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§1. Introduction

A space X is aspherical if πi(X) = 0 for all i > 1. For a space of the homotopy
type of a CW -complex this is equivalent to the condition that its universal covering
space is contractible.

Given any group Γ, there is an aspherical CW -complex BΓ (also denoted by
K(Γ, 1)) with fundamental group Γ; moreover, BΓ is unique up to homotopy equiv-
alence (cf. [Hu]). BΓ is called the classifying space of Γ. (BΓ is also called an
Eilenberg-MacLane space for Γ.) So, the theory of aspherical CW -complexes, up
to homotopy, is identical with the theory of groups. This point of view led to the
notion of the (co)homology of a group Γ: it is simply the (co)homology of the space
BΓ.

Many interesting examples of aspherical spaces are manifolds. A principal fea-
ture of a manifold is that it satisfies Poincaré duality. Thus, one is led to define
an n-dimensional Poincaré duality group Γ to be a group such that Hi(Γ;A) ∼=
Hn−i(Γ;A) for an arbitrary ZΓ-module A. (There is also a version of this with
twisted coefficients in the nonorientable case.) So, the fundamental group of a
closed, aspherical n-dimensional manifold M is an n-dimensional Poincaré duality
group Γ = π1(M). The question of whether or not the converse is true was posed
by Wall as Problem G2 in [W3]. As stated it is false: as we shall see in Theorem
7.15, Poincaré duality groups need not be finitely presented, while fundamental
groups of closed manifolds must be. However, if we add the requirement that the
Poincaré duality group be finitely presented, then the question of whether it must
be the fundamental group of an aspherical closed manifold is still the main problem
in this area.

Examples of aspherical closed manifolds

1) Low dimensional manifolds.

• Dimension 1: The circle is aspherical.

• Dimension 2: Any surface other than S2 or RP 2 is aspherical.

• Dimension 3: Any irreducible closed 3-manifold with infinite fundamental
group is aspherical. (This follows from Papakyriakopoulos’ Sphere Theo-
rem.)
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2) Lie groups. Suppose G is a Lie group and that K is a maximal compact subgroup.
Then G/K is diffeomorphic to Euclidean space. If Γ is a discrete, torsion-free
subgroup of G, then Γ acts freely on G/K and G/K −→ Γ\G/K is a covering
projection. Hence, Γ\G/K is an aspherical manifold. For example, if G = Rn

and Γ = Zn, we get the n-torus. If G = O(n, 1), then K = O(n) × O(1), G/K
is hyperbolic n-space and Γ\G/K is a hyperbolic manifold. One can also obtain
closed infranilmanifolds or closed infrasolvmanifolds in this fashion by taking G
to be a virtually nilpotent Lie group or a virtually solvable Lie group. (A group
virtually has a property if a subgroup of finite index has that property.)

3) Riemannian manifolds of nonpositive curvature. Suppose Mn is a closed Rie-
mannian manifold with sectional curvature ≤ 0. The Cartan-Hadamard Theorem
then states that the exponential map, exp : TxMn → Mn, at any point x in Mn, is
a covering projection. Hence, the universal covering space of Mn is diffeomorphic
to Rn (∼= TxMn) and consequently, Mn is aspherical.

During the last fifteen years we have witnessed a great increase in our fund of
examples of aspherical manifolds and spaces. In many of these new examples the
manifold is tessellated by cubes or some other convex polytope. Some of these
examples occur in nature in contexts other than 1), 2) or 3) above, for instance,
as the closure of an (R∗)n -orbit in a flag manifold or as a blowup of RPn along
certain arrangements of subspaces. (See [DJS].) Some of these new techniques are
discussed below.

4) Reflection groups. Associated to any Coxeter group W there is a contractible
simplicial complex Σ on which W acts properly and cocompactly as a group gener-
ated by reflections ([D1], [D3], [Mo]). It is easy to arrange that Σ is a manifold (or
a homology manifold), so if Γ is a torsion-free subgroup of finite index in W , then
Σ/Γ is an aspherical closed manifold. Such examples are discussed in detail in §7.

5) Nonpositively curved polyhedral manifolds. Many new techniques for construct-
ing examples are described in Gromov’s paper [G1]. As Aleksandrov showed, the
concept of nonpositive curvature often makes sense for a singular metric on a space
X. One first requires that any two points in X can be connected by a geodesic
segment. Then X is nonpositively curved if any small triangle (i.e., a configuration
of three geodesic segments) in X is “thinner” than the corresponding comparison
triangle in the Euclidean plane. (“Thinner” means that the triangle satisfies the
CAT (0)-inequality of [G1].) The generalization of the Cartan-Hadamard Theorem
holds for a nonpositively curved space X: its universal cover is contractible. Gro-
mov pointed out that there are many polyhedral examples of such spaces equipped
with piecewise Euclidean metrics (this means that each cell is locally isometric to
a convex cell in Euclidean space). Here are two of Gromov’s techniques.

• Hyperbolization: In Section 3.4 of [G1] Gromov describes several different
techniques for converting a polyhedron into a nonpositively curved space. In
all of these hyperbolization techniques the global topology of the polyhedron
is changed, but its local topology is preserved. So, if the input is a manifold,
then the output is an aspherical manifold. (Expositions and applications of
hyperbolization can be found in [CD3] and [DJ].)

• Branched covers: Let M be a nonpositively curved Riemannian manifold and
Y a union of codimension-two, totally geodesic submanifolds which intersect
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orthogonally. Then the induced (singular) metric on a branched cover of
M along Y will be nonpositively curved. (See Section 4.4 of [G1], as well
as, [CD1].) Sometimes the metrics can be smoothed to get Riemannian
examples as in [GT]. As Gromov points out (on pp.125-126 of [G1]) there is
a large class of examples where Mn is n-torus and Y is a configuration of
codimension-two subtori (see also Section 7 of [CD1]).

Using either the reflection group technique or hyperbolization, one can show that
there are examples of aspherical closed (topological) n- manifolds Mn, n ≥ 4, such
that a) the universal covering space of Mn is not homeomorphic to Rn ([D1], [DJ])
or b) Mn is not homotopy equivalent to a smooth (in [DH]) or piecewise linear
manifold (in [DJ]).

My thanks go to Tadeusz Januszkiewicz, Guido Mislin, Andrew Ranicki and the
referee for their suggestions for improving earlier versions of this survey.

§2. Finiteness conditions

The classifying space BΓ of an n-dimensional Poincaré duality group Γ is (ho-
motopy equivalent to) an n-dimensional CW complex. If BΓ is a closed manifold,
then it is homotopy equivalent to a finite CW complex. We now investigate the
cohomological versions for a group Γ (not necessarily Poincaré) of the conditions
that BΓ is either a) finite dimensional or b) a finite CW -complex. A good reference
for this material is Chapter VIII of [Br3].

Suppose that R is a nonzero commutative ring and that RΓ denotes the group
ring of Γ. Regard R as a RΓ-module with trivial Γ-action.

The cohomological dimension of Γ over R, denoted cdR(Γ), is the projective
dimension of R over RΓ. In other words, cdR(Γ) is the smallest integer n such there
is a resolution of R of length n by projective RΓ-modules:

0 → Pn → · · · → P1 → P0 → R → 0.

Our convention, from now on, will be that if we omit reference to R, then R = Z.
For example, cd(Γ) means the cohomological dimension of Γ over Z.

If Γ acts freely, properly and cellularly on an n-dimensional CW -complex E and
if E is acyclic over R, then cdR(Γ) ≤ n. (Proof: consider the chain complex of
cellular chains with coefficients in R:

0 → Cn(E;R) → . . . C0(E;R) ε→R → 0,

where ε is the augmentation.) In particular, if BΓ is (homotopy equivalent to) an
n-dimensional CW -complex, then cd(Γ) ≤ n.

The geometric dimension of Γ, denoted gd(Γ), is the smallest dimension of a
K(Γ, 1) complex (i.e., of any CW -complex homotopy equivalent to BΓ). We have
just seen that cd(Γ) ≤ gd(Γ). Conversely, Eilenberg and Ganea proved in [EG] that
gd(Γ) ≤ max{cd(Γ), 3}. Also, it follows from Stallings’ Theorem [St] (that a group
of cohomological dimension one is free) that cd(Γ) = 1 implies gd(Γ) = 1. The
possibility that there exists a group Γ with cd(Γ) = 2 and gd(Γ) = 3 remains open.
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A group of finite cohomological dimension is automatically torsion-free. (Proof: a
finite cyclic subgroup has nonzero cohomology in every even dimension.) Similarly,
if cdR(Γ) < ∞, the order of any torsion element of Γ must be invertible in R.

A group Γ is of type F if BΓ is homotopy equivalent to a finite complex. Γ is
of type FPR (respectively, of type FLR) if there is a resolution of R of finite length
by finitely generated RΓ-modules:

0 → Pn → · · · → P0 → R → 0,

where each Pi is projective (respectively, free). (The key phrase here is “finitely
generated.”)

If Γ acts freely, properly, cellularly and cocompactly on an R-acyclic CW -
complex E, then Γ is of type FLR. (Consider the cellular chain complex again.) So,
a group of type F is of type FL. Similarly, if BΓ is dominated by a finite complex,
then Γ is of type FP. Conversely, Wall [W1] proved that if a finitely presented
group is of type FL, then it must be of type F.

There is no known example of a group which is of type FP but not of type FL.
In fact, it has been conjectured that for any torsion-free group Γ, the reduced pro-
jective class group, K̃0(ZΓ), is zero, that is, that every finitely generated projective
ZΓ- module is stably free.

A group Γ is finitely generated if and only if the augmentation ideal is finitely
generated as a ZΓ-module (Exercise 1, page 12 in [Br3]). Hence, any group of type
FP is finitely generated. However, it does not follow that such a group is finitely
presented (i.e., that it admits a presentation with a finite number of generators and
a finite number of relations). In fact, Bestvina and Brady [BB] have constructed
examples of type FL which are not finitely presented. These examples will be
discussed further in §7.

§3. Poincaré duality groups

If Γ is the fundamental group of an aspherical, closed n-manifold, M , then it
satisfies Poincaré duality:

Hi(Γ;A) ∼= Hn−i(Γ;D ⊗A)

where D is the orientation module and where the coefficients can be any ZΓ-module
A.

Since the universal covering space M̃n of an aspherical Mn is contractible, it
follows from Poincaré duality (in the noncompact case) that the cohomology with
compact supports of M̃n is the same as that of Rn, i.e.,

Hi
c(M̃

n) ∼=
{

0 , for i 6= n

Z , for i = n.

On the other hand, if Γ acts freely, properly and cocompactly on an acyclic space E,
then Hi(Γ; ZΓ) ∼= Hi

c(E) (by Prop. 7.5, p. 209 in [Br3]). Hence, for Γ = π1(Mn),

Hi(Γ; ZΓ) ∼=
{

0 , for i 6= n

Z , for i = n.

These considerations led Johnson and Wall [JW] and, independently Bieri [Bi] to
the following two equivalent definitions.
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Definition 3.1. ([Bi]) A group Γ is a Poincaré duality group of dimension n over
a commutative ring R (in short, a PDn

R-group) if there is an RΓ-module D, which
is isomorphic to R as an R-module, and a homology class µ ∈ Hn(Γ;D) (called the
fundamental class) so that for any RΓ-module A, cap product with µ defines an
isomorphism: Hi(Γ;A) ∼= Hn−i(Γ;D ⊗ A). D is called the orientation module (or
dualizing module) for Γ. If Γ acts trivially on D, then it is an orientable PDn

R-group.

Definition 3.2. ([JW]). A group Γ is a Poincaré duality group of dimension n
over R if the following two conditions hold:

(i) Γ is of type FPR, and

(ii) Hi(Γ;RΓ) =
{

0 , for i 6= n

R , for i = n

We note that if R = Z, then (i) implies that Γ is torsion-free and (ii) implies
that cd(Γ) = n.

Theorem 3.3. ([BE2], [Br1], [Br3]). Definitions 3.1 and 3.2 are equivalent.

On pages 220 and 221 of [Br3] one can find three different proofs that the
conditions in Definition 3.2 imply those in Definition 3.1. The dualizing mod-
ule D is Hn(Γ;RΓ). Conversely, suppose Γ satisfies the conditions of Definition
3.1. Since D ⊗ RΓ is free (by Cor. 5.7, page 69 of [Br3]), it is acyclic. Hence,
Hi(Γ;RΓ) ∼= Hn−i(Γ;D ⊗ RΓ) vanishes for i 6= n and is isomorphic to R for
i = n. The main content of Theorem 3.3 is that Definition 3.1 forces Γ to be of
type FPR. The reason for this is that the statement that Γ is of type FPR is
equivalent to the statement that cdR(Γ) < ∞ and that for each i the functor on
RΓ-modules A −→ Hi(Γ;A) commutes with direct limits (see [Br3]). By natu-
rality of cap products and by Poincaré duality, this functor can be identified with
A → D ⊗A → Hn−i(Γ;D ⊗A) and this clearly commutes with direct limits.

In line with our convention from §2, for R = Z, denote PDn
R by PDn. As

Johnson and Wall observed, if Γ is a finitely presented PDn- group, then BΓ is a
Poincaré complex in the sense of [W2]. In particular, BΓ is finitely dominated.

The principal question in this area (as well as the most obvious one) is if every
PDn-group is the fundamental group of an aspherical closed manifold. As stated
the answer is no. For, as we shall see in §7, the Bestvina-Brady examples can be
promoted to examples of PDn-groups, n ≥ 4, which are not finitely presented.
(Kirby and Siebenmann proved that any compact topological manifold is homo-
topy equivalent to a finite CW -complex; hence, its fundamental group is finitely
presented.) So, the correct question is the following.

Question 3.4. Is every finitely presented PDn-group the fundamental group of an
aspherical closed manifold?

This is closely related to Borel’s Question: are any two aspherical closed mani-
folds with the same fundamental group homeomorphic? (See [FJ] for a discussion of
Borel’s Question.) Thus, Question 3.4 asks if any finitely presented PDn-group cor-
responds to an aspherical closed manifold and Borel’s Question asks if this manifold
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is unique up to homeomorphism.

A space X is a homology manifold of dimension n over R if for each point x in
X, H∗(X, X − x;R) ∼= H∗(Rn, Rn − 0;R), i.e., if

Hi(X, X − x;R) ∼=
{

0 , for i 6= n

R , for i = n.

The usual proof that manifolds satisfy Poincaré duality also works for homology
manifolds. As we shall see in Example 7.4 there are aspherical polyhedra which are
homology manifolds over some ring R but not over Z. The fundamental groups of
these examples are Poincaré duality groups over R but not over Z. So, when R 6= Z
the appropriate version of Question 3.4 is the following.

Question 3.5. Is every torsion-free, finitely presented, PDn
R-group the fundamen-

tal group of an aspherical closed R-homology manifold?

In fact this question is relevant even when R = Z. The reason is this. While
it is true that every closed polyhedral homology manifold is homotopy equivalent
to a closed manifold, Bryant, Ferry, Mio and Weinberger have shown in [BFMW]
that there exist homology manifolds which are compact ANRs and which are not
homotopy equivalent to closed manifolds. Thus, there is the intriguing possibility
that some of these exotic “near manifolds” of [BFMW] could be aspherical.

Ranicki has shown (in Chapter 17 of [R]) that, for Γ of type F , Question 3.4 has
an affirmative answer if and only if the “total surgery obstruction” s(BΓ) ∈ Sn(BΓ)
is 0 (where S∗ means the relative homotopy groups of the assembly map in algebraic
L-theory). A similar remark applies to Question 3.5 using the “4-periodic total
surgery obstruction” in Chapter 25 of [R]. In fact, as explained on page 275 of [R],
the strongest form of the Novikov Conjecture is equivalent (in dimensions ≥ 5)
to the conjecture that both Question 3.4 and Borel’s Question have affirmative
answers. As explained on page 298 of [R], a slightly weaker version of the Novikov
Conjecture (that the assembly map is an isomorphism) is equivalent to allowing
the possibility that there exist aspherical ANR homology manifolds which are not
homotopy equivalent to manifolds, as in [BFMW].

Duality groups. There are many interesting groups which satisfy Definition 3.1
except for the requirement that D be isomorphic to R. The proof of Theorem 3.3
also gives the following result.

Theorem 3.6. (Bieri-Eckmann [BE2], Brown [Br1]). The following two condi-
tions are equivalent.

(i) There exists an RΓ-module D and a positive integer n such that for any
RΓ-module A there is a natural isomorphism (i.e., induced by cap product
with a fundamental class): Hi(Γ;A) ∼= Hn−i(Γ;D ⊗A).

(ii) Γ is of type FPR and

Hi(Γ;RΓ) ∼=
{

0 , for i 6= n

D , for i = n.

If either of these conditions hold, then Γ is a duality group of dimension n over
R (in short, a Dn

R-group).



POINCARÉ DUALITY GROUPS 7

Theorem 3.7. (Farrell [F]). Suppose R is a field and that Γ is a Dn
R-group. If

dimR(D) < ∞, then dimR(D) = 1 (and consequently Γ is a PDn
R-group).

It follows that if Γ is a duality group over Z, then either D ∼= Z or D is of infinite
rank. Conjecturally, D must be free abelian.

Examples of duality groups

1) Finitely generated free groups are duality groups of dimension 1.

2) Suppose that M is a compact aspherical n-manifold with nonempty boundary.
Let ∂1M, . . . , ∂mM denote the components of of ∂M and suppose that each ∂jM is
aspherical and that π1(∂jM) → π1(M) is injective. Then π1(M) is a duality group
of dimension n − 1. For example, any knot group (that is, the fundamental group
of the complement of a nontrivial knot in S3) is a duality group of dimension two.

3) Let Γ be a torsion-free arithmetic group and G/K the associated symmetric
space. Then Γ is a duality group of dimension n − `, where n = dim(G/K) and `
is the Q-rank of Γ. (See [BS].)

4) Let Sg denote the closed surface of genus g. The group of outer automor-
phisms Out(π1(Sg)) is the mapping class group of Sg. It is a virtual duality group
of dimension 4g − 5 (i.e., any torsion-free subgroup of finite index in Out(π1(Sg))
is a duality group). (See [Ha].)

§4. Subgroups, extensions and amalgamations

We have the following constructions for manifolds:

1) Any covering space of a manifold is a manifold.

2) If F → E → B is a fiber bundle and if F and B are manifolds, then so is E.

3) Suppose M is a manifold with boundary and that the boundary consists
of two components ∂1M and ∂2M which are homeomorphic. Then the result of
gluing M together along ∂1M and ∂2M via a homeomorphism is a manifold. (In
this construction one usually has one of two situations in mind: either a) M is
connected or b) M consists of two components with ∂1M and ∂2M their respective
boundaries.)

In this section we consider the analogous constructions for Poincaré duality
groups.

Subgroups. The following analog of construction 1), is proved as Theorem 2 in
[JW]. It follows fairly directly from Definition 3.2.

Theorem 4.1. ([Bi], [JW]). Suppose that Γ is a torsion -free group and that Γ′ is
a subgroup of finite index in Γ. Then Γ is a PDn

R-group (R a commutative ring) if
and only if Γ′ is.

By way of contrast, there is the following result of Strebel [Str].

Theorem 4.2. ([Str]). If Γ is a PDn-group and Γ′ is a subgroup of infinite index,
then cd(Γ′) < n.
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Extensions. The next result, the analog of construction 2), is Theorem 3 of [JW].

Theorem 4.3. ([Bi], [JW]). Suppose that Γ is an extension of Γ′′ by Γ′:

1 → Γ′ → Γ → Γ′′ → 1

If both Γ′ and Γ′′ are Poincaré duality groups over R, then so is Γ. Conversely, if
Γ is a Poincaré duality group over R and if both Γ′ and Γ′′ are of type FPR, then
Γ′ and Γ′′ are both Poincaré duality groups over R.

The corresponding result for Poincaré spaces was stated in [Q] and proved in
[Go].

Theorem 4.4. ([Go], [Q]). Suppose that F → E → B is a fibration and that F
and B are dominated by finite complexes. Then E is dominated by a finite complex
and E satisfies Poincaré duality if and only if both F and B do.

Corollary 4.5. Suppose that Γ is a finitely presented, torsion-free group of type
FP and that Γ acts freely, properly and cocompactly on a manifold M. If M is
dominated by a finite complex, then Γ is a Poincaré duality group.

Proof. Consider the fibration M → M ×Γ EΓ → BΓ, where EΓ denotes the uni-
versal covering space of BΓ. Since M ×Γ EΓ is homotopy equivalent to the closed
manifold M/Γ, it satisfies Poincaré duality. �

For example the corollary applies to the case where M ∼= Sk × Rn. (See [CoP].)

Amalgamations. Suppose that M is a compact manifold with boundary, with
boundary components (∂jM)j∈I , that M , as well as each boundary component is
aspherical, and that for each j ∈ I the inclusion ∂jM ⊂ M induces a monomorphism
π1(∂jM) → π1(M). Set Γ = π1(M), let Sj denote the image of π1(∂jM) in Γ, and
let SSS denote the family of subgroups (Sj)j∈I . Then, following [BE3] and [E], the
fact that (M,∂M) satisfies Poincaré-Lefschetz duality can be reformulated in terms
of group cohomology as follows.

Let Γ be a group and SSS = (Sj)j∈I a finite family of subgroups. For any subgroup
H of Γ let Z(Γ/H) denote the free abelian group on Γ/H with ZΓ-module structure
induced from left multiplication. Let ∆ = ker(

⊕
Z(Γ/Sj)

ε−→ Z), where ε is defined
by ε(γSj) = 1 for all j ∈ I and γ ∈ Γ. Set

Hi(Γ,SSS;A) = Hi−1(Γ;∆⊗A)

Hi(Γ,SSS;A) = Hi−1(Γ;Hom(∆, A)).

Definition 4.6. ([BE3], [E]). The pair (Γ,SSS) is a Poincaré duality pair of dimen-
sion n (in short a PDn-pair) with orientation module D (where D is isomorphic to
Z as an abelian group) if there are natural isomorphisms:

Hi(Γ;A) ∼= Hn−i(Γ,SSS;D ⊗A)

Hi(Γ,SSS;A) ∼= Hn−i(Γ;D ⊗A).
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(It follows that each Sj is a PDn−1-group.)

As observed in [JW] one can then use Mayer-Vietoris sequences to prove the
analogs of construction 3). For example, suppose that (Γ1,H) and (Γ2,H) are
PDn-pairs. (Here SSS consists of a single subgroup H.) Then the amalgamated
product Γ1 ∗H Γ2 is a PDn-group. Similarly, suppose (Γ,SSS) is a PDn-pair where
SSS consists of two subgroups S1 and S2 and that θ : S1 → S2 is an isomorphism.
Then the HNN -extension Γ∗θ is a PDn-group. If a group can be written as an
amalgamated product or HNN -extension over a subgroup H, then it is said to split
over H.) From these two constructions and induction one can prove the following
more general statement.

Theorem 4.7. Suppose that Γ is the fundamental group of a finite graph of groups.
Let Γv denote the group associated to a vertex v and Se the group associated to an
edge e. For each vertex v, let E(v) denote the set of edges incident to v and let
SSSv = (Se)e∈E(v) be the corresponding family of subgroups of Γv. If (Γv,SSSv) is a
PDn-pair for each vertex v, then Γ is a PDn-group.

For the definition of a “graph of groups” and its “fundamental group”, see [Se2]
or [SW].

Kropholler and Roller in [KR1,2,3] have made an extensive study of when a
PDn-group can split over a subgroup H which is a PDn−1-group.

If a PDn-group Γ splits over a subgroup H, there is no reason that H must be a
PDn−1-group. (We shall give examples where it is not in Example 7.3.) However,
it follows from the Mayer-Vietoris sequence that cd(H) = n − 1. In particular,
for n ≥ 3, a PDn-group cannot split over a trivial subgroup or an infinite cyclic
subgroup. We restate this as the following lemma, which we will need in §6.

Lemma 4.8. For n ≥ 3, a PDn-group is not the fundamental group of a graph of
groups with all edge groups trivial or infinite cyclic.

§5. Dimensions one and two

Question 3.4 has been answered affirmatively in dimensions ≤ 2.

A PD1-group is infinite cyclic. (Since H1(Γ; ZΓ) = Z, Γ has two ends and since
Γ is torsion-free, a result of Hopf [H] implies that Γ ∼= Z.)

The affirmative answer to Question 3.4 in dimension two is the culmination of
several papers by Eckmann and his collaborators, Bieri, Linnell and Müller, see
[BE1], [BE2], [EL], [EM], [M] and especially [E].

Theorem 5.1. A PD2-group is isomorphic to the fundamental group of a closed
surface.

A summary of the proof can be found in [E]. In outline, it goes as follows: 1)
using a theorem of [M] one shows that if a PD2-group splits as an amalgamated
product or HNN extension over a finitely generated subgroup, then the theorem
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holds and then 2) using the Hattori-Stallings rank, it is proved in [EL] that any
PD2-group has positive first Betti number and hence, that it splits.

Combining Theorem 5.1 with Theorem 4.1 we get the following.

Corollary 5.2. Suppose that a torsion-free group Γ contains a surface group Γ′ as
a subgroup of finite index. Then Γ is a surface group.

For a discussion of the situation in dimension three see Thomas’ article [T].

§6. Hyperbolic groups

Any finitely generated group Γ can be given a “word metric,” d : Γ× Γ → N, as
follows. Fix a finite set of generators T. Then d(γ, γ′) is the smallest integer k such
that γ−1γ′ can be written as a word of length k in T ∪T−1. If Γ is a discrete group
of isometries of a metric space Y and Y/Γ is compact, then the word metric on Γ
is quasi-isometric to the induced metric on any Γ-orbit in Y.

Rips defined the notion of a “hyperbolic group” in terms of the word metric (For
the definition, see [G1].) This idea was then developed into a vast and beautiful
theory in Gromov’s seminal paper [G1]. It is proved in [G1] that the property of
being hyperbolic depends only on the quasi-isometry type of the word metric, in
particular, it is independent of the choice of generating set. The idea behind the
definition is this: in the large, Γ should behave like a discrete, cocompact group of
isometries of a metric space Y which is simply connected and “negatively curved” in
some sense (for example, a space Y which satisfies the CAT(ε)-inequality for some
ε < 0). In particular, the fundamental group of a closed Riemannian manifold of
(strictly) negative sectional curvature is hyperbolic. Many more examples can be
found in [G1].

Rips proved that given a hyperbolic group Γ there is a contractible simplicial
complex E on which Γ acts properly and cocompactly, see [G1]. In particular, if Γ
is torsion-free, then E/Γ is a K(Γ, 1) complex. So, torsion-free hyperbolic groups
are automatically of type F.

Associated to any hyperbolic group Γ, there is a space ∂Γ, called the “ideal
boundary” of Γ. The points in ∂Γ are certain equivalence classes of sequences (γi)iεN
in Γ which go to infinity in an appropriate sense. (The definition of ∂Γ can be found
on page 98 of [G1].) If Γ is the fundamental group of a negatively curved, closed
Riemannian n-manifold, then ∂Γ is homeomorphic to Sn−1 (in this case, ∂Γ can
be identified with the space of all geodesic rays in the universal covering space
emanating from some base point).

In [BM] Bestvina and Mess proved that the Rips complex E can be compactified
to a space E by adding ∂Γ as the space at infinity; moreover, ∂Γ is homotopically
inessential in E in a strong sense. (In technical terms, E is a Euclidean retract and
∂Γ is a Z-set in E.) It follows that H∗

c (E) ∼= Ȟ∗−1(∂Γ), where Ȟ∗−1(∂Γ) denotes
the reduced Cěch cohomology of ∂Γ. Since we also have H∗(Γ; ZΓ) ∼= H∗

c (E), this
gives the following theorem.

Theorem 6.1. (Bestvina-Mess [BM]). Let Γ be a torsion-free hyperbolic group and



POINCARÉ DUALITY GROUPS 11

R a commutative ring. Then H∗(Γ;RΓ) ∼= Ȟ∗−1(∂Γ;R).

Remark. Suppose Γ is a (not necessarily hyperbolic) group of type F (so that BΓ
is a finite complex). Then Γ has a Z-set compactification if EΓ can be compactified
to a Euclidean retract EΓ so that ∂EΓ(= EΓ − EΓ) is a Z-set in EΓ. It is quite
possible that every group of type F admits a Z-set compactification. (The Novikov
Conjecture is known to hold for such groups, see [CaP].) We note that Theorem
6.1 holds for any such group. Thus, such a group Γ is a Dn-group if and only if the
Cěch cohomology of ∂EΓ is concentrated in dimension n− 1; it is a PDn-group if
and only if ∂EΓ has the same Cěch cohomology as Sn−1.

Theorem 6.2. (Bestvina [Be]). Suppose that a hyperbolic group Γ is a PDn
R-

group. Then ∂Γ is a homology (n− 1)-manifold over R (with the same R-homology
as Sn−1).

However, as shown in [DJ], even when R = Z, for n ≥ 4, there are examples
where ∂Γ is not homeomorphic to Sn−1; ∂Γ need not be simply connected or locally
simply connected (so, in these examples ∂Γ is not even an ANR). In dimension
three Theorem 6.2 has the following corollary.

Corollary 6.3. (Bestvina-Mess [BM]). If Γ is a hyperbolic PD3- group, then ∂Γ
is homeomorphic to S2.

In this context, Cannon has proposed the following version of Thurston’s Ge-
ometrization Conjecture.

Conjecture 6.4. If a PD3-group is hyperbolic (in the sense of Rips and Gromov),
then it is isomorphic to the fundamental group of a closed hyperbolic 3-manifold
(i.e., a 3-manifold of constant curvature −1).

A proof of this would constitute a proof of a major portion of the Geometrization
Conjecture. The issue is to show that the action of the group Γ on ∂Γ(= S2) is
conjugate to an action by conformal transformations. Cannon and his collaborators
seem to have made progress on an elaborate program for proving this (see [C]).

The group of outer automorphisms of a hyperbolic PDn-group. A proof
of the following theorem is outlined on page 146 of [G1]. A different argument using
work of Paulin [P] and Rips [Ri] can be found in [BF].

Theorem 6.6. (Gromov). Let Γ be a hyperbolic PDn- group with n ≥ 3. Then
Out(Γ), its group of outer automorphisms, is finite.

Sketch of Proof. (See [BF].) Paulin [P] proved that if Γ is hyperbolic and Out(Γ) is
infinite, then Γ acts on an R-tree with all edge stabilizers either virtually trivial or
virtually infinite cyclic. A theorem of Rips [R] then implies that there is a Γ-action
on a simplicial tree with the same type of edge stabilizers. Since Γ is torsion-free
this implies that Γ splits as an amalgamated free product or HNN extension over a
trivial group or an infinite cyclic group. By Lemma 4.8 such a group cannot satisfy
Poincaré duality if n ≥ 3. �
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Remarks. i) The theorem is false for n = 2, i.e., for surface groups.

ii) The theorem is also false in the presence of 0 curvature. For example,
Out(Zn) = GL(n, Z), which is infinite if n > 1.

iii) Suppose M1 and M2 are two aspherical manifolds with boundary with ∂M1 =
∂M2 = Tn−1. Let M be the result of gluing M1 to M2 along Tn−1 and let Γ =
π1(M). (If n ≥ 3, then Γ is not hyperbolic.) The homotopy class of any closed loop
in Tn−1 then defines a Dehn twist about Tn−1. In this way we get a monomorphism
Zn−1 → Out(Γ), so the outer automorphism group is infinite.

iv) When Γ is the fundamental group of a closed hyperbolic manifold (either a
real, complex or quaternionic hyperbolic manifold) of dimension > 2, then Theorem
6.6 follows from the Mostow Rigidity Theorem.

§7. Examples

Right-angled Coxeter groups. Given a simplicial complex L, we shall describe
a simple construction of a cubical cell complex PL so that the link of each vertex
in PL is isomorphic to L. If L satisfies a simple combinatorial condition (that it is
a “flag complex”), then PL is aspherical.

Let S denote the vertex set of L and for each simplex σ in L let S(σ) denote its
vertex set. Define PL to be the subcomplex of the cube [−1, 1]S consisting of all
faces parallel to RS(σ) for some simplex σ in L (such a face is defined by equations
of the form: xs = εs, where s ∈ S − S(σ) and εs ∈ {±1}). There are 2S vertices
in PL and the link of each of them is naturally identified with L. Hence, if L is
homeomorphic to Sn−1, then PL is a closed n-manifold. Similarly, if L is an (n−1)-
dimensional homology manifold over R with the same R-homology as Sn−1, then
PL is a R-homology n-manifold.

For each s in S let rs be the linear reflection on [−1, 1]S which sends the standard
basis vector es to −es and which fixes es′ for s′ 6= s. The group generated by these
reflections is isomorphic to (Z/2)S . The subcomplex PL is (Z/2)S- stable. A
fundamental domain for the action on [−1, 1]S is [0, 1]S ; moreover, the orbit space
[−1, 1]S/(Z/2)S is naturally identified with this subspace. Set K = PL∩ [0, 1]S and
for each s in S let Ks be the subset of K defined by xs = 0. (Ks is called the
mirror associated to rs.) The cell complex K is homeomorphic to the cone on L;
the subcomplex Ks is the closed star of the vertex s in the barycentric subdivision
of L. In order to describe the universal covering space ΣL of PL, we first need to
discuss Coxeter groups.

A Coxeter matrix M on a set S is a symmetric S × S matrix (mst) with entries
in N∪ {∞} such that mst = 1 if s = t and mst ≥ 2 if s 6= t. Associated to M there
is a Coxeter group W defined by the presentation

W = 〈S | (st)mst = 1, (s, t) ∈ S × S〉

A Coxeter matrix is right-angled if all of its off-diagonal entries are 2 or∞. Similarly,
a Coxeter group is right-angled if its Coxeter matrix is.

One can associate to L a right-angled Coxeter matrix ML and a right-angled
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Coxeter group WL as follows. ML is defined by

mst =


1, if s = t

2, if {s, t} spans an edge in L

∞, otherwise.

WL is the associated Coxeter group. Let Θ : WL → (Z/2)S be the epimorphism
which sends s to rs and let ΓL be the kernel of Θ. Then ΓL is torsion-free. (ΓL is
the commutator subgroup of WL.)

The complex ΣL can be defined as (WL × K)/ v. The equivalence relation v
on WL ×K is defined by: (w, x) v (w′, x′) if and only if x = x′ and w−1w′ ∈ Wx,
where Wx is the subgroup generated by {s ∈ S | x ∈ Ks}. It is easy to see that
PL

∼= ((Z/2)S × K)/ v, where the equivalence relation is defined similarly. The
natural Θ-equivariant map ΣL → PL is a covering projection. Moreover, ΣL is
simply connected (by Corollary 10.2 in [D1]). Consequently, ΣL is the universal
covering space of PL and π1(PL) = ΓL.

We now turn to the question of when ΣL is contractible. A simplicial complex
L with vertex set S is a flag complex if given any finite set of vertices S′, which are
pairwise joined by edges, there is a simplex σ in L spanned by S′ (i.e., S(σ) = S′).
For example, the derived complex (also called the “order complex”) of any poset is
a flag complex. In particular, the barycentric subdivision of any simplicial complex
is a flag complex. Hence, the condition that L is a flag complex does not restrict
its topological type; it can be any polyhedron.

Theorem 7.1. ([D1], [D3]). The complex ΣL is contractible if and only if L is a
flag complex.

Gromov gave a different proof from that of [D1] for the above theorem (in Section
4 of [G1]); he showed that the natural piecewise Euclidean metric on a cubical
complex is nonpositively curved if and only if the link of each vertex is a flag
complex. Since ΣL is a cubical complex with the link of each vertex isomorphic to
L, the theorem follows. (An exposition of this method is given in [D3].)

Example 7.2. (Topological reflection groups on Rn). Suppose that L is a PL tri-
angulation of the sphere Sn−1 as a flag complex. (To insure that L is a flag complex
we could take it to be the barycentric subdivision of an arbitrary PL triangulation
of Sn−1.) Then K is homeomorphic to the n-disk (since it is homeomorphic to the
cone on L). The Ks are the dual cells to the vertices of L. If L is the boundary
complex of a convex polytope, then K is the dual polytope. In fact this is the
correct picture to keep in mind: K closely resembles a convex polytope. In var-
ious special cases WL can be represented as a group generated by reflections on
Euclidean n-space or hyperbolic n-space so that K is a fundamental domain. The
right-angledness hypothesis on the Coxeter group should be thought of as the re-
quirement that the hyperplanes of reflection intersect orthogonally, i.e., that if two
of the Ks intersect, then their intersection is orthogonal. For example, suppose L
is a subdivision of the circle into m edges. L is a flag complex if and only if m ≥ 4.
K is an m-gon; we should view it as a right-angled m-gon in the Euclidean plane
(if m = 4) or the hyperbolic plane (if m > 4). PL is the orientable surface of Euler
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characteristic 2m−2(4 − m); its universal cover ΣL is the Euclidean or hyperbolic
plane as m = 4 or m > 4. For another example, suppose that L is the boundary
complex of an n-dimensional octahedron (the n-fold join of S0 with itself). Then
K is an n-cube, the Ks are its codimension-one faces, PL is an n-torus, ΣL is Rn

and its tiling by copies of K is the standard cubical tessellation of Rn. If L is a
more random PL triangulation of Sn−1, then we may no longer have such a nice
geometric interpretation; however, the basic topological picture is the same ([D1]):
K is an n-cell, the Ks are (n− 1)-cells and they give a cellulation of the boundary
of K, PL is a closed PL n-manifold and its universal cover ΣL is homeomorphic to
Rn. (The proof that ΣL is homeomorphic to Rn uses the fact that the triangulation
L is PL; otherwise, it need not be, cf., Remark (5b.2) in [DJ].) We can think of
K as an orbifold; each point has a neighborhood which can be identified with the
quotient space of Rn = Rk ×Rn−k by the action of (Z/2)k × 1, for some k ≤ n. Its
orbifoldal fundamental group is WL and its orbifoldal universal cover is ΣL.

Example 7.3. (Splittings). Suppose that L is triangulation of Sn−1 as a flag
complex and that L0, L1 and L2 are full subcomplexes such that L1 ∪ L2 = L
and L1 ∩ L2 = L0. Then PL is an aspherical n-manifold, PL1 ∪ PL2 = PL, and
PL1 ∩PL2 = PL0 . Thus, ΓL splits as an amalgamated product of ΓL1 and ΓL2 along
ΓL0 . It follows from Theorem B in [D4] that ΓL0 is a PDn−1-group if and only if
L0 is a homology (n− 2)-manifold with the same homology as Sn−2, and if this is
the case, then PL0 is an aspherical homology (n−1)- manifold. On the other hand,
the complexes L0, L1 and L2 can be fairly arbitrary. For example, we could choose
L0 to be a triangulation of any piecewise linear submanifold of codimension one in
Sn−1. (L0 then separates the sphere into two pieces L1 and L2.) By Theorem A in
[D4], for 1 < i < n, Hi(ΓL0 ; ZΓL0) is an infinite sum of copies of Hi−1(L0). So, if
L0 is not a homology sphere, then ΓL0 will not be a PDn−1-group and (ΓL1 ,ΓL0)
and (ΓL2 ,ΓL0) will not be PDn-pairs. Hence, there are many examples of splittings
of PDn-groups over subgroups which do not satisfy Poincaré duality.

By allowing L to be a homology sphere we can use Theorem 7.1 to get many
examples of aspherical homology manifolds PL over various rings R.

Example 7.4. (The fundamental group at infinity, [D1]). Suppose L is a triangu-
lation of a homology (n − 1)-sphere as a flag complex. Then PL is an aspherical
homology n-manifold and hence, ΓL is a PDn-group. For n ≥ 4, there are homology
(n−1)-spheres which are not simply connected. If we choose L to be such a homol-
ogy sphere, then it is proved in [D1] that ΣL is not simply connected at infinity;
its fundamental group at infinity (an invariant of ΓL) is the inverse limit of k-fold
free products of π1(L). (This answered Question F16 of [W3] in the negative.)

Example 7.5. (Nonintegral Poincaré duality groups, [D3], [D4], [DL]). Suppose
that R = Z[ 1

m ] and that L is a triangulation of a lens space, S2k−1/(Z/m) as a
flag complex. With coefficients in R, L has the same homology as does S2k−1.
Hence, PL is an aspherical R-homology manifold of dimension 2k and consequently
ΓL is a PDn

R-group, for n = 2k. Furthermore, one can show (as in Example 11.9
of [D3] or Example 5.4 of [D4]) that Hn(ΓL; ZΓL) ∼= Hn

c (ΣL; Z) ∼= Z, while for
1 < i < n,Hi(ΓL; ZΓL) is a countably infinite sum of Hi−1(L; Z) which is m-
torsion whenever i is odd and i ≥ 3. So, ΓL is not a Poincaré duality group over
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Z. By taking L to be the suspension of a lens space we obtain a similar example
for n odd. Therefore, we have proved the following.

Theorem 7.6. For R = Z[ 1
m ] and for any n ≥ 4 there are PDn

R-groups which are
not PDn-groups.

The construction in Example 7.5 suggests the following.

Question 7.7. If Γ is a PDn
R-group for a nonzero ring R, then is Hn(Γ; ZΓ) = Z?

There is also the following weaker version of this question.

Question 7.8. For any PDn
R group Γ, is it true that the image of the orientation

character w1 : Γ → Aut(R) (defined by the action of Γ on Hn(Γ;RΓ)) is contained
in {±1}?

The Bestvina-Brady example. There is a similar construction to the one
given above involving “right-angled Artin groups” (also called “graph groups”).
Given a flag complex L with vertex set S, let QL be the subcomplex of the torus
TS consisting of all subtori TS(σ), where σ is a simplex in L. Then, as shown in
[CD4], [D3], QL is aspherical and its fundamental group is the right-angled Artin
group defined by the presentation:

AL = 〈S | [s, t] = 1, if {s, t} spans an edge of L〉

Let ρ : AL → Z be the homomorphism defined by ρ(s) = 1, for all s ∈ S (or ρ
could be any other “generic” homomorphism). Denote the kernel of ρ by HL.

The universal covering space Q̃L of QL is naturally a cubical complex. One can
find a ρ-equivariant map f : Q̃L → R, such that its restriction to each cube is an
affine map. Choose a real number λ and let Ỹ denote the level set f−1(λ), and
Y = Ỹ /HL. Then Y is a finite CW -complex of the same dimension as L.

Bestvina and Brady prove in [BB] that (i) if L is acyclic, then so is Ỹ and (ii)
if L is not simply connected, then HL is not finitely presented. So, if L is any
complex which is acyclic and not simply connected, then HL is a group of type FL
which is not finitely presented.

Theorem 7.9. (Bestvina-Brady [BB]). There are groups of type FL which are not
finitely presented.

Remark. In fact, the right angled Artin group AL is a subgroup of finite index in a
right-angled Coxeter group W. To see this, for each s ∈ S, introduce new generators
rs and ts and new relations: (rs)2 = 1 = (ts)2 and whenever s 6= s′, (rsrs′)2 = 1,
(rsts′)2 = 1, and (tsts′)2 = 1 if {s, s′} spans an edge in L. Let W be the right-
angled Coxeter group generated by the rs and ts and let θ : W → (Z/2)S be the
epimorphism which, for each s ∈ S, sends both rs and ts to the corresponding
generator of (Z/2)S . Then AL is the kernel of θ. The generators of AL can be
identified with {rsts}s∈S .
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The reflection group trick. Example 7.2 can be generalized as follows. Suppose
that X is an n-dimensional manifold with boundary and that L is a PL triangulation
of its boundary. The cellulation of ∂X which is dual to L gives X the structure of
an orbifold. (For example, think of X as a solid torus with ∂X being cellulated
by polygons, three meeting at each vertex.) As in Example 7.2 each point in X
has a neighborhood of the form Rk/(Z/2)k ×Rn−k for some k ≤ n. The orbifoldal
fundamental group G of X is an extension of the right-angled Coxeter group WL

defined previously. The epimorphism G → WL → (Z/2)S defines an orbifoldal
covering space P of X and an action of (Z/2)S on P as a group generated by
reflections. Since X is an orbifold, P is a closed n-manifold. Its fundamental group
Γ is the kernel of G → (Z/2)S . It is not hard to see (cf., Remark 15.9 in [D1])
that if X is aspherical and if L is a flag complex, then P is aspherical. Hence, its
fundamental group Γ is a PDn-group.

Example 7.10. (The reflection group trick, first version). Suppose that π is a
group of type F . “Thicken” the finite complex Bπ into a compact manifold with
boundary X (e.g., embed Bπ in Euclidean space and take X to be a regular neigh-
borhood). Let L be a PL triangulation of ∂X as a flag complex. Then P is an
aspherical closed manifold with fundamental group Γ. Since X is a fundamental
domain for the (Z/2)S-action on P , the orbit map P → X is a retraction. Hence,
on the level of fundamental groups, there is a retraction from Γ onto π. If π has
some property which holds for any group that retracts onto it, then Γ will be a
PDn-group with the same property. In [Me], Mess used this construction to show
that PDn-groups need not be residually finite (answering Wall’s Question F6 of
[W3] in the negative).

Theorem 7.11. (Mess [Me]). There are aspherical closed n-manifolds, n ≥ 4, the
fundamental groups of which are not residually finite.

Next we want to give some more detail about the reflection group trick and at
the same time weaken the hypotheses in two ways. First, we will not require X to
be a manifold with boundary. Second, we will not require X to be aspherical, but,
rather, only that it has a covering space X̃ which is acyclic. So, suppose we are
given the following data:

(i) a finite CW -complex X,

(ii) a group π and an epimorphism ϕ : π1(X) → π so that the induced covering
space X̃ → X is acyclic,

(iii) a subcomplex of X and a triangulation of it by a flag complex L.

From this data we will construct a virtually torsion-free group G and an action
of it on an acyclic complex Ω with quotient space X.

Let L̃ denote the inverse image of L in X̃ and let S̃ be its vertex set. Let
WL̃ be the right-angled Coxeter group defined by L̃. The group π acts on S̃ (by
deck transformations) and hence, on WL̃ (by automorphisms). Define G to be the
semidirect product, WL̃ o π. There is a natural epimorphism θ : G → WL. Set
Γ = θ−1(ΓL). Then Γ is torsion-free (since ΓL and π are) and of finite index in G.
Since G is a semidirect product, so is Γ. In particular, the natural map Γ → π is a
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retraction.

For each s in S̃ let X̃s denote the closed star of s in the barycentric subdivision
of L̃ and define Ω = (WL̃ × X̃)/ v as in the first part of this section. The groups
WL̃ and π act on Ω. (WL̃ acts by left multiplication on the first factor; π acts by
automorphisms on the first factor and deck transformations on the second.) These
actions fit together to define a G-action on Ω. This G-action is proper and cellular
and Ω/G = X. Let P = Ω/Γ. As in [D1] or [DL], it can be shown that Ω is acyclic.
(Ω is constructed by gluing together copies of X̃, one for each element of WL̃. If
we order the elements of WL̃ compatibly with word length, then each copy of X̃
will be glued to the union of the previous ones along a contractible subspace.) The
above discussion gives the following result.

Proposition 7.12. ([D4]).

(i) Γ is of type FL.

(ii) If π1(X) = π and ϕ is the identity (so that X = Bπ), then Ω is contractible
and hence, Γ is of type F .

The next proposition, which is stated in [DH], follows easily from the results of
[D1].

Proposition 7.13.

(i) If X is a compact n-manifold with L = ∂X, then Ω/Γ is a closed n-manifold.

(ii) If X is a compact homology n-manifold with boundary over a ring R and if
L = ∂X, then Ω/Γ is a closed R-homology n-manifold.

(iii) If (X, L) is a Poincaré pair and if L is a homology (n− 1)- manifold, then
Ω/Γ is a Poincaré space.

Example 7.14. (The Bestvina-Brady example continued). This example is similar
to Example 7.10. Let π be one of the Bestvina-Brady examples associated to a
finite acyclic 2-complex. So there is a finite 2-complex Y and an epimorphism
ϕ : π1(Y ) → π so that the induced covering space Ỹ is acyclic. Thicken Y to X, a
compact manifold with boundary, (X can be of any dimension n ≥ 4) and let L be
a triangulation of ∂X as a flag complex. Since Ω is then an acyclic manifold and
since H∗(Γ; ZΓ) = H∗

c (Ω), we see that Γ is a PDn-group. Since π is not finitely
presented and since Γ retracts onto π, Γ is not finitely presented (Lemma 1.3 in
[W1]). So, we have proved the following result (which answers Question F10 of
[W3]).

Theorem 7.15. ([D4]). In each dimension n ≥ 4, there are PDn-groups which
cannot be finitely presented.

§8. Three more questions

Many open questions about aspherical manifolds make sense for Poincaré duality
groups. Here are three such.
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For any group Γ of type FP one can define its Euler characteristic χ(Γ), as in
[Br2], [Br3]. If Γ is a PDn-group and n is odd, then Poincaré duality implies that
χ(Γ) = 0. For n even, we have the following.

Question 8.1. If Γ is a Poincaré duality group of dimension 2m, then is

(−1)mχ(Γ) ≥ 0?

In the context of nonpositively curved Riemannian manifolds, the conjecture that
this be so is due to Hopf. Thurston asked the question for aspherical manifolds.
A discussion of this conjecture in the context of nonpositively curved polyhedral
manifolds can be found in [CD2].

If Γ is orientable and of dimension divisible by 4, then its signature σ(Γ) can be
defined as the signature of the middle dimensional cup product pairing. Its absolute
value is independent of the choice of orientation class.

Suppose that BΓ is a finite complex and that EΓ denotes its universal covering
space. As in Section 8 of [G2], one can then define L2-cochains on EΓ and the corre-
sponding cohomology groups `2H

k(EΓ) (the so-called “reduced” L2-cohomology).
When nonzero, these Hilbert spaces will generally be infinite dimensional. However,
following [A], there is a well-defined von Neumann dimension or `2-Betti number
hk(Γ), which is a nonnegative real number and an invariant of `2H

k(EΓ) with its
unitary Γ-action. Atiyah proved in [A] that χ(Γ) is the alternating sum of the `2-
Betti numbers. He also showed that when Γ is the fundamental group of a closed
aspherical 4m-dimensional manifold then its middle dimensional L2-cohomology is
a sum of two subspaces and σ(Γ) is the difference of their von Neumann dimen-
sions. Singer then observed that Question 8.1 would be answered affirmatively if
the following question is answered affirmatively.

Question 8.2. Suppose that Γ is a PD2m-group of type F . Is it true that `2H
i(EΓ)

= 0 for i 6= m? In other words, is hi(Γ) = 0 for i 6= m?

Similarly, in dimensions divisible by 4, an affirmative answer to this question
implies an affirmative answer to the following stronger version of Question 8.1.

Question 8.3. If Γ is an orientable Poincaré duality group of dimension 4m, then
is

χ(Γ) ≥ |σ(Γ)|?

Further questions of this type can be found in Section 8 of [G2].
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