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1. Introduction

The present paper gives criteria for nonintegrability (in the sense of non-existence of

continuous first integrals in the complex domain) for the class of first order differential

equations having 0 as a particular solution, and whose linearization has two regular

singular points (in a bounded domain of the complex plane).

More precisely, let D ⊂ C be a relatively compact, connected, simply connected

open set and equations

p(x)
du

dx
= q(x)u+ f(x, u) (1.1)

where p, q are analytic on D, p(x) with only two zeroes in D, both simple: p(x) =

(x − s1)(x − s2)p1(x), where s1 6= s2, s1,2 ∈ D, and p1(x) 6= 0 and analytic in D. The

function f (which collects the nonlinear terms) satisfies f(x, u) = O(u2) (u→ 0) and is

assumed analytic for x ∈ D \ {s1, s2} and |u| < Rf (Rf > 0).

Equation (1.1) can be brought to a canonical form as follows. Dividing the equation

by p1(x), it may be assumed that p is a polynomial

p(x) = (x− s1)(x− s2) (1.2)

Then write q(x)/p(x) = µ1/(x− s1)+µ2/(x− s2)+r(x) with µ1,2 ∈ C, and r(x) analytic

on D. Then the analytic transformation u = u1 exp(
∫
r(x)dx) of the dependent variable

transforms (1.1) into a similar equation, but with q(x) of the form

q(x) = p(x)

(
µ1

x− s1

+
µ2

x− s2

)
, µ1,2 ∈ C (1.3)

Hence, without loss of generality, it may be assumed that the coefficients of (1.1) satisfy

(1.2), (1.3).

The integrability properties of equations of type (1.1) with only one singular point

in D (p(x) = x − s1, q(x) = µ1) were studied in [1]. It was shown that if µ1 ∈ C \ R
then there exists a single-valued first integral (for x in an annulus around s1 and small

u) and that necessarily this integral is singular (not meromorphic) for u = 0. In the

case when µ1 ∈ R \ Q, there is no analytic first integral (generically), but there is one

real-valued, real-analytic integral (for x in an annulus around s1 and small u).

The present paper addresses the case when two singularities s1, s2 are present.

The methods used can be generalized in a straightforward way to the case when D

contains more than two simple zeroes of p(x), but since it turns out that two are

(generically) sufficient to ensure nonexistence of continuous first integrals of (1.1), the

paper addresses, for simplicity, only this case.

Criteria of nonintegrability for (1.1) are obtained using the poly-Painlevé test [2],

[3] (see also [1], [4], [5]). The basic idea is that branching of solutions may obstruct

the existence of single-valued first integrals. Indeed, let u = u(x) be a multivalued

solution of a given differential equation. A single-valued first integral is a continuous,

nonconstant function F (x, u) which is constant on the trajectories. Suppose that a
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solution has dense branching, in the sense that (for generic x) the set of values of u(x)

on all the branches

Su,x = {u(x) ; u ∈ u} (1.4)

is dense in C. Since F (x, u) is continuous, then it can not depend on u, hence it is a

constant function: there is no first integral.

In order to find the branching of solutions, expressed as the set Su,x, (hard to

determine unless the equation can be solved explicitly), the poly-Painlevé test proposes

the use of appropriately chosen asymptotic expansions of solutions, and the idea that if

an asymptotic approximation of a solution has dense branching, then the true solution

also has dense branching (at least in generic cases).

For equations (1.1) the test can proceed as follows. Denote

f(x, u) = f2(x)u2 + f3(x)u3 + ...

Choosing to study (1.1) for small u, introduce a small parameter ε using the substitution

u = εU . The equation becomes

p(x)
dU

dx
= q(x)U + ε−1f(x, εU) (1.5)

where

ε−1f(x, εU) = εf2(x)U2 + ε2f3(x)U3 + ...

Solutions of (1.5) have a power series expansion in ε (convergent for x in appropriate

domains)

U(x) = U0(x) + εU1(x) + ε2U2(x) + ... (1.6)

whose terms can be calculated order by order. The first approximation, U0(x), satisfies

p(x)U ′0(x) = q(x)U0(x) hence U0(x) = K0A(x) where

A(x) = exp

(∫ x

a

q(t)/p(t) dt

)
(1.7)

= (x− s1)µ1(x− s2)µ2(a− s1)−µ1(a− s2)−µ2 (1.8)

for some a ∈ D, a 6= s1,2. (Initial branches of the powers are chosen to fix the constant

K0.) Denote

θj = exp(2πiµj) (1.9)

The set of values of U0(x) on all branches is SU0,x = {θn1
1 θn2

2 U0(x) ; n1,2 ∈ Z}. For

generic pairs (µ1, µ2) ∈ C2 the set SU0,x is dense in C, hence U0(x) has dense branching

(Proposition 3 (i)).

There are important cases when SU0,x is not dense (e.g. equations with real

coefficients, when s1 and µ1 are the complex conjugates of s2, respectively µ2). Higher

approximations of U(x) can then be studied.

The term U1(x) satisfies

p(x)
dU1

dx
= q(x)U1 + f2(x)U2

0
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with the general solution

U1(x) = K1A(x) +K2
0A(x)

∫ x

a

A(ξ)f2(ξ)(ξ − s1)−1(ξ − s2)−1 dξ (1.10)

It should be noted that the constants ε,K0, K1, ... are not independent. The

Appendix §3.3 shows this, and gives the connection between these explanatory

calculations and the notations used in the proofs of the present paper.

Upon analytic continuation on a closed path π1, winding counter-clockwise around

x = s1, the value of U1(x) becomes (see §3.1 for calculations)

ACπ1U1(x) =
[
θ1K1 + α1

(
θ1 − θ2

1

)
K2

0

]
A(x) (1.11)

+θ2
1K

2
0A(x)

∫ x

a

A(ξ)f2(ξ)(ξ − s1)−1(ξ − s2)−1 dξ (1.12)

Going back to the variable u = εU0 + ε2U1 +O(ε3), the initial value of u(x) is

u(a) = εK0 + ε2K1 +O(ε2) (1.13)

and, after analytic continuation around x = s1

ACπ1u(a) = εθ1K0 + ε2
[
θ1K1 + α1

(
θ1 − θ2

1

)
K2

0

]
+O(ε2) (1.14)

A similar formula holds for analytic continuation around s2:

ACπ2u(a) = εθ2K0 + ε2
[
θ2K1 + α2

(
θ2 − θ2

2

)
K2

0

]
+O(ε2) (1.15)

Consider the closed path ∆ starting at x which goes counterclockwise around s1,

then around s2, then clockwise around s1, then s2. After analytic continuation on ∆,

the value of u at a becomes (see §3.2 for calculations)

AC∆u(a) = εK0 + ε2
[
K1 + (α1 − α2) (1− θ1) (1− θ2)K2

0

]
+O(ε2) (1.16)

After analytic continuation, p times counterclockwise around s1, followed by n times

along ∆, and finally p times clockwise around s1 the value of u at x = a is

ACπ−p1 ∆nπp1
u(a) = εK0+ε2

[
K1 + nθp1 (α1 − α2) (1− θ1) (1− θ2)K2

0

]
+O(ε2)(1.17)

The set {nθp1 ; n, p ∈ Z} is (generically) dense in the unit disk in C (Lemma 14),

hence if α1 6= α2 then the approximation of u modulo O(ε2) terms has dense branching.

If α1 = α2 higher order terms of (1.6) should be studied. Proposition 4 (b) contains

the criteria for dense branching in some higher order. In fact α1 6= α2, generically for

the nongeneric case when U0 is not densely branched, (Proposition 1 (ii)).

Therefore U0(x) + εU1(x) is densely branched (generically).

It remains to show that dense branching of a truncate of the series solution (1.6)

(e.g. U0(x), or U0(x) + εU1(x)) implies dense branching of the true solution u(x). The

proof will be done using local analytic equivalence maps of (1.1) to its linearization.

Solutions of (1.1) may be expected to be well approximated by solutions of the

linearized equation

p(x)
dw

dx
= q(x)w (1.18)
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for small u, and x not too close to a singular point sj. This idea may be formalized as

the existence of an equivalence map u = h(x,w) (for small w) between (1.18) and (1.1)

which is close to the identity: h(x,w) = w +O(w2).

For x in a small regular region of (1.1) the existence of such equivalence maps

follows from the general theory of ordinary differential equations. For x in an annular

region centered at a singular point sj, j ∈ {1, 2}, such an equivalence map also exists

(generically) — it is a problem closely related to the equivalence to normal forms for

periodic equations [6], [7] (see also [1]). The question that needs to be addressed in

the present paper is a more global one: finding equivalences in a domain of x which

surrounds both singular points s1, s2, making thus possible to follow solutions upon

analytic continuations around both singularities.

It turns out that such global equivalence maps exist (generically): local equivalence

maps can be glued together, yielding global maps. These maps may be branched at

the points s1, s2. However, for each j ∈ {1, 2} there is one equivalence map which is

single-valued around sj and branched at the other singular point. Most importantly,

different maps are related through analytic transformations.

Solutions of (1.1) are expressed, using equivalence maps, in terms of solutions of

(1.18), whose analytic continuation can be easily written.

Moreover, solutions of (1.1) which are initially small remain in the domain of

equivalence to (1.18) upon analytic continuation on certain paths. As a consequence,

analytic continuation of all terms of (1.6) is found and dense branching of the full

series (hence of the true solution) is established, based on dense branching of a truncate

(Proposition 4).

2. Main Results

2.1. Notations and Assumptions

In the present paper only equivalence maps which are close to the identity (as functions

of the dependent variable) are considered, and, in order to simplify the exposition, the

statement that a map u = h(x,w) is an equivalence map will be taken to imply that h

satisfies h(x,w) = w +O(w2) (w → 0).

For each sj (j = 1, 2), we use results on analytic equivalence of (1.1) to (1.18) for x

in an annulus around sj and small u. This holds if the numbers µj satisfy a condition

similar to requirements needed in similar problems of analytic equivalence, when small

denominators appear in the Taylor series of the equivalence map (for example, “condition

C” [6], “condition ω” [7], “Diophantine condition” [8]).

More precisely, equations (1.1) and (1.18) are analytically equivalent for x in an

annulus around sj and small u (cf. [1]) if the number µj is not nearly-rational, in the

following sense: there exist constants C > 0 and ν > 0 such that for all integers k ≥ 1

and l

|l + kµj| > C(k + |l|)−ν (2.19)
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(Note that any nonreal number is not nearly-rational, and in fact condition (2.19)

this is nontrivial only for real numbers.)

In the case when the nonlinear term f(·, u) is in fact, analytic at sj, the condition

(2.19) can be weakened to include all positive numbers (the property reduces to

Poincaré’s or Siegal’s theorems [21]).

Assumption: In the present paper we assume that µ1, µ2 are not nearly-rational. If

f(·, u) is analytic at sj for some j ∈ {1, 2}, then µj can also be a positive number.

Notation:

Denote

Dη = D ∩ {|x− s1| > η} ∩ {|x− s2| > η} (2.20)

We assume η > 0 is small enough, so that the set Dη is connected.

Assumption:

The point a satisfies a ∈ Dη.

Notation:

We choose some generators of the homotopy group of Dη in a standard way. More

precisely, let a ∈ Dη. Denote by π1, respectively π2, a closed curve in Dη, starting at a,

winding once, counterclockwise, around the point s1, respectively s2 (and not winding

around s2, respectively s1).

2.2. Normal form of (1.1) and equivalence maps

Proposition 1 states the properties of equivalence maps between (1.1) and (1.18). They

are (generically) branched when x encircles the singular points s1 and s2; but there is

one equivalence map which is single-valued upon analytic continuation around one (and,

generically, only one) point sj.

Let R be the Riemann surface above D \ {s1, s2} and Rη ⊂ R relatively compact,

connected open subset whose projection on C is Dη (cf. (2.20)).

Proposition 1 (i) There exists δ = δη > 0 and equivalence maps u = h(1)(x,w),

u = h(2)(x,w) of (1.18) to (1.1) which are analytic on Rη × {|w| < δ} and such that

h(j) is analytic on a domain {η < |x− sj| < η′} × {|w| < δ} (j = 1, 2).

The maps h(1), h(2) are related by h(2) = h
(1)
φ where

hφ(x,w) = h
(
x,A(x)φ

(
A(x)−1w

))
(2.21)

and φ(z) = z +O(z2) is a function analytic at z = 0.

(ii) Assume that µ1, µ2 are nonintegers and µ1 + µ2 6∈ {0, 1, 2, 3, ...}. Then for

generic f(x, u) there is no analytic equivalence map on Dη × {|w| < δ} (i.e. the maps

h(j) are not single-valued upon analytic continuation around both x = s1 and x = s2).

Remark 2 The domain of analyticity of an equivalence map h(j) is in fact larger (a

straightforward consequence of the regularity of h(j) near x = sj and of the matching

relation (2.21)). However, for integrability analysis we only need a domain which

contains closed curves around s1 and s2.



Nonintegrability criteria 7

It is interesting to note that the existence of equivalence maps which are single-

valued around one of the singular points s1, s2 can be generalized in the following way.

There exits a unique equivalence map u = h(x,w) of (1.18) to (1.1) which is analytic on

Rη, and such that h(·, w) returns to the initial values after analytic continuation along

any chosen (generic) path. The proof is given in the Appendix §4.

2.3. Criteria for nonintegrability of (1.1)

Let αj = <µj, βj = =µj, (j = 1, 2). If one of the numbers µ1, µ2 is not real, e.g.

µ1 ∈ C \ R, denote

β = β2/β1 , α = α2 − α1β2/β1 (2.22)

The next Proposition summarizes the integrability properties of the linear equation

(1.18).

Proposition 3 Consider equation (1.18) with (1.2), (1.3), and µ1,2 ∈ C.

Denote F = C2 \ {(x, u) ; x = s1 or x = s2 or u = 0}.
(i) If µ1, µ2 ∈ C \R and the numbers α, β, 1 are linearly independent over Z, then

any nonzero solution of (1.18) has dense branching, hence there is no continuous first

integral on F .

If:

(ii) one of the numbers µ1, µ2 is not real (e.g. µ1 ∈ C \R), and α, β, 1 are linearly

dependent over Z, and also: α 6∈ Q or β 6∈ Q,

or, if

(ii’) µ1, µ2 are both real, at least one of them irrational,

then the closure of the set Sw,x (cf. (1.4)) of values at x (on all branches) of a

nonzero solution, has real dimension 1 in C. There is a real-analytic, real-valued, first

integral of (1.18) (and no analytic integral), defined for (x, u) ∈ F .

(iii) In all other cases the multivaluedness of solutions forms a discrete set and

there is a single-valued, locally analytic, first integral of (1.18).

Note. The locally analytic first integrals in case (iii) with µ1,2 6∈ R are not

meromorphic on C2 cf. §6.4.

For nonlinear equations there are more cases with dense branching:

Proposition 4 Consider equation (1.1) with (1.2), (1.3), under the assumptions of

§2.1.

(a) If the numbers µ1, µ2 satisfy the condition (i) of Proposition 3 then there exists

r0 > 0 such that any u(x) of (1.1) with 0 < |u(a)| < r0 has dense branching: Su,x
contains a disk centered at u = 0.

(b) Furthermore, if equation (1.1) is not analytically equivalent to (1.18), and

(i) µ1 6∈ R, α1 6∈ Q, µ2 6∈ Q, or

(ii) µ1 ∈ R \Q and µ2 6∈ Q
then there exists r0 > 0 such that any solution u(x) of (1.1) with 0 < |u(a)| < r0

has dense branching: Su,x contains a disk centered at u = 0.
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Note. The condition µ2 6∈ Q of (b)(ii) can be weakened, cf. Remark 15.

The proof of Proposition 4 relies on writing convergent expansions for the

monodromy maps corresponding to analytic continuation of solutions around s1,

respectively s2. Following the values of some solution upon analytic continuation is

equivalent to looking at the group generated by the two monodromy maps. This group is

(generically) noncommutative, and the techniques used in the proofs are generalizations

of the study of iterations of maps to the case of a noncommutative group of maps.

2.4. Nonexistence of first integrals

There is a vast amount of literature proving, or disproving, the existence of first integrals

for ordinary differential equations. Different authors consider, in various contexts,

integrals defined on the whole, or just part, of the phase space, and various types of

regularity is assumed analytic, meromorphic, algebraic, differentiable, etc. An overview

with a wealth of references is found in [9]. Searching for meromorphic first integrals

of Hamiltonian systems, Ziglin’s approach [10] of investigating a linearization of the

equation in order to conclude about integrability properties of the full equation lead to an

approach based on differential Galois theory [11]-[13] and was recently developed yielding

comprehensive results on nonexistence of meromorphic integrals for Hamiltonian systems

(see [14]-[16] and references therein). Other approaches are in [17], the collection of

papers [18] and the references therein; see also [19], [3], [5].

Equations not having first integrals in one class of functions, may have in a broader

class. The question then arises: what is a natural class of first integrals to be considered?

A very interesting discussion, for equations in the real domain, is found in [20].

The following remarks concern first integrals of (locally) analytic differential

equations in the complex domain. For simplicity only first order equations are discussed

(but the remarks can be generalized in a natural way to differential systems).

To the extent that first integrals are used to describe the geometric properties of

solutions of a given differential equation, results like those of Propositions 3 and 4 on

the density properties of trajectories provide such a description. We propose below a

way of defining first integrals that would provide this type of global information for

equations in the complex domain.

2.4.1. Domains of first integrals Existence or nonexistence of first integrals depends

decisively on the domain.

In a neighborhood of a point of the phase space where the differential equation is

regular there always are analytic first integrals (by the basic local rectifiability theorem,

see e.g. [21], also [22]).

On the other hand, if the domain is too large, first integrals may not exist, in spite

of a very “ordered”, and “predictable” structure of the trajectories. Consider as example

the equation

xu′(x) = u(x) (2.23)
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with the general solution u(x;C) = Cx. There is no continuous first integral on C2

since a continuous, nonconstant function F (x, u) which is constant on the trajectories

(F (x,Cx) = const) does not have a limit as (x, u) → (0, 0). It would be, however,

uninformative to call the simple equation (2.23) “nonintegrable”. But there are

first integrals defined almost everywhere on the phase space: F1(x, u) = u/x, which

is meromorphic, singular only on the manifold x = 0 (a singular manifold of the

equation), or F2(x) = x/u which is meromorphic (singular on the trajectory u = 0)

or F3(x, u) = x2/(x2 + u2) which is meromorphic, singular on the trajectories of the

solutions u(x) = ±ix). The fact that any first integral has singularities indicates a

singularity of the manifold of solutions of the differential equation (all trajectories pass

through the origin).

Then how large would a domain of an “informative” first integral be? From a

practical point of view, it may be necessary to let the independent variable x vary only

on a subdomain Dx ⊂ C, so that local techniques of study can be used. Since first

integrals are constant on the trajectories, it would be natural to require that if a piece

of a trajectory is in the domain of the first integral, then the whole trajectory (for

x ∈ Dx) is in the domain. It may be useful to remove from the domain§ manifolds

along which the differential equation is singular (and local existence, uniqueness, or

regularity of solutions fail), thus allowing for singularities of first integrals. The study

in regions surrounding singular manifolds (in the extended complex phase space) may

be particularly useful in establishing absence of first integrals.

A domain of a first integral may be defined as follows. Fix a domain Dx of variation

of the independent variable x. Consider an initial point a ∈ Dx and an open set of initial

values Ua such that all (a, ua) with ua ∈ Ua are regular points of the equation. Then for

each ua ∈ Ua there exists a unique solution u(·;ua) of the differential equation satisfying

u(a;ua) = ua, and it is analytic in a neighborhood of x = a. Let F(Dx, a, Ua) the set

of points (x, u) with x ∈ Dx having the following property: there exists a smooth path

` : [0, 1]→ Dx in Dx joining a with x, and there exists ua ∈ Ua, such that the solution

u(·;ua) can be continued along ` and after continuation the value of the solution at x is

u: AC`u(x;ua) = u.

A domain of a first integral would be a set F = F(Dx, a, U0) \M, where M is a

lower dimensional closed set consisting of singularities of the equation.

2.4.2. The regularity of a first integral Existence of a more regular a first integral is

expected to entail smoother properties for the family of trajectories.

For analytic equations it is natural to inquire about existence of analytic first

integrals over extended regions, since there are families of local analytic first integrals

(away from the singular points). But real-analytic integrals may also be of interest. For

example, equation

xu′ = µu , µ ∈ R \Q (2.24)

§ Relatedly, see also the discussion on holomorphic direction fields in [21].
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has the general solution u(x) = Cxµ and has (in the complex phase space) a single-

valued, real-analytic, and real-valued first integral F (x, u) = |ux−µ|, which counts,

dimension-wise, as a “half integral”.

Equation (2.24) fails to have an analytic integral on a too extended domain. Indeed,

let Dx be any domain encircling x = 0, for example the annulus Dx = {0 < |x| < 1},
and Ua be a small ball in Dx. Let a ∈ Dx and a solution u = Cxµ with initial value in

Ua. Continuing the solution on paths going around x = 0 the values of the solution at x

form the set {Cxµ exp(2πinµ) ; n ∈ Z} which is dense in a circle (since µ is irrational),

hence any analytic function constant on the trajectory must be constant.

An interesting question, which however we do not investigate here, is whether

considering nonanalytic, but continuous, first integrals of an analytic equation may lead

to qualitatively different answers.

Another question is whether we should require first integrals to be single-valued,

or may be allowed to be multivalued. Algebraic first integrals have been considered by

many authors (see, e.g. references in [9], [20]). Consider, as an example, the simple

equation

(u′)2 = 4u (2.25)

with the general solution u(x;C) = (x−C)2, and the special solution u ≡ 0. In spite of

the simplicity of the manifold of solutions, there is no single-valued first integral on C2.

The manifold u = 0 is a singularity of the equation (a branch point of the equation when

written in normal form), but even confining ourselves to a smaller domain (by removing

the singular part) C2 \ {(x, 0) ; x ∈ C} there is still no analytic integral. Indeed, let

F (x, u) be a single-valued analytic function which is constant on the general solution

u(x;C) = (x− C)2. Then for all x,C, with x 6= ±C,

F (x, (x− C)2) = F (0, C2) = F (0, (−C)2) = F (x, (x+ C)2) (2.26)

Taking the derivative with respect to x in (2.26)

Fx(x, (x−C)2) + 2(x−C)Fu(x, (x−C)2) = Fx(x, (x+C)2) + 2(x+C)Fu(x, (x+C)2)

and evaluating at x = 0 yields Fu(0, C
2) = 0, which means that F (0, C2) does not

depend on C, hence F (x, (x− C)2) = const for all x and C so F is constant.

However, equation (2.25) has an algebraic first integral F (x, u) = x−
√
u (singular

on the manifold u = 0).

It may be desirable to consider some multivalued (more general than algebraic)

first integrals. It was proposed in [3] that an integral can be allowed (mentaining its

usefulness) to be multivalued as long as is not densely branched. We will not pursue

this issue here.

2.4.3. Criteria for nonexistence of first integrals The result on nonexistence of single-

valed first integrals of (1.1) is:
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Proposition 5 Under the assumptions of Propositions 3 (i) and 4, there is no

continuous, nowhere constant, (single-valued) first integral of (1.1) on F(Dη, a, Ua)

where a ∈ Dη, and Ua = {0 < |u| < δ} for all η > 0 (such that Dη is connected)

and δ = δ(η) > 0 small enough.

Conclusions. If equation (1.1) is analytically equivalent to its linear part then

its integrability properties are, of course, the same as those of its linear part, and

integrability criteria are given by Proposition 3. Otherwise (which is the generic case),

conclusions have been obtained in the present paper only under the assumption that

the numbers µ1, µ2 are not nearly rational (in the sense that they satisfy (2.19)). Then

the existence of a first integral has not been ruled out if one of the numbers αj = <µj,
j = 1, 2 is rational and, at the same time, the numbers α2β1 − α1β2, β1, β2 (where

βj = =µj) are linearly dependent over Z.
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APPENDIX: Proofs

3. Calculations in the poly-Painlevé test

3.1. Analytic continuation of U1(x)

The following decomposition (see e.g. [24]) is used. Let g(x) be a function analytic at

x = 0 and a 6= 0 small. For µ ∈ C \ Z− there exists a constant α and a function H(x),

analytic at x = 0, such that

I(x) ≡ x−µ
∫ x

a

ξµ−1g(ξ) dξ = αx−µ +H(x) (3.27)

Indeed, if g(x) =
∑

n≥0 gnx
n then

H(x) =
∑
n≥0

gn/(n+ µ)xn , α = −aµH(a) (3.28)

Writing (cf. (1.10), (1.8))

U1(x) = K1A(x) +K2
0A(x)(x− s1)µ1

[
α1(x− s1)−µ1 +H1(x)

]
where H1(x) is analytic at x = s1, the value of U1(x) upon analytic continuation on a

closed path, winding p times around x = s1 is

ACπp1U1(x) = θp1K1A(x) + θ2p
1 K

2
0A(x)(x− s1)µ1

[
α1θ

−p
1 (x− s1)−µ1 +H1(x)

]
=
[
θp1K1 + α1

(
θp1 − θ

2p
1

)
K2

0

]
A(x) + θ2p

1 K
2
0A(x)

∫ x

a

A(ξ)f2(ξ)(ξ − s1)−1(ξ − s2)−1 dξ

yielding (1.12) for p = 1.
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3.2. Repeated analytic continuations

The constants of integration of U0(x), U1(x) are, initially, K0, K1. After analytic

continuation around x = sj, (j = 1, 2) K0 becomes θjK0 and K1 becomes θjK1 +αj(θj−
θ2
j )K

2
0 (cf. (1.14), (1.15)). To determine the values of K0 and K1 after repeated analytic

continuations, one only needs to compose the corresponding maps. For example, after

analytic continuation around s1, followed by s2, the new value of K0 is θ1θ2K0, and of

K1 is θ1θ2K1 + α1θ1θ2(1 − θ1)K2
0 + α2θ

2
1θ2(1 − θ2)K2

0 . Finally, analytic continuation

on clockwise path around s1 brings K0 to θ2K0, and K1 to θ2K1 + [α1θ2(1− θ1)

+α2θ1θ2(1− θ2) + α1θ
2
2(θ1 − 1)]K2

0 . Further analytic continuation clockwise around s2

yields (1.16).

3.3. Going to the notations of the proofs

Denote z = u(a) and eliminate ε between (1.14), (1.15):

γ1(z) ≡ ACπ1u(a) = θ1z + α1

(
θ1 − θ2

1

)
z2 +O(z3) (3.29)

A formula similar to (3.29) holds for the monodromy map γ2(z) which takes the

initial value z of a solution of (1.1) at a into the value at a after analytic continuation

around x = s2:

γ2(z) ≡ ACπ2u(a) = θ2z + α2

(
θ2 − θ2

2

)
z2 +O(z3) (3.30)

We note that γ1, γ2 are analytic at z = 0. If u(x) is a solution of (1.1) with initial

value u(a) = z then its value at a after repeated analytic continuations is obtained by

composition of corresponding monodromy maps γ1, γ2.

Formulas (7.63), (7.70) represent the monodromy maps written in coordinates in

which γ1 has the normal form (7.63). Such coordinates exist under the assumptions of

§2.1 on µ1,2, as a consequence of Theorem 10, and Proposition 11.

4. A remark on analytic continuation of equivalence maps

Remark 6 Let π =
∏N

p=1 π
np
jp

(jp ∈ {1, 2}, np ∈ Z) be a path (cf. §2.1) such that the

number µπ =
∑N

p=1 npµjp satisfies:

there are C, ν > 0 such that |nµπ+k| > Cn−ν for all n, k ∈ Z, n ≥ 1(4.31)

There exists a unique equivalence map u = h(x,w) of (1.18) to (1.1) which

is analytic on Rη, and such that h(·, w) returns to the initial values after analytic

continuation along π.

Proof

Fix h an analytic equivalence map near the point a and let φ1 be an arbitrary

function analytic at z = 0, with φ1(z) = z +O(z2).

To find the form of hφ1 after analytic continuation along π we proceed by matching

it with h(1) and h(2) (whose branching properties are known).
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For j = 1, 2 let ψj be the function (analytic at the origin, close to the identity) such

that h = h
(j)
ψj

(cf. Proposition 8).

Note the following (trivial in view of (2.21)) identities: if h = h
(j)
ψj

then hψ−1
j

= h(j)

and also hφ = h
(j)
ψj◦φ and h

(j)
λ = hψ−1

j ◦λ
.

Denote

Mθ(z) = θz , Nθ(φ) = φ−1 ◦Mθ ◦ φ (4.32)

To determine the analytic continuation of hφ1 around s1 we write it in terms of h(j1)

: hφ1 = h
(j1)
ψj1◦φ1

. Hence

ACπn1
j1
hφ1(x,w) = ACπn1

j1
h(j1)

(
x,A(x) (ψj1 ◦ φ1)

(
A(x)−1w

))
= h(j1)

(
x, θn1

j1
A(x) (ψj1 ◦ φ1)

(
θ−n1
j1

A(x)−1w
))

= h
(j1)
M
θ
n1
j1

◦ψj1◦φ1◦M
θ
−n1
j1

(x,w) = hφ2(x,w)

where

φ2 = ψ−1
j1
◦Mθ

n1
j1
◦ ψj1 ◦ φ1 ◦Mθ

−n1
j1

= Nθ
n1
j1

(ψj1)φ1 ◦Mθ
−n1
j1

Then

ACπn2
j2
π
n1
j1
hφ1 = ACπn2

j2
hφ2 = hφ3

where

φ3 = Nθ
n2
j2

(ψj2)φ2 ◦Mθ
−n2
j2

and so on. After the last continuation, along πN , hφ1 becomes hφN+1
where

φN+1 = Nθ
nN
N

(ψN) ◦ φN ◦Mθ
−nN
N

= Nθ
nN
N

(ψN) ◦ ... ◦Nθ
n1
1

(ψ1) ◦ φ1 ◦Mθ
−n1
1
◦ ...M

θ
−nN
N

The condition hφ1 = hφN+1
is

Nθ
nN
N

(ψN) ◦ φN ◦Mθ
−nN
N

= Nθ
nN
N

(ψN) ◦ ... ◦Nθ
n1
1

(ψ1) ◦ φ1(z)

= φ1(θn1
1 ...θnNN z)

which is an equation for φ1 of the form

H (φ1(z)) = φ1(θz) (4.33)

where θ = θn1
1 ...θnNN and H is an analytic function at the origin, with H(z) = θz+O(z2).

Siegel’s theorem [6] insures that if µ satisfies condition (4.31) then there exists φ1 which

satisfies (4.33).
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5. Proof of Proposition 1

5.1. Local results

We establish a family of local equivalences, which can be glued together. Remarks 7

and 8 show the existence of such a family in small regular regions of the equations,

and Remark 9 presents results on existence of local equivalence maps in (small) regions

surrounding one singular point.

Remark 7 Let x0 ∈ Dη. There exist equivalence maps u = h(x,w) of (1.18) to (1.1)

which are analytic for x close to x0 and small w.

Proof

It is well known that in neighborhoods of regular points of the phase space any two

differential equations are analytically equivalent. It only remains to show that there are

equivalences which are close to the identity.

Consider the change of dependent variable u = A(x)u1 (analytic for x near x0).

Then (1.1) becomes

du1

dx
= f1(x, u1) (5.34)

where f1(x, u1) = p(x)−1A(x)−1f(x,A(x)u1) so f1 analytic near (x0, 0) and

f1(x, u1) = O(u2
1) (u1 → 0).

By the local rectifiability theorem [21] there exists, near the point (x, u1) =

(x0, 0), a biholomorphic map which leaves unchanged the independent variable w1 =

k1(x, u1), x = x , which transforms (5.34) into its linearization dw1

dx
= 0, i.e. k1 satisfies

∂xk1 + f1∂u1k1 = 0 (5.35)

If k1(x, u1) = k1,0(x)+k1,1(x)u1 +O(u2
1) is the expansion of k1 in powers of u1, then from

(5.35) k′1,0(x) = k′1,1(x) = 0. By replacing k1(x, u1) by k1(x, u1) − k1,0 we may assume

k1,0 = 0. Since k1(x, ·) is invertible, then k1,1 6= 0, and by multiplying k1 by k−1
1,1 we can

arrange that k1,1 = 1, hence k1(x, ·) is close to the identity.

Then k(x, u) = A(x)k1(x,A(x)−1u) is the w-inverse of an equivalence map u =

h(x,w) of (1.18) to (1.1).

Remark 8 Let x0 ∈ Dη.

(i) Let φ(z) = z + O(z2) be a function analytic at z = 0 and let u = h(x,w) be an

equivalence map as in Remark 7, analytic for |x− x0| < r and small w.

Then the map hφ given by (2.21) is also an equivalence map, analytic for |x−x0| < r

and small enough w.

(ii) Conversely, let h(x,w) and h̃(x,w) be two equivalence maps as in Remark 7.

There exists a unique function φ, analytic at z = 0, φ(z) = z +O(z2), such that

h̃ = hφ (5.36)
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Proof

(i) Follows directly from the fact that a map u = h(x,w) transforms (1.18) to (1.1)

iff h satisfies

p∂xh+ qw∂wh− qh = f(x, h) (5.37)

(ii) Let r > 0 be small, such that |x−x0| < r implies x ∈ Dη and such that h, h̃ are

analytic for |x− x0| < r and |w| < δ. The function h(x, ·) invertible for small δ; denote

by k(x, ·) its inverse, analytic for |x− x0| < r and |u| < δu.

Denote A0 = sup|x−x0|<r |A(x)| and M̃ = sup|x−x0|<r,|w|<δ |h̃(x,w)/w|. Let

G(z;x) = A(x)−1k
(
x, h̃ (x,A(x)z)

)
(5.38)

analytic for |x− x0| < r and |z| < max{δA−1
0 , δuA

−1
0 M̃−1}.

The function G does not depend on x (it represents an analytic change of the

constant of integration). Indeed, a straightforward calculation, using (5.37) and the fact

that the map w = k(x, u) (which takes (1.1) to (1.18)) satisfies pkx+ku(qu+f)−qk = 0,

shows that ∂xG = 0, hence G is constant in x for |x − x0| < r. Then φ(z) = G(z;x).

Remark 9 (i) Let j ∈ {1, 2} and η > 0. Assume that µj is not nearly-rational. There

exists a unique equivalence map u = h(j)(x,w) of (1.18) to (1.1) which is analytic on

an annulus η < |x− sj| < η′ and small w.

(ii) In particular, assume f(·, u) is analytic at x = sj, and that µj is not nearly-

rational, or is positive. There exists a unique equivalence map u = h(x,w) of (1.18) to

(1.1) which is analytic for x close to sj and small w.

Remark 9 will follow from the following two results.

Theorem 10 Consider the equation

x
du

dx
= µu+ f(x, u) (5.39)

where f(x, u) = O(u2) (u→ 0), and f is analytic for x in an annulus r′ < |x| < r′′ and

|u| < Ru. Consider the linearization of (5.39)

x
dw

dx
= µw (5.40)

If the number µ is not nearly-rational then there exist positive numbers Rw, ρ
′ < ρ′′

, and a unique equivalence map u = h(x,w) which transforms (5.40) to (5.39) and which

is analytic for ρ′ < |x| < ρ′′ and |w| < Rw.

The numbers ρ′ and ρ′′ (which satisfy r′ < ρ′ < ρ′′ < r′′) can be chosen arbitrarily

close to r′, respectively r′′ (by lowering Rw).

This result is very close to the results on normal forms for periodic equations (cf.

[6], [7]). A self-contained proof for n-dimensional systems was given in [1].

The following Proposition shows that in the particular case when f(x, u) is analytic

at (0, 0), the equivalence map of Theorem 10 is also analytic at (0, 0).
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Proposition 11 Consider the equation (5.39) where f(x, u) = O(u2) (u → 0), and f

is analytic at (0, 0).

If µ is not nearly rational, or is positive, then there exists a unique equivalence map

u = h(x,w) which transforms (5.40) to (5.39) and which is analytic at (0, 0).

Proof

Proposition 11 follows from Siegel’s theorem by rewriting equation (5.39) as an

autonomous system u̇ = µu + f(x, u) , ẋ = x and noting that the resonant terms are

not present and that x does not change.

Alternatively, a direct proof is obtained as a particular case of the proof of Theorem

10 in [1], by iterating analytic maps u = w +H(x,w) with a Taylor series expansion in

x (rather than a Laurent one in [1]).

Proof of Remark 9

Denote

B1(x) = (x− s2)µ2(a− s2)−µ2 (5.41)

For x close to s1 the analytic change of variables u = B1(x)u1, respectively

w = B1(x)w1, transforms equation (1.1) to

(x− s1)
du1

dx
= µ1u1 + f1(x, u1) (5.42)

where

f1(x, u1) = (x− s2)−1B1(x)−1f(x,B1(x)u1)

and, respectively, transforms (1.18) to

(x− s1)
dw1

dx
= µ1w1 (5.43)

Using Theorem 10, and, respectively Proposition 11, there exists an equivalence

map u1 = h1(x,w1) of (5.43) to (5.42), analytic for x in an annulus around s1,

respectively near s1. Going back to the variables u and w yields an equivalence map

h(x,w) = B1(x)h1(x,B1(x)−1w) of (1.18) to (1.1).

5.2. Proof of Proposition 1 (i)

Is a direct consequence of Remarks 7, 8, 9.

5.3. Proof of Proposition 1 (ii)

The map h(1) has an expansion in powers of w

h(1)(x,w) = w +
∑
n≥2

h(1)
n (x)wn (5.44)

Since h(1) satisfies (5.37) then hn satisfy the recursive system of differential

equations

p
dh

(1)
n

dx
+ (n− 1)qhn = Rn

(
x, h

(1)
2 , ..., h

(1)
n−1

)
, n ≥ 2 (5.45)
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where Rn are the Taylor coefficients at w = 0 of f(x, h(1)(x,w)) ≡
∑

n≥2 Rnw
n.

In particular, for n = 2

p
dh

(1)
2

dx
+ qh

(1)
2 = f2(x) (5.46)

Assume that h
(1)
2 is single-valued also around x = s2. Let f̃(x,w) = f(x,w) + λw2

(λ ∈ C) be a modification of f . Then the equivalence map h̃(1) of (1.18) to the new

(modified) equation (1.1) satisfies

p
dh̃

(1)
2

dx
+ qh̃

(1)
2 = f2(x) + λ (5.47)

hence

p
d(h̃

(1)
2 − h

(1)
2 )

dx
+ q(h̃

(1)
2 − h

(1)
2 ) = λ (5.48)

which does not have a solution which is single-valued at both s1 and s2 if λ 6= 0 and if

µ1 + µ2 6∈ {0, 1, 2, ...}.
Indeed, the prove this last claim, denote hd = h̃

(1)
2 − h

(1)
2 . The general solution of

(5.48) is

hd(x) = CA(x)−1 + λI(x) (5.49)

where

I(x) = A(x)−1

∫ x

a

A(z)p(z)−1 dz (5.50)

Analytic continuation of hd around x = s1 is determined as in §3.1: writing

I(x) = (x− s2)−µ2
[
α1(x− s1)−µ1 +H1(x)

]
where H1 is analytic at s1 it follows that

ACπ1hd(x) =
[
θ−1

1 C + λα1

(
θ−1

1 − 1
)]
A(x)−1 + λA(x)−1

∫ x

a

A(z)p(z)−1 dz

Hence hd is single-valued at s1 if C = θ−1
1 C + λα1

(
θ−1

1 − 1
)

and, similarly, is

single-valued at s2 if C = θ−1
2 C + λα2

(
θ−1

2 − 1
)
. Since µ1,2 6∈ Z, then θ1,2 6= 1 so

C = λα1 = λα2.

It remains to show that α1 and α2 cannot be equal for generic a. Assume the

contrary: α1 = α2 for generic a. Then from (3.28): (a − s1)µ1H1(a) = (a − s2)µ2H2(a)

for all a so that (x − s2)−µ2H1(x) = (x − s1)−µ1H2(x) ≡ H(x) where H is analytic at

s1 and at s2, hence is entire. Since I(x) (cf. (5.50)) has power increase as |x| → ∞, it

follows that H is a polynomial. But H satisfies

(x− s1)(x− s2)H′(x)−H(x) [µ1(x− s2) + µ2(x− s1)] = 1 (5.51)

It is easy to check, using (5.51), that if d is the degree of H, then µ1 + µ2 = d.
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6. Proof of Proposition 3

The solutions of (1.18) have the form w(x) = zA(x) (cf. (1.8)), where z ∈ C is the

(unusual notation for) the constant of integration: w(a) = z (some branches of the

powers are chosen to fix the constant z). After analytic continuation along πj (cf. §2.1)

the solution becomes w(x) = θjzA(x) (cf. (1.9)): the solution of (1.18) corresponding to

the constant z changed to the solution corresponding to θ1z. After analytic continuation

on arbitrary closed paths around the branch points s1 and s2 the values of the solution

at a point x form the set

Sw,x = {θn1 θ
p
2w(x) ; n, p ∈ Z}

Any continuous first integral F (x,w) of (1.18) (defined on the trajectory of w(x))

is a function of the constant of integration F (x,w) = Φ(z) = Φ(wA(x)−1). Note that

F (a, w) = Φ(w) so Φ is at least as regular as F is.

If F is single-valued, then it must satisfy

F (x,w(x)) = F (x, θn1 θ
p
2w(x)) , for all n, p ∈ Z

therefore

Φ(z) = Φ (θn1 θ
p
2z) , for all n, p ∈ Z (6.52)

Hence, by continuity, Φ(z) = Φ(ξz) for all the points ξ in the closure of the set

M = {θn1 θ
p
2 ; n, p ∈ Z}

6.1. Proof of (i)

Consider the case when one of µ1, µ2 is not real, e.g. µ1 ∈ C \ R. To determine the

closure of the set M it is convenient to make some transformations. Let N be the set

N = {m+ nµ1 + pµ2 ; m,n, p ∈ Z} ⊂ C (6.53)

so that exp(2πiN ) =M. Using the identification C = R2 we can write

N =

{
m

(
1

0

)
+ n

(
α1

β1

)
+ p

(
α2

β2

)
; m,n, p ∈ Z

}
⊂ R2

and using the linear transformation L of R2

L =

(
1 α1

0 β1

)
(6.54)

we get (cf. (2.22))

L−1 (N ) =

{
m

(
1

0

)
+ n

(
0

1

)
+ p

(
α

β

)
; m,n, p ∈ Z

}
The density property of the trajectories of Proposition 3 in case (i) follows directly

from part (i) of the following Lemma.
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Lemma 12 Let α, β ∈ R, and p0 ∈ Z.

Consider the set

L =

{(
m+ pα

n+ pβ

)
; m,n, p ∈ Z

}
⊂ R2 (6.55)

(i) If the numbers α, β, 1 are linearly independent over Z then the set L is dense in

R
2.

(ii) Assume the condition of (i) fails, and that not both α and β are rational. Let

M,N,P be the integers (where the nonnull ones do not have a common divisor) so that

Mα +Nβ − P = 0.

Then the closure L of L is a countable union of lines:

L =

{(
x

y

)
∈ R2 ; Mx+Ny ∈ Z

}
=

(
1/M

0

)
Z+

(
−N
M

)
R

if M 6= 0 and

L =

(
0

1/N

)
Z+

(
−N
M

)
R

if N 6= 0.

(iii) If α, β ∈ Q (not both zero) then L is the two-dimensional discrete lattice:

L = ω1Z+ω2Z , where ω1 =

(
Du/M

Dv/B

)
, ω2 =

(
P/(dM)

A/(dB)

)
(6.56)

where α = P/M, β = A/B (A,B, P,M integers with (A,B) = 1, (P,M) = 1),

D = (M,B), d = (A,P ) and Au − Pv = d for u, v ∈ Z. (In the case A = 0 we

take d = P , u = 0, v = −1, D = −B, and similarly, in the case P = 0, d = A, v = 0,

u = 1, D = M .)

(iv) The same results hold if in the definition of L (6.55) we restrict the values of

p to p > p0, or to p < p0 (for some arbitrary, fixed p0).

Proof of Lemma 12

(i) follows from the fact that, under the given assumptions, the orbit of every point

under the translation on the torus T (x1, x2) = (x1 + α, x2 + β) (mod 1) is dense on the

torus [8].

To show (iv) under the assumptions of (i), let p0 ∈ Z. The subset of L where in

(6.55) we consider only p such that |p| > p0 differs from L by a discrete set, hence it is

also dense in C. Furthermore, we can take only p > 0 (or, similarly, p < 0) in (6.55) and

the density property is preserved by the symmetry of the problem around the origin.

To prove (ii)...(iv), let p0 ∈ Z. We consider in (6.55) only values of p satisfying

p > p0; the case p < p0 is analogue.
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(ii) For M 6= 0 consider the invertible transformation B of R2

B

(
x

y

)
=

(
Mx+Ny

y

)

Then

BL =

{(
mM + nN + qP

n+ qβ

)
; m,n, q ∈ Z, q ≥ p0

}
We need to show that the closure of BL is Z× R.

Denote by d the greatest common divisor of N and P (if N = 0 take d = P , and if

P = 0 take d = N); there are integers a, b, u, v such that aN+bP = d, ud+vM = 1. Let

(k, x) ∈ Z× R. Write k = Mk̃ + r, (r ∈ {0, 1, ...,M − 1}). There are integers ñ, q̃ such

that if n = ur(Mñ+a) and q = ur(Mq̃+b), q̃ ≥ p0 then n+qβ approximates x (if r = 0

write n = Mn1, q = Mq1 for appropriate n1, q1); choose then m = (k − nN − qP )/M

(which is an integer).

If M = 0 then N 6= 0 and the proof is similar.

(iii) If α = β = 0 the claim is obvious. Otherwise, to show (6.56), let

xm,n,q =

(
m+ q P

M

n+ A
B

)
∈ L , yk,l = k

(
Du/M

Dv/B

)
+ l

(
P/(dM)

A/(dB)

)

For any m,n, q ∈ Z there are k, l ∈ Z such that xm,n,q = yk,l: indeed, l =

uBn− vMm+ qd and k = (AMm− PBn)/(dD). Conversely, given k, l ∈ Z, there are

k, l ∈ Z: let a, b ∈ Z such that aAM − bBP = dD. Denote t = BM/D. Since (d, t) = 1

there are integers q, γ such that qd+γt = l+k(vMa−uBb). Then m = ka+γPB/(dD)

and n = kb+ γAM/(dD).

6.2. Proof of (ii)

In this case, a single-valued first integral is easily obtained by going to the coordinates

of Lemma 12. Namely, let Φ(z) be a continuous, single-valued first integral of (1.18);

denote

Ψ = Φ ◦ exp ◦2πi ◦ L , t = L−1 (ln z/(2πi)) (6.57)

(where we used C ≡ R2). From (6.52) it follows that Ψ must satisfy

Ψ(t) = Ψ(t+ L) (6.58)

Then using Lemma 12 (ii) we get, for M 6= 0, Ψ(t) = exp[2πi(M<t + N=t)], which

written in terms of z gives the single-valued, real-analytic first integral

Φ̃(z) = exp [iM arg z + i (Mα1 −N) /β1 ln |z|]

We note that its values are in the unit circle (it is “half-an-integral”); the integral is

singular at z = 0.
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6.3. Proof of (ii’)

A single-valued first integral satisfies Φ(z) = Φ(z exp[2πi(n1α1 +n2α2)]) for all n1,2 ∈ Z.

If α1 or α2 is irrational, then by continuity, Φ must satisfy Φ(z) = Φ(zξ) for all ξ with

|ξ| = 1, hence Φ(z) is (a function of) |z|.

6.4. Proof of (iii)

Consider the remaining cases when µ1,2 ∈ C\R, therefore α, β ∈ Q. With the notations

Ψ0 = Φ ◦ exp, s = ln z, using (6.53), (6.54), we must have Ψ0(s) = Ψ0(s + 2πiL(L)).

The two generators ω1, ω2 of L in (6.56) are R-linearly independent. Let then Ψ0 be a

doubly-periodic function, periods 2πiL(ω1), 2πiL(ω2). Then Ψ0(ln z) is a single-valued,

locally analytic first integral (with essential singularity at z = 0).

Consider the remaining cases when µ1, µ2 ∈ R, therefore rational. Denote µj =

Aj/Bj where (Aj, Bj) = 1 (for j = 1, 2). If Q = B1B2/(B1, B2) then Φ(z) = zQ is a

polynomial first integral.

7. Proof of Proposition 4

7.1. The monodromy maps

Let dj be cuts of the domain Dη: arcs starting at sj (j = 1, 2) such that Dη \ d1 \ d2 is

connected and simply connected.

We may assume that π1 ⊂ Dη \ d2 and π2 ⊂ Dη \ d1 (cf. §2.1).

Let h(1)(x,w) and h(2)(x,w) be the equivalence maps of Proposition 1 (i), analytic

on (Dη \ d2)× {|w| < δ}, respectively on (Dη \ d1)× {|w| < δ}. Let φ(z) = z + O(z2),

analytic near |z| ≤ r, such that h(1)(x,w) = h
(2)
φ (x,w) (cf. (2.21)).

Assume a ∈ Dη \ d1 \ d2. For any number z ∈ C the function w(x) = zA(x) (cf.

(1.8)) is the solution of the linear equation (1.18), corresponding to the initial condition

w(a) = z (an initial branch of A(x) is chosen on the first Riemann sheet Dη\d1\d2 of the

universal covering Rη of Dη, in order to fix z). Using the equivalence map u = h(1)(x,w)

we get the general form of solutions of (1.1) with small enough initial conditions at x = a

for x ∈ Dη \ d1 \ d2:

u(x; z) = h(1) (x, zA(x)) , where u(a; z) = h(1)(a, z) (7.59)

which is well defined if

|z|M < δ , where M = sup
x∈Dη\d1\d2

|A(x)| (7.60)

The identity (7.59) implies that the solution u(x; z) can be analytically continued

along π1. Similarly, it can be continued along π2.

Assuming (7.60) satisfied, the solution u(x; z) becomes after analytic continuation

along π1 (cf. (1.9))

ACπ1u(x; z) = h(1) (x, θ1zA(x)) = u(x; θ1z) (7.61)



Nonintegrability criteria 22

Relation (7.61) holds for all x ∈ Dη \ d1 \ d2 (on this new Riemann sheet of Rη) if

|z| |θ1|M < δ (7.62)

Hence the monodromy map along π1 (showing the change of the constant of

integration z after analytic continuation of u(x; z) along π1) is

Mπ1(z) = θ1z ≡Mθ1(z) (7.63)

for z satisfying (7.60), (7.62).

To determine analytic continuation of u(x; z) along π2, we write u(x; z) in terms of

h(2):

u(x; z) = h(1) (x, zA(x)) = h
(2)
φ (x, zA(x)) = h(2) (x, φ(z)A(x)) (7.64)

well defined for all x ∈ Dη \ d1 \ d2 (on the initial Riemann sheet) if

|z| ≤ r , |z|M < δ , and |φ(z)|M < δ (7.65)

After analytic continuation along π2 the solution u(x; z) becomes

ACπ2u(x; z) = ACπ2h
(2) (x, φ(z)A(x)) = h(2) (x, θ2φ(z)A(x)) (7.66)

= h(1)
(
x, φ−1(θ2φ(z))A(x)

)
= u

(
x;φ−1(θ2φ(z))

)
(7.67)

where ACπ2u is analytic on this new Riemann sheet if

|φ(z)| |θ2|M < δ (7.68)

Also (7.67) holds if, in addition,

|φ−1(θ2φ(z))|M < δ (7.69)

Clearly, there is r0 > 0 such that conditions (7.60), (7.62), (7.65), (7.68), (7.69) are

satisfied for |z| < r0.

Hence the monodromy map corresponding to π2 (showing the change of the constant

of integration z after analytic continuation of u(x; z) along π2) is

Mπ2(z) = φ−1(θ2φ(z)) ≡ Nθ2(z) (7.70)

which is analytic for |z| ≤ r0. Also, the solution u(x; z) is in the domain of h(1) initially,

and after analytic continuation once along π1, or once along π2.

7.2. Proof of Proposition 4(a)

Consider the monodromy maps γn,p = Mn
π1
Mp

π2
for n, p ∈ Z (cf. (7.63), (7.70)). We

only consider p ≥ 0 if |θ2| < 1, respectively p ≤ 0 if |θ2| > 1 so that γn,p are analytic for

|z| < r.

From Lemma 12 (i),(iv), for any ξ ∈ C there are sequences of integers nk, pk
with pk > 0, respectively pk < 0, such that limk→∞ θ

nk
1 θpk2 = ξ. For generic ξ we

have limk→∞ |pk| = ∞. Since the function φ of (7.70) is close to the identity, denote

φ−1(z) = z + z2φ̃(z) (where φ̃ is analytic). Then

γnk,pk(z) = θnk1 φ−1(θpk2 φ(z))
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= θnk1 θpk2 φ(z) + θnk1 θ2pk
2 z2φ̃(z)→ ξφ(z) (k →∞)

and the convergence is uniform on the disk |z| < r.

We need to show that there exists r0 > 0 such that analytic continuation of solutions

u(x; z) with |z| < r0 along the paths π1
nkπ2

pk (corresponding to the monodromy maps

γnk,pk) remains in the domain of equivalence of (1.1) and (1.18). The conditions (7.60),

(7.62), (7.65), (7.68), (7.69) are satisfied (upon repeated analytic continuations) if

|z|M < δ , |φ(z)|M < δ , |φ(z)||θ2|pkM < δ , |φ−1 (θpk2 z) | < δ

and

|θnk1 φ−1 (θpk2 z) | < δ

for |z| < r0 and all k. Such an r0 ∈ (0, r] clearly exists for |ξ| < C0, since |θ2|pk < 1 for

all k and we can assume |θnk1 θpk2 | < 2C0 for all k.

Then

lim
k→∞

u (x; γnk,pk(z)) = u (x; ξφ(z))

which shows that the values (for fixed x) of the solution u(x; z) on all the branches form

a set whose closure contains a disk centered at 0.

7.3. Two lemmas

We need two lemmas in the proof of Proposition 4(b),(i). The first one gives the uniform

asymptotic behavior of iterations of analytic maps which are close to the identity.

Denote repeated composition by γ◦n ≡ γ ◦ γ ◦ ... ◦ γ (n times).

Lemma 13 Let γ be a function analytic near |z| ≤ r, γ(z) = z + ωq−1zq+1 + O(zq+2),

ω 6= 0, q ≥ 1.

Then there exists ρ > 0 such that the sequence of functions

n1/qγ◦n
(
zn−1/q

)
, n ∈ N

converges to the function

γω(z) =
z

(1− ωzq)1/q
(7.71)

uniformly for |z| < ρ.

The second lemma is a density result.

Lemma 14 Let θ ∈ C, with 0 < |θ| < 1, and arg θ 6∈ πQ. Let p0 ∈ N.

Then the set

{nθp ; n, p ∈ Z, p > p0, |nθp| < 1}

is dense in the unit disk in C.
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Proof of Lemma 13

Since

γ◦nω (z) =
z

(1− nωzq)1/q

and

γ◦n(z) = z + nωq−1zq+1 +O(zq+2)

for all n ≥ 1, we can write

γ◦n(z) = γ◦nω (z) + zq+2Γn(z) , for n ≥ 1

where Γn is analytic at z = 0.

Using the identity γ◦n(z) = γ◦(n−1) (γ(z)) we get the recurrence

Γn(z) = (γ(z)/z)q+2 Γn−1 (γ(z)) + vn(z)

where

vn(z) =
1

zq+2

[
γ◦(n−1)
ω (γ(z))− γ◦nω (z)

]
hence, with the notation Gn(z) = Γn(zn−1/q), we have

Gn(z) =
(
γ(zn−1/q)z−1n1/q

)q+2
Gn−1

(
(n− 1)1/qγ(zn−1/q)

)
+vn(zn−1/q)(7.72)

Let ρ > 0 such that

ρ < min
{
r, (2ω)−1/q,M−1

}
, where M = sup

|z|<r
|(γ(z)− z)/z2| (7.73)

We first estimate vn. We have (cf. (7.73))

sup
|z|<ρn−1/q

|γ(z)| ≤ ρn−1/q + ρ2Mn−2/q < ρ(n− 1)−1/q (7.74)

therefore, if |z| < ρn−1/q then

|vn(z)| < |γ(z)− γω(z)|
|zq+2|

sup
|z|<ρ(n−1)−1/q

| d
dz
γ◦(n−1)
ω (z)| < Const|Γ1(z)| (7.75)

so that

sup
|z|<ρn−1/q

|vn(z)| < V (7.76)

for some constant V > 0.

It will follow that the functions Gn are analytic for |z| < ρ. Indeed, the argument

is done by induction, using estimate (7.76) and

|(n− 1)1/qγ
(
zn−1/q

)
| < (n− 1)1/q|zn−1/q|

(
1 + |z|n−1/qM

)
< ρ

Since

|γ(z)z−1| ≤ 1 + ω/q|z|q + |z|q+1|Γ1(z)|
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we have

sup
|z|<ρ
|
(
γ(zn−1/q)z−1n1/q

)q+2 | ≤ 1 + Const ρqn−1 = 1 +
A

n
(7.77)

where A = A(ρ) > 0 is a constant, and A < 1 for small ρ.

Denote gn = sup|z|<ρ |Gn(z)|. Then from (7.72), (7.76), (7.77) we get

gn ≤
(

1 +
A

n

)
gn−1 + V (7.78)

With the substitution gn = xn
∏n

k=2

(
1 + A

k

)
the recursive inequality (7.78) becomes

xn ≤ xn−1 + V

[
n∏
k=2

(
1 +

A

k

)]−1

which yields

xn ≤ x1 + V
n∑
p=2

[
p∏

k=2

(
1 +

A

k

)]−1

< x1 + V
n∑
p=2

(p+ 1)−AeConstA
2

< x1 + V eConstA
2

(1− A)−1(n+ 1)1−A

Using the inequality
∏n

k=2

(
1 + A

k

)
< eConstA(n+ 1)A we get

gn < Const(A)n

Finally, since

n1/qγ◦n
(
zn−1/q

)
= γω(z) + zq+2n−1−1/qGn(z)

the result of Lemma 13 follows.

Proof of Lemma 14

Denote τ = |θ|, α = arg θ. Let seit ∈ C, 0 < s < 1.

There exists an increasing sequence of integers pk such that limk→∞ e
ipkα = eit. The

set {nτ pk ; n ∈ N} splits the interval [0, 1] in intervals of length τ pk which goes to 0 as

k → ∞. Let nk be such that nkτ
pk ≤ s < (nk + 1)τ pk . Then nkθ

pk → seit as k → ∞.

7.4. Proof of Proposition 4(b),(i)

Consider the commutator of Mπ1 and Mπ2 : the monodromy map

γ =M−1
π2
◦M−1

π1
◦Mπ2 ◦Mπ1 (7.79)

The equivalence map h(1)(·, w) analytic near x = s1 is not analytic near x = s2 if

and only if the function φ is not the identity (cf. (7.64) and the uniqueness of h(j) cf.

Theorems 10, and 11). Then there exists some q ≥ 1 such that

φ(z) = z + φq+1z
q+1 +O(zq+2) , with φq+1 6= 0 (7.80)
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It follows that (cf. (7.79), (7.63), (7.70))

γ(z) = z + ωq−1zq+1 +O(zq+2) (7.81)

where

ωq−1 = −φq+1 (1− θq1) (1− θq2) (7.82)

and ω 6= 0.

Let ξ ∈ C with |ξ| < 1 and sequences of integers nk, pk such that nkθ
pk
1 → ξ (cf.

Lemma 14), where pk > 0 if |θ1| < 1 and pk < 0 if |θ1| > 1. For generic ξ we have

limk→∞ |nk| =∞, which we assume.

Then using Lemma 13

Γnk,pk(z) ≡M−pk
π1
◦γ◦nk◦Mpk

π1
(z) = θ−pk1 γ◦nk (zθpk1 )→ ξ−1γω(ξz) (k →∞)(7.83)

We need to show that the functions Γnk,pk represent the change of the constant of

integration z of solutions u(x; z) of (1.1) upon analytic continuation on the corresponding

paths π−pk1 πnk∆ πpk1 (where π∆ = π−1
2 π−1

1 π2π1) for |z| < r0 (with r0 independent of k)—

in other words, that u(x; z) remains in the domain of equivalence upon these analytic

continuations. This is done by a repeated use of conditions (7.60), (7.62), (7.65), (7.68),

(7.69) in the following way.

First, a solution u(x; z) remains in the domain of equivalence (i.e. the domain of h(1)

and h(2)) upon analytic continuation around s1 a number pk of times if |z||θ1|j < δM−1

for all j = 0, 1, ..., pk, so if |z| < δM−1 and |z||θ1|pk < δM−1.

Let z1 = zθpk1 . Then u(x; z1) remains in the domain of equivalence when continued

along π∆ if the numbers: z1 , θ1z1 , φ(θ1z1) ≡ θ1ψ1(z1) , θ2φ(θ1z1) ≡ θ1θ2ψ1(z1 ),

φ−1(θ2φ(θ1z1)) ≡ θ1θ2ψ2(z1), θ−1
1 φ−1(θ2φ(θ1z1)) ≡ θ2ψ2(z1) ,

φ(θ−1
1 φ−1(θ2φ(θ1z1))) ≡ θ2ψ3(z1) , θ−1

2 φ(θ−1
1 φ−1(θ2φ(θ1z1))) ≡ ψ3(z1) ,

φ−1(θ−1
2 φ(θ−1

1 φ−1(θ2φ(θ1z1)))) ≡ ψ4(z1) ≡ γ(z1) have absolute value less than δM−1.

The functions ψj are close to the identity and analytic at the origin: ψj(z) =

z +
∑

k>1 ψj,kz
k. Consider the function Φ(t) = t +

∑
k>1(

∑4
j=1 |ψj,k|)tk well defined on

some interval t ∈ [0, τ). If

Φ(|z1|) < δ′ = δM−1 min{1, |θ1|, |θ2|, |θ1θ2|}

then the conditions for u(x; z1) to remain in the domain of h(1) upon analytic

continuation on the path π∆ (corresponding to γ) are satisfied.

These conditions must be iterated nk times. Note that the function Φ satisfies

Φ(|γ(z)|) ≤ Φ(|γ|(|z|)) ≤ (Φ ◦ Φ)(z) (for small z). Then u(x; z1) remains in the

domain of equivalence upon analytic continuation on πnk∆ if Φ◦m(|z1|) < δ′ for all

m = 0, 1, ..., nk, and since t < Φ(t) the condition is Φ◦nk(|z1|) < δ′, which is implied by

|θ1|−pkΦ◦nk(|zθpk1 |) < δ′. There exists r0 > 0 so that this condition is satisfied for all

|z| < r0 and all sequences nk, pk with nkθ
pk
1 → ξ with nk|θ1|pk > |ξ|/2 for all k, in view

of Lemma 13.
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Therefore, if |z| < r0, then after analytic continuation along the path π−pk1 πnk∆ πpk1

corresponding to the monodromy map Γnk,pk(z) the solution u(x; z) takes values with

lim
k→∞

u (x; Γnk,pk(z)) = u
(
x; z(1− ω(ξz)q+1)−1/q

)
therefore its values (for fixed x) are dense in an open set.

7.5. Proof of Proposition 4(b), (ii)

For m ∈ Z consider the path π[m] = π−m1 π−1
2 πm1 π2 and the corresponding monodromy

map

Mπ[m]
=M−m

π1
◦M−1

π2
◦Mm

π1
◦Mπ2 ≡Mθ−m1

◦Nθ−1
2
◦Mθm1

◦Nθ2 (7.84)

(cf. (7.63), (7.70)); Mπ[m]
is analytic on a disk |z| < r (independent of m).

Using (7.80) and formulas analogue to (7.81), (7.82) for Mπ[m]
, Mπ[n]

we get

Mπ[n]
◦Mπ[m]

(z) = z+φq+1 (1− θq2) (2− θmq1 − θ
nq
1 ) zq+1 +O

(
zq+2

)
(7.85)

Note that there is r0 > 0 such that solutions u(x; z) remain in the domain of

equivalence to (1.18) upon analytic continuation on any path of the form π[n]π[m] (since

|θ1| = 1).

For any s, t ∈ R there exist sequences of integers mk, nk such that θmkq1 → eis

and θnkq1 → eit as k → ∞. Then the corresponding sequence of monodromy maps

Mπ[nk]
Mπ[mk]

converges uniformly to the map γ(z; t, s) = Me−is ◦ Nθ−1
2
◦Meis ◦ Nθ2 ◦

Me−it ◦Nθ−1
2
◦Meit ◦Nθ2 and (cf. (7.85))

γ(z; t, s) = z + φq+1 (1− θq2)
(
2− eit − eis

)
zq+1 +O

(
zq+2

)
Since, by assumption, φq+1 6= 0 and θq2 6= 1 (see also Remark 15 bellow), the closure

of the set of values of u(x; z) upon analytic continuation on the paths π[n]π[m] contains

the values u(x; γ(z; t, s)) for all t, s,∈ R, hence an open set.

Remark 15 The assumption µ2 6∈ Q of Proposition 4(b) (i),(ii) can be weakened. If

fact, it is enough that θq2 6= 1 where q+ 1 is the first term h
(1)
q+1(x) of (5.44) which is not

analytic at both points s1 and s2.
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