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INTRODUCTION

An important chapter of the theory of infinite groups is a collection of applications
of vatious geometric or topological concepts, methods or analogies to abstract
groups. The main link between geometry, topology and group theory is the theory of
discrete group actions. Generzlly, the stronger regularity properties an action has, the
closer the relationship is between geometric properties of the space acted on, and
algebraic properties of the acting group. The requirements that an action of a finitely
generated discrete group on a locally compact space be proper and have compact
quotient are not too restrictive but sufficiently strong to provide a rich theory and an
interesting interplay between geometry and algebra.

The most straightforward examples of such group actions are the actions of finitely
generated discrete groups on their Cayley graphs (cf. Section 16). With suitable
metrics on the Cayley graphs these actions are isometric actions. Many geometric or
graph theoretic properties of the Cayley graph directly correspond to certain algebraic
properties of the group. A disadvantage of this approach, however, is the dependence
of the Cayley graph on the finite system of generaiors chosen for the group. Tt seems
desirable to consider different Cayley graphs of the same group, in some sense,
equivalent.

This question leads to the definition of quasi-isometry of metric spaces (cf. Section
16). Quasi-isometry is a considerable weakening of the isometry relation among
metric spaces. Quasi-isometric spaces may have very different local structures, only
similarity of disiances "in large” is required. The first obvious advantage of quasi-
isometry is that it eliminates the ambiguity in defining Cayley graphs: all choices of
finite systems of generators yield quasi-isometric graphs. Thus, we have a geometric
object associated to finitely generated groups that depends intrinsically on the group
structure. _

The most important and most attractive feature of the concept of quasi-isometry is
that discrete actions of finitely generated groups with compact quotient induce quasi-
isometries between themselves and the spaces acted on. This phenomenon naturally
leads to the question of finding quasi-isometry invariant geometric properties of
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spaces, and quasi-isometry invaridnt algebraic properties of groups.

These properties, apart from the trivial boundedness, finiteness and compactness
properties, usually are fairly complex. For example, in case of groups, a quasi-
isometry invariant property must be a "virtual” property, since passing to an
extension or a subgroup of finite index is always a quasi-isometry. Interesting
examples of such algebraic properties are: non-existence of "straight" (cf.[G2]) abelian
subgroups of rank greater than 1, and virtual nilpotency. Similar propertics naturally
occur in various geometric contexts, usually in connection with negative curvature
phenomena (Preismann's theorem and Margulis' lemma for manifolds of negative
curvature).

M. Gromov in [G1] developed the theory of hyperbolic metric spaces and
hyperbolic groups, and introduced far-reaching generalizations of the classical aspects
of hyperbolic space. Hyperbolicity is one of the deepest and most interesting quasi-
isometry invariant property of metric spaces and finitely generated groups.

An important class of discrete transformation groups is the class of reflection
groups, or, in an abstract situation, Coxeter groups. They occur naturally in a wide
range of questions in geometry, the theory of Coxeter groups has its share both in
the classical development of mathematics and in modem research.

A construction used in a recent result by M. Davis (cf.[Dav1]) and Gromov's
fundamental paper [G1] both lead to the question of hyperbolicity among Coxeter
groups. This work is aimed to answer this question.

The central result of the dissertation is a construction that proves the followin:g
theorem:

Theorem A. For any Coxeter group W there exists a complete, contractible,
piecewise euclidean space U of non-positive curvature, on which W acts properly
as a discrete group of isonetries with compact quotient.

The space U is a euclidean convex polyhedral complex with all cells combinatorially
equivalent to a cube.

For example, if W is the dihedral group of order 2m, then U is a regular euclidean
2m-gon and W acts on U as the subgroup of the full symmetry group of U generated
by the reflections across the axes that do not pass through vertices. A 2-cell in U
(and a fundamental chamber for the action of W on U) is a quadrilateral with angles
w/m, %, 7= (nt/iu) and 7. The vertex with angle =-{x/m) {5 called the inside vertex of
this quadrilateral. If W is a (p,q,r)-triangle group with (1/p)+(1/q)+(1/r)1 (that is,
W is infinite),then a fundamentzal chamber in U is obtained by pasting together the
three quadrilaterals corresponding to the three dihedral subgroups along the sides
starting out of the common inside vertex. The inequality



(- (r/p))+(n= (m/q))+ (it~ (n/r))22x shows that the geometry on U has a cone
singularity with non-positive curvature concentrated at the inside vertex.

The construction of U for arbitrary Coxeter groups is a natural generalization of
these examples. Verification of a condition on links of cells in U, which is analogous
to the above inequality and ensures that U has non-positive curvature, constitutes the
bulk of the dissertation.

A modified version of the construction yields strictly negative curvature on U for a
certain class of Coxeter groups, and this class is precisely the class of hyperbolic
Coxeter groups. This leads to the following characterization of hyperbolicity among
Coxeter groups:

Theorem B. For a Coxeter group W the following conditions are equivalent:

(i) W is hyperbolic,

(ii) W does not contain abelian subgroups of rank greater than 1.

(iii) W has no affine standard subgroups of rank greater than 2, and has no
pairs of disjoint commuting infinite standard subgroups.

The dissertation is divided into four chapters. Chapter I is an introductior to the
geometry of spaces of piecewise constant curvature, together with some of the key
technical lemmas. Chapter II develops the theory of spherical complexes associated to
a certain type of matrices, the main steps of the proofs of Theorems A and B are
made here, Chapter III describes the construction and proves Theorem A, Chapter IV
briefly introduces Gromov's concept of hyperbolicity, proves Theorem B, and
discusses some naturally arising open questions.



CHAPTER 1

GEOMETRIC COMPLEXES

First we review the definitions and basic properties of convex polyhedral cell
complexes, then we show (Corollary 4.6) that they provide examples of so-called
geodesic metric spaces. We develop some of the main technical tools (Lemmas 4.5,
5.4 and 5.11.) used in later chapters.

1. Convex polyhedral cells

Let EDN [HD and $7 denote the standard euclidean, hyperbolic and spherical
space, respectively. That is, ED, JHT (for n20) and 3™ (for n22) are the (unique) n-
dimensional simply connected complete riemannian manifolds o’ constant sectional
curvature 0, - 1 and 1 respectively, $1 is the circle of length. 27 with the arc metric,

50 is the two-point space with the discrete metric of diameter &, and $~ Lis the
empty space. For n20, we identify ED with the n-dimensional coordinate space R™,

and $0-1 with the set of unit vectors in RP,

A cell, or more precisely, a convex polyhedral cell in ED or HT is the convex
hull of a finite number of points. A simplex in ED or H" is the convex hull of at
most n+1 points in general position. A convex polyhedral cone in a vector space is
the set of all nonnegative linear combinations of a finite number of vectors. A
simplicial cone in a vector space is the set of all nonnegative linear combinations of a
linearly independent set of vectors. In &1, a cell (simplex) B is the intersection of a
convex polyhedral cone (simplicial cone) C in RN+1 with SN, This cone C is
uniquely determined by B and is called the euclidean cone associated to the spherical
cell B. A cell is called proper if it contains no pair of antipodal points; for example,
all cells in IEM or M, and all simplices in BN are proper. A spherical cell is proper if
and only if the associated euclidean cone contains no linear subspaces of positive
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dimension. In a proper cell any two points can be connected by a unique geodesic
segment.

The dimension dimB of a cell B is the dimension of the smallest plane containing
B. A face of B is either B itself or the intersection of B with the boundary of a
closed half-space in E™ or HY, or closed hemisphere in $7, containing B. The
structure of faces is preserved under isometries between cells, The faces of a ce!l B
are cells contained in B, they form a finite partially ordered set with respect to
inclusion. Every cell B has a unique smallest face; if B is proper, then this is the
empty face, otherwise the smallest face is a sphere of nonnegative dimension. 0-
dimensional faces are either singletons, when we call them vertices and identify them
with their unique element, or doubletons in some non-proper spherical cases. Among
all faces containing a given x€B there is a smallest one, called the support of x. The
interior of B is the set of points whose support is B, the boundary of B is the
union of faces different from B. B is the disjoint union of its interior and its
boundary. -

A subdivision of a cell B is a finite collection {C},...,Ck} of cells with
B=Cju...uCk, such that for any i and j, Cj NC;j is a common face of Cj and G. A
subdivision of B induces subdivisions of faces of B. Every cell has a subdivision
that consists of simplices.

Let B be a cell in M, where M is ER, HD or $1, and let xe B. The tangent cone
TxB of B at x is the set of vectors v in TxM such that expx(ev)eB for some £:0.
TxB is a convex polyhedral cone in TxM. We identify $7-1 with the unit sphere in
TxM, then the geometric link LK(x,B) of x in B is defined as the intersection
TxBNS™-1 LK(x,B) is a spherical cell of one fess dimension than B. The isometry
class of LK(x,B) is independent of x within the interior of the support of x, thus the
geometric link LK(F,B) of a nonempty face F in B is well-defined up to isometry as
LK(x,B) for some point x in the interior of F. For a proper spherical cell B we define
the geometric link of the empty face as B itself. The link 1k(x,B) of xe B is defined
as the set of vectors in LK(x,B) orthogonal to the subspace TyF<TxM, where F is
the support of x, k(x,B) is a proper spherical cell of dimension dimB-dimF~ 1, its
isometry class only depends on F and B, and, as above, for any nonempty face F of
B, the link 1k(F,B) of F in B is well-defined up to isometry, Again, for a proper
spherical cell B, we define 1k(&,B)=B.

Let xe FCGCB, where F and G are faces of a cell B, and assume that x is in the
interior of F. Then the inclusion TxGC TxB identifies k(F,G) with a face of 1k(F,B),
and this identification is independent of the choice of x. The link lk(lk(F,G),Ik(F,B))



is isometric to 1k(G,B).

Let B and C be two spherical cells, say, BC$™-1 and C¢ $0-1. The join B+C
of B and C is defined as the intersection of $™M+1-1 with the convex cone generated
by B and C in the orthogonal sum RMe RO=RM+N  B+C is a spherical cell of
dimension dimB+dimC+1, the euclidean cone associated to B+C is the orthogonal
sum of those associated to B and C, and the faces of B*C are precisely the cells of
form F*G, where F is a cell of B and G is a cell of C. If @ is a face of C or B, then
we identify the faces Bx@ and &*C with B and C respectively. The join operation is
commutative and associative up to isometry.

For a spherical cell B, the suspension SB of B is defined as the join 50«B, and
the cone CB of B is defined as 1*B, where the cone point 1 is the single-point cell
at 1e R. If B is proper, then the links LK($0,SB), 1k(%9,SB), LK(1,CB),
1k(1,CB) are naturally identified with B, and for xe B, LK{x,CB) and lk(x,CB) are
naturally identified with the cones CLK(x,B) and Clk(x,B) respectively. For any
point xe B with support F of dimension k+1, the geometric link LK(x,B) is naturally
identified with the join Skxlk(x,B), where S is the unit sphere in TxF. %7 is the
(n+1)-fold iterated suspension of &, therefore joins with spheres ave naturally
identified with iterated suspensions.

2. Complexes

We use a slightly generalized version of CW-complexes: we require that they have
a sphere as a unique cell of smallest dimension, and that all higher dimensional cells
be attached in the usual fashion. When the smallest cell is the empty set, we have a
CW-complex in the usual sense. A suitable subdivision always makes generalized
CW-complexes into usual ones.

Let M be one of the symbols E, H or $. An M-complex is a CW-complex K in
the above sense, together with a collection of maps B, called characteristic maps,
for each closed cell B of K, that satisfy the following requirements:

(i) fB is a homeomorphism from B onto a conver. polyhedral cell in M" for
some n. Inverse images under fB of the faces of this cell are called the
faces of B;



(ii) If B and C are closed cells of K, then BNC is a face of both B and C,

and fofg~ 1 restricts to an isometry from fg(BMC) to fC(BMC),
Closed cells and their faces (which are, by virtue of (ii), closed culls themselves) are
called cells of K, By (i), the interiors of cells form a partition of K. For xe K, the
unique cell containing X in its interior is called the support of x. The dimension
dimK of K is the supremum of dimensions of its cells.

The characteristic maps induce metrics on cells of K, these metrics agree on
intersections. With a slight abuse of language, we make no distinction between cells
of K and their images under characteristic maps, or between the M-complex K and
its underlying topological space.

Two M-complexes are called isometrically isomorphic, if there is a
homeomorphism oetween them that takes cells onto cells isometrically. Such a map is
called an isometric isomorphism.

A subcomplex L of K is a closed subset that is a union of a family of cells,
together with {fg | BCL} as a system of characteristic maps. If xeK, then the srar
St(x,K) of x in K is the subcomplex of K defined as the union of all cells containing
x, and the open star Ost(x,K) of x in K is the union of interiors of all cells
containing x. Ost(x,K) is an open neighborhood of x in K, contained in St(x,K). If
ye OQst(x,K), then Ost(y,K)C Ost(x,K).

Obvious examples of M-complexes are the convex polyhedral cells in MR with their
face structures, boundaries of cells, subdivisions of cells etc., taking identity maps
as characteristic maps.

An M-complex K is called simplicial (preper), if all cells of K are simplices
(proper cells); finite, if the number of cells is finite; locally finize, if every point of
K (or, equivalently, every cell of K) is only contained in a finite number of cells of
K. Finiteness is egivalent to compactness, local finiteness is equivalent to local
compactness of K.

If K and L are proper M-complexes, then the disjoint union of K and L has a
natural proper M-complex structure with the disjoint union of the sets of
characteristic maps for K and L.

A subdivision of K is a simultaneous subdivision of all faces of K in a compatible
fashion, that is, for any cell B and any face F of B, the subdivision of F is the one
induced by the subdivision of B. Characteristic maps for cells in the subdivision of K
are restrictions of original characteristic maps. Any subdivision of the boundary of a
cell B can be extended to a subdivision of B, simplicially, if the subdivision of the
boundary is simplicial. Thus, subdivisions ol M-complexes can be defined by the
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usual skeletal induction, It follows, for example, that all M-complexes have simplicial
subdivisions.

Let K be an M-complex and xs K. Define the geometric link LK(x,K), the link
Ik(x,K) and the rangent space TxK of x in K as the disjoint union of cells
LK(x,B), Ik(x,B) and cones TxB respectively, for all cells B of K containing x, with
the natural identifications: a vector u in TxB is identified with the vector v in TxC if

and only if the differential of the map fBfC~1 at fc(x) maps v to u. LK(x,K) and
1k(x,K) have a natural $-complex structure, using the identity maps as characteristic
maps. The system of exponential maps at x for various cells of K containing x is
compatible with the identifications, so expy is well-detined on a certain subset of
TxK; for any ve LK(x,K) there is an €>0, such that expx(dv) is defined for all
0sd<e, If LK(x,K) is finite, then € can be chosen independently of v. If K is
locally finite, then LK(x,K) and 1k(x,K) are finite for all xeK. The isometric
isomorphism class of LK(x,K) and 1k(x,K) depends only on the support of x, so we
can define the geometric link and the link of a nonempty cell B of X up to isometric
isomorphism by LK(B,K)=LK(x,K) and lk(B,K)=Ik(x,K) with some point x in the
interior of B. For a proper $-complex K we define LK(@,K)=1k({J,K)=K.

If F and B are cells of an M-complex K with FCB, then 1k(F,B) is a cell in the
$- -omplex k(F,K), and Ik(Ik(F,B),lk(F,K)) is isometrically isomorphic to Ik(B,K).

Let K and L be two S-complexes. The join K+L of K and L is defined as the
disjoint union of all cells of the form B*C, where B is a cell in K and Cis a cell in
K, with the natural identifications given by inclusions of faces. K+L has a natural
$-complex structure with identities as characteristic maps. The join operation is
commutative and associativz up to isometric isomorphism. The spzcial cases
SK=50xK and CK=1#K ate called the suspension and the cone of X, respectively.
The complex 2*K, where 2 is the disjoint union of two copies of 1, is called the
double cone of K. It is isometrically isomorphic to the “equatorial” subdivision of
SK. If K is proper, then the complexes LK($9,5K), 1k(89,5K), LK(1,CK) and
1k(1,CK) are all naturally isometrically isomorphic to K, and for xe K, LK(x,CK)
and k(x,CK) are naturally iscmeirically isomorphic to CLK(x,K) and Clk(x,K)
respectively.



3. The intrinsic metric

Let X be a set. A family {dj| iel} is called a compatible family of partial metrics

on X if
(1) for all iel, dj is a metric on some subset Xj of X,
(i) X=u{Xj]iel}, and
(iii) dj(x,y)=dj(x,y) whenever x,yeXjnXjand ijel.

An allowable m-chain is a sequence C=(x(,...,xm) of points in X such that for
each k=1,...,m there exists an index i(k)eT with xk- 1,Xk= Xj(k). The length A(C)
of C is defined as the sum dj(1)(x0,x1)+...+dik)(Xm~ 1,Xm)- Due to the
compatibility condition (iii), A(C) is independent of choices of indices i(k). We say
that C is from x( 0 xm. An allowable chain is 2 sequence which is an allowable
m-chain for some m=0.

For x,ye X we define

d(x,y)=inf{A(C)|] C is an allowable chain from x to y}.
Then d is a pseudometric on X (in a slightly generalized sense: d takes the value o
on pairs that cannot be connected by an allowable chain), called the intrinsic
pseudomerric defined by the family {dj| ieI}. Clearly d is maximal among all
pseudometrics on X satisfying d(x,y)<dj(x,y) whenever x,y& Xj.

For an M-complex K and for a cell B of K let dB denote the metric on the cell B,
then {dB| B is a cell of K} is a compatible family of partial metrics on X. Let d=dg
denote the intrinsic pseudometric defined by this family. f Bisacell and L is a
subdivision of B, then obviously di =dR. Therefore we have dg’=dK for any
subdivision K’ of K. Isometric isomorphisms between M-complexes are isometries
with respect to the intrinsic pseudometrics.

3.1. Lemma. Let K be a locally finite M-complex, xe K, and put

e(x)=min{dB(x, B-Ost(x,K))| B is a cell in K containing x}.
Then £(x)>0, and if yeK with d(x,y)<e(x), then x and y are contained in
some ceil B of K, and dB(x,y)=d(x,y).

Proof, £(x)=0, since K is locally finite, and since Ost(x,K)nB=0st(x,B) is an
open neighborhood of x&B in B.

Let C=(x0,...,xm) be an allowable chain from x to y with A(C)<e(x), and put
Ck=(%0,...,xk) for k€m. Let m’ be the greatest k<m with the property that

x;e St(x,K) for all i€ {0,...,k}. Then either m’=m, or xp’e St(x,K)- Ost(x,K). For
all 1<k<m’ there is a cell B(k) containing the points x, xkx~ 1 and xk . We prove by
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induction on k that dB(k)(x,xk)<A(Ck). For k=1 this is obvious, and for 1<ksm’
we have
dB(k)(X:xk) < dB{k)(x,xk- 1) + dB{k)(xk- 1,Xk) (triangle inequality in B(k))
= dB(k- 1)(X,%xk-1) + dB(k)(Xk- 1,Xk)
S A(Ck-1) + dB(k)(xk~ 1,Xk) (induction hypothesis)
= A(Ck).
Thus, dB(m’)(X,Xm")SAMCm")EA(Cm)<e(x) and xm’s Ost(x,K), therefore m’=m,
and with B=B(m) we have dp(x,y)$A(C). This proves the lemma, since dB(x,y) is
independent of the choice of C.
From this lemma it immediately follows that:
3.2. Corollary. If K is a locally finite, connected M-complex, then its intrinsic
pseudomerric is a merric compatible with the topology of K.
For non-connected M-complexes the intrinsic pseudometric is a (compatible) metric
in a generalized sense: th= distance between twe points is finite if and only if they are
in the same connected component of K.

4, Geodesics

Let (X,d) be a metric space. A geodesic segment in X is an isometric map
p:I-> X, where 1 is a metric space isometric to (and usually identified with) some
interval [a,b]C R, a<b, equipped with its usual metric. We say that p connects its
endpoints p(a) and p(b). The length of p is b-a. A closed geodesic in X is an
isometric map q:S(A)~> X, where S(A) is a circle of length A, equipped with the arc
metric. The length of q is A. Closed geodesics in X can be represented by isometric
maps {a,b]-> X, where a<b and {a,b] is equipped with the pseudometric
p(s,t)=min(|s-t|,b~a=[s-t]). A map S(A)-> X is a closed geodesic in X if and
only if its restriction to any arc of S(A) of length <A/2 is a geodesic segment in X.

(X,d) is called a geodesic metric space, if every pair of points in X can be
connected with a geodesic segment. Important examples of geodesic metric spaces are
the complete connected riemannian manifolds, and their geodesically convex
subspaces.



Let K be a proper M-space with intrinsic metric d. For an allowable chain
C=(X0;...,xm) we define the parh pC:[0,MC)]1= K associated to C as the
concatenation of the unique geodesic segments pc(k) from xj- 1 to Xk in a cell
containing both xk- 1 and xk (k=1,..,m). (Note that these segments need not be
geodesic segments in K.) We say that pC is represented by C. If xk- 1#xk, then let
Vk- 19Ute LK (xk- 1,K) denote the unit tangent vector to pC®) at xk~1,and let
vkine LK(xk,K) denote the backward unit tangent vector to pC(K) at xx (k=1,...,m).
If xQ#x1, then the initial vector i(C) of C is defined as voPUle LK (x0,K). A local
geodesic segment in K is an allowable chain C=(x(,...,xm), such that xk- 1#xk
(k=1,...,m) and d(vki“,vkom)an, where d denotes the intrinsic metric of LK(xk,K)
(k=1,...,m~ 1). If, additionally, x0=xm and d(vmin,voout)Zn in LK(x0,K), then C
is called a closed local geodesic in K.

4.1. Lemma. Let C be an allowable chain in a proper M-complex K. If pC is a
geodesic segmenz, ther: (after removing repetitions, if necessary) C is a local
geodesic segment in K.

Proof. We can assume that C=(x(0,x1,x2) and xQ=x1#x2, when we only have to
check that d(u,v)2xr in LK(x,K), where u=v1in, v=v]OUl and x=x]. Suppose that
d(u,v)<m, then the euclidean cone in TxK associated to the image of pD for an
allowable chain D of length o< from u to v in LK(x,K) is the image of a euclidean
plane sector SC R with angle o under a map f:S— TxK that is isometric on the
cones £~ 1(TxB) for cells B containing x. The unit vectors a=f- 1(u) and b=f- 1(v) in
R2 generate the boundary half lines of S. Since pD is contained in a finite
subcomplex of K, with a suitable choice of the points aQ=a,a},...,am=b along the
segment connecting a and b in S, the sequence Eg=(expx(f(eap)),...,expx(f(€am)))
for sufficiently small £>0 is an allowable chain in K, The limit of A(Eg)/€ as e 0 is
the distance (<2) of a and b in R2, since eXpyx 18 a near isometry near the origin.
So, with a sufficiently small >0, A(Eg)<2€, and
C’=(x0,expx(f(eap)),....expx(f(eam)),x2) is an allowable chain in K with

A(CH<A(C), a contradiction.

4.2. Lemma. In a proper M-complex every geodesic segment can be represented
by a local geodesic segment, and every closed geodesic can be represented by a
closed local geodesic.

Proof, By Lemma 4.1, it suffices to prove that every gecdesic segment can be

represented by an allowable chain. Let p:[0,A]= K be a geodesic segment in a proper
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M-complex XK. We can assume that K is finite, since the image of p is contained in a
finite subcomplex. For t<A, let pt denote the restriction of p to the subinterval
[0,t]. Define

H={te[0,A]| pt can be represented by an allowable chain}.
Then H is a subinterval of {0,A] and 0s H, We show that H is open and closed in
[0,A], which proves the lemma.
Let teH, t<A. Choose an allowable chain C=(xQ,...,xm) With pC=pt, and
Te (t,t+£(xm)), T<A, where £(xm) is given in Lemma 3.1. Then C’=(x0,...,xm.p(T))
is an allowable chain with pC’=pt, showing teH and that H is open.
Let t=supH. Choose s (t~ g(p(t)),t), 120, and an allowable chain C=(x(,....xm)
with pC=pr, then C’=(xQ,...xm,p(%)) is an allowable chain with pC’=pt, showing
ts H and that H is closed.

Let K be an M-complex with intrinsic metric d, and x,yeK. For me N define

dmx,y)=inf{A(C)] C is an allowable m-chain from x to y}.
Clearly dm(x,y)<dn(x,y) for m=2n, and dm(x,y)=> d(x,y) as m-> ee.

4.3 Lemma. If K is finite and connected, then for any x,yeK and me N
there is an allowable m-chain C from x to 'y with MC)=dm(x,y).

Proof. If z,weK, then Ost(z,K)NOst(w,K)=@ if and only if no cell contains both
z and w, This shows that the set of allowable m-chains in the topological product
Km+1 ig closed, therefore it is compact. The length function is continuous, so it
assumes its infimum,

4.4 1Lemma, Let K be a finite, connecied M-complex with intrinsic metric
d,and ler x,ye K, xsty. Then there exists a point ze St(x,K), such that z#x and
d(x,z)+d(z,y)=d(x,y).

Proof. For me N choose an allowable m-chain Cp; from x to y with
ACm)=dm(x,y). This is possible by Lemma 4.3. For ne N choose an m(n)e IN,
such that dm(n)(X,y)<d(x,y)+1/n. Let e=g(x) be given by Lemma 3.1, For ne N let
vn be the initial vector i(Cm(n))e LK(x,K) and zn=expx(Evn). By compactness of K,
we can assume that zp-» Z as n~» o for some z< St(x,K). Then

d(x,z) + d(z,y) £ & + d(z,zn) + d(zp,y)
£e+ d(z,zn) + AMCm(n)) - €
£d(z,zn) + dOLy) + 1/n
- d(x,y) as n=> eo,
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4.5. Lemma, Let K be a finite M-complex with intrinsic metric d, and let yeK.
Suppose thata continuous function f:U-> R defined on an open neighborhood U
of y satisfies the following conditions:

(i) £(y)=0,
(ii) £(z)>0 (ze U, z#y),
(iii) for every ze U, the set {z2'eU | f(2")<f(z)} is closed in K, and
(iv) for every xe U there exists a point 1(x)e St(x,K)NU, such thar
d(x,r(x)) + f(r(x)) £ f(x) and r(x)=x, if x#y.
Then for every xeUthere exists an allowable chain C from y to x with A(C)<f(x).

Proof. By transfinite recursion on countable ordinals we define the points xqeU

for i<, such that the following condition holds:
(*) tg+f(xg) £f(x), where ta=§§ad(x§’x§+1) .

Put xg=x. Suppose 0<B<m1, and for <[ we have defined xq, satisfying (*).
If B is a non-limit ordinal, say, B=o+1, put xp=r(xer). Then
g+ f(xB) =ty + d(xa,xB) + f(xB)
St + f(xe) (by (iv))
£ f(x) (by the induction hypothesis).
If B is a limit ordinal, then B=limai(n) (n~> =) for some sequence of ordinals
a(n)<P, and the sequence xg(n) converges to some x3<X. By (iif), x3eU, and
tp + f(xB) = limtg(n) + f(limxg(n))
= lim(tg () + f(xau(n)) (by continuity of f)
<f(x) (by induction hypothesis).

The increasing sequence tg (x<e]), and therefore the sequence x¢ (<), must
be eventually constant. Since r(x)#x for x#y, xo must stabilize at y, say, y=xo(0)-
Define the sequence of ordinals (¢¢(n) | ne IN) by recursion as follows:

If ¢e(n) is a non-limit ordinal, then a(n+1) is defined by a(n)=a(n+1)+1, unless
a(n)=0, when the recursion stops.

If ¢t(n) is a limit ordinal, then choose ou(n+1)<a(n) so that
d(xau(n).xou(n+1))<E(Xex(n)), Where e(xei(n)) is given by Lemma 3.1

A strictly decreasing sequence of ordinals must be finite, therefore a(n)=0 for some
n. Then C={Xg(0)s....Xet(n)) is an allowable chain from y to x with
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n
MC) = Zd(xa(i-—l)’xa(i))
i=1

i=
< d(x,, x
E-E(O) e e
$fx)  (by (*)).

4.6. Corollary, Let K be a finite, cornected M-complex and d be the intrinsic
merric on K. Then (K,4) is a geodesic metric space.

Proof. By passing to a subdivision if necessary, we can assume that K is proper.
Given yeK, the open set U=K and the function fiK-> R, f(x)=d(x,y) satisfy the
conditions (i),(ii) and (iii) in Lemma 4.5 automatically, (iv) follows from Lemma 4.4,
Given xeK, pC is a geodesic segment from y to x, where C is the allowable chain
given by Lemma 4.5.

4.7. Corollary. Let K be a locally finite, connected M-complex, and assume that
there exists an £>0, such that all closed e-balls with respect to the intrinsic metric
d of K are compact. Then (K,d) is a geodesic metric space.

Proof. The condition on &-balls implies that all closed metric balls of finite radius
are compact. Given x,yeK, the closed d(x,y)-ball around x is contained in a finite
subcomplex L, then a geodesic segment in L. from x to y is a geodesic segment in K.

5. The girth of finite $-complexes

Throughout this section, let K denote a finite $-complex, and d its intrinsic
meitric. Define the girth g(K) of K as the infimum of iengths of closed geodesics in
K.

Let (Y,0) be a metric space. A closed g-geodesic of length X in Y is a map
q:S(A)— Y such that for any pair of points s,te S(L)

(1-e)pp (s,t) < 0(q(s).q(t)) = (1+E)pA(sst), -
where pj, denotes the arc metric on the circle S(A) of length A

5.1. Lemma, Let (X,p) and (Y,0) be compact metric spaces, and

S=(fn:X->Y | neN) a sequence of maps, such that for any pair of points a,be X
o(fn(a).fn(b)) & p(a,b) as n=> ee,
Then there exists an isometric embedding £:X-Y,
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Proof. Given any subsequence S’ of the sequence S, and any finite subset F of X,
there is a subsequence F(8’) of the sequence S’ that is convergent on F. Cheose 2
countable dense subset A={ak|}ksIN} in X, put Fx={ai,...,ax} (ke N}, and define
by recursion S0=S and Si=Fk(Sk-1) (ke IN). Define f(ayk) as the limit of Sk at aj.
Then, for any k<m, we have

O(f(ay), fam)) =o( lim S (a,), Lm_Sp(an)

=o( nl}'gw.ms m@g)» nlii)an m@m)

= nli_x_?m o(S ,(a k), Sn@p)

= lim_o(fy(ay), falan))

= p(ak, a.
Since f maps a dense subset A of X isometrically into Y, and X and Y are compact,
f exte.~ds (uniquely) to an isometric map from X, the metric completion of A, into
Y.

5.2. Corollary, If for every €50 there exists a closed
K, then there exists a closed geodesic of length A in K.

Proof. Apply Lemma 5.1 to a sequence of closed 1/n-geodesics of length A
(ne }N).

5.3. Coroilary, If O<g(K)<oe, then there exists a closed geodesic of length g(K)
in K.

Proof. Given >0, choose a closed geodesic q:S(*)=> K, where
g(K)<A<(1+£)g(K). Then the composition qes, where s:S(g(K))=>» S$(A) is a uniform

stretch, 1s a closed e-geodesic of length g(K) in K, and Corollary 5.2 applies.

3.4. Lemma. Suppose that x,ye K and d(x,y)<n. Then every geodesic segment
in the cone CK of K from x to y is contained in K.

Proof. The following argument is due to M. Gromov, cf, [G1] p.122.
Suppose that p:[0,A]-> CK is a geodesic segment from x to y, where, without loss
of generality, we can assume that p(t)e K for t=0,A. Assume that K is proper, then
the cone point 1 is a vertex of CK. We can assume that the image of p is contained
in U=CK- {1}, since any geodesic segment in CK connecting two points of K
through 1 must consist of two segments of length n/2. Let pr:U-> K denote the
radial projection, then pr is injective on the image P of p. The projection of an
allowable chain representing p gives pr(P) a one-dimensional, and the cone Cpr(P) a
two-dimensicnal &-complex structure, p is a geodesic segment in Cpr(P), therefore
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the map f:Cpr(P)~» %2 defined by wrapping pr(P) around the equator and mapping
each cell of Cpr(P) isometrically into $2 must take P isometrically onto a great cicle
arc, and x and y into a pair of antipodal points. So, A=mn, which proves the lemma.

5.5, Lemma. Every closed geodesic in CK is contained in K.

Proof. The image Q of a closed geodesic q in CK obviously cannot contain 1. If
QC CK- ({1}UK), then the image of the wrapping map described in the proof of
Lemma 5.4 starting with any point on Q is a great circle arc, which, sooner or later,
must intersect the equator of %2, a contradiction. Finally, if QnK=(, then let the
allowable chain C represent q. Then, since CB-B is convex in B for any spherical
cell B, some element xk of C must be in K, The distance of vkin and vgout in
LK(xk,CK)=CLK(xk,K) can equal T only if both vkin and viOUt are in LK(xk,K),
which, by induction around C, shows that QC K.

Combining Lemmas 5.4 and 5.5, it immediately follows that:

5.6. Corollary. If g(K)22n, then g(SK)22n. If g(K)>2n, then every closed
geodesic in SK passes through both suspension points and has length 21t.

3.7. Lemma. For any xeK, the ball of radius €(x)/2 around x in K is isometric
to the ball of radius €(x)/2 around 1 in the cone CL, where L. is a proper
subdivision of LK(x,K), and e(x) is defined in Lenma 3.1.

Proof, Identification of tangent spaces TxK=TjCL defines an embedding f of the

open e(x)-neighborhood of x in K into tne suspension SL, { is isomeiric when
restricted to each cell in St(x,K). By Lemma 3.1, any geodesic segment between two
points in the g(x)/2-ball is contained in the g(x)-ball (either around x in K, or around
1 in CL), therefore f is an isometry between the £(x)/2-balls.

Combining 5.5. and 5.7. Lemmas, it immediately follows that:

5.8, Corollary, For any x&K, the e(x)/2-oall around x cannot contain a closed
geodesic in K.

5.9. Corollary. g(K) is always positive.

Proof. Let A denote the Lebesgue number of the covering of X by all open £(x)/2-
balls for xeK, then, by Corollary 5.8, g(K)22A.

In the remainder of this section, we show that g(K), in some sense, is a lower
semicontinuous function of K.

Let B,B’ be spherical simplices and 8>1. We say that B’ is a 6-change of B, if
there exists a map f:B’—> B, such that for any x,ye B’ the following inequality holds:
(*) (1/8)d"(x,y) < d(f(x),£(y)) < 8d'(x,y),




where d and d” denote the metrics on B and B’ respectively. Any map f with this
property is called a 8-map for B". The inverse of f shows that then B is a d-change
of B’. If K and K’ are finite simplicial $-complexes, then K’ is a &-change of K, if
there exists a homeomorphism f:K’— K that takes simplices onto simplices, and
restricts to a 8-map on each simplex of K’. Any such map, called a 3-map for K’,
obviously satisfies (*), where d and d’ denote the intrinsic metrics on K and K’
respectively. Again, the inverse of f shows that K is a 8-change of X'.

5.10. Lemma. Ler X be a finite simpliciai $-complex. There exists a positive
real number A, such that if K'is a §-change of K with 852, then g(X")=A.

Proof, Let A denote the Lebesgue number of the covering of K with open £(x)/8-
balls for all xeK. If K’ is a 6-change of K with §-map f, then for any subset ACK”
of diameter <A/2, there exists an xe K, such that f(A) is contained in the £(x)/8-ball
around x, and therefore A is contained in the £(x)/4-ball around - 1(x), which is
contained in the e(f~ 1(x))/2-ball around £~ 1(x). Then, by Corollary 5.8, A cannot be
the image of a closed geodesic.

5.11. Lemma. Let K be a finite simplicial B-complex. For any real number
a<g(K) there exists 8>1, such thar g(X"y2o holds for any 8-change K’ of K.

Proof. Suppose that, to the contrary, for all ne N there is an (1+1/n)-change Ky’
of K and a closed geodesic qn:S(An)—> Kn' with An<o. Then, by Lemma 5.10, the
sequence {An) has a positive limit point A, and the compositions gnesp with uniform
stretches sp:S(A)-> S(An) give ~losed e-geodesics of length A<g(K) with arbitrarily
small £>0, which contradicts to Corollary 5.2.

Generally, g(K) is not an upper semicontinuous function of K. Indeed, if K is a
simplicial subdivision of a hemisphere in SZ, then g(K)=2x, and there exist 8-
changes of K with infinite girth for arbitrarily small 8>1.

6. Curvature

Motivated by [G1], p.120, we say that an M-complex K satisfies the lLink axiom,
if
g(k(B,K)) 2 2n for each non-empty cell B of K.
We say that an E-complex (H-complex, or 5-complex) K has curvarre <0 (s- 1,
or <1 respectively), if K satisfies the link axiom.
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There are a number of generalizations of the condition "curvature k" on
riemannian marifolds to broader classes of metric spaces. Let us review a few of
these,

In [A], A. D. Aleksandrov considered complete geodesic metric spaces X with a
certain definition of angles between geodesic segments originating from a common
endpoint. (For example, locally finite M-complexes K satisfying the condition of
Corollary 4.7 are such spaces, the angle between two geodesic segments with
common starting point x being the distance of their initial veciors in LK(x,K).) Let ¥

be a real number. If A is a geodesic triang!s in X (with perimeter less than 2nx™ 12

if ¥>0), then the comparison triangle A(X) in the simply connected complete
riemannian 2-manifold M(x) of constant sectional curvature x is uniquely defined up
to isometry by the requirement that A(x) have the same sides as A. The defectof a
geodesic triangle is defined as % minus the sum of interior angles. Now we can
formulate Aleksandrov's comparison axiom
A(x): For every geodesic triangle A in X, the defect of the comparison
triangle A(x) does not exceed the defect of A,
In [A], Aleksandrov proved that if a space X satisfies the axiom A(x), thca in any
geodesic triangle A each angle is less than or equal to the corresponding angle of
A(x). Aleksandrov defined X to have curvature <x, if X satisfies A(x) locally, that
is, every point in X has a neighborhood satisfying A(x). He proved that if ¥<0 and
X satisfies A(0) globally and has curvature <X, then X satisfies A(x) globally.
In {G1], M. Gromov considered the comparison axiom
CAT(x): Let A be a geodesic triangle in X with vertices 1., y and z, and let
w be a point on the side with vertices y and z. ..et x', y' and z' be
the corresponding vertices of the comparison triangle A(x), and let
w' be a point on the side of A(K) with vertices y' and z' uniquely
determined by the requirement that the distance from y' to w' 2qual
the distance from y to w.
Then the distance from x to w does not exceed the distance from x'
to w'.
Aleksandrov proved the equivalence of A(K) and CAT(X) in [A].
In [G2], Gromov introduced the following "convexity axiom":

C(0): The metric of X is a convex function on XxX.
Here, a real function f defined on a geodesic space Y is called convex, if all
compositions fep, where p is a geodesic segment in Y, are convex functions. A
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complete geodesic space X is called a convex (locally convex) space, if X satisfies the
axiom C(0) (locally).

In [Bu], H. Busemann introduced the axiom

B(0): If mj is the midpoint of a geodesic segment from x to yi in X (i=1,2),
then the distance from m1 to m2 does not exceed half the distance
fromy] to y2. ‘

Busemann defined a complete geodesic metric space X to have curvature <0, if X
satisfies the axiom B(0) locally. He proved that simply connected spaces of curvature
<0 are contractible and satisfy B(Q) globally.

It is easy to see the equivalence of the axioms C(0) and B(0), and that A(x) and
CAT(x) with x<0 imply C(O) and B(0). In the case of locally finite M-compleags, it
is easy to see that A(D), CATO), C(D) and B(D) arc cquivalont.

Gromov's argument in [G1], p.120, implies that locally finite FI-complexes (E-
complexes or $-complexes) satisfying the link axiom satisfy the axiom CAT(-1)
(CAT(0), or CAT(1) respectively) locally. Thus, our definition of "curvature £-1 (0,
or 1 iespectively)” coincides with the classical ones. Combining the theorems of
Aleksandrov and Busemann, it follows that simply connected locally finite H-
complexes (IE-complexes) satisfying the condition of Corollary 4.7 and the link axiom
are contractible and satisfy the axioms CAT(- 1) (CAT(0) respectively) globally. In
particular, they are convex spaces.



CHAPTER I

ALMOST NEGATIVE MATRICES

‘We use a classical theorem in linear algebra to prove our main technical tools
(Lemmas 9.5 and 9.7) in investigating the geometry of spherical simplicial complexes
with nrasoribed adpe laneths, The chief result of this chapter (Proposition 10.1) will
imply that the geometric compiexes we construct in Chapter 111 satisfy the link
condition.

7. The nerve of a symmetric matrix

Let A=(ajj) denote a real symmetric matrix of order n. The set of indices of rows
and columns usually is the set {1,...,n}, when we call A an nxn-matrix, but we
often use different index sets, for example, a subset I of {1,...,n}, when we say
that A is an IxI-matrix. We define a finite $-complex N(A), called the nerve of A,
as follows:

Let ui,...,un be a basis in a real vector space V, and let (,) denote the bilinear
form on V whose matrix with respect to the basis u1,...,un is A; that is, aijz(ui,uj).
For IC{1,...,n}, let AT denote the principal submatrix of A corresponding to the
indices in I, and 1t V] denote tic lintar subspace of V goncraicd 6y {uiji=1r. i A]
is positive definite, then let BT denote the spherical simplex associated to the
simplicial cone generated by {uj] ieI} in the unit sphere of the euclidean vector space
V1. The nerve N(A) is defined as

N(A) = v {B1}Ic{l,..,n} and A] is positive definite},
together with identity maps as characteristic maps. N(A) clearly is a finite -
complex. Let J denote the index set {ie{1,...,n}] (uj,uj) >0}. Then the vertex set of
N(A) is {vi| ieJ}, where vi=(uj, ;)™ 1/2uj (ie]). Every xeN(A) can uniquely be
written as a linear combination, with positive coefficients, of the vertices of the

20
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support of x in N(A),

We say that a matrix is normalized, if all diagonal entries equal 1. Let A' denote
the JxJ-matrix with entries a'jj=(vi,vj) (,jeJ). (Here, if - 1<(vj,vj)<l, then {vi,vj)
equals the cosine of the length of the edge in N(A) with vertices vj and vj.) Then
A'=DA"D, where A" is the principal submatrix of A comresponding to the index set J
and D is a diagonal matrix with entries dij=(uj,ui)~ 1’2 (ieJ). Thus, A'is a
normalized symmetric matrix with N(A")=N(A). We say that A' is the normalized
matrix associated to A (and to A").

If V is a vector space equipped with a bilinear form (), then for any subset UCV

let UL denote the subspace {ve V{{u,v}=0 for all ue U}. For singletons U={u} we

write ud instead of {u}L. Supposc that thc restriction of {,) to the linear span Lyj of
U is positive definite. Then V is the orthogonal direct sum of the subspaces LU and

UL, Let ¢y denote the orthogonal projection of V onto UL, If 1" is any subset of
U, then

() OU = dgyy(U) o OU" -
If S is the unit sphere in a euclidean vector space (E{,)) and xe§, then TxS is

identified with the subspace x-L<E with the bilinear form inherited from E. Unit
speed geodesic rays originating from x are the maps py(t)=xcost+vsint (t20), where

vexLMS. Thus, if N(A) is the nerve of A and xeN(A), then the complexes TxN(A),

LK(x,N(A)) and 1k(x,N(A)) are identified with subsets of the subspace xL of V, and
the exponential map at x takes the form expx(tv)=xcost-+vsint, where ve LK(x,N(A))
and O0<t<tq for some tg>0 depending on v,

If B is a simplex in N(A) with vertex set {vj|iel}, iIC{1,...,n}, then define the
xT*-matrix 1k(I,A)=(a*ij), where I*={1,...,n}~1, by

a*jj = (U)oU) (jei¥),

where U={uj| ieI}. Then, with the above identification, N(k([,A))=lk(B,N(A)).
Formula (*) implies that for any I'CI we have 1k(I',\k(I-T',A))=1k(I,A).

If A’ and A" are real symmetric matrices, then the nerve of the direct sum

o wons(} )

is isometrically isomorphic to (and is identified with) the join of the nerves of A’ and
A" N(A'®@ A")=N(A"Y*N(A"). A real symmetric matrix A of order n is called
reducible, if some permutation of the index set {i,...,n} brings A into the form
(*+*), where the orders of A' and A" are less than n. In this case we say that the
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principal submatrices A' and A" are orthogonal. Otherwise A is called irreducible.
The nerves of the reducible matrices

CA=(1)®A and DA=D® A, where D:(_i “11),

are the cone and the double cone of N(A) respectively. If {w1, w2} is a basis in a

real vector space W equipped with the bilinear form with matrix D in this basis, and,
as earlier, 1 denotes the standard unit basis vector in [R, then the linear map

f:W— IR defined by f(w1)=1 and f(w2)=-1 preserves scalar products. Thus, f&idy
restricts to a scalar product-preserving isometric isomorphism from the double cone
of N(A) onto the equatorial subdivision of the suspension SN(A). Identification of
the double cone of N(A) with SN(A) via f@idvy enables us to work with the 5-
complex SN(A) as if it were the nerve of DA.

8. Nerves of almost negative matrices

We say that a real symmetric matrix A is almost negative, if all off-diagonal
entries of A are non-positive. Throughout this section, let A be an almost negative
matrix and N=N(A) be the nerve of A. Since DA'D is almost negative for any
principal submatrix A" of A and any non-negative diagonal matrix D of the size of
A', a normalized symmetric matrix with nerve N is also almost negative. Direct sums
of almost negative matrices are almost negative, so joins, especially cones and double
cones of nerves of almost negative matrices are nerves of almost negative matrices.

8.1. Lemma. For any vertex v of N and any xeN if {v,x)20, then xe St(x,v).

Proof. Let {vi|iel} be the vertex set of the support of x, then

X= Zaiv
iel

i’

where oi>0 (i€I). If {v,x)20, then either v=vj for some iel, in which case
x€ Ost(v,N), or {v,vi)=0 for all i€, in which case the set {vi] ieI}u{v} generates a
positive definite subspace in V, and is the vertex set of some simplex (the cone of
the support of x) in N, showing that xe St(x,v).
8.2. Corollary, Let v be a vertex of N. Then
Ik(v,N) = vLAN, and
Cik(v,N) < St(v,N) C Slk(v,N),
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where the cone and the suspension of lk(v,N)C vilare in the orthogonal sum

vio Rv.

Proof. If in a spherical simplex B all edges at a vertex v have length 2m/2, then
1k(v,B) = {xeB | dB(x,v)=n/2} = v-LNB. This shows that Ik(v,N)C vLN. On the
other hand, if xeN and (v,x)=0, then, by Lemma 8.1, xe B for some simplex B
containing v, and so x&€lkfv,B) C lk(v,N). The inclusions Clk(v,N) € St(v,N) C
Stk(v,N) are ohvious.

8.3. Lemma. If B is a simplex in N with vertex set {vi| i€1}, then the matrix
ik(I,A) is almost negative,

Proof. For B=GJ this is true since 1k(&,A)=A. For any iel we have Ik(I,A) =
Ik({i},Xk(I- {i},A)), so it suffices to show that for any almost negative matrix A and
vertex. vie N(A) the matrix 1k({i},A) is almo=t negative, then the statement of the
lemma follows by induction on the dimension of B. Using notations of Section 7, we
have to show that a*jk<0 if j#k (ke {i}*). Indeed,

5= (O Oy ©0)

¥ 1

= <“i - 7(‘;?.’“::1_{%% L' %ul—uuk%“;>
L b S ¥/ ?
= ( u,u k) - -\ji—u;—
£0.
8.4. Corollary. If B is a simplex of N, then 1k(B,N) is the nerve of an almost
negative matrix.
Proof, Indeed, Ik(B,N)=N(lk(I,A)), where the vertex set of B is {vj]ieI}, and
Lemma 8.3 applies.
8.5. Corollary, If x,ye N, then (x,y)<1 with equality only if x=y.
Proof. We say that an $-complex N, which is the nerve of an almost negative
matrix, has the property P, if the statement of Coroliary 8.5 is true for N. First we

show that if P holds for N, then P holds for the suspension of N, Let x,ye SN,
where we can assume that both x and y are different from 1 or - 1. Then x=x"+¢1
and y=y'+B1, where x'y'e V- {0}, a,fe R, and (x‘,x')+a2=(y',y‘)+52=1. The

unit vectors x"=(x',x")" Y2y and y'=(y', v 1lzy‘ are in N, so we have
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(x,yy =(x,y") +op
= (xx")” Y2y ,yy= V2(x gy & af

<{x,x")" 1/2(_'\!',3/')' 172 of (since P holds for N)
< (x'x") + o) V2((y'y) + B2y~ 172 (Cauchy-Schwarz inequality)
=1,

with equality only if x'=y' and o=, that is, x=y.

We prove that the nerve N of every almost negative matrix has property P by
induction on dimN. If dimN<0, then P obviously holds for N. Assume that
dimN=1, and P holds in all dimensions <dimN. Let x,ysN. We can assume that the
supports of x and y have a vertex v in common, since otherwise (x,y;<0. Then
x,ye St(v,N), and, by Corollary 8.2, x,ye Slk(v,N). By Corollary 8.4 the $-
complex Ik(v,N) is the nerve of an aimost negative matrix, so, since
dimik(v,N)<dimN, P holds for Ik(v,N). Then, by the above argument, P holds for
Slk(v,N), so (x,y)<1 with equality only if x=y.

9, The intrinsic metric on N(A)

Let us recall the Frobenius-Perron Theorem (see, for instance, {L]) on the
spectrum of nonnegative irreducible square matrices. We only formulate the theorem
for symmetric matrices.

Theorem (Frobenius, Perron). Ler M be a nonnegative (that is, all entries of M

be nonnegative) and irreducible real symmetric nxn-matrix (n21). Let | denote the
largest eigenvalue of M, then
(i) |VISp for every eigenvalue v of M,
(ii) the mulriplicity of | is 1,
(iii) the (unique up to multiplication by scalars) eigenvector corresponding
to W has all positive or all negative coordinates, and
(iv) all eigenvalues of principal submatrices of order <(n-1) of M are
strictly less than .
A normalized real symmetric matrix A is almost negative if and only if M=Id- A is
a nonnegative matrix with zero diagonal entries, and v} is irreducible if and only if A
is irreducible. Thus, if A is irreducible, then A has a smallest sigenvalue A of
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multiplicity 1, and we can choose a positive eigenvector (that is, an eigenvector with
all positive coordinates) corresponding to A.

We formulate three immediate consequences of the theorem,

9.1. Corollary. Let A be a positive definite, irreducible, normalized almost
negative matrix. Then all entries of the inverse A~ 1 of A are positive.

Proof. For a nonnegative nxn-matrix M=(ajj), irreducibility means that for any
pair (i,j) of indices there exists a sequence i(1)=1,i(2),...,i(n)=j of indices with
aj(k)i(k+1)>0 (k=1,...,n- 1). This implies that all entries of MM are positive. A is
positive definite, so A>0, therefore p=1-A<1, and by statement (i) of the
Frobenius-Perron Theorem, this implies that the euclidean norm of M is <1. So, the
matrix A~ 1=(Id- M)~ 1 is the sum of the convergent series Id + M + M2 + . + MD
+ ..., where all terms are nonnegative and there are strictly positive terms.

9.2 Corollary. Let A be an irreducible, normalized almost negative marrix, and
let w be a positive eigenvector corresponding to the minimal eigenvalue A of A.
Assume that A is not positive definite (that is, A<0), then (w,x)<0 for every
xe N(A).

Proof. It suffices to prove that {(w,v;{)<0 (i=1,...,n), where {vi,...,vn} is the
vertex set of N(A). Write w=a1vi+...+0nvn, where @i>0 (i=1,...,n), then

{(W,v{) = @1{v1,vi) + ... + on{vn,vi} = Aoi £ 0.

We say that an almost negative nxn-matrix A is parabolic, if all principal
submatrices of order <(n- 1) of A are positive definite, and detA=0. Parabolic
matrices are automatically irreducible. If IC {1,...,n} corresponds to the vertex set of
a simplex in N(A), then parabolic principal submatrices of 1k(I,A) are in 1-1-
correspondence with parabolic principal submatrices of A.

9.3. Corollary. Let A be an irreducible, normalized almost negative nxn-matrix.
If the smallest eigenvalue of A is 0, then A is parabolic.

Proof. Statement (iv) of the Frobenius-Perron Theorem implies that all eigenvaiues
of principal submatrices of order <(n-1) are positive.

9.4. Lemma, Let {,) be a bilinear form in a real vector space V. Leru, v and z
be three nonzero vectors in V satisfying the following requirements:

v = v + Bz, where o,B>0,
{v,v) £ 0,

(v,z) £0, and

(uu) =(z,2) = 1.
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Then (u,z) 2 1. If {v,v) < 0 and a0, then (u,z) > 1.

Proof. The restriction of the form (,) to the two-dimensional subspace W spanned
by v and z is not positive definite (since (v,v) < 0). In such a space the scalar
product of any two vectors of length 1 is either 21, or £~ 1. Since

1 = (u,u) = alu,v) + Blu,z) = a2(v,v) + af(z,v) + Blu,z) < B(u,z)
implies that (u,2)>0, we have (u,z)21. If (v,v)<0, then the form is indefinite on
W, and the scalar product of any two independent vectors of length 1 is either >1 or
<1, Thus, if (v,v)<0 and =0, then (u,z)>1.

In the proofs of the next two lemmas we use the notations introduced in Section
7.

9.5. Temma. Let A be an almost negative nxn-matrix and u be a vector in V
with nonnegative coordinates and with {u,u) =1. Then there exists a vector ze N(A)
wirh (u,2)21. If A has no parabolic principal submatrices and uve N(A), then z
can e chosen with (u,z)>1,

Proof. Let A denote the affine (n- 1)-simplex spanned by (the endpoints of) the
basis vectors uj,...,un in V. By induction on the partially ordered set of faces of A
we define an affine simplicial subdivision of A as follows:

The subdivision of & is itself.

Suppose that A'is a face of A and we have defined a simplicial subdivision of the
boundary 0A' of A", Let A' denote ihe principal submatrix of A corresponding to the
index sci IS {1,....n}, where the vertex set of A'is {ujliel}. We have the
following four cases:

(1) A' is positive definite. Then the subdivision of A’ is itself. This is
compatible with the subdivision of dA’, since all principal submatrices of A' are
positive definite.

(2) There is an index i€ with {uj,ui}<0. Then choose any such i, and define
the subdivision of A' as the affine cone of the subdivision of the face of A’ opposite
the vertex uj, with cone point vj. (Note that the cone of & with cone point uj is uj.)
This js compatible with the subdivision of dA' because, by induction, it is the affine
join of the face with vertices {uj| (uj,ui)<0} and the opposite face.

(3) A' is irreducible, not positive definite, and (vj,ui)>0 for all iel, Then
introduce the unique positive eigenvector wie A' of the normalized matrix associated
to A' as a new vertex in the interjor of A', and subdivide A' as the affine cone of
dA' with cone point wl.
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(4) A' is reducible, not positive definite, and (uj,ui)>0 for all ie]. Then
choose A1 and A2 with non-empty index sets I1 and I2 and with A'=A1@ A2, and
define the subdivision of A' as the affine join of the subdivisions of the faces
corresponding to the index sets I1 and I2. This is compatible with the subdivision of
0A', since, by induction, whenever A" is a face of A' with an index s«t J with non-
empty intersections with I3 and I2, the principal submatrix corresponding to A" is
reducible and the subdivision of A" is the join of subdivisions of the faces
corresponding to InI} and INI2.

Let F denote the set of vertices in the subdivision of A, Then F=FjUF2UF3,
where

F1={nil {uj,uj)>0},

F?‘;;:{uj'l (uj,uj)s0}, and

F3={wr| the principal minor corresponding to I is irreducible, not positive

definite, and {(uj,u;j)>0 for all ieI}.

We show that
(*) if weF2UF3, then (w.2)<0 for all ze A,
Indeed, for w=uje F2, the almost negativeness of A implies (*), and for w=w]eF3,
Corollary 9.2 implies that (wI,u;)<0 for icI, and the almost nzgativeness of A
implies that {(w[,uj)<0 for jeI.

Let u be a vector in V with nonnegative coordinates and with {u,u)=1. If
ueN(A), then z=u is as required, so assume that ue¢ N(A). Then u can uniquely be
written as a linear combination of some elements of F with positive coefficients:

us 3 a,w,
we F'

where F'CF is the vertex set of a simplex in the subdivision of A, and ow>0
(we F'). Property (*) implies that F'nF12(, and ue N(A) implies that
F'n(F2UF3)20. Then u=v+z', where

v= p o, w and z'= S o« W -

weF'n(quF3) weF'r'\F1
FNF is the index set of a simplex in N(A), so 2'=fz for some ze N(A) and B>0.
Then u,v,z, 0=1 and B satisfy the requirements in Lemma 9.4, and so (u,z)21.
If A has no parabolic principal submatrices, then (w,w)<0 for all

weF'n(F2UF3), so (v,v)<0, and, by Lemma 9.4, (u,z)>1.
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9.6. Corollary Let A be an almost negative nxn-matrix and le: u be a vector in
the arthogonal sum V@ RX, such that (u,u)=1 and the first n coordinates of u be

rnonnegative, Then there exists a vector z& N(A)*Sk"' Lyyirn (u,z)21. If A has no
parabolic principal submatrices and ueEN(A)*Sk' 1, then z can be chosen with
(u,z)>1.

Proof. If ue VL, then ue §X~1 and z=u is as required, otherwise Lemma 9.5

applied to (u',u)” 12y where u' is the orthogonal projection of u in V, guarantees
a vector z'e N(A) with (z,u)21 (or >1), and then z=(u-u')+{u',u"}!/ 27" is as
required.
9.7. Lemma. Ler A be an almost negative nxXn-matrix and x,ye N(A) with
(x,yy>~1. Then d(x,y)scos~ l(x,y), where d denotes the intrinsic metric on
N(A). If A has no parabolic principal submatrices of order 23 and there is no
simplex in N(A) containing both x and y, then d(x,y)<cos™ 1{x,y).
Proof, Given ye N(A), define the open set UCN(A) and the function f;U—> R by
U = {xeN(A)| (x,y)>-1} and
f(x) = cos™ I{x,y) (x€U).
By Corollary 8.5, f is a well-defined continuous nonnegative function with f(x)=0 if
and only if x=y. It automatically satisfies condition (iii) in Lemma 4.5. We show that
f satisfies condition (iv).
Let xe U, x=y. Let {vj| ieI} be the vertex set of the support B of x in N(A),

k=dimB. By Corollary 8.5, (x,y)<1, and so
. y - {Hy)x

) .‘/1- (x,y)2

is a unit vector in xt=Bl e RK with nonnegative coordinates (with respect to the

basis {¢ry(up) | ieI*}) in the B-‘-—component. Corollary 9.6 applied to the matrix
Ik(1,A), which is almost negative by Lemma 8.3, and to the vector u guarantees

z e N(k(LA)*SK~1 - k@B NAN*SX-1 = LK(x,N(A)) with (u,z)=1.
Now r(x)=expx(ez)s St(x,N(A))NU is defined for some >0, and we have
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dix r(x)) +f(r(x)) =€ +cos™ l(x cos £+ Z §in e,(x, y)x+ .‘/1 - (x, y)zu)

=&+ cos™ J( (x, y)cos E+ o f1- {x, y)z(z, ujsin €)

2e+ (cos™ Yx, y)-¢)
= f(x).

Then Lemma 4.5 implies that d(x,y) £ f(x) = cos™ 1{x,y).
If A has no parabolic principal submatrices of order 23, then Ik(I,A) has no
parabolic principal submatrices at all, and if x and y are not contained in a common

simplex, then ue LK(x,N(A))=N(11c(I,A))=rSk' 1 5o Corollary 9.6 gives z with
{u,z)>1, and we have strict inequality in the above calculation, which implies that in
this case d(x,y)<cos™ 1(x,y).

The following statement is a variation of Lemma 5.4.

9.8. Lemma, Let N=N(A) be the nerve of an almost negative matrix A and v
be a vertex of N. Let p:[0,A]-» N be the path associated to a local geodesic
segment in N. Let P denote the image of p and suppose that POst(v,N)=J,
p(0)e Ost(v,N), p(A)e Qst(v,N). Then the cone Clk(v,N) (which is contained in
St(v,N)) contains a portion of lengin & of P.

Progof, We proceed by induction on dimN. For dimN<1 the jemma is obvious,
since all edges of N have length 2n/2,

Suppose that dimN>1 and we have proved the lemma for nerves of smaller
dimensions.

First, observe that if L is an $-complex and RCL is the image of a geodesic
segment r of length [i<m, then the suspension SRC SL of R is isometric to an
“orange peel" sector of width p in 52, in particular, the only pair of points in SR at
a distance 2 is the pair of vertices. Indeed, an allowable chain representing r in L
gives SR an $-complex structure consisting of a finite number of orange peels,
successively pasted together.

By Corollary 8.2 the cone Clk(v,N) is contained in St(v,N), so we can assume
that ve P, Let pr:(St(v,N)- {v})= lk(v,N) denote ihe radial projection from v, then
for every xe Ost(v,N)=-{v}, LK(x,N) is isometrically isomorphic to the suspension
SLK (pr(x),lk(v,N)), since the differential dprx of pr at x takes the orthogonal
complement of Ker(dprx) in TxN isomorphically onto Tpr(x)k(v,N).

Without loss of generality we can assume that p(t)e Ost(v,N) for te (0,A). P i3
represented by some local geodesic segment C=(x0,....xm), then



30

pr(C)=(pr(xQ)s-...pr(xm)) is an allowable chain in lk(v,N). We show that pr(C) is a
local geodesic segment in lk(v,N). Let 1sk<m- 1, x=xk, let d' and d" denote the
intrinsic metric in LK (x,N)=SLK(pr(x),lk(v,N)) and in LK(pr(x),lk(v,N))
respectively, and let vin,voute LK (x,N) and nin,y0ute LK (pr(x),lk(v,N)) denote the
tangent vectors at x and at pr(x) respectively. Since C is a local geodesic segment in
N, d'(vin,vouty>r by Lemma 4.1. If d"(ui“,uc’u")cn, then the initial observation
applied to L=LK(pr(x),lk(v,N)) and a geodesic segment from uill to yOut shows that
vilt and vOuUt are the two vertices of the orange peel, which is impossible, since
veR.

Let pr:(St(v,N)= {v})-> (St(v,N)- Ost(v,N)) denote the radial projection from v,
and let yk=pr'(xk) (k=0,...,m). For 1<k<m-1 let uk,vk,wke LK(yk,N) be the
tangent vectors pointing in the direction of yk- 1, v and yk+1 respectively, then
Cik=(uk,vk,wk) is an allowable chain in LK(y%,N}). Since LK{(vk,LK(yk,N)) is
isometrically isomorphic to LK(pr(xk),lk(v,N)) under a map that takes the tangent
vectors of Ck at vk to the tangent vectors of pr(C) at pr(xk), it follows that Cy is a
local geodesic segment in LK(yk,N). Then, from the induction hypothesis applied to

a subdivision of LK(yk,N)*SHmB=1 with 2 vertex at (dp(vid.0p(vk)™ Y20p(vi),
where B is the support of yk in N, it follows that A(Cy)2m.

The wrapping map f along P described in the proof of Lemma 5.4 tak:s v to the
north pole of $2, P onto a great circle arc in 52, and pr'(P) onto a piecewise
geodesic broken line in 52, f(P) and f(pr'(P)) enclose a region D of %2, Interior
angles of D at f(yk) are A(Cx)2n (k=1,...,m- 1), therefore f(P) cannot bz contained
in the southern hemisphere., So, the intersection of P and the interior of the cone
Clk(v.N) is non-empty, and, as in the proof of Lemma 5.4, f(P) must contain an
antipodal pair in $2.

A subcomplex K of a simplicial M-complex N is called a full subcomplex, if BCK
whenever B is a simplex of N with all vertices in K. We say that a full subcomplex
K is spanned by its vertices, If N is the nerve of an almost negative matrix, then
every full subcomplex K of N is the nerve of an almost negative matrix; namely, the
nerve of the principal submatrix corresponding to the set of vertices of K.

9.9. Corollary, Let K be a full subcomplex of the nerve N(A) of an almost
negative matrix A. If x,ye X and d(x,y)<%, then dR(x,y)=d(x.y), where d and
dK denote the intrinsic metric on N(A) and K respectively.

Proof. By Lemma 9.8, a geodesic segment from x to y in N(A) must be contained
in the complement of Ost(v,N(A)) for every vertex ve N(A)-K, that is, in K.
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9.10. Corollary. If A is an almost negative matrix, then all simplices in N(A)
are geodesically convex in N(A). In other words, the restriction of the intrinsic
pseudometric to every simplex is the original spherical metric of the simplex.

§.11. Le nma. Let A be an almost negative matrix and suppose that v is a
verrex of N=N(A) that is connected to all other vertices of N by edges of N. Let
x,y & St(v,N)- Ost(v,N) and assume that d(x,y)<n, where d denotes the intrinsic
metric on N. Then d'(x,y)<d(x,y), where d' denotes the intrinsic metric on the
suspension Slk(v,N). If A has no parabolic principal submatrices of order 23 and
no simplex of St(v,N) contains both x and y, then &'(x,y)<d(x,y).

Proof. We proceed by induction on the order n of A. For n<2 the stutement is
obvious. Suppose that n>2 and the lemma is true for matrices of order <n.

“ase 1. There is a simplex B in N containing both x and y. Then, by Corollary
6.10, (x,y)=cos d(x,y)>- 1, and Lemma 9.7 applied to the complex Slk(v,N) proves
the statement.

Case 2. No simplex of N contains both x and y. Let p:[0,A]= N be a geodesic
segment in N from x to y. Without loss of generality we can assume that
p(t)e St(v,N) for t=(0,A). Let K denote the fuli subcomplex of N spanned by the
vertex set {v}UGUH, where G and H are the sets of vertices of the support in N of
x and y respectively, Now K#N, since otherwise GUH would span a simplex
containing x ard y. By Corollary 9.9, dK (x,y)=d(x,y), and the induct'on hypothesis
applied to K proves the lemma.

10, Closed geodesics in N(A)

The following proposition is the main result of Chapter II.

Proposition 10.1. If A is an almost negative matrix, then the girth of N(A) is
at least 2w,

Proof. We proceed by induction on the order n of A. If n<2, then g(N(A))=¢=, so
assume that n>2 and g(N(A")22x for all almost negative matrices A' of order «n.

Let QCN(A) be the image of a closed geodesic in N(A). Let K be the full
subcomplex of N(A) spanned by the vertices v of N(A) with QNOst(v,N(A))#D.
Then QCK and Q is the image of a closed geodesic in K. If K#N(A), then by the
induction hypothesis g(X)22n, and so the length of Q is 22xn. Thus, we can assume
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that K=N(A).

Case 1. There is a pair of distinct vertices v,w of N(A) without an edge
connecting themn. Then Ost(v,N(A))MOst(w,N(A))=&, and the length of Q is >2xn
by Lemma 9.8.

Case 2. There is a vertex v of N(A) such that QC St(v,N(A)). By the proof of
Lemma 9.8, either QC lk(v,N(A)), in which case we can apply the induction
hypothesis to Ik(v,N(A)), or the segment P=QNClk(v,N(A)) of Q has length n. If
the complementary segment P'=closure of (Q~P) were shorter than x, then Lemma
5.4 applied to the cone in Slk(v,N(A)) complementary to Clk(v,N(A)) would imply
that P' is contained in lk(v,N(A)), a contradiction.

Case 3. Every pair of distinct vertices of N(A) is connected by an edge in N(A),
and we can choose a vertex v of N(A) such that Q is not contained in St(v,N(A)).
Now, by Lemma 9.8, R=QnSt(v,N(A)) is a segment of Q of isngth =7, let x and y
denote the endpoints of R. Let a and b denote the endpoints of ilie subsegment
P=RNCIlk(v,N(A)) of R, By the proof of Lemma 9.§, the length of P is m. We show
that the length of the complementary segment P' is =n. Suppose that the length of
P' is <m, then P' is the image of a geodesic segment in N{A).

We claim first that {x,y}#{a,b}; that is, either d(v,x)>n/2 or d(v,y)>n/2. Let K
be the smallest full subcomplex of N(A) containing P', then by Lemma 9.8, K is
spanned by the union of the vertex sets of supports of x and y in N(A). If
d(v,x)=d(v,y)=mt/2, then (v,w)=0 for all vertices of K, therefore P'C li.(v,iifA)), a
contradiction.

Lemma 9.11 applied to N(A), v , x and y implies that there exists an allowable
chain C=(a,x,...,y,b) in Slk(v,N(A)) with A(C)<length of P'«w. But then Lemma
5.4 applied to the cone in Slk(V,N(A)) complementary to Clk(v,N(A)) shows that a
geodesic segment in Slk(v,N(A)) from a to b must lie entirely in ix(v,N(A)), and has
length <A(C)<length of P, contradicting that P' represents the distance between a
and b in N(A).

10.2. Corollary. If A is an almost negative matrix and B is a simplex in N(A),
then g(k(B,N(A))) = 2m.

Proof. By Lemma 8.3, k(B,N(A)) is the nerve of an almost negative matrix, and
Proposition 10.1 applies.

10.3. Lemma. Let A be an almost negative matrix. If g(IN(A))=2w, then A
either has a parabolic principal submarrix of order 23, or a reducible principal
submarrix A1 ® A2, where Aj is not positive definite (i=1,2).
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Proof. We prove Lemma 10.3 by induction on the order of A.

In Case 1. of the proof of Proposition 10.1 the length of Q is greater than 2n
unless there exists a pair of points x,yeQ with {x,y}=St(v,N(A)NSt(w,N(A)NQ.
Let Hi={v,w} and let H2 denote the union of vertex sets of supports of x and y,
and let Aj be the principal submatrix corresponding to Hj (i=1,2). Then A1 and A2
cannot be positive definite, since no simplex of N(A) contains both v and w, or both
x and y. Furthermore, d(v,x) = d(v,y) = d(w,x) = d(w,y) = 7/2 implies that the
principal submatrix corresponding to H1(WH32 is the direct sum of A1 and A).

In Case 2. of the proof of Proposition 10.1 the length of Q is greater than 27
unless Q is a closed geodesic in the suspension Slk(v,N(A)), which, by the induction
hypothesis, contradicts Corollary 5.6.

If we assume that A has no parabolic principal submatrices of order 23, then in
Case 3. of the proof of Proposition 10.1 it follows that the length of P’ is strictly
greater than 7. Indeed, if we assume that the length of P' is 7, then Lemma 9.11
implies that the distance of a and b in 1k(v,N(A})), therefore in N(A) is strictly less
than 7, a contradiciicn, since both halves of the closed geodesic Q between a and b
have length T.

10.4. Corollary. Let A be an almost negative matrix and B a simplex in N(A).

If g(Ik(B,N(A)))=2m, then A either has a parobolic principal submatrix of order
23, or a reducible principal submatrix A1 ® A2, where Aj is not positive definite
(i=1,2).

Proof, Let {vi| i€} be the vertex set of B.

If the principal submatrix of Ik(I,A) corresponding to the index set I'CI* is
parabolic, then the index set I'UI determines a parabolic principal submatrix of order
23 of A,

Now observe that for any index set I'C1 that determines a simplex in N(Ik(I,A)),
the inverse of the matrix 1k(I,A[_T") is the principal submatrix of the inverese matrix

Aol 1 corresponding to I'. Therefore, if k(I,AyUI) is reducible, say, I'={1'Ul2",
where the principal submatrices of Ik(I,AI_I") corresponding to I1' and I2' are
orthogonal, then, by Corollary 9.3, AT is reducible with some partition
I=11"VI2" such that the principal submatrices A1;'UI(" and Aly'UlIz" of A are
orthogonal,

If I',I2'CT* are minimal index sets that determine not pesitive definitc and
arthogonal principal submatrices of 1k(I,A), then choose minimal index sets I;"C1
such that Ii=I"U¥;" correspond to not positive definite principal submatrices of A



(1=1,2). Then the above observation implies that the principal submatrices of A
corresponding to 11 and I are orthogonal.
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CHAPTER III

THE MAIN CONSTRUCTION

We introduce an E-complex structure on a well-known construction related to
Coxeter groups to prove the central result (Theorem 14.1).

11. Coxeter groups

We review some of the well-known facts about finitely generated Coxeter groups.
Further details and proofs can be found in [Bo] or [H]).
Suppose that a group W has a presentation of the form
(8] (ss)M(S:8) =1),
where S is a finite set, and the function m:SxS=> N\ {e=} satisfies the conditions
m(s,s') = m(s',s),
m(s,s) = 1,
m(s,s") = 2 if s#s’
(If m(s,s")=0, then the corresponding relation is omitted.) Then the natural map
S—> W maps S bijectively onto a set of elements of order 2 in W, and, after
identifying elements of S with their images, the order of ss' in W is m(s,s"). The
pair (W,S) is a Coxeter system, and W is a Coxeter group. The rank of (W,S) is
the cardinality of S. We say that the Coxeter system (W,S) is finire or infinire, if
the group W is finite or infinite respectively. For any subset TC S, let WT denote the
subgroup generated by T in W, then (WT,T) is a Coxeter system. A Coxeter system
is irreducible, if it cannot be written as a product of nontrivial Coxeter systems,
where (W, S)x(W',S")=(WxW*,Sx{1}U{1}x8"). Every Coxeter group can uniquely
be written as the product of its nontrivial irr2dvcible subsystems. The presentation of
a Coxeter system (W,S) is customarily given by the Coxeter graph of (W,S): a
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graph G(w,S) with one node for each se§ and one edge between s and s' if
m(s,s)>2, labelled by m(s,s") if m(s,s')>3. Then nontrivial irreducible subsystems
of (W,S) are in 1-1-correspondence with connected components of G(w S).

The nerve N(W,S) of a Coxeter system (W,S) is the abstract simplicial complex
with vertex set S, and a nonempty subset TC S is a simplex in N(W,S) if and only if
the group WT is finite.

The cosine matrix of (W,S) is an SxS-matrix A=(agg'), where

. '={-cos m_(sn,_s'T' if m(s,s) <eo

S 1-1 , otherwise .

Then A is a normalized almost negative matrix. As in Chapter II, let V be the real
vector space equipped with the bilinear form {,) with matrix A in a basis {vg|seS}.
The form (,) is positive definite if and only if the group W is finite. Therefore, the
nerve N(A) of the matrix A is simplicially isomorphic to N(W,S). The Coxeter
system (W,8) is irreducible if and only if its cosine matrix A is irreducible. (W,S) is
called affine, if A is parabolic. There is a well-known classification of all finite and
affine Coxeter systems, c¢f.[Bo].

The canonical representation p:-W=> O(V {,)) of W is defined by

PG)(x) = x - 2(x,vg)vg (s€ S, xeV).
Here, for s §, p(s) is the orthogonal reflection across the hyperplane vgt in V. p is
a faithful and discrete representation of W, The images of elements of S under the
dual representation p*:W-> GL(V*), given by

PX(W)(@)() = alp(w=1)(x)) (WeW, oe V¥, xeV),
are linear reflections across the faces of a simplicial cone C=n{Hs| se S}, where Hg
is the half-space {oe V*| o(vg)20}. A theorem of J. Tits says that translates of C
under different elements of W have no common interior point.

A theorem of E. Vinberg (valid for any representation of W as a linear reflection
group, cf.[V2]) says that D=t {p*(w)(C)| we W} is a convex cone in V* (called the
Vinberg cone of (W,S)), the interior intls of D consists precisely of the points of D
with finite isotropy subgroups, and W acts properly on intD with a convex
fundamental domain Cf=CnintD,
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12, Mirror structures and the universal space construction

Following the terminology of [Dav2], we say that a mirror structure on a
Hausdorff topological space X is a family M={Xg{ se S} of closed subspaces, called
mirrors, where 8 is an arbitrary finite indr . set. For TC S, put
XT=n{Xs|seT}NX, and for xe X, put (x)={s&S|xsXs}. Suppose that (W,S) is
a Coxeter system. The following construction of the universal space U=U(W,X,M)
and the universal action of W on U was described by E. Vinberg (cf.[V2]), and used
extensively by M. Davis (cf.[Dav1],[Dav2]):

Let ~ denote the equivalence relation defined on WxX by

(w,x) ~ (w'x") if and only if x=x'and w~ 1w'ciWs(x).
U is defined as the quotient space (WxX)/~. For (w,x)e WxX, let [w,x] denote the
image of (w,x) under the canonical projection of WxX onto U, We identify the
closed subspace {{1,x}1 xeX} of U with X. The universal action of W on U is
defined by w'[w,x]=[w'w,x], then X is a fundamental domain for the universal
action. W zzts as a reflection group on U in the sense that the fixed point set of each
conjugate of each element of S separates U. If X is a CW-complex and all mirrors are
subcomplexes, then U has a natural CW-cumplex structure with X as a subcomplex.
The W-space U has the following universality property:

If Y is any W-space, then any continuous function f:X-> Y satisfying the

condition sf(x)=f(x) (xeXg, s€S) uniquely extends to a continuous

equivariant map U= Y.

For example, Vinberg showed that, with the notations of Section 11,
intD=U(W,Cf, M), where M={Cs| s€ S} is the mirror structure on Cf defined by
Cs={oe Cf} a(vs)=0} (cf.[V2]).

The universal action of W on U(W,X,M) is proper if and only if for any xe X,
S(x) is a simplex in N(W,S) (that is, all isotropy subgroups are finite). Then U/W is
homeomorphic to X. A fundamental result of M. Davis (cf.[Dav1]) says that the
universal space U(W,X,M) is contractible if and only if X is contractible and the
subspace XT of X is non-empty and acyclic for each simplex T in the nerve N(W.S).

Now we define the topological W-space K(W)=K(W,S) for any Coxeter system
(W,S). In Sections 13 and 14 we shall give K(W) an [E-complex structure.

For cach se S, let X5 denote the closed star of the vertex s in the barycentric
subdivision N'=N(W,S)' of the simplicial complex N(W,S). Let M be the mirror
structure {Xg| se S} on the cone CN' on N'. The W-space K(W) is defined as the
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universal space U(W,CN', M) with the universal W-action. K(W) is a locally finite
simplicial complex and W acts simplicially. If TC S and W is finite, then X7 is the
dual cell in N' of the simplex T of N(W,S), therefore by Davis' theorem, K(W) is
contractible. W acts properly on K(W), since a collection of closed stars in N' of
vertices of N(W,5) has a non-empty intersection if and only if these vertices form a
simplex in N(W,S). W acts with compact quotient, since K(W)’W is homeomorphic
to CN'.

12.1. Propasition. K(W) is equivariantly homotopy equivalent to the interior of
the Vinberg cone.

Proof, It suffices to construct a homotopy equivalence between the spaces cf and
CN' that respects mirors, since then an zpplication of the universality property gives
an equivariant homotopy equivalence.

Vertices {T} of CN' are in 1-1-correspondence with subsets T of S with W
finite. Namely, {&} is the cone point in CN', and for T, {T} is the barycenter
of the simplex T of CN. For each vertex {T} of CN', define aTe cfevx by -

0 ,if seT

a(v):{ 1 : _
T\'s -—---|S_TI,1fSES T,

where |S-T] denotes the cardinality of S-T. This map {{T}| TC S}~ Cf extends
linearly to an embedding g:CN'-> C{ that respects mirrors.
Let A denote the affine simplex
foeC| X a(vy) =1}

se S
in V*, The cone CA of A with the origin of V* as cone point has the natural mirrors
{oe CA| a(vs)=0} (se S), and the map r:C— CA defined by

o Lif Y alvg) €l
se S
I((X)= [0 4 .
—_, Ootherwise ,
1 2 a(vy)
58

obviously is a mirror preserving deformation retraction of C onto CA; moreover, r
restricts to a mirror preserving deformation retraction of cf onto cAf=Cfnca.
Triangulate CA as the cone CA' on the barycentric subdivision A' of A. The simplices
AT,..., Tk of CA' are indexed by increasing sequences T0,...,Tx (k20) of distinct
subsets of S. An element @€ V* is in the interior of the simplex ATg, ... T if and
only if it satisfies the conditions
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(i) o(vs) =a(vs) if ss'eTjr1-Tj,

(i) a(vs) > a(vs) if s'eTj41-Tj and se Tj~Tj- 1, and

(iii) o(vs) = 0 if seS-Tk.
The image g(CN') of CN' is the subcomplex of CA' consisting of the simplices
AT,..., T With WS- T finite. We show that g(CN’) is a mirror preserving
deformation retract of CAf. Let o be an arbitrary point in CAf, Let AT0,..., Tk be the
support of c in the complex CA'. Condition (iii) and o.e Cf together imply that
WS- T is finite. Let j(a)k be the smallest index j with WS-Tj finite, Define for
0<j<|S| the subset Li={ae CAf| j(c)<j} of CAf, then
g(CN')=Loc ...c L|§|=Caf. For j>0 and aeL; with support ATg,... Ty, define
rj(a)eLj_ 1 by the formula
a(vy) , if se Tj—

1

(@) ={a(vs.), fseT, |,

where s'e Tj~Tj- 1.(That is, r lowers the coordinates in Tj-Tj- 1 until they coincide
with the coordinates in Tj41-Tj (or $~Tj if j=k), keeping other coordinates
unchanged.) Obviously rj is a mirror preserving deformation retraction of Lj onto
Lj-1. Finally, the composition r]s...o1|§| is @ mirror preserving deformation
retraction of CAf onto g(CN).

Remark, Proposition 12.1 gives a second proof of contraciibility of K(W).

13. Blocks

Throughout this section, let (W,S) be a fixed finite Coxeter system of rank n.
Then N(W,S) is a simplex of dimension n- 1. We give the cone CN'=CN(W,S)' a
metric by defining an euclidean cell B=B(W), called the block corresnonding to W,
and a homeomorphism f:B-> CN',

Since the bilinear form {,) on the space V given by the cosine matrix A of W is
positive definite, we can identify V with its dual space V* by the correspondence v
> (v,.) (ve V). Let {ug| se S} be the basis in V dual to the basis {vg] s S}, that
is, {ug,vg")=8g5". The matrix of the form (,) in this basis is the inverse of A. For

any TCS, the vectors ¢1(us) (s&S-T), where ¢1:V-> {ug| se 'I'}-L is the orthogonal
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projection, form the basis dual to {vs} seS~T}, and the link Ik(S-T,A~ 1) is the
inverse of the principal submatrix of A corresponding to the index set T.

We give two descriptions of the block B, the first of which is suitable for a
modified construction, discussed in Chapter IV, using hyperbolic space instead of
euclidean space.

In the first description of B, let M be one of the symbols IE or I, and let € be a
fixed positive number, where =1 if M=E. Let p be any point in the space M, and
identify the tangent space TpM™ with the euclidean vector space (V). The set of
vectors {ug| se S} is called the frame for B at p. For each subset T of S, let CT
denote the image of the convex cone spanned by {ug| seT} in V under the
exponential map expp:V=» MU, There is a unique point ¢ in the interior of C§ such
that the distance of q from C§- {5} equals € for all se S. For each TCS, drop a
perpendicular to CT from q, and let g7 denote the foot of this perpendicular in CT.
In particular, qgy=p and q§=y. B=Bg is defined as the convex hull of the set
{qr| TCS}. Then B is a combinatorial n-cube with vertices q, TCS. We define the
homeomorphism f=fy:B-> CN' by recursion on n. For n=0, f is the unique map
between one-point spaces. Suppose that n>0 and we have defined f for all finite
Coxeter systems of rank <n, Let T be a proper subset of S. Then the face BT of B
with vertices qp', TC T'CS, is canonically identified with the block B(W§S-~T), since
the plane of BT is the orthogonal complement of the plane of CT at qT, and parallel
translation along the straight segment from p to qr takes the set of vectors
{¢1(ug)| s S-T} into the frame for BT at qT. Therefore the map
fWg.T:BT-> CN(W§S- T,5-T)' is defined, and, by induction, the maps
fwg_T:BT—» CN(WS-T,5-T) CCN' for various non-empty subsets T of S agree on
intersections, and define a homeomorphism between the union of faces of B
containing q, and the cone of the boundary of the simplea S iin N. Let f:B=> CN' be
the conical extension of this map, using p as a cone point in B and the barycenter
{S} of the simplex S as a cone point in CN".

The other description of B, valid only in the euclidean case, puts q in the origin.
Keeping the usual notations, define

B = {xe V| {x,ug)20 and {x,vg)<l for all se S},
that is, B is the intersection of the convex cone spanned by the basis {vg} seS} with
the half-spaces (x,vg)<1, se S. The faces of B are the subsets

FT,U = {xeB| (x,vs)=1 for all seT and (x,us)=0 for all s'e S-U},
for TCUCS. The dimension of the face FT,{J is the cardinality of U~T. In
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particular, B=F §, and the vertices of B are FT,T (=q§_ T in the first description
of B) for TCS.

Faces of the form F@,U and Fr,§ are called inside faces and outside faces of B
respectively. The link of the origin (the vertex Fj &) in B is the nerve N(A) of the
cosine matrix A of W, therefore for each UCS, the link Ik(F5 U,B) of the inside
face Fpy U in B is the nerve N(Ik(U,A))=Ik(N(AU),N(A)), where Ay is the
principal submatrix of A corresponding to the indices in U. The link of the vertex
Fg,s of B is the nerve N(A~ 1y of the inverse of A (that is, the spherical simplex
associated to the simplicial cone spanned by the vectors ug, s€ 85, in V), therefore for
each TC S, the link k(FT,S,B) of the outside face Fr,§ in B is the nerve
N(k(S-T,A= 1)=NAT" 1).

For any face FT,U of B we have FT y=Fg UNFT.S, and hers F@ yy and FT_ §
are perpendicular along F1,1J (that is, for all vectors u tangent to F 1y and normal
to F';,U, and all vectors v tangent to FT,§ and normal to FT U at any point in
FT,U, we have (u,v)=0). Therefore Ik(FT,U,B) = Ik(F@,U,B)*1k(FT,S.B), and so

Ik(FT,U,B) = Lk(N(AU),N(A))*N(AT™1).

14. The E-.complex structure on K(W)

Let (W,S) be a Coxeter system, We define a W-invariant [E-complex structure on
the W-space K(W) defined in Section 12.

First define an [E-complex structure on the fundamental domain CN' by pasting
together the blocks B(WT) for simplices TC S of N(W,S) along the maps
fwT:B(WT)~> CN(WT,T)' defined in Section 13. Another way to describe this E-
complex-structure is as follows:

Let L be the intersection of the subset {cone complex) RN(A) of V with the half-
spaces (x,vg)<1, s€ 8, in V, where N(A) is the nerve of the cosine mamix A of
(W,S). L is the union of all blocks B(WT) for TC S, and is naturaliy an [E-complex,
with the inclusions of blocks B(WT) into euclidean subspaces of V as characteristic
maps. Cells of L are the faces FT,UJ described in Section 13, where now TCU and
WU finite. Thercfore, for any face FT {7 of L. we have
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IK(ET,U,L)=Ik(N(AU)N(A)*N(AT- 1),

The mirrors on L are the subsets Lg={xeL| (x,vs)=1} for se S, each Lgis a
subcomplex of L, namely, Lg is the union of outside faces in all blocks containing
the vertex vg (=F{s},{s}). Then the space K(W) has a natural CW-complex

structure, and the maps w= 1:wB—> B for each cell wB of K(W), where B is a cell in
L, are characteristic maps for the natural E-complex structure of K(W). The group
W acts by isometric isomorphisms. By Corollary 4.7, K(W) is a geodesic metric
space with its intrinsic metric. The stabilizer of a face FT,{J is the subgroup
generated by {se€ 3| FT,UCLgs}=T; therefore, the link of a face FT,UCL in K(W) is
k(FT,U,K(W)) = Ik(FT,,WTL)
=WT(XQMAD),NA)N(AT™ 1))
=Ik(N(AU),N(A)*WTN(AT™ 1)
(*) =Ik(N(AU),N(A))+8 TI- 1,
where in the last step we used that in the dual of the canonical representation of W,
the group WT acts on the unit sphere of the euclidean space with scalar product

given by the matrix AT~ 1 with the simplex N(AT~ 1) as a fundamental domain. If F
is any cell of K(W), then Ik(F,K(W)) is isometrically isomorphic *o a link of the
form (%), since a suitable group element we W takes F into some FT UyCL.

Then Corollaries 5.6 and 10.2 imply that the complex K(W) satisfies the link
axiom of Section 6. Thus, we have proved the following result:

14.1. Theorem. For every Coxeter group W there exists a contracril.!c E-
complex K(W) of curvature €0, on which W acts by isometric isomorphisms
effectively, properly, and with compact quotient.

Remark. In some special cases K(W) is a well-known geometric object. If W is a
finite Coxeter group of rank n, then K(W) is isometric to an n-dimensional convex
polyhedron. For example, if W is the dihedral group of order 2m, then K(W) is a
regular 2m-gon with the usual W-action. If W is an affine Coxeter group of rank n,
then the complex K(W) is a tessellation of the (n- 1)-dimensional cuclidean space and
W acts as a symmetry group of this tessellation. If W is the free product of n=2
copies of Z/2 (that is, m(s,s")=ce for s#s"), then K(W) is an infinite n-regular tree
with uniform edge length 2.
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15. An application

A theorem of Gromoll and Wolf states that the fundamental group = of a closed
riemannian manifold M of non-positive sectional curvature can be solvable only if M
is euclidean (cf.[G-W]). Then M is covered by a flat torus, and so 7t has an abelian
subgroup of finite index.

In [G2], M. Gromov generalized this theorem as follows. Let (X,d) be a convex
space in the sense discussed in Section 6, and let I be a solvable group of isometries
or X that satisfies the following condition:

(**)  There exists an £>0, such that d(x,y(x))=€ for all x€X and yeI"'-{1}.
Then T has an abelian subgroup of finite index.

An immediate application of Gromov's theorem to the space K(W) yields the
fullowing corollaries:

Corollary 15.1. If a subgroup G of a Coxeter group W is solvable, then G has
an abelian subgroup of finite index.

Proof, Let I" be a torsion free subgroup of finite index in W. The existence of
such a subgroup is guaranteed by Selberg's Lemma (cf.[Se]), which states that every
finitely generated subgroup of a mairix group is virtually torsion free, and by the
canonical representation of W. The E-complex K(W) with its intrinsic metric d is a
convex space. It follows from the construction of the universal space that two
translates wl and w'L of the fundamental domain L of K(W) have a point x in

Aty -

common if and only if w™ 1w’ is an element of 2 £:lie subgroup Wy~ lx).
Therefore, all translates of L by elements of I” are pairwise disjoint. They form a
discrete family of compact sets, and e=min{d(L,wL){ weI™~ {1}} shows that the
action of I'™G on K(W) satisfies condition (+*) in Gromov's theorem. An abelian
subgroup of finite index in I'G has finite index in G.

Corollary 15.2, Wirh a finite number of exceptions, irreducible Coxeter groups
are not solvable,

Proof. If W is a solvable Coxeter group, then, by Corollary 15.1, W is either
finite or affine, Finite irreducible or affine Coxeter groups of sufficiently high rank
necessarily contain a copy of the alternating group A5 as a subgroup, so the
statement follows from the classification of finite and affine Coxeter groups.



CHAPTER IV

HYPERBOLICITY

For a certain type of Coxeter groups, a modified version of the main construction
yields a comyplex of curvature <- 1, and leads to a characterization of hyperbolic
Coxeter groups (Theorem 17.1).

16. Hyperbolic metric spaces and groups

In [G1] M. Gromov introduced a very general concept of hyperbolicity for metric
spaces and finitely generated groups. We recall the definitions and some of the basic
properties.

Let (X,p) be a2 metric space. We say that X is hyperbolic, if there exists a
constant C, such that for every four points x, y, z, w of X the difference of the two
largest of the three real numbers p(x,y)+p(z,w), p(x,z)+p(y,w) and p(x,w)+p(y.z)
is less than C.

For example, the spaces HT are hyperbolic, while EP is not hyperbolic for n=2.
More generally, simply connected complete riemannian manifolds of sectional
curvature <k, where x<0, are hyperbolic. Even more generally, spaces satisfying
the CAT(x) axiom (see Section 6) with x<Q are hyperbolic. Therefore, locally finite
H-complexes satisfying the link axiom are hyperbolic.

Two metric spaces (X,r) and (Y,S) are quasi-isometric, if there is a relation N in
XxY and there are positive constants A, B and C, such that

for every x& X there are x'« X and y'e Y with p(x,x")<A and xRy',
for every ye'Y there are y'eY and x'e X with o(y,y")<A and x'Ry', and
if xRy and x'Ry’, then

£p(% x) =B £ o(5,y") € Cp(x,x)+B .

44
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An important feature of hyperbolicity is that it is a quasi-isometry invariant property
among geodesic metric spaces; that is, if X and Y are quasi-isometric geodesic metric
spaces and X is hyperbolic, then Y is hyperbolic.

Let I" be a group generated by a finite set F. The distance of the elements Y1 and
v2 of I' in the word merric on " with respect to F is defined as the minimum length

of words in elements of F and their inverses which represent y;~ 172. The Cayley
graph of T with respect to F is a graph with elements of I as vertices, and with an
edge between two distinct vertices y¥1 and ¥) whenever 41~ ly2¢F or 2~ lyi=F. By
declaring the edges to have length 1, we give the Cayley graph a one-dimensional E-
complex structure, ther: the word metric on I is the restriction of the intrinsic metric
on the Cayley graph to the verter set. I' acts properly as a group of isometries on the
Cayley graph by a natural extension of the action of I" on itself by left
multiplications.

* A finitely generated group I is called word hyperbolic, or simply hyperbolic, if T
equipped with the word metric with respect to some finite set of generators (or

equivalently, the Cayley graph of I" with respect to some finite set of generators) is a
hyperbolic metric space. Since different finite generating sets result in quasi-isometric

word metrics on I" and the Cayley graphs are geodesic metric spaces, a hyperbolic
group T is a hyperbolic metric space with respect to any finite set of generators of I,

If a finitely generated group I acts properly on a locally simply connected geodesic
metric space X with compact quotient, then I and X arc guasi-isometric, and
hyperbolicity of one of I" and X implies hyperbolicity of the other. Many examples of
hyperbolic groups are obtained this way: fundamental groups of closed riemannian
manifolds of negative sectional curvature, or discrete groups acting properly and with
compact quotient on hyperbolic spaces I or on locally finite H-complexes
satisfying the link axiom.

17. Hyperbolic Coxeter groups

An application of the main construction described in Chapter HI is the following
characterization of hyperbolicity among Coxeter groups.
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Theorem 17.1. For every Coxeter system (W,S) the following statements are
equivalent:
(i) W is hyperbolic.
(ii) W has no subgroups isomorphic to 2 & 2.
(iii)There is no subset T of § such that (WT,T) is an affine Coxeter
system of rank 23,
and there is no pair of disjoint subsets T1, T2 of S such that the
subgroups W and Wty commute and are infinite.

Proof.

(i) => (i1): A hyperbolic group cannot contain Z @ Z, cf.[G1].

(ii) = (iii); Obvious.

(iii) => (i): For each TC S with W finite, build the blocks B(WT)¢ in the hyperbolic
space HITI, and paste them together to give K(W) an H-complex streture as
described in Sections 13 and 14. As in the euclidean case, K(W) is a geodesic metric
space with its intrinsic metric. We show that for sufficiently small g, the H-complex
K(W) satisfies the link axiom. Then, using the theorems mentioned in the preceding
section, it follows that W is hyperbolic.

Consider the $-complex N(A}), where A is the cosine matrix of (W.S). (iii)
implies that the matrix 1k(T,A) has no parabolic principal submatrices, and no
reducible principal submatrices with not positive definite factors for any TC S with
W finite. Then, by Corollaries 10.2 and 10.4, all girths g(lk(N(AT),N(A))) are
strictly greater than 2n. Therefore, by Lemma 5.11, there is a 6>1 such that all the
corresponding links have girth 22x for any &-change of the complex N(A).

Let B=B(WT)e be a block in the fundamental domain L of K(W). Since B is
canonically combinatorially isomorphic to its euclidean counterpart, we can keep the
notations for faces introduced in Section 13,

If P T is an outside face of B, then its link in B is the same as it was in the

euclidean block, since the differential of the exponential map at the comer pe B
identifies them. So, k(FT" T,B)=N(AT~ 1).

If Fy,@=q is the inside vertex of B, then let DT be the spherical simplex
1k(q,B). For a sufficiently small choice of e=eT>0, DT is a 6-change of the simplex
N(AT), since expp:Tp]HlTl-) KTl is a near isometry near the origin.

Let € be the smallest of e for all TC § with W finite, then for each inside face
Fgs, U of L, the link Ik(F@,y,L) is a 6-change of Ik(N(A{U),N(A)), and we have
g(k(Fg,u.L)22n.
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Finally, if FT,U is any cell in L, then, as in Section 14,
Ik(FT,U,K(W))=Ik(F@,U,L*WIN(AT™ 1)
=IkEFg,u,L)x§TI- 1,
and, by Corollary 5.6, we have g(k(FT,U,K(W)))z2x.

18. Some remarks and questions

It is of special interest to study the Coxeter groups W for which the complex
K (W) is a topological manifold. This happens if the nerve N(W) of W is a
triangulation of a sphere. Then the IE-complex (H-complex) X(W) is a contractible,
piecewise euclidean (piecewise hyperholie}, 2omplete singunlar monifeld of curvature
<0 (£-1). Choosing torsion free subgroups I' of finitz index in W (Selberg's
Lemma), we obtain closed, aspherical, piecewise euclidean or piecewise hyperbolic
singular manifoids K(W)/T with curvature €0 or £- 1.

For example, the nerve of reflection groups in E® or H™ with bounded
fundamental chamber (that is, of so-called crystallographic reflection groups) is
automatically homeomorphic to the (n- 1)-sphere. In case of affine Coxeter grouvps
W, this is obviously the only way for N(W) to be a sphere. But a hyperbolic Coxeter
group W with N(W) homeomorphic to a sphere need not be a crystallographic group,
as the examples giver by their Coxeter graphs in Fig.1 show.

Fig.1. Two hyperbolic Coxeter groups
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n hoth cages N(W) is a triangulation of the 3-sphere (simplicially isomorphic to the
boundary of the 4-dimensional cyclic polytope on 6 and 7 vertices, cf.[Br]),
hyperbolicity of W is easily seen using condition (iii) of Theorem 17.1, and the
determinant of the cosine matrix of W in both cases is positive, unlike that of a
hyperbolic crystallographic reflection group. It may be interesting to find intrinsic
conditions on a Coxeter group W which, together with hyperbolicity, ensure that W
is a hyperbolic crystallographic reflection group.

The range of hyperbolic crystallographic reflection groups, however, is limited, at
least in dimension, if not in complexity, as E. Vinberg showed that they only exist
in dimensions less than 30 (cf.[V1]). Vinberg's proof only uses some combinatorial
properties of triangulations of spheres (the Dehn-Somerville relations and some
estimates, cf.[Br]), and the hypcrbolicity condition (iii) in Theorem 17.1, therefore it
implies that piecewise hyperbolic singular manifolds constructed as K(W) with 2
hyperbolic Coxeter group W can only exist in dimensions less than 30. Moreover,
those combinatorial properties are valid for the so-called Cohen-Macaulay complexes
(homology manifolds with the homology of a sphere, cf.[St], [Dan]), so the proof of
Vinberg's theorem implies the non-existence of piecewise hyperbolic homology
manifolds constructed as K(W) in dimensions above 29. In the special case of righi-
angled Coxeter groups W (that is, when m(s,s)=2 or o), when the hyperbolicity
congition (it} reduces to L. webenmann’s no--condivon (¢f.[Gll, p.123, or see
below) in the nerve N(W), Vinberg's proof limits the dimension to 4.

Vinberg's resuit and some unsuccessful efforts to construct counterexamples
suggest the following problem:

Is there a limit on the virtual cohomological dimension of hyperbolic Coxeter
groups?

In the special case of right-angled Coxeter groups, this question is related to the
question of finding a limit on the homology of a certain type of simplicial complexes:
Let K be a simplicial complex subject to the follewing two conditions:

(a) K is determined by its 1-skeleton. That is, whenever all pairs of
elements of a set T of vertices of K form edges in K, the set T
forms a simplex in K;
(b) the no--condition. That is, every 4-circuit in the edge graph of K
has at least one of its diagonals as an edge in K.
Is it true that K has trivial homology in dimensions above a limit independent
of K?
An example with nontrivial homology in the highest dimension (=3) known to us is
the boundary complex of the 600-cell, a regular polyhedron in E4.



[A]

[Bo]

[Br]

{Bu]

[Dan]

BIBLIOGRAPHY

A. D, Aleksandrov, A theorem on triangles in a metric space and some of its
applicciions, Trudy Math. Inst. Stekl. 38 (1951), 5-23.

N. Bourbaki, Groupes et Algebres de Lie, Chapters IV-VI, Hermann, Paris,
1968.

A. Brgnsted, An Introduction to Convex Polytopes, GTM 90, Springer,
1983.

H. Busemann, Spaces with non-positive curvature, Acta Math. 80 (1548),
259-310.

V. I, Danilov, The geometry of toric varieties, Uscekhi Mat. Nauk 33
(1978), 85-134.

[Davi] M. Davis, Groups generated by reflections and aspherical manifolds not

covered by Euclidecn space, Ann. of Math. 117 (1983), 293-324.

[Dav2} M. Davis, Some aspherical manifolds, Duke Math. J. 85 (1987), 105-139.

[G-V] D. Gromoll, I, Wolf, Some relations between the merric structure and rhe

(G1]

[G2]

aigebraic structure of the fundamental group in manifolds of nonposirive
curvarure, Bull, Amer. Math, Soc. 77 (1971), 545-552.

M. Gromov, Hyperbolic groups, in: Essays in Group Theory, ed. by S. M.
Gersten, MSRI Publ. & (1987), 75-263.

M. Gromov, Hyperbolic manifolds, groups and actions, in: Riemann
Surfaces and Related Topics, Ann. of Math. Studies 97 (1981), 183-213,

H. Hiller, Geometry of Coxeter Groups, Research Notes in Math. 54,
Pitman, London, 1982,

49



[L]

(Se]

(5t]

Vi

[v2]

50

H. Hiller, Geometry of Coxcter Groups, Research Notes in Math, 56,
Pitman, London, 1982.

P, Lancaster, Theory of Matrices, Acad. Press, New York, 1969.

A. Selberg, On discontinuous groups in higher dimensional symmetric
spaces, Int. Coll. on Function Theory, Tata Inst., Bombay, 1960.

R. P. Stanley, The Upper Bound Conjecture and Cohen Macaulay Rings,
Studies in Applied Math. 54 (1975), 135-142.

E. B. Vinberg, Absence of crystallographic reflection groups in Lobachevsky
spaces of large dimension, Funk. Anal. i Prilozhen. 15 (1981), 67-68.

E. B. Vinberg, Discreze linear groups generated by reflections, Izv. Akad.
Nauk. SS8R, Ser. Mat. 35 (1971), 1083-1119.





