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The reader is assumed to have [M2] at hand. I give here: (i) stronger versions of some
of the results due to a remarkable result of Philipp Hieronymi; (ii) a refinement of 3.1 and
an application thereof, and (iii) an alternate formulation of Theorem A and an easier proof
(that given in [M2] being based on lemmas needed to prove the rather more general 3.2).

But first, I correct a minor error: In the proof of 1.7, “well ordered” should be “anti well
ordered”.

Hieronymi’s Theorem and consequences

Theorem (Hieronymi [H2]). If E ⊆ R is discrete, and f : En → R is somewhere dense,
then (R, f) defines N.

As a fairly easy consequence [H1]: If α, β > 0 are such that logα and log β are Q-linearly
independent, then (R, αZ, βZ) = PH. Hence also: If α > 1 and r ∈ R\Q, then (R, xr, αZ) =
PH. Consequently, in the statement of [M2, 1.5], replace “every definable subset of R either
has interior or is nowhere dense” with “R does not define N”. As pointed out in [M2, 1.6],
the lack of having this knowledge on hand at the time resulted in a number of awkward
formulations of results. I shall clean these up below.

Remarks. (i) As yet another consequence of Hieronymi’s theorm, we have a strengthening
of the first part of AEG: An expansion of R defines N iff it defines the range of a strictly
monotone sequence (ak)k∈N of nonzero real numbers such that limk→+∞(ak+1/ak) = 1. This
could probably be used to shorten some of proofs in [M2], but as far as I know, it doesn’t
extend any results beyond those that are implied by the two previously-mentioned con-
sequences. (ii) Subsequent joint work with Antongiulio Fornasiero and Hieronymi [FHM]
and Hieronymi [HM] might result in yet further upgrades, but I have not worked this out.

Direct changes.
The conclusion of 1.11 becomes:

Then:
(a) There exist c > 0 and F ∈ R((xQ))ω such that supp(F ) ⊆ (−∞, 0], and

either supp(F ) is infinite and f ∼ c log x + F , or supp(F ) is finite and
ultimately f = c log x+ F .

(b) (R, 〈f−1〉) defines (e1/c)Z.
(c) (R, f ′, 〈f−1〉) has field of exponents Q.
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Some of the text in 1.13 needs obvious updating.
The conclusion of 2.2 becomes:

Then:
(a) There exist c > 0 and F ∈ R((xQ))ω such that supp(F ) ⊆ (−∞, 0], and

either supp(F ) is infinite and f ∼ c log x + F , or supp(F ) is finite and
ultimately f = c log x+ F .

(b) (R, sin f) defines (eπ/c)Z.
(c) (R, sin f) has field of exponents Q.

3.4 is omitted, and the conclusion of 3.2 becomes:

Then there exist 0 < α 6= 1 and F ∈ R((xQ))ω such that either supp(F ) is
infinite and f ∼ F (αx), or supp(F ) is finite and exactly one of the following
holds:
(1) f = F (αx);
(2) f − F (αx) /∈ R and ‖f − F (αx)‖ > αx

n
for every n ∈ N;

(3) f − F (αx) /∈ R and
∣∣‖f − F (αx)‖α−P − 1

∣∣ ≤ cα−rx for some c, r > 0
and P ∈ R[x] of degree at least 2.

A refinement of 3.1 and an application to d-minimality

0.1 (a refinement of 1.4). Let P ∈ R[x] and f be infinitely increasing such that f ∼ eP .
Then (R, 〈f〉) defines eβZ, where β is the leading coefficient of P .

Proof. Check that a = β(d− 1)! in the proof of 1.4. �

0.2. Let R be an o-minimal expansion of R, S1, . . . , SN ⊆ R be countable sets, and h : RN →
R be given. If every subset of R definable in (R, h, S1, . . . , SN) either has interior or is
nowhere dense, or if (R, h, S1, . . . , SN) is d-minimal, then the same is true of the expansion
of R by all subsets of h(S1 × · · · × SN).

Proof. Immediate from [FM, Theorem B and Claim on pg. 62]. �

0.3 (a refinement of 3.1). If f ∈ H is infinitely increasing, bounded above by some ex
N

,
and (R, 〈f〉) 6= PH, then there exist β, c, r > 0 and a monic P ∈ x.Q[x] + R such that∣∣fe−βP − 1

∣∣ ≤ ce−rx.

(A refinement of Theorem B also follows easily; I leave details to the reader.)

Proof. By 3.1, there exists P ∈ R[x] such that the remaining conditions hold, so we need

show only that P − P (0) ∈ Q[x]. Write P =
∑d

j=0 ajx
j, ad = 1. Put M = min{m :

am, . . . , ad ∈ Q }; we must show that M = 1. Put Q =
∑d

j=M ajx
j. Note that

〈f〉, 〈fe−βQ〉 ⊆ 〈f〉 ·
d∏

j=M

〈eβx〉−aj .

By 0.1, (R, 〈f〉) defines 〈eβx〉. By 0.2, every subset of R definable in (R, 〈f〉, 〈fe−βQ〉) either
has interior or is nowhere dense. Since fe−βQ ∼ eβ(P−Q), we have M = 1 by 0.1 and 1.5. �
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0.4 (an application of 0.3). Let α > 1, P ∈ R[x] \ R and R be an o-minimal expansion
of R. Then (R, 〈αP 〉) is d-minimal iff R has field of exponents Q and there exists β ∈ R
such that P − P (0) ∈ β.Q[x].

Proof. It suffices to consider the case α = e, P is monic, and P (0) = 0.
The forward implication is immediate from the definition of d-minimality, 0.1, 1.5 and 0.3.
Assume that R has field of exponents Q and P ∈ β.Q[x] for some β ∈ R. Write

P = β
∑d

j=1 qjx
j, qd = 1. By 0.1, (R, 〈eP 〉) defines 〈eβx〉. Note that 〈eP 〉 ⊆

∏d
j=1〈eβx〉qj .

By [M1, §3.4], (R, 〈eβx〉) is d-minimal. Apply 0.2. �

An alternate version of Theorem A

Here, i :=
√
−1, and for r > 0, xir denotes the restriction to the positive real line of the

complex power function zir, defined with respect to an appropriate branch of log z.
Recall 2.1.

Theorem A′. Let f : R → R be bounded below as x → +∞ by a compositional iterate
of log x. If (R, f) is o-minimal and (R, eif ) does not define N, then there exist r > 0 and
c ∈ C\{0} such that eif ∼ cxir. Moreover, (R, eif ) defines xir, hence also the group (eπ/r)Z,
so (R, eif ) has field of exponents Q.

Proof. Note that (R, eif ) defines f ′ (= (eif )′/ieif ) and (R, f ′) is o-minimal. We show that
(R, f ′) defines no h : R → R such that f ′ ∼ h′. Suppose otherwise. Then h is infinitely
increasing (by L’Hôpital), (R, eif ) defines h−1, and f ◦ h−1 = x + g with g′ → 0. For each

t ∈ R, we thus have eit = limx→+∞ e
if(h−1(t+x))/eif(h

−1(x)), so (R, eif ) defines eix, hence also
N, a contradiction. As in the proof of 1.11, (R, f ′) is polynomially bounded and f ′ has an
asymptotic expansion r/x+F , where r > 0 and F ∈ R((xR)) has support lying in (−∞, 0];
in particular, there exist a ∈ R and s > 0 such that f = a + r log x + o(x−s). Hence,
eif = eiaxireio(x

−s). For each t > 0, we have tir = limx→+∞ e
if(tx)/eif(x), so xir is definable,

hence also the kernel of xir. �
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