contained within the same subcomplex N ′i . But by Lemma 5, we have that
each of the subdivided N ′i are themselves flag, finishing the proof. �

Proposition 7. The only squares in Σ are the cores of the various N ′i .

Proof. To see this, let us start with an arbitrary square (v1, v2, v3, v4) inside the
triangulation Σ. Our goal is to show that all four vertices must be interior vertices
to a single N ′i , which would then force the square to be the core of the corresponding
N ′i . To this end, we first note that, if the square does not contain any interior vertex
to any of the N ′i , then it is contained entirely within X∗. But from Lemma 4, the

latter is a full subcomplex of Σ, and by the result of Przytycki and Świ
‘
atkowski

[PS, Proposition 2.13], has no squares. So we may assume that at least one of the
vertices is an interior vertex to some N ′i .

If all the vertices are interior to N ′i , then we are done, so by way of contradiction
we can also assume that the square contains a vertex which is not interior to N ′i
(which we will call exterior vertices to N ′i). Now the square (v1, v2, v3, v4) contains
exactly four edges, and since it contains vertices which are both interior and exterior
to N ′i , we must have that at least two of the four edges must connect an interior
vertex to an exterior vertex (call these intermediate edges).

We now argue that in fact the square must contain exactly two intermediate
edges. Indeed, if there were ≥ 3 intermediate edges, then one could find a pair of
adjacent intermediate edges, which share a common exterior vertex. Up to cyclic
relabeling, we may assume that v1 is the exterior vertex. Considering the other
endpoints of these two intermediate edges, we see that v2, v4 are interior vertices
for N ′i , which are both adjacent to the exterior vertex v1 ∈ ∂N ′i . But this implies
that the two blocks whose bottoms contain v2 and v4 cannot be opposite, so must
in fact be adjacent. This forces v2 and v4 to be adjacent vertices in the core of
N ′i , contradicting the fact that (v1, v2, v3, v4) forms a square. So our hypothetical
square (v1, v2, v3, v4) must have exactly two intermediate edges, leaving us with
exactly two possibilities:

(1) the intermediate edges are not adjacent in the square (v1, v2, v3, v4),
(2) the intermediate edges are adjacent at an interior vertex of N ′i , and the

remaining edges are exterior.

We now explain why each of these possibilities give rise to a contradiction.
In case (1), we note that up to cyclic relabeling, we have that v1, v2 are adjacent

vertices in the core of the N ′i , while v3, v4 are adjacent vertices in ∂N ′i . We can also
assume that the top of the block B1 corresponding to v1 attaches to the bottom
of the block B2 corresponding to v2. Now recall that an interior vertex is only
adjacent to boundary vertices in its corresponding block. Since v3 is adjacent to v2,
we have that v3 must lie in the block B2. Similarly, the vertex v4 being adjacent
to v1 must lie in the block B1. Since v3 and v4 are adjacent, we conclude that one
of these two vertices must lie in the common boundary B1 ∩B2. But such a vertex
is incident to both v1 and v2, violating the square condition for (v1, v2, v3, v4).
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Figure 3. Triangulation on the boundary of a block.

It remains to rule out case (2). To this end, we may again assume that v1 is the
common interior vertex for the two intermediate edges. Now if B denotes the block
corresponding to v1, then we have that the boundary vertices v2, v4, both being
adjacent to v1, must actually lie in B. Moreover, for (v1, v2, v3, v4) to be a square,
we must have that v3 is not adjacent to v1, and hence v3 /∈ B. Since v3 is adjacent
to both the vertices v2, v4 ∈ B, we see that the latter are either both in the top of
B or both in the bottom of B, while v3 lies in an adjacent block B′. Let us assume
that the vertices lie in the top of B (the other case being completely analogous), so
that we can view v2, v4 as lying in the bottom of the block B′.

We now have the following situation occurring inside the boundary of the block
B′: we have two vertices v2, v4 lying in the bottom of the block, and we have a
vertex v3 which does not lie in the bottom of B′, but which is adjacent to both v2
and v4. Now recall that the triangulation of the block B′ is a subdivision (given in
Step 3) of a canonical triangulation of the triangular prism. This subdivision takes
the boundary of the original triangulation and applies the Dranishnikov subdivision
procedure to it: each edge gets subdivided into two, and each triangle gets replaced
by the subdivision in Figure 2. The resulting triangulation on S1 × [0, 1] is shown
in Figure 3. In the illustration, the left and right side of the rectangle have to be
identified, and the “bottom” and “top” of the boundary of the block is precisely the
bottom and the top of the rectangle. Note that this triangulation actually consists
of six original triangles (see Step 1), each of which has been subdivided into 10
triangles as in Figure 2 (see Step 3). Finally, inspecting the triangulation in Figure
3, we observe that there are exactly six vertices which are adjacent to two distinct
vertices in the bottom of the block: these are the only possibilities for v3. But for
each of these six vertices, we see that the two adjacent vertices in the bottom of the
block (i.e. the corresponding v2 and v4) are adjacent to each other, contradicting
the fact that (v1, v2, v3, v4) was a square.

Since we’ve ruled out all other possibilities, we see that the square cannot
contain any intermediate edges, i.e. the four vertices of our hypothetical square
(v1, v2, v3, v4) must all lie in the interior of a single N ′i . This implies that our
square must coincide with the core of one of the N ′i , as desired.

�

It follows from Corollary 6 that the triangulation Σ is flag, and from Proposition
7 that it has isolated squares with type given by the original link k. This completes
the proof of Theorem 3.
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4. Constructing the manifold.

In this section, we establish the Main Theorem. Our goal is to use some of the
triangulations of S3 constructed in the previous section to produce a 4-dimensional
manifold M with the desired properties. In order to do this, we start by reviewing
some properties of the Davis complex for right angled Coxeter groups.

Recall that one can associate to the 1-skeleton of any simplicial complex L a
corresponding right angled Coxeter group ΓL. This group has one generator xi of
order two for each vertex vi of the simplicial complex L, and a relation xixj = xjxi
whenever the corresponding vertices vi, vj are adjacent in L. Let us consider the

associated Davis complex P̃L. This complex is obtained via the following procedure:
we first consider the cubical complex [−1, 1]V (L), that is to say, the standard cube
with dimension equaling the number of vertices in the simplicial complex L. Now
every face of the cube is an affine translation of [−1, 1]S for some subset S ⊂ V (L),
which we call the type of the face. Consider the cubical subcomplex PL ⊂ [−1, 1]V (L)

consisting of all faces whose type defines a simplex in L, and let P̃L to be its universal
cover. Observe that the Coxeter group ΓL acts on PL, where each generator xi acts
by reflection on the corresponding coordinate. The kernel of the resulting morphism
ΓL → (Z2)|V (L)| coincides with the fundamental group of PL. There is a natural
piecewise flat metric on PL, obtained by making each k-dimensional face in the
cubulation of PL isometric to [−1, 1]k ⊂ Rk. Properties of the cubical complex PL
are intimately related to properties of the simplicial complex L. For instance, we
have:

(a) if L is a flag complex, then the piecewise flat metric on PL is locally CAT(0),
(b) the links of vertices in PL are canonically simplicially isomorphic to L,
(c) if L is the join of two subcomplexes L1, L2, then the space PL splits iso-

metrically as a product of PL1 and PL2 ,
(d) if L′ is a full subcomplex of L, then the natural inclusion induces a totally

geodesic embedding PL′ ↪→ PL,
(e) if the geometric realization of L is homeomorphic to an (n−1)-dimensional

sphere, then PL is an n-dimensional manifold,
(f) if L is a PL-triangulation of Sn−1 then PL is a PL-manifold, and ∂∞P̃L is

homeomorphic to Sn−1,
(g) if L is a smooth triangulation of Sn−1, then PL is a smooth manifold.

These results are discussed in detail in the book [Da1].

In the previous section, we showed that given a prescribed link k in S3, one can
construct a triangulation of S3 with isolated squares, and with type the given link.
Let us apply this result in the special case where k is a nontrivial knot inside S3.
Let L denote the corresponding triangulation of S3. Since we are in the special case
of dimension = 3, the triangulation L, in addition to being flag, is automatically
PL and smooth. We now consider the cubical complex M := PL associated to the
corresponding right angled Coxeter group ΓL. In view of our earlier discussion, we
have the following:

Fact 1: The space M is a smooth 4-manifold (from (g) above), and the natural
piecewise Euclidean metric on M induced from the cubulation is locally CAT(0)
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(from (a) above). Furthermore, the boundary at infinity of M̃ is homeomorphic to

S3 (from (f) above), and M̃ is diffeomorphic to R4.

The very last statement in Fact 1 can be deduced from work of Stone (see
[St, Theorem 1]), who showed that a metric (piecewise flat) polyhedral complex
which is both CAT(0) and a PL-manifold without boundary must in fact be PL-

homeomorphic to the appropriate Rn. Since our M̃ satisfies these conditions, this
ensures that M̃ is PL-homeomorphic to the standard R4. But in the 4-dimensional
setting, there is no difference between PL and smooth, so M̃ is in fact diffeomorphic
to R4.

Our goal is now to show that M has the properties postulated in our Main The-
orem. Note that properties (1) and (2) are included in Fact 1, while property
(4) can be easily deduced from property (3) (see the comment after the proof of
Proposition 1). So we are left with establishing property (3): that π1(M) cannot be
isomorphic to the fundamental group of any nonpositively curved Riemannian man-
ifold. This last property will be established by looking at the large scale geometry
of flats inside the universal cover M̃ .

As a starting point, let us describe some flats inside M̃ . Observe that each
square inside the triangulation L is a full subcomplex isomorphic to a 4-cycle �.
The right angled Coxeter group associated to a 4-cycle is a direct product of two
infinite dihedral groups Γ�

∼= D∞ × D∞ = (Z2 ∗ Z2) × (Z2 ∗ Z2) (see (c) above).
The corresponding complex P� is isometric to a flat torus (with cubulation given
by 16 squares, obtained via the identification S1 × S1 = � × �). By considering
the unique square inside the triangulation L, we obtain:

Fact 2: M contains a totally geodesic 2-dimensional flat torus T 2 (see (d) above).
Furthermore, at any vertex v ∈ T 2 ⊂M of the cubulation, we have that the torus
T 2 is locally knotted inside the ambient 4-dimensional manifold M (see (b) above),
in that there is a canonical simplicial isomorphism

(
lkv(M), lkv(T

2)
) ∼= (L, k) where

k is the unique (knotted) square in the triangulation L.

Since the embedding T 2 ↪→ M is totally geodesic, by lifting to the universal
cover, we obtain a 2-dimensional flat F ↪→ M̃ which is locally knotted at lifts of
vertices. This induces an embedding of the corresponding boundaries at infinity,
giving us an embedding of ∂∞F ∼= S1 into ∂∞M̃ ∼= S3. The rest of our argument
will rely on the following “local-to-global” assertion:

Assertion: The embedding ∂∞F ∼= S1 into ∂∞M̃ ∼= S3 defines a nontrivial knot
in the boundary at infinity of M̃ .

That is to say, the “local knottedness” of the flat propagates to “global knotted-
ness” of its boundary at infinity. For the sake of exposition, we delay the proof of
the assertion, and first show how we can use it to deduce the Main Theorem. To this
end, let us assume that (M ′, g) is a closed manifold equipped with a Riemannian
metric of nonpositive sectional curvature, and that we are given an isomorphism of
fundamental groups φ : Γ = π1(M) → π1(M ′). From this assumption, we want to
work towards a contradiction.
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The first step is to use the isomorphism of fundamental groups to obtain an
equivariant homeomorphism between the corresponding boundaries at infinity. As
a cautionary remark, we recall that given a pair X1, X2 of CAT(0)-spaces with
geometric G-actions, a celebrated example of Croke and Kleiner [CK] shows that the
corresponding boundaries at infinity ∂∞X1 and ∂∞X2 need not be homeomorphic.
Even if the boundaries at infinity are homeomorphic, an example of Buyalo [Bu]
shows that the homeomorphism might not be equivariant with respect to the G-
action.

In his thesis [H], Hruska introduced CAT(0)-spaces with isolated flats. Subse-
quent work of Hruska and Kleiner [HK] established the following two foundational
results for CAT(0)-spaces with isolated flats:

(1) for a pair X1, X2 of CAT(0)-spaces with geometric G-actions, if X1 has
isolated flats, then so does X2 (see [HK, Corollary 4.1.3]), and there is a G-
equivariant homeomorphism between ∂∞X1 and ∂∞X2 (see [HK, Theorem
4.1.8]).

(2) for a group G acting geometrically on a CAT(0)-space X, we have that X
has the isolated flats property if and only if G is a relatively hyperbolic
group with respect to a collection of virtually abelian subgroups of rank
≥ 2 (see [HK, Theorem 1.2.1]).

As such, if we could establish that our group Γ is a relatively hyperbolic group
with respect to a collection of virtually abelian subgroups of rank ≥ 2, then result
(2) above would ensure that our CAT(0)-manifold M̃ has the isolated flats prop-
erty. Result (1) above would then give the desired Γ-equivariant homeomorphism

between ∂∞M̃ and ∂∞M̃ ′. So our next goal is to establish:

Fact 3: The group Γ = π1(M) is hyperbolic relative to the collection of all virtually
abelian subgroups of Γ of rank ≥ 2.

The notion of a group G being relatively hyperbolic with respect to a collection
A of subgroups of G was originally suggested by Gromov [Gr], whose approach
was later formalized by Bowditch [Bo]. Alternate formulations appear in Farb’s
thesis [Fa], in work of Druţu and Sapir [DrSa], and in the memoir of Osin [Os].
We refer the reader to the original sources for a detailed definition as well as basic
properties of such groups. For our purposes, we merely need to know that the
property of a group G being hyperbolic relative to a collection of virtually abelian
subgroups of rank ≥ 2 is inherited by finite index subgroups of G. In particular,
to show the desired property for Γ, we see that it is sufficient to establish that
our original Coxeter group ΓL is relatively hyperbolic with respect to higher rank
virtually abelian subgroups (since Γ ≤ ΓL is of finite index).

Caprace [Ca, Cor. D (ii)] recently provided a criterion for deciding whether a
Coxeter group is hyperbolic relative to the collection of its higher rank virtually
abelian subgroups. In the right-angled case the condition is that the flag complex
L which defines ΓL contains no full subcomplex isomorphic to the suspension ΣK
of a subcomplex K with 3 vertices which is either

(a) the disjoint union of 3 points, or
(b) the disjoint union of an edge and 1 point.

In both cases ΣK does not have isolated squares. Since the Coxeter group ΓL with
which we are working is associated to a triangulation L of S3 with isolated squares,
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we conclude that ΓL is relatively hyperbolic with respect to the collection of all
virtually abelian subgroups of rank ≥ 2. Hence, Fact 3.

Applying Hruska and Kleiner’s results from [HK], we conclude that the original

M̃ is a CAT(0)-space with the isolated flats property, and that there exists a Γ-

equivariant homeomorphism from ∂∞M̃ to ∂∞M̃ ′. The nontrivial knot ∂∞F ∼= S1

inside ∂∞M̃ ∼= S3 appearing in the Assertion can be identified with the limit
set of the corresponding subgroup π1(T 2) ∼= Z2 ≤ Γ = π1(M). Since we have an

equivariant homeomorphism between the boundaries at infinity of M̃ and M̃ ′, this
immediately yields:

Fact 4: The boundary at infinity ∂∞M̃ ′ is homeomorphic to S3, and the limit
set of the canonical Z2-subgroup in Γ ∼= π1(M ′) defines a nontrivial knot S1 ↪→
∂∞M̃ ′ ∼= S3.

On the other hand, the flat torus theorem implies that there exists a Z2-periodic
flat F ′ ↪→ M̃ ′, with the property that ∂∞F ′ coincides with the limit set of the Z2. In
particular, ∂∞F ′ defines a nontrivial knot inside ∂∞M ′. But taking any point p ∈
F ′, we note that geodesic retraction provides a homeomorphism ρ : ∂∞M̃ ′ → TpM̃

′.
This homeomorphism takes the knotted subset ∂∞F ′ lying inside S3 ∼= ∂∞M ′ to
the unknotted subset TpF

′ lying inside S3 ∼= TpM̃
′. This contradiction allows us to

conclude that no such Riemannian manifold (M ′, g) can exist.

So in order to complete the proof of the Main Theorem, we are left with estab-
lishing the Assertion. We note that a similar result was shown in the setting of
CAT(-1)-manifolds by Farrell and Lafont [FL], the proof of which extends almost
verbatim to yield the Assertion. For the convenience of the reader, we provide a
(slightly different) self-contained argument for the Assertion.

The basic idea is as follows: picking a vertex v ∈ F , we have a geodesic retraction
map ρ : ∂∞M̃ → lkv(M̃). Under this map, we see that ∂∞F maps to the link lkv(F )

inside lkv(M̃). But recall from Fact 2 that the torus is locally knotted in M̃ , i.e. the

pair
(
lkv(M̃), lkv(F )

)
is simplicially isomorphic to (S3, k), where S3 is the 3-sphere

equipped with the triangulation L, and k is the knot in S3 given by the unique
square in the triangulation L. Now the retraction map ρ is not a homeomorphism,
but is nevertheless “close enough” to a homeomorphism for us to use it to compare
the pair

(
∂∞M̃, ∂∞F

)
with the knotted pair

(
lkv(M̃), lkv(F )

) ∼= (S3, k). More

precisely, for any given subset Z ⊂ lkv(M̃) ∼= S3 we denote by Z∞ the corresponding

pre-image Z∞ := ρ−1(Z) inside ∂∞M̃ . Then we have:

Fact 5: [FL, Proposition 2, pg. 627] For any open set U ⊂ lkv(M̃), the map
ρ : U∞ → U is a proper homotopy equivalence. Moreover, the map ρ is a near-
homeomorphism, i.e. can be approximated arbitrarily closely by homeomorphisms.

This is shown by identifying U∞ with the inverse limit of the sets {Ur}r∈R+ ,
where each Ur is the pre-image of U under the geodesic projection from the sphere
Sv(r) of radius r centered at v to the link at v. For r > s, the bonding maps
ρr,s : Ur → Us are given by geodesic retraction, and the canonical map ρ∞,s from
U∞ = lim←−{Ur} to each individual Us coincides with the geodesic retraction map.
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Since the link lkv(M̃) can be identified with Sε(r), a small enough ε-sphere centered
at v, the map ρ can be identified with the canonical map ρ∞,ε from U∞ = lim←−{Ur}
to the corresponding Uε = U . Now by results of Davis and Januszkiewicz [DJ,
Section 3] each of the bonding maps ρr,s are cell-like maps, i.e. point pre-images
have the shape of a point (see Dydak and Segal [DySe] for background on shape
theory). Since the shape functor commutes with inverse limits, and since ρ = ρ∞,ε,
we see that ρ is also a cell-like map. A result of Edwards [Ed, Section 4] now implies
that ρ is a proper homotopy equivalence, while work of Armentrout [Ar] ensures
that ρ is a near homeomorphism.

Now to show that ∂∞F defines a nontrivial knot in ∂∞M̃ , we need to establish
that the complement ∂∞M̃ − ∂∞F cannot be homeomorphic to S1×R2. This will
follow if we can show that π1

(
∂∞M̃ −∂∞F

)
is a non-abelian group. To do this, let

us decompose ∂∞M̃ − ∂∞F into a union of a suitable pair of open sets. We start
by decomposing lkv(M̃), and will then use the map ρ to “lift” this decomposition

to ∂∞M̃ . Let lkv(F ) ⊂ N1 ⊂ N2 ⊂ lkv(M̃) be nested open regular neighborhoods

of the knot k = lkv(F ) inside S3 ∼= lkv(M̃). Define open sets in lkv(M̃) by setting

U2 := N2, and U1 := lkv(M̃)− N̄1, where N̄1 denotes the closure of N1. Note that
we have homeomorphisms U2

∼= S1×D2 and U1∩U2
∼= N2−N̄1

∼= S1×S1×R, while
U1 is homeomorphic to the complement of the nontrivial knot k ⊂ S3. So at the
level of π1, we have that (a) π1(U1 ∩ U2) ∼= Z⊕ Z, and (b) π1(U1) is a non-abelian
group. The latter fact follows from work of Papakyriakopoulos [Pa], who showed
that π1 of the complement of a nontrivial knot cannot be isomorphic to Z. But by
Alexander duality such a group must have abelianization isomorphic to Z, hence
cannot be abelian.

Now corresponding to this decomposition of lkv(M̃), we have an associated open

decomposition of ∂∞M̃ in terms of the corresponding (U1)∞, (U2)∞. We now

define an open decomposition of ∂∞M̃ − ∂∞F by setting U := (U1)∞ and V :=
(U2)∞− ∂∞F . The intersection satisfies U ∩V = (U1 ∩U2)∞. Applying Fact 5 to
the discussion in the previous paragraph, we obtain that (a) π1(U ∩ V ) ∼= Z ⊕ Z,
and (b) π1(U) is non-abelian. From Seifert-Van Kampen, we have:

π1
(
∂∞M̃ − ∂∞F

)
= π1(U) ∗π1(U∩V ) π1(V )

So to see that π1
(
∂∞M̃ − ∂∞F

)
is non-abelian, it suffices to show that the non-

abelian group π1(U) injects into the amalgamation. But this will follow from:

Fact 6: The map i∗ : π1(U ∩ V )→ π1(V ) induced by inclusion is injective.

To establish Fact 6, we first choose a suitable basis for π1(U ∩ V ) ∼= Z ⊕ Z.
Recall that the map ρ gives a proper homotopy equivalence between U ∩ V =
(U1∩U2)∞ and the space U1∩U2 = N2−N̄1, where N1 ⊂ N2 are nested open regular
neighborhoods of the knot k. Since U2 = N2 can be identified with S1 ×D2, where
S1×{0} corresponds to the knot k, we choose the generators for π1(N2−N̄1) ∼= Z⊕Z
to have the following two properties:

(A) the generator 〈1, 0〉maps to a generator represented by [S1×{0}] ∈ π1(N2) ∼=
Z under the obvious inclusion, and
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(B) the generator 〈0, 1〉 is chosen so that a representative curve exists which,
under the natural inclusion into N2

∼= S1 × D2, projects to a generator for
π1(D2 − {0}) ∼= Z in the D2-factor, and is null-homotopic in N2.

We choose the generators of π1(U ∩V ) ∼= Z⊕Z to map to the above two generators
of π1(U1 ∩ U2) under the homotopy equivalence ρ.

To verify that i∗ : π1(U ∩V )→ π1(V ) is injective, we first argue that an element
〈a, b〉 ∈ ker(i∗) must satisfy a = 0. Consider the commutative diagram:

Z⊕ Z ∼= π1(U ∩ V )

ρ∗

��

i∗ // π1(V ) // π1
(
(N2)∞

) ∼= Z

ρ∗

��
Z⊕ Z ∼= π1(U1 ∩ U2) // π1(N2) ∼= Z

where all horizontal arrows are induced by the obvious inclusions, and the two
vertical arrows are the isomorphisms induced by the geodesic retraction maps. By
the choice of the basis on π1(U ∩V ), we have that ρ∗(〈a, b〉) = 〈a, b〉 ∈ π1(U1 ∩U2),
which by property (A) maps to a ∈ Z ∼= π1(N2). From the commutativity of the
diagram, we conclude that if 〈a, b〉 ∈ ker(i∗), then a = 0. Our next goal is to show
that b = 0.

Given a pair η1, η2 of disjoint oriented curves in S1×D2, with η1 null-homotopic,
there is a well-defined linking number L(η1, η2). For smooth curves this is obtained
by looking at the oriented intersection number of η2 with a smooth bounding disk
for the curve η1, and for continuous curves one uses an approximation by smooth
curves. This linking number has the property that if η1 ∼ η′1 (respectively η2 ∼ η′2)
are two curves homotopic to each other in the complement of η2 (respectively η1),
then L(η1, η

′
2) = L(η1, η2) = L(η′1, η2).

Now from the choice of basis on π1(U ∩ V ), along with property (B), we can
choose a representative curve γ for the element 〈0, b〉 ∈ ker(i∗) ⊂ π1(U∩V ) with the
property that the image curve ρ(γ) ⊂ U1∩U2 ⊂ N2

∼= S1×D2 projects to b times a
generator for π1(D2−{0}). One can easily check that this forces L

(
ρ(γ), S1×{0}

)
=

±b. Applying Fact 5, we can find a homeomorphism ρ′ : (N2)∞ → N2 which is
ε-close to the map ρ. In view of the discussion above, and recalling that the curve
S1 × {0} corresponds to lkv(F ) = ρ(∂∞F ), this gives us that:

±b = L
(
ρ(γ), S1 × {0}

)
= L

(
ρ(γ), ρ(∂∞F )

)
= L

(
ρ′(γ), ρ(∂∞F )

)
= L

(
ρ′(γ), ρ′(∂∞F )

)
= L

(
γ, ∂∞F

)
where for the last equality, we use the fact that ρ′ is a homeomorphism, and hence
preserves the linking number. But since 〈0, b〉 ∈ ker(i∗), we also have that γ bounds
a disk in V = (N2)∞ − ∂∞F , which implies that L

(
γ, ∂∞F

)
= 0. This now forces

b = 0, completing the proof of Fact 6.

Since the non-abelian group π1(U) injects into π1
(
∂∞M̃−∂∞F

)
, we obtain that

∂∞F ∼= S1 defines a nontrivial knot in ∂∞M̃ ∼= S3, establishing the Assertion,
and finishing off the proof of the Main Theorem.
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5. Concluding remarks.

Finally, we point out a few interesting questions that come up naturally from
this work. As discussed in Section 2.2, locally CAT(0)-manifolds whose univer-
sal covers are not diffeomorphic to Rn cannot support a Riemannian smoothing.
In dimensions n 6= 4, there is no difference between “homeomorphic to Rn” and
“diffeomorphic to Rn”. In contrast, it is known that R4 supports many distinct
smooth structures (in fact, continuum many). Moreover, the method used to con-
struct the Davis examples of closed aspherical manifolds whose universal covers are
not homeomorphic to Rn requires n ≥ 5. So one can ask:

Question: Can one find locally CAT(0) closed 4-manifolds M4 with the property

that their universal covers M̃4 are

(1) not homeomorphic to R4?
(2) homeomorphic, but not diffeomorphic to R4?

Paul Thurston [Th] proved that M̃4 must be homeomorphic to R4 if it has at
least one “tame” point. We remark that the result of Stone [St] tells us that
there is no hope of constructing such examples via piecewise flat metric complexes
(for their universal covers would then have to be diffeomorphic to the standard R4).
Moreover, if one asks instead for aspherical closed 4-manifolds, we remark that Davis
[Da2] has constructed examples where the universal cover is not homeomorphic to
R4 (but it is unknown whether those examples support a locally CAT(0)-metric).

Now concerning the dimension restriction in our construction, we note that this
was due to the need for finding triangulations of spheres with the property that the
associated Davis complex had the isolated flats condition (in order to obtain a well-
defined boundary at infinity). The “isolated squares” condition we introduced was
designed to ensure that Caprace’s criterion was fulfilled. Attempting to generalize
this construction to higher dimensions, the difficulty we run into is that, by work
of Januszkiewicz and Świ

‘
atkowski [JS, Section 2.2] (see also the discussion in [PS,

Appendix]), there is no higher-dimensional analogue of the Dranishnikov-Przytycki-

Świ
‘
atkowski procedure for modifying triangulations in order to get rid of squares.

Finally, we remark that our construction relies on the presence of flats with
specific large scale behavior in order to obstruct Riemannian smoothings. As such,
our methods require the presence of zero curvature. If one desires examples which
are strictly negatively curved, we are brought to the following:

Question: Can one construct examples of smooth, locally CAT(-1)-manifolds Mn

with the property that ∂∞M̃ is homeomorphic to Sn−1, but which do not support
any Riemannian metric of nonpositive sectional curvature?
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‘
atkowski. Flag-no-square triangulations and Gromov boundaries

in dimension 3, Groups Geom. Dyn. 3 (2009), 453–468.
[Sc] V. Schroeder. A splitting theorem for spaces of nonpositive curvature, Invent. Math.

79 (1985), 323–327.

[St] D. A. Stone. Geodesics in piecewise linear manifolds, Trans. Amer. Math. Soc. 215
(1976), 1–44.



20 M. DAVIS, T. JANUSZKIEWICZ, AND J.-F. LAFONT

[Th] P. Thurston, CAT(0) 4-manifolds possessing a single tame point are Euclidean. (Eng-

lish summary) J. Geom. Anal. 6 (1996), no. 3, 475–494.

Department of Mathematics, Ohio State University, Columbus, OH 43210

E-mail address, Davis: mdavis@math.ohio-state.edu

Department of Mathematics, Ohio State University, Columbus, OH 43210

E-mail address, Januszkiewicz: tjan@math.ohio-state.edu

Department of Mathematics, Ohio State University, Columbus, OH 43210

E-mail address, Lafont: jlafont@math.ohio-state.edu


