AN UPGRADE FOR "AVOIDING THE PROJECTIVE HIERARCHY IN EXPANSIONS OF THE REAL FIELD BY SEQUENCES" (POST HIERONYMI)

CHRIS MILLER

Version: January 7, 2016

The reader is assumed to have [M2] at hand. I give here: (i) stronger versions of some of the results due to a remarkable result of Philipp Hieronymi; (ii) a refinement of 3.1 and an application thereof, and (iii) an alternate formulation of Theorem A and an easier proof (that given in [M2] being based on lemmas needed to prove the rather more general 3.2).

But first, I correct a minor error: In the proof of 1.7, "well ordered" should be "anti well ordered".

HIERONYMI'S THEOREM AND CONSEQUENCES

Theorem (Hieronymi [H2]). If $E \subseteq \mathbb{R}$ is discrete, and $f: E^n \to \mathbb{R}$ is somewhere dense, then (\mathbb{R}, f) defines \mathbb{N} .

As a fairly easy consequence [H1]: If $\alpha, \beta > 0$ are such that $\log \alpha$ and $\log \beta$ are Q-linearly independent, then $(\overline{\mathbb{R}}, \alpha^{\mathbb{Z}}, \beta^{\mathbb{Z}}) = \text{PH}$. Hence also: If $\alpha > 1$ and $r \in \mathbb{R} \setminus \mathbb{Q}$, then $(\overline{\mathbb{R}}, x^r, \alpha^{\mathbb{Z}}) =$ PH. Consequently, in the statement of [M2, 1.5], replace "every definable subset of \mathbb{R} either has interior or is nowhere dense" with " \mathfrak{R} does not define \mathbb{N} ". As pointed out in [M2, 1.6], the lack of having this knowledge on hand at the time resulted in a number of awkward formulations of results. I shall clean these up below.

Remarks. (i) As yet another consequence of Hieronymi's theorm, we have a strengthening of the first part of AEG: An expansion of $\overline{\mathbb{R}}$ defines N iff it defines the range of a strictly monotone sequence $(a_k)_{k\in\mathbb{N}}$ of nonzero real numbers such that $\lim_{k\to+\infty}(a_{k+1}/a_k)=1$. This could probably be used to shorten some of proofs in [M2], but as far as I know, it doesn't extend any results beyond those that are implied by the two previously-mentioned consequences. (ii) Subsequent joint work with Antongiulio Fornasiero and Hieronymi [FHM] and Hieronymi [HM] might result in yet further upgrades, but I have not worked this out.

Direct changes.

The conclusion of 1.11 becomes:

Then:

- (a) There exist c > 0 and $F \in \mathbb{R}((x^{\mathbb{Q}}))_{\omega}$ such that $\operatorname{supp}(F) \subseteq (-\infty, 0]$, and either supp(F) is infinite and $f \sim c \log x + F$, or supp(F) is finite and ultimately $f = c \log x + F$.
- (b) $(\overline{\mathbb{R}}, \langle f^{-1} \rangle)$ defines $(e^{1/c})^{\mathbb{Z}}$. (c) $(\overline{\mathbb{R}}, f', \langle f^{-1} \rangle)$ has field of exponents \mathbb{Q} .

Some of the text in 1.13 needs obvious updating.

The conclusion of 2.2 becomes:

Then:

- (a) There exist c > 0 and $F \in \mathbb{R}((x^{\mathbb{Q}}))_{\omega}$ such that $\operatorname{supp}(F) \subseteq (-\infty, 0]$, and either supp(F) is infinite and $f \sim c \log x + F$, or supp(F) is finite and ultimately $f = c \log x + F$.
- (b) $(\overline{\mathbb{R}}, \sin f)$ defines $(e^{\pi/c})^{\mathbb{Z}}$.
- (c) $(\overline{\mathbb{R}}, \sin f)$ has field of exponents \mathbb{Q} .

3.4 is omitted, and the conclusion of 3.2 becomes:

Then there exist $0 < \alpha \neq 1$ and $F \in \mathbb{R}((x^{\mathbb{Q}}))_{\omega}$ such that either supp(F) is infinite and $f \sim F(\alpha^x)$, or supp(F) is finite and exactly one of the following holds:

- (1) $f = F(\alpha^x);$
- (2) $f F(\alpha^x) \notin \mathbb{R}$ and $||f F(\alpha^x)|| > \alpha^{x^n}$ for every $n \in \mathbb{N}$; (3) $f F(\alpha^x) \notin \mathbb{R}$ and $|||f F(\alpha^x)|| \alpha^{-P} 1| \le c\alpha^{-rx}$ for some c, r > 0and $P \in \mathbb{R}[x]$ of degree at least 2.

A REFINEMENT OF 3.1 AND AN APPLICATION TO D-MINIMALITY

0.1 (a refinement of 1.4). Let $P \in \mathbb{R}[x]$ and f be infinitely increasing such that $f \sim e^{P}$. Then $(\overline{\mathbb{R}}, \langle f \rangle)$ defines $e^{\beta \mathbb{Z}}$, where β is the leading coefficient of P.

Proof. Check that $a = \beta(d-1)!$ in the proof of 1.4.

0.2. Let \mathfrak{R} be an o-minimal expansion of \mathbb{R} , $S_1, \ldots, S_N \subseteq \mathbb{R}$ be countable sets, and $h: \mathbb{R}^N \to \mathbb{R}$ \mathbb{R} be given. If every subset of \mathbb{R} definable in $(\mathfrak{R}, h, S_1, \ldots, S_N)$ either has interior or is nowhere dense, or if $(\mathfrak{R}, h, S_1, \ldots, S_N)$ is d-minimal, then the same is true of the expansion of \mathfrak{R} by all subsets of $h(S_1 \times \cdots \times S_N)$.

Proof. Immediate from [FM, Theorem B and Claim on pg. 62].

0.3 (a refinement of 3.1). If $f \in \mathcal{H}$ is infinitely increasing, bounded above by some e^{x^N} and $(\overline{\mathbb{R}}, \langle f \rangle) \neq PH$, then there exist $\beta, c, r > 0$ and a monic $P \in x.\mathbb{Q}[x] + \mathbb{R}$ such that $\left|fe^{-\beta P} - 1\right| \le ce^{-rx}.$

(A refinement of Theorem B also follows easily; I leave details to the reader.)

Proof. By 3.1, there exists $P \in \mathbb{R}[x]$ such that the remaining conditions hold, so we need show only that $P - P(0) \in \mathbb{Q}[x]$. Write $P = \sum_{j=0}^{d} a_j x^j$, $a_d = 1$. Put $M = \min\{m : m \}$ $a_m, \ldots, a_d \in \mathbb{Q}$ }; we must show that M = 1. Put $Q = \sum_{j=M}^d a_j x^j$. Note that

$$\langle f \rangle, \langle f e^{-\beta Q} \rangle \subseteq \langle f \rangle \cdot \prod_{j=M}^{d} \langle e^{\beta x} \rangle^{-a_j}.$$

By 0.1, $(\overline{\mathbb{R}}, \langle f \rangle)$ defines $\langle e^{\beta x} \rangle$. By 0.2, every subset of \mathbb{R} definable in $(\overline{\mathbb{R}}, \langle f \rangle, \langle f e^{-\beta Q} \rangle)$ either has interior or is nowhere dense. Since $fe^{-\beta Q} \sim e^{\beta(P-Q)}$, we have M = 1 by 0.1 and 1.5.

0.4 (an application of 0.3). Let $\alpha > 1$, $P \in \mathbb{R}[x] \setminus \mathbb{R}$ and \mathfrak{R} be an o-minimal expansion of \mathbb{R} . Then $(\mathfrak{R}, \langle \alpha^P \rangle)$ is d-minimal iff \mathfrak{R} has field of exponents \mathbb{Q} and there exists $\beta \in \mathbb{R}$ such that $P - P(0) \in \beta.\mathbb{Q}[x]$.

Proof. It suffices to consider the case $\alpha = e$, P is monic, and P(0) = 0.

The forward implication is immediate from the definition of d-minimality, 0.1, 1.5 and 0.3. Assume that \mathfrak{R} has field of exponents \mathbb{Q} and $P \in \beta.\mathbb{Q}[x]$ for some $\beta \in \mathbb{R}$. Write $P = \beta \sum_{j=1}^{d} q_j x^j, q_d = 1$. By 0.1, $(\mathfrak{R}, \langle e^P \rangle)$ defines $\langle e^{\beta x} \rangle$. Note that $\langle e^P \rangle \subseteq \prod_{j=1}^{d} \langle e^{\beta x} \rangle^{q_j}$. By [M1, §3.4], $(\mathfrak{R}, \langle e^{\beta x} \rangle)$ is d-minimal. Apply 0.2.

AN ALTERNATE VERSION OF THEOREM A

Here, $i := \sqrt{-1}$, and for r > 0, x^{ir} denotes the restriction to the positive real line of the complex power function z^{ir} , defined with respect to an appropriate branch of log z. Recall 2.1.

tecan 2.1.

Theorem A'. Let $f: \mathbb{R} \to \mathbb{R}$ be bounded below as $x \to +\infty$ by a compositional iterate of log x. If $(\overline{\mathbb{R}}, f)$ is o-minimal and $(\overline{\mathbb{R}}, e^{if})$ does not define \mathbb{N} , then there exist r > 0 and $c \in \mathbb{C} \setminus \{0\}$ such that $e^{if} \sim cx^{ir}$. Moreover, $(\overline{\mathbb{R}}, e^{if})$ defines x^{ir} , hence also the group $(e^{\pi/r})^{\mathbb{Z}}$, so $(\overline{\mathbb{R}}, e^{if})$ has field of exponents \mathbb{Q} .

Proof. Note that $(\overline{\mathbb{R}}, e^{if})$ defines $f' (= (e^{if})'/ie^{if})$ and $(\overline{\mathbb{R}}, f')$ is o-minimal. We show that $(\overline{\mathbb{R}}, f')$ defines no $h: \mathbb{R} \to \mathbb{R}$ such that $f' \sim h'$. Suppose otherwise. Then h is infinitely increasing (by L'Hôpital), $(\overline{\mathbb{R}}, e^{if})$ defines h^{-1} , and $f \circ h^{-1} = x + g$ with $g' \to 0$. For each $t \in \mathbb{R}$, we thus have $e^{it} = \lim_{x \to +\infty} e^{if(h^{-1}(t+x))}/e^{if(h^{-1}(x))}$, so $(\overline{\mathbb{R}}, e^{if})$ defines e^{ix} , hence also \mathbb{N} , a contradiction. As in the proof of 1.11, $(\overline{\mathbb{R}}, f')$ is polynomially bounded and f' has an asymptotic expansion r/x + F, where r > 0 and $F \in \mathbb{R}((x^{\mathbb{R}}))$ has support lying in $(-\infty, 0]$; in particular, there exist $a \in \mathbb{R}$ and s > 0 such that $f = a + r \log x + o(x^{-s})$. Hence, $e^{if} = e^{ia}x^{ir}e^{io(x^{-s})}$. For each t > 0, we have $t^{ir} = \lim_{x \to +\infty} e^{if(tx)}/e^{if(x)}$, so x^{ir} is definable, hence also the kernel of x^{ir} .

References

- [FHM] A. Fornasiero, P. Hieronymi, and C. Miller, A dichotomy for expansions of the real field, Proc. Amer. Math. Soc. 141 (2013), no. 2, 697–698.
- [FM] H. Friedman and C. Miller, Expansions of o-minimal structures by sparse sets, Fund. Math. 167 (2001), no. 1, 55–64.
- [H1] P. Hieronymi, Defining the set of integers in expansions of the real field by a closed discrete set, Proc. Amer. Math. Soc. **138** (2010), no. 6, 2163–2168.
- [H2] _____, Expansions of subfields of the real field by a discrete set, Fund. Math. **215** (2011), no. 2, 167–175.
- [HM] P. Hieronymi and C. Miller, Metric dimensions and tameness in expansions of the real field (2015), preprint, arXiv:1510.00964.
- [M1] C. Miller, *Tameness in expansions of the real field*, Logic Colloquium '01, 2005, pp. 281–316.
- [M2] _____, Avoiding the projective hierarchy in expansions of the real field by sequences, Proc. Amer. Math. Soc. **134** (2006), 1483–1493.

Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, OH 43210

E-mail address: miller@math.osu.edu

URL: http://https://people.math.osu.edu/miller.1987