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Abstract

In the �rst part of the paper we investigate the integrability properties
of a second order linear ODE, which is a reduction of the H�enon-Heiles
systems and a generalization of the Lam�e equation. The equation has four
regular singular points in the extended complex plane. The investigation
of the poly-Painlev�e property (the Kruskal test) is done by calculating
explicitly the monodromy group of the equation. The result is that there
is only one single-valued and necessarily non-analytic �rst integral, which
is explicitly found using the branching properties of the solutions.

In the second part we prove non-integrability of the H�enon-Heiles sys-
tems in a comprehensive setting. The method used is the Kruskal test
and is general.

Short title: Integrability properties of some ODEs

034-A20; non-integrability, H�enon-Heiles system, holomorphic �rst integral, branching
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1 Introduction

Relatively recently, Martin Kruskal proposed a new test for integrability [1],[4].
It is a generalization of the Painlev�e test, in the sense that movable branch
points for the solutions are allowed, as long as the branching of the solutions is
not \too rich".

More precisely, consider a �rst order ODE in the complex plane

dx

dt
= f(x; t)

where f is analytic on a domain Dx � Dt � C2. The solutions x(t) might be
multi-valued, and yet there might exist an analytic �rst integral in Dx � Dt

: a non-constant function F (x; t) such that F (x(t); t) is constant for all the
branches x of x in Dt.

Let us �x some t 2 Dt and consider the set

St = fx(t) ; x 2 xg
If, on the other hand, the set St is dense in some open set ~D � Dx (in which
case we say that the solution has bad branching) then any continuous function
F which is constant on the trajectories must be constant on ~D, and the equation
has no �rst integrals on ~D �Dt.

This idea is illustrated in [4], [6] on Abel's equation dx
dt = x3 + t , which

is shown not to be integrable. In order to study the multi-valuedness of the
solutions, the authors study their behavior near the singular point (t = 1),
where the branch points may accumulate, giving rise to bad multi-valuedness.
The study is performed using a generalization of the Painlev�e �-method. A
small parameter is introduced in the equation and the series solutions are cal-
culated using a perturbative approach. The terms of the series involve repeated
integration on a Riemann surface; by studying the values of these integrals on
di�erent paths around the branch points it is concluded that the solutions are
badly branched. Thus, the equation has no �rst integrals.

� � �
The object of the present research is the investigation of the way this inte-

grability test can be carried out for equations of order larger than 1.
The �rst part is devoted to the study of the second order linear family of

ODEs

(x3 � 1)
d2u

dx2
+

3

2
x2
du

dx
+ �xu = 0 (1)

(� is a real parameter).
This is a generalization of the Lam�e equation, which, in its algebraic form,

is [2]
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(x3 � 1)
d2u

dx2
+

3

2
x2
du

dx
+

�
h+

n(n+ 1)

4
x

�
u = 0 (2)

The equation is known to have a uniform solution if n is a positive integer
(h is a constant, taken to be 0 in (1)).

The equation (1) is also a reduction of the H�enon-Heiles system (which is
studied in the second section of the paper).

The equation being linear, all the branch points of the solutions are �xed,
so a perturbative method does not seem to be productive. Instead, the multi-
valuedness of the solutions is described by the monodromy group and the analy-
sis suggests that the essential obstruction to the existence of integrals is encoded
in this group.

In the case of linear equations, while winding around the branch point sin-
gularities of the equation, the solutions transform into each other. If the orbit of
some solution covers densely an open set in the space of solutions, this prevents
a single-valued continuous (non-locally-constant) function from being constant
along the trajectories. In the contrary case, the monodromy group generates
level surfaces of functions which turn out to be integrals of the motion.

In the case of the equation (1), the monodromy group G is found almost
explicitly and we show that the equation has no global �rst integrals. (There
are, of course, local integrals, since the equation is linear; here \global" means
that the �rst integral should be de�ned on a domain whose projection on the
t-coordinate contains closed curves surrounding all the singular points.)

More generally, the information about the branching of the solutions in the
complex plane is relevant for investigating the existence of real-analytic �rst
integrals and we use this information to actually calculate the integrals.

The method we use is the study of the action of G on complex vectors. In
abstract terms, we do this by calculating the Lie algebra of (the closure) of the
group and by looking at its action on G-invariant functions.

The method illustrated on the equation (1) is based on the following features
of the example treated:

-we are able to �nd the monodromy group (because all the singular points
are regular and because the equation has a discrete symmetry);

-the monodromy group G acts (on vectors in C2 ) \almost" densely: for
generic vectors c the set fcG ; G 2 Gg is dense on a manifold of real dimension
3 in C2, which implies that there are no holomorphic integrals, but there is a
real-analytic one.

� � �
The second section is devoted to the study of the H�enon-Heiles system, which

is de�ned by the Hamiltonian

H =
1

2

�
_q21 + _q22 + aq21 + bq22

�
+ dq21q2 �

1

3
eq22 (3)
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Di�erent aspects and results on the non-integrability of this system can be
found in many papers (see, for example [3],[5],[6],[7]).

The investigation of the Painlev�e property shows [5] the existence of solutions
with behavior

q1(t) � A(t� t0)
r1 ; t �! t0 where r1 =

1

2
� 1

2

p
1� 48d=e (4)

(A is arbitrary) as well as resonances

q1(t) � A0(t�t0)�2+:::+C(t�t0)r2 ; t �! t0 where r2 =
1

2
� 1

2

p
1� 24(1 + e=d)

(5)
(A0 has a de�nite value, C is arbitrary ).

Therefore, the system has the Painlev�e property only if the numbers r1; r2
are integers, which is the case for values of d=e equal to �1; �1=2; �1=6 .
Integrability has also been proved in the case d=e = �1=16; b = 16a [5], for
which the numbers r1; r2 are rational.

Ziglin [7] applies his result on the existence of meromorphic integrals in
Hamiltonian systems to the H�enon-Heiles system in the case when a = b =
1; d = �1; he shows that the system has no meromorphic �rst integral on the
surface of constant energy, for suÆciently low values of the energy.

Starting from Ziglin's theorem, Ito [3] proves a criterion for analytic non-
integrability of Hamiltonian systems and applies it to the H�enon-Heiles case, for
a = b 6= 0 (the inhomogeneity of the potential being important in his treatment)
and concludes that the system has a second analytic �rst integral in C4 only if
d=e = 0;�1=6;�1=2;�1.

In the case a = b = 0 we prove that if the numbers r1; r2 are irrational,
then there are no �rst integrals (independent of the Hamiltonian) under fairly
mild conditions on the regularity of the �rst integrals under consideration. The
method used is the Kruskal test and the approach does not use the Hamiltonian
structure; it is therefore suitable for the study of more general systems of ODEs.
The approach is rigorous and it allows for �rst integrals more singular than the
meromorphic functions.

The actual calculation seems to rely on similar characteristics of the system
as the ones used in the proof of Ziglin.
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2 The Kruskal Integrability Test on a Second

Order ODE

The equation (1) being linear, we can immediately write down two local con-
stants of the motion, as follows.

The points x = 1; x = !; x = !2 (!3 = 1) and x =1 are regular singular
points for the equation. In a neighborhood of x = 1 there are two independent
solutions

�(x); 
(x) =
p
x� 1 (x) (6)

with �;  analytic. To �x them we choose �(1) = 1;  (1) = 1 and the usual
branch of the radical.

All the solutions in the complex plane can be written as u = c1� + c2 for
some constants c1; c2. Two independent local integrals for the equation can be
immediately obtained:

c1 =
u
0(x) � u0
(x)

�(x)
0(x) � �0(x)
(x)
(7)

c2 =
u0�(x) � u�0(x)

�(x)
0(x) � �0(x)
(x)

The fundamental solutions �; 
 are multi-valued in the complex plane, hav-
ing branch points at the three singular points of the equation (and so are the
local integrals (7)).

In what follows we will use the expression "the domain D � C permits
winding around the points x1; x2; x3" in the sense that there is a point x̂ 2 D
di�erent from xj and there are three closed paths 
j in D, starting and ending
at x̂, such that 
j surrounds only xj . (Note that the points xj need not be
included in D.)

We address the question of existence of global holomorphic and real-analytic
�rst integrals for the equation.

Proposition

Consider the equation (1) .
Let 
 be a domain in C3 whose projection on the x-coordinate permits wind-

ing around the three singular points x = 1; x = !; x = !2 .

If � is such that
q

1

16
� � is irrational, then:

a) There are no holomorphic �rst integrals F (u; u0; x) on 
.
b) More generally, any holomorphic (in 6 variables) �rst integral
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F (u; u0; x; �u; �u0; �x) (i.e. real-analytic) de�ned on 
� �
 is a function of

jc1j2 + ��jc2j2

where c1; c2 are given by (7) and �� is a real number.

Proof

Step 1 : The Monodromy Group
Consider a fundamental set of solutions near x = 1,

V0(x) =

�
�(x)

(x)

�

as in (6). Let ! be the cubic root of 1 with =! > 0.
Then V1(x) = V0(x=!) and V2(x) = V0(x=!

2) are fundamental sets of so-
lutions near x = ! and x = !2, respectively and V0; V1; V2 are analytic in a
neighborhood of the origin. For x in that neighborhood, de�ne the transition
matrices M; N; P by V1(x) = MV0(x) ; V2(x) = NV1(x) ; V0(x) = PV2(x) .
These relations also hold if x is replaced by x=! or by x=!2. It follows that
M = N = P and that M3 = I .

The point at in�nity is also a regular singular point and a fundamental set
of solutions near in�nity has the form

V1(x) =

�
�1(x)

1(x)

�

where

�1(x) = xr� ~�(x) ; 
1(x) = xr+~
(x)

with ~�; ~
 analytic functions at in�nity ; r� are the characteristic exponents at
in�nity :

r� = �1

4
� � ;where � = (

1

16
� �)1=2 (8)

De�ne the transition matrix Q by V1 = Q�1V0.
Let

A =

�
1 0
0 �1

�

denote the monodromy matrix around a �nite singular point and

B =

�
e2�ir� 0
0 e2�ir+

�
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denote the monodromy matrix at in�nity. Then the change of values of the
fundamental solutions V0 upon closed circuits around the singular points is
given by the action of the group G of matrices generated by the monodromy
matrices corresponding to loops around each of the three �nite singular points:
A | corresponding to a loop around x = 1, T = MAM2 | corresponding to
a loop enclosing x = 1 and x = !2 and S =M2AM | corresponding to a loop
enclosing x = 1 and x = !.

The relations among these generators are: M3 = I; (AM)3 = QBQ�1. It
turns out that there is almost enough information in these relations to calculate
the transition matrices. Simple algebra yields:

M =

�
1

2
(z ��2) 1

� 1

4
(z2 + 3�) � 1

2
(z +�2)

�

where

z = !�+ + Æ�� ; �� = e2�ir�=3 ; det(M) = � = !Æe2�i=3 ; !3 = Æ3 = 1

Then the generators S; T of G have the expressions

S = �2

� � 1

2
(z2 +�2) �(z +�2)

1

4
(z2 + 3�)(z ��2) 1

2
(z2 +�)

�

and

T = �2

� � 1

2
(z2 +�2) �(z ��2)

1

4
(z2 + 3�)(z +�2) 1

2
(z2 +�)

�

Step 2
Let

u(x) =
�
c1 c2

�� �(x)

(x)

�
(9)

be a solution of (1) near x = 1. After a closed circuit around the singular points,
the value of solution becomes

�
c1 c2

�
G

�
�(x)

(x)

�
(10)

where G is the corresponding matrix in G.
Note that, if u(x) satis�es (9) then

u(x) =
�
c1 c2

�� �(x)


(x)

�

After a closed circuit in the x-plane, if the new value of the solution u(x) is
given by (10), then the new value of u(x) is

�
c1 c2

�
G

�
�(x)


(x)

�
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Assume that there is a holomorphic �rst integral: F (u; u0; x; u; u0; �x) , de�ned
on the domain 
� �
.

Let (u0; u
0
0; x0) be a point in 
, where x0 is not one of the singular points.

Depending on the position of x0 in the complex plane, we can write any solution
with initial conditions at x0 as u(x) = (c1; c2)Vj(x) where j = 0; 1; 2 or 1. We
assume here j = 0 and the same arguments hold for all other cases.

Let u(x) be the solution with u(x0) = u0; u
0(x0) = u00. Then (9) holds, for

some constants c1; c2. Denote, for short, c = (c1; c2).
We will consider closed paths around the three (�nite) singular points of the

equation, starting and ending at x0.
If G 2 G is any matrix in the monodromy group, after going on a corre-

sponding path in 
, we should have

F (cGV0(x0); �c �GV0(x0)) = F (cV0(x0); cV0(x0)) (11)

if the point (cGV0(x0); �c �GV0(x)) is in the domain of F .
After a linear change of coordinates, we may omit the fundamental solutions

in (11) and simply write

F (cG; �c �G) = F (c; c) (12)

where F is holomorphic in a domain U � �U .
Consider the following element of G: X = (AM)3 = QBQ�1. Since � is

irrational, the set f12nr+(mod1) ; n 2 Zg is dense in the interval [0; 1] hence
fX12n ; n 2 Zg is dense in the set

fQD�Q
�1 ; D� = diag(ei�; e�i�) ; � 2 Rg

It follows that

F (c; �c) = F (cQD�Q
�1; �c �QD�Q�1)

must also be true, for all � for which cQD�Q
�1 2 U , therefore for � small

enough.
Denote d = cQ and let ~F be de�ned by F (c; �c) = F (dQ�1; �dQ�1) = ~F (d; �d).

Then ~F satis�es ~F (d; �d) = ~F (dD�; �dD��) for � small, or,

~F (d1; d2; d1; d2) = ~F (ei�d1; e
�i�d2; e

�i�d1; e
i�d2)

Taking the derivative at � = 0 we get the equation

d1
@ ~F

@d1
� �d1

@ ~F

@ �d1
� d2

@ ~F

@d2
+ �d2

@ ~F

@ �d2
= 0

which has as solutions arbitrary functions of jd1j; jd2j; <(d1d2).
Thus any integral has the form

F (c) = �(j(cQ)1j; j(cQ)2j;<((cQ)1(cQ)2))
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Pick now another element in G having the spectrum on the unit circle, namely
Y = (AM2)3. Let R be the matrix which diagonalizes Y : Y = R(�B)R�1.

By the above argument, there is a function 	 such that

F (c) = 	(j(cR)1j; j(cR)2j;<((cR)1(cR)2)) = �(j(cQ)1j; j(cQ)2j;<((cQ)1(cQ)2))

Denote cQ = z; P = Q�1R . Then

�(jz1j; jz2j;<(z1z2)) = 	(j(zP )1j; j(zP )2j;<((zP )1(zP )2)) (13)

for all pairs of complex numbers z.
Simple algebra yields for the matrix P :

P =

�
1 +m m
�m 1�m

�

where
m = (�1)k+l(2 sin(�

3
(k � l+ 2�)))�1

som is a real number. The integers k and l are de�ned by ! = exp(2k�i=3); Æ =
exp(2l�i=3).

It is convenient to write (13) in polar coordinates: if z = (z1; z2) with
zk = rk exp(i�k) and if we denote � = �1 + �2 ; x = �1 � �2, then the condition
(13) becomes

~�(r1; r2; �) = ~	(A;B;C)

where

A = (1 +m)2r21 +m2r22 � 2m(1 +m)r1r2 cos(x)
B = m2r21 + (1�m)2r22 + 2m(1�m)r1r2 cos(x)
C = m(1 +m)r21 cos(� + x)�m(1�m)r22 cos(� � x) + (1� 2m2)r1r2cos(�)

Since the relation must hold for all x, by di�erentiating with respect to x at
x = 0 and at x = �=2 we get ~	C = 0 and, then that ~	 depends only on the
combination (1 �m)A + (1 + m)B. Substituting back the variable c = zQ�1

we get, after a few calculations, that both � and 	 must be functions of the
expression

jc1j2 + 1�m2

4m2
jc2j2 (14)

It can now be directly checked that the above expression is invariant under
the generators of the monodromy group. The contention b) of the proposition
is thus proved, and so is a).
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3 The H�enon-Heiles System

Consider the H�enon-Heiles system (3) for a = b = 0:

H =
1

2

�
_q21 + _q22

�� �q21q2 �
1

3
q32 (15)

(we consider e = 1 since the variable q2 can be rescaled).
The corresponding equation of motion are

�q1 = 2�q1q2
�q2 = �q21 + q22

(16)

Relying on the intuitive picture that the absence of additional �rst integrals
of motion can be due to the presence of almost periodic motions with \badly"
related \periods", we choose to study the system in a neighborhood of particular
periodic solutions.

Note that there are three two-parameter families of doubly periodic solutions,
namely

q1 = �q2
�q2 =

�
��2 + 1

�
q22

where �(��2 + 1� 2�) = 0 .
After the linear change of coordinates (non-canonical)

q1 = �q + U ; q2 = q (17)

the equations of motion are

�U = 2(1� �)Uq � ��U2

�q = 2�q2 + 2��qU + �U2 (18)

Consider �rst � to be one of the roots of ��2 + 1� 2� = 0 .
Assume that (18) has a �rst integral F (U; _U; q; _q), functionally independent

of
H(U; _U; q; _q). We assume that F is meromorphic on a domain DU � Dq and
analytic on (DU n (0; 0))�Dq where DU � C2 is a neighborhood of the origin
and Dq � C2 is a domain whose projection on the q-coordinate permits winding
around the three cubic roots of some real number. We show that, under these
assumptions, the number r2 in (5) must be rational. Note that the space of �rst
integrals F that we allow for is quite large. It contains, for example, functions
having essential singularities along analytic varieties. The essential restriction
here is the condition that F be meromorphic when U = _U = 0 for values of q
of all arguments.
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In order to perform the Kruskal test, we introduce a small parameter � by
setting U = �u.

The system (18) becomes

�u = 2(1� �)uq � ���u2

�q = 2�q2 + 2���qu+ �2�u2
(19)

We study the integrability of the reduced system (i.e at � = 0)

�u = 2(1� �)uq
�q = 2�q2

(20)

The second equation can be integrated once and we get

�u = 2(1� �)uq
_q2 = 4�

3
q3 �K

(21)

Note that the constant of integration K corresponds to the Hamiltonian at
� = 0.

We �rst choose K: let K be such that the projection of Dq on the q-
coordinate permits winding around the three roots of the polynomial 4�

3
q3�K.

Next, we show that the integral F produces a �rst integral for (21). Since
F is meromorphic, there is an integer p such that

F (�u; � _u; q; _q) = �pG(�; u; _u; q; _q) = �p
1X
n=0

�nGn(u; _u; q; _q)

For � small the functions Gn have the same regularity as F and the series
converges for (u; _u; q; _q) in the domain of F .

Then G0 is a �rst integral for the reduced system (20) (or is constant). If G0

depends on u or _u, then it is independent ofH j�=0, henceG(0; u; _u; q;
q

4�
3
q3 �K)

is a �rst integral for (21).
If G0 depends only of (q; _q) or is constant, we can reduce to the preceding

case in the following way. The function G0 will be an integral for the second
equation in (20) (or a constant); therefore ��p�1 (F �G0) is either a �rst integral
for (21) or a constant. We repeat the procedure, until, for some n0, Gn0 depends
on u or _u. (There is such a number n0 because (19) obviously does not admit
integrals depending only on (q; _q).) The upshot is that there exists a �rst integral
G(u; _u; q; _q) for (21), having the same regularity as F .

The next step is eliminating the time in (21). A formal calculation gives:

d2u

dq2

�
4�

3
q3 �K

�
+ 2�q2

du

dq
+ 2(�� 1)qu = 0 (22)

It is clear that G(u; dudq

q
4�
3
�q3 �K; q;

q
4�
3
�q3 �K) is a �rst integral for

(22). Denote it by ~G(u; u0; q;
q

4�
3
�q3 �K) (here u0 stands for the q-derivative
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of u). By restricting ~G to a sub-domain ~DU � Dq, we may assume that ~G is
analytic in (u; u0; q; _q).

Rescaling the variable q by

q =

�
3K

4�

�1=3
x (23)

the equation (22) becomes (1) with � = 3=2(1� 1=�) and

~G(u; u0; q;

r
4�

3
�q3 �K) = Ĝ(u; u0; x;

p
x3 � 1)

where Ĝ is analytic in four variables on ~DU�Dx (where, clearly, Dx is a dilation
of Dq : Dx = (3K=4=�)�1=3Dq).

In the �rst part of the paper it was shown that if
p
1=16� � is irrational then

there are no �rst integrals for (1). In that argument, only paths surrounding
the singular points an even number of times are used. Therefore, the argument
also applies to �rst integrals of the type Ĝ(u; u0; x;

p
x3 � 1). Hence r� given

by (8) must be rational.
Note the connection between the numbers r� and the resonances r2 from

(5): r� = �r2=2. Hence r2 must be rational.
Consider now the value � = 0 (the change of coordinates (17) is trivial in this

case). Assume that there is a second �rst integral F with the same properties
as before.

Substituting U = �u the system (18) becomes

�u = 2�uq
�q = q2 + �2�u2

As before, we study the reduced system which is, after one integration,

�u = 2�uq
_q2 = 2

3
q3 �K

Eliminating the time and rescaling, we get the equation (1) for � = �3�,
which has a �rst integral.

Since in this case the connection between the numbers r� and the resonances
r1 given by (4) is r� = �r2=2, it follows that r1 must be rational.

Conclusions

We have thus proved that if one of the resonances r1, r2 is irrational then
there are no additional �rst integrals F (q1; _q1; q2; _q2) such that F is meromorphic
on a domain D1 �D2, analytic on (D1 �D2) n V� n V0 where V� is the variety
fq1 = �q2; _q1 = � _q2g and V0 is the variety fq1 = 0; _q1 = 0g and the projection
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of D2 on the q2-coordinate permits winding around the three roots of a real
number.

In the notations (15), the condition that r1 or r2 be irrational is:
p
1 + 48� 2

R nQ, or
p
�23 + 24=� 2 R nQ.

The analysis above is not exhaustive: there is still more information to be
deduced from the monodromy group of the equation (1). That could answer the
question whether there also exist rational or non-real values of � for which the
equation is not integrable in the complex domain. Also, the Kruskal test was
performed only in the 0 order, and to that order there exists a real-analytic �rst
integral (14) (besides the reduced Hamiltonian), which is in fact an integral in
the real domain. The multi-valuedness of the solutions needs to (and can) be
studied in the next orders to possibly rule out the existence of an integral in the
real domain.
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