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Introduction

What is the units digit of a number like 78910

? Problems of this nature often
appear on contests, and we consider various generalizations in this article. For
instance we show that if a1, a2, a3, . . . is a sequence of positive integers and k is
given, then the sequence a1, aa2

1 , a
a

a3
2

1 , . . . becomes constant when reduced (mod k).
We also consider the sequence 11, 22, 33, . . . (mod k), showing that this sequence,
and related ones like nnn

(mod k), are eventually periodic. With further work we
are able determine their minimal periods. Using those ideas we prove that if u is
relatively prime to k then the congruences xx ≡ u (mod k) and yyy ≡ u (mod k)
have solutions. Finally, we lift these ideas to the ring of p-adic integers and pose
some open questions.

The methods used here are part of elementary number theory and we have
attempted to present the ideas in as elementary a way as possible. The results
proved here were originally obtained in 1985, but not published previously.

Many papers have been written about limits of the form xxx·
··

, where x is a
real or complex number. In fact, such convergence questions go back to Bernoulli,
Goldbach and Euler. Results and references to the literature appear in Anderson
(2004), Knoebel (1981), and Baker and Rippon (1985). However, relatively lit-
tle work has been done on the arithmetic aspects of such numbers when x is an
integer. Early work in this direction was done by Maurer (1901) and Cunning-
ham (1907). Fifty years later some related papers appeared in Polish journals by
Sierpiński (1950), Hampel (1955) and Schinzel-Sierpiński (1959). More recently
Blakley-Borosh (1983) and Dawson (1994) published further results about the pe-
riodic behavior of these sequences modulo k. In this article we unify and extend
these arithmetic results. In the first sections below we have repeated some of the
results of Blakley-Borosh and Dawson in order to have a self-contained presentation
and to clarify the notations.

1. Reducing iterated exponents modulo k.

The symbol Z stands for the set of integers and Z+ is the subset of positive
integers. We assume the reader is familiar with some elementary number theory.

Definition 1.1. If a, b are positive integers, define a ↑ b = ab. These arrows are
always associated to the right if no parentheses are present: a ↑ b ↑ c = a ↑ (b↑c).
The related “E” notation is defined in analogy with “Σ” for sums:
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s

E
j=1

aj = a1 ↑a2 ↑ . . .↑as = a
a..

.as

2
1 .

Recursively we can define:
s

E
j=1

aj = a1 ↑
(

s

E
j=2

aj

)
, if s > 1.

The goal of this section is to investigate conditions on integer sequences {aj}
and {bj} which imply that

a1 ↑a2 ↑ . . .↑as ≡ b1 ↑b2 ↑ . . .↑bs (mod k).

To begin let’s refine the usual definition of the order of an element (mod k) by
allowing non-units.

Definition 1.2. Given n and k, the sequence 1, n, n2, n3, . . . (mod k) is eventually
periodic. The order, ok(n) = o(n mod k), is the length of that periodic cycle. The
tail length ρk(n) is the number of terms in the sequence before the repeating cycle
begins. (The notations ρ and o are suggested by the shapes of those letters.)

For example the powers of 2 (mod 40) are 1, 2, 4, 8, 16, 32, 24, 8, 16, 32, . . . .
The terms (1, 2, 4) form an initial “tail” so that ρ40(2) = 3. The repeating portion
or “cycle” is (8, 16, 32, 24), so that o40(2) = 4.

Lemma 1.3. Given positive integers n and k:
(a) ρk(n) and ok(n) depend only on n modulo k.
(b) If r 6= s then:

nr ≡ ns (mod k) ⇐⇒ r ≡ s (mod ok(n)) and r, s ≥ ρk(n).

Proof. These statements follow from the Definition. For instance, for (b), any
repetition in the sequence {nr (mod k)} must occur within the repeating cycle. �

When n is invertible (mod k), the sequence 1, n, n2, n3, . . . (mod k) is purely
periodic. Then the cycle length is the first exponent which yields 1. That is,
ρk(n) = 0 and ok(n) = min{d : d > 0 and nd ≡ 1 (mod k)}.

Lemma 1.4. Given k, n ∈ Z+, factor k = k′(n)k′′(n), where k′(n) and n are
coprime, and every prime factor of k′′(n) also divides n.

(1) ok(n) = ok′(n)(n).
(2) ρk(n) = min{r ∈ Z : r ≥ 0 and k′′(n) |nr}.

Proof. The values nr (mod k′) are purely periodic while nr ≡ 0 (mod k′′) for all
large r. This yields the expression for ρk(n). The Chinese Remainder Theorem
implies that the length of the (eventual) cycle (mod k) equals the length of the
cycle (mod k′). �

Suppose n = pr1
1 pr2

2 · · · p
rt
t , where the pi are distinct primes and every ri > 0.

Arrange the prime factors of k so that k = pm1
1 pm2

2 · · · p
mt
t · · · pmu

u , where mi ≥ 0.
Then k′′(n) = pm1

1 pm2
2 · · · p

mt
t and ρk(n) = max

1≤i≤t
{dmi

ri
e}.

(Here, dxe is the smallest integer ≥ x.)
Euler proved that cϕ(k) ≡ 1 (mod k) for every c coprime to k. Here the Euler

function ϕ(k) is the number of elements in the group of units Uk = (Z/kZ)∗.
Equivalently, ϕ(k) is the number of integers c coprime to k with 0 ≤ c < k. For
our purposes, the smallest exponent for Uk is a more important value.
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Definition 1.5. For k ∈ Z+ define λ(k) to be the smallest positive integer e such
that ne ≡ 1 (mod k) for every n coprime to k.

Define R(k) = max{ρk(n) : 0 ≤ n < k}.

This λ(k) is the “exponent” of the abelian group Uk. Carmichael (1910) showed
how to compute λ(k) from the prime factorization of k.

Proposition 1.6. Suppose k = pm1
1 pm2

2 . . . pmt
t in prime factorization.

(0) R(k) = max{mi}.
(1) λ(k) is the maximal order of an element in Uk. If d |k then λ(d) |λ(k).
(2) If a, b are coprime, then λ(ab) = lcm{λ(a), λ(b)}.

Generally: λ
(
lcm{a, b}

)
divides lcm{λ(a), λ(b)}.

(3) If p is an odd prime, λ(pm) = pm−1(p− 1).
(4) λ(2) = 1, λ(4) = 2, and λ(2m) = 2m−2 whenever m ≥ 3.

Proof. These results follow from the ideas used to determine which of the groups
Un are cyclic. Key steps in an elementary proof are:

(i) If x, y ∈ Um, there exists z ∈ Um with ok(z) = lcm{ok(x), ok(y)}.
(ii) If p is an odd prime, there is an element of order pm−1 in Upm .
(iii) There is an element of order 2m−2 in U2m whenever m ≥ 3.

Further information appears in many references, like [Carmichael: 1910], [Vino-
gradov: 1954] pp. 106-107, or [H. Shapiro: 1983] Theorems 6.2.2 and 6.3.1.

For part (2), when a, b are coprime apply the Chinese Remainder Theorem. For
the general case, factor lcm{a, b} = a′b′ where a′ | a, b′ | b and a′, b′ are coprime.
Then λ(lcm{a, b}) = λ(a′b′) = lcm{λ(a′), λ(b′)} divides lcm{λ(a), λ(b)}. �

As a corollary we see that λ(k) and R(k) are the o and ρ for everything in Z/kZ,
taken simultaneously.

Corollary 1.7. Let k be a positive integer.
(1) For every n ∈ Z, ok(n) |λ(k) and ρk(n) ≤ R(k).
(2) Let a, b be nonnegative integers. Then:

na ≡ nb (mod k) for every n ⇐⇒

{
either a = b,

or a ≡ b (mod λ(k)) and a, b ≥ R(k).

Proof. (1) ok(n) = ok′(n) which divides λ(k′). Since k′ |k we apply (1.6)(2) above.
(2) Apply Lemma 1.3. �

Consequently, the mod k reduction of, say, a
a

a3
2

1 = a1 ↑ a2 ↑ a3 should depend
only on the residues of a1 (mod k), of a2 (mod λ(k)) and of a3 (mod λ(λ(k))).
For example, since λ(λ(8)) = 1, this ought to imply that the value of a1 ↑ a2 ↑ x

(mod 8) is independent of the choice of x. However 221 6≡ 222
(mod 8). This

happens because the value 221
= 4 lies in the “tail” rather than the “cycle”. The

next few results detail the inequalities needed to avoid this problem.

Lemma 1.8. Suppose ar ≡ br (mod λr−1(k)) for r = 1, 2, . . . , s. Then
s

E
i=1

ai ≡
s

E
i=1

bi (mod k),

provided
s

E
i=r+1

ai and
s

E
i=r+1

bi are ≥ R(λr−1(k)) whenever 1 ≤ r < s.

Proof. Induction on s using Corollary 1.7. �
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Proposition 1.9. Suppose ar ≡ br (mod λr−1(k)) for r = 1, . . . , s. Suppose
further that ar, br ≥ 2 for 1 < r ≤ s; and as, bs ≥ R(λs−2(k)). Then

s

E
i=1

ai ≡
s

E
i=1

bi (mod k).

Proof. It suffices to verify the inequalities in (1.8). The case r = s− 1 is assumed.
The other inequalities follow by repetition of the following claim.
Claim: If a ≥ 2 and a ≥ R(λ(k)) then 2a ≥ R(k).
This is clear when ρ(k) ≤ 4 since 2a ≥ 22 = 4. If ρ(k) > 4 the definitions
imply that R(λ(k)) ≥ R(k) − 2. Since 2x−2 ≥ x whenever x ≥ 4 we find that
2a ≥ 2R(k)−2 ≥ R(k). �

Definition 1.10. For k ∈ Z+ the height of k is h(k) = min{s : λs(k) = 1}.

Checking small cases we find: h(k) = 0 ⇐⇒ k = 1, h(k) = 1 ⇐⇒ k = 2, and
h(k) = 2 ⇐⇒ k = 3, 4, 6, 8, 12 or 24.

Corollary 1.11. If aj ∈ Z+, then the towers a1 ↑ a2 ↑ · · · ↑ ah(k) ↑ c reduce to the
same value in Z/kZ, for every c > 1. Consequently, a1 ↑a2 ↑ · · · ↑as ↑x (mod k) is
independent of the value of x ∈ Z+, provided s > h(k).

Proof. If aj = 1 for some j ≤ h(k), the result is trivial, so assume all aj ≥ 2.
Compare two such towers differing only in the top entries ah(k)+1 = c by checking
the conditions in (1.9) when s = h(k) + 1. They all hold provided c ≥ 2. The
second statement follows using c = ah(k)+1 ↑· · ·↑as ↑x. �

Therefore, for any any sequence {aj} in Z+ and k ∈ Z+, the sequence of “partial
powers” Es

i=1 ai becomes stable (mod k) as s increases; all terms with s > h(k) are
congruent (mod k).

2. The sequences n↑↑ t (mod k).

Define the double-arrow n ↑↑ t to be Et
i=1(n), an exponential ladder of t n’s.

Then n↑↑0 = 1, n↑↑1 = n, n↑↑2 = nn, etc. This is part of the arrow notation as
defined in Knuth (1976).

For a fixed modulus k, Hampel (1955) showed that the sequence 11, 22, 33, . . .
(mod k) is eventually periodic and determined its minimal period. In this section
we generalize that result, showing for any t ≥ 0, the sequence 1↑↑ t, 2↑↑ t, 3↑↑ t, . . .
is eventually periodic (mod k), and computing its minimal period, Lt(k).

For fixed k and n, the sequence n, nn, nnn

, n ↑↑ 4, . . . eventually becomes
constant (mod k). In fact, Corollary 1.11 implies:

n↑↑ t ≡ n↑↑(t + 1) (mod k) whenever t > h(k).

The “stable value” αk(n) of this sequence n↑↑ t (mod k) is a well defined element
of Z/kZ. However, it’s best to define a positive integer representing this value,
since we will also use it as an exponent.

Definition 2.1. For k, n ∈ Z+ let αk(n) = n ↑↑ (1 + h(k)). This is defined recur-
sively by: α1(n) = n and αk(n) = n↑αλ(k)(n) for every k ≥ 2.
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Then αk(n) ≡ n↑↑ t (mod k) for every t > h(k), and we may consider this value
in Z/kZ as the “infinite tower” of exponents:

αk(n) ≡ nn
n·

··

(mod k).

Corollary 2.2. If k, n ∈ Z+ then x = αk(n) satisfies x ≡ nx (mod k).

Proof. With t = 1 + h(k), Corollary 1.11 implies x = n↑↑ t ≡ n↑↑(t + 1) ≡
n↑(n↑↑ t) = nx (mod k). �

Let’s examine a few numerical cases. Table 1 lists the sequences αk(n) reduced
to their least nonnegative residues modulo k, for the first few values of k and n.

k \n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

2 (1 0) 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

3 (1 1 0 1 2 0) 1 1 0 1 2 0 1 1 0 1 2 0 1 1 0 1 2

4 (1 0 3 0) 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3

5 (1 1 2 1 0 1 3 1 4 0 1 1 3 1 0 1 2 1 4 0) 1 1 2

6 (1 4 3 4 5 0) 1 4 3 4 5 0 1 4 3 4 5 0 1 4 3 4 5

7 (1 2 6 4 3 1 0 1 1 4 2 1 6 0 1 2 5 1 5 1 0 1 4

8 (1 0 3 0 5 0 7 0) 1 0 3 0 5 0 7 0 1 0 3 0 5 0 7

9 (1 7 0 4 2 0 7 1 0 1 5 0 4 4 0 7 8 0) 1 7 0 4 2

Table 1. The (k, n)-entry is αk(n) (mod k).

Here k indexes the rows and n indexes the columns. Parentheses indicate the
first repeating block of each sequence.

As one example let’s calculate the residue of α7(5) (mod 7). First check that
h(7) = 3 (since λ(7) = 6, λ2(7) = 2 and λ3(7) = 1). By definition, α7(5) =

5↑↑4 = 5555

, a number of more than 2 · 1017 digits. To reduce it modulo 7 we first
compute that 5↑↑3 ≡ 555 ≡ (−1)5

5 ≡ −1 ≡ 5 (mod 6). Conclude from (1.7) that
α7(5) ≡ 55 ≡ 3 (mod 7). Further values for k = 7 appear in Table 2 below. These
calculations suggest that the sequence αk(n) (mod k) is always periodic (with no
tail). The minimal periods L(k) are: L(1) = 1, L(2) = 2, L(3) = 6, L(4) =
4, L(5) = 20, L(6) = 6, L(7) = 42, L(8) = 8, L(9) = 18. Our goal is to find a
simple formula for these periods.

Proposition 1.9 shows that the sequences {n↑↑ t (mod k)} are eventually periodic
and provides natural candidates for their periods.

Lemma 2.3. Suppose k > 0 is given and let L = lcm{k, λ(k), λ2(k), . . . , λt−1(k)},
the least common multiple.

If t ≥ 2 and integers a, b satisfy a, b ≥ R(λt−2(k)) then:
a ≡ b (mod L) implies a↑↑ t ≡ b↑↑ t (mod k).

Proof. If a ≡ 1 or b ≡ 1 (mod k) the conclusion is trivial, so we may assume
a, b ≥ 2. By hypothesis, a ≡ b (mod λr−1(k)) for r = 1, 2, ..., t. The implication
now follows from Proposition 1.9. �

Definition 2.4. For k, t ∈ Z+, let Lt(k) be the minimal period of the eventually
periodic sequence {n↑↑ t (mod k)}.

Let L(k) be the minimal period of the periodic sequence {αk(n) (mod k)}.
Observe that (1.11) implies Lt(k) = L(k) whenever t ≥ h(k). Also L1(k) = k

for all k. Moreover, by (2.3), Lt(k) divides lcm{k, λ(k), λ2(k), . . . , λt−1(k)}, since
any period is a multiple of the minimal period.
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Theorem 2.5. Lt(k) = lcm{k, λ(k), λ2(k), . . . , λt−1(k)}.

The proof of this theorem is preceded by several lemmas. Our strategy is to
compute Lt(k) when k is a prime power, then to glue these formulas together using
the next lemma.

Lemma 2.6. (i) If d |k then Lt(d) |Lt(k).
(ii) Lt

(
lcm{k1, k2}

)
= lcm{Lt(k1), Lt(k2)}.

(iii) λs(lcm{a, b}) divides lcm{λs(a), λs(b)}.

Proof. (i) If a ≡ b (mod Lt(k)) and a, b are large then a↑↑ t ≡ b↑↑ t (mod k). Then
if d | k, the sequence {n ↑↑ t (mod d)} has Lt(k) as a period. Hence the minimal
period Lt(d) divides Lt(k).

(ii) Let l = lcm{k1, k2} and m = lcm{Lt(k1), Lt(k2)}. Part (i) implies that
m | Lt(l). Conversely suppose a ≡ b (mod m) and a, b are large. Then a ≡ b
(mod Lt(kj)), implying a ↑↑ t ≡ b ↑↑ t (mod kj) for j = 1, 2. Then the congruence
holds (mod l), and the minimal period Lt(l) divides m.

(iii) This property of λ follows by repeated application of (1.6)(2). �

Lemma 2.7. If p is prime then pm |Lt(pm).

Proof. We may assume t ≥ 2. It is easy to check that p | Lt(p), since n ↑↑ t ≡ 0
(mod p) iff n ≡ 0 (mod p). Suppose m > 1. By induction pm−1 | Lt(pm−1) so
it also divides Lt(pm). Then Lt(pm) = pm−1y for some y, and we want to prove
p | y. By definition of Lt we have (n + pm−1y) ↑↑ t ≡ n ↑↑ t (mod pm) whenever
n ≥ R(λt−2(pm)). We use n = 1 + pm, which does satisfy that inequality. Setting
r = (1 + pm + pm−1y)↑↑(t− 1), the congruence becomes:

(1 + pm−1y)r ≡ (1 + pm + pm−1y)↑↑ t ≡ (1 + pm)↑↑ t ≡ 1 (mod pm).
The binomial theorem then implies 1 + rpm−1y ≡ 1 (mod pm), so that ry ≡ 0
(mod p). Since r ≡ 1 (mod p), we get p |y as claimed. �

Lemma 2.8. If p is prime and t ≥ 2 then Lt−1(p− 1) |Lt(p).

Proof. For ` = Lt(p), we have (n + `) ↑↑ t ≡ n ↑↑ t (mod p), for every large n.
Since p |` we find:

n↑((n + `)↑↑(t− 1)) ≡ (n + `)↑↑ t ≡ n↑↑ t ≡ n↑(n↑↑(t− 1)) (mod p),
provided n ≥ R(λt−2(p)). Suppose g is a generator of the group Up. Then for any
large n with n ≡ g (mod p), the previous congruence implies:

(n + `)↑↑(t− 1) ≡ n↑↑(t− 1) (mod p− 1). (*)
Consequently, (*) holds for any large n of the form n = g + px + wy, where w =
Lt−1(p−1). Note that w and p are coprime, since w divides lcm{p−1, λ(p−1), . . . }.
Therefore, congruence (*) holds for all large integers n, so that the minimal period
w must divide `. �

Lemma 2.9. If p is prime, and t ≥ 2, then:

lcm{pm, λ(pm), . . . , λt−1(pm)} = lcm{pm, p− 1, λ(p− 1), . . . , λt−2(p− 1)}.

Proof. If p = 2 both sides equal 2m. Suppose p is odd. Since (p − 1) | λ(pm),
(1.6)(1) implies λr−1(p− 1) |λr(pm), and the right side divides the left. To prove:
λr(pm) divides the right side, whenever 0 ≤ r < t. This is easy for r = 0, 1,
so assume r > 1 and use induction. Since λr(pm) = λr−1(pm−1(p − 1)) divides
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lcm{λr−1(pm), λr−1(p − 1)}, by (2.6)(iii), we may apply the induction hypothesis
to complete the proof. �

Proof of Theorem 2.5. We prove this statement by induction on k. The formula
for k = 1 is trivial, so we assume k > 1 and that the formula for Lt(a) holds true
for every a < k.

First suppose k = pm is a prime power. We want to prove that Lt(pm) equals the
quantity in Lemma 2.9, which we call M here. As mentioned after (2.4), Lt(pm)
divides M . By induction, Lt−1(p − 1) = lcm{p − 1, λ(p − 1), . . . , λt−2(p − 1)}, so
that M = lcm{pm, Lt−1(p− 1)}. The fact that M divides Lt(pm) now follows from
(2.7), (2.8) and (2.6)(i). Hence Lt(pm) = M .

Proceeding by induction for arbitrary k, we may assume that k > 1 is not a
prime power. Then there is a factorization k = ab where a, b are coprime and
a, b < k. As noted before, Lt(k) divides lcm{k, λ(k), . . . , λt−1(k)}. Since k = ab,
(2.6)(iii) implies that this divides lcm{a, b, λ(a), λ(b), . . . , λt−1(a), λt−1(b)}. Apply
the induction hypothesis to see that this quantity equals lcm{Lt(a), Lt(b)}, which
equals Lt(ab) = Lt(k) by (2.6)(ii), since a, b are coprime. Then all the terms in this
divisor chain are equal and the Theorem follows. �

Corollary 2.10. (1) If p is prime then Lt(pm) = lcm{pm, Lt−1(p− 1)}.
(2) Lt(k) = lcm{k, Lt−1(λ(k))} = lcmp|k{k, Lt−1(p− 1)}.

Proof. By this notation we mean that if k = pm1
1 pm2

2 . . . pms
s is the prime factor-

ization of k then Lt(k) = lcm{k, Lt−1(p1 − 1), . . . , Lt−1(ps − 1)}. These formulas
follow from (2.9) and Theorem 2.5. �

Corollary 2.11. The period L(k) of the sequence αk(0), αk(1), αk(2), , . . . in Z/kZ
has the following properties:
(1) L(k) = lcm{k, λ(k), λ2(k), . . . }.

= lcmp|k{k, L(p− 1)}

(2) If d |k then L(d) |L(k). Moreover, L
(
lcm{a, b}

)
= lcm{L(a), L(b)}.

L(mn) = lcm{mn, L(m), L(n)}.
(3) The periods k = L1(k), L2(k), L3(k), . . . , L(k) form a divisor chain

(i.e. each term divides the next).
(4) L

(
λ(k)

)
divides L(k).

(5) L(L(k)) = L(k).
(6) L(k) = k ⇐⇒ λ(k) |k ⇐⇒ for prime p, p |k implies (p− 1) |k.

Proof. (1) Use Theorems 2.5 and 2.10, noting that L(k) = Lt(k) whenever t ≥ h(k).
The other parts follow from (1). For instance, for (6) note that (1) implies: L(k) = k
if and only if every λr(k) |k. By (1.6)(1), that is equivalent to: λ(k) |k. The formula
for λ(k) in (1.6) implies that this occurs exactly when (p − 1) | k for every prime
factor p of k. �

The sequence αk(n) (mod k) was viewed as a mapping αk : Z+ → Z/kZ. Know-
ing the periodicity we re-interpret it (with some abuse of notation) as a map

αk : Z/L(k)Z → Z/kZ.

This observation explains how to make sense of αk(n) for negative values of n.
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Proposition 2.12. (i) αk(0) = 0 and αk(−1) = −1.
(ii) If n is even then αk(−n) = αk(n).
(iii) If n ∈ UL(k) is a unit, then αk(−n) = −αk(n−1).

Proof. Assume k > 1 so that L = L(k) is even. (i) Note that αk(−1) = αk(L−1) =
(−1)s in Z/kZ, where s = aλ(k)(L− 1) is odd.

(ii) Induct on k. By the periodicity we may assume 0 ≤ n < L. Then αk(−n) ≡
αk(L − n) ≡ (L − n)s ≡ (−n)s (mod k), where s = αλ(k)(L − n). Since n and L
are even, s is even and αk(−n) ≡ ns (mod k). Since L is a multiple of L(λ(k)),
we have s ≡ αλ(k)(−n) (mod λ(k)). Applying the induction hypothesis we find
s ≡ αλ(k)(n) (mod λ(k)) and therefore αk(−n) ≡ αk(n) (mod k), as claimed.

(iii) Using a similar strategy (but with less detail), we have
αk(n−1) ≡ n−1 ↑s ≡ n↑(−s) (mod k),

where s ≡ αλ(k)(n−1) (mod λ(k)). By induction s ≡ −αλ(k)(−n) (mod λ(k)).
Then since n is odd, αk(n−1) ≡ n↑αλ(k)(−n) ≡ −αk(−n) (mod k). �

It’s interesting to look for patterns in tables of values of αk(n). For example,
here are the values of α7(n) arranged in rows of seven. The period is L(7) = 42.

0 1 2 6 4 3 1

0 1 1 4 2 1 6

0 1 2 5 1 5 1

0 1 4 1 4 2 6

0 1 1 3 4 6 1

0 1 2 4 1 2 6

Table 2. α7(n) for n = 0, 1, . . . , 41.

A number of patterns of ±1’s can be observed from such charts. The simplest
ones are easily explained.

Proposition 2.13. Let p be an odd prime, and suppose n 6≡ 0 (mod p).
(i) If n ≡ 1 (mod p) then αp(n) ≡ 1 (mod p).

If n ≡ −1 (mod p) then αp(n) ≡ (−1)n (mod p).
(ii) If p - n and each prime factor of p− 1 divides n, then αp(n) ≡ 1 (mod p).

Proof. αp(n) = ns where s = αp−1(n) ≡ nt (mod p− 1), for some large t. (i) Easy.
(ii) Since t is large, (p− 1) |nt = s and the claim follows. �

This frequent occurrence of ±1’s doesn’t happen for every value of k. In the
next section we will prove that when L(k) = k, the value 1 occurs only once in each
period of αk(n) (mod k). For example, since L(7) = 42 we know from Corollary
2.11(5) that L(42) = 42. Here is a table of the values of α42(n), arranged in rows
of seven. Note that these values induce those of α7(n) after reduction (mod 7).

3. Values occurring in the sequences.

Which values in Z/kZ are assumed by the sequence αk(n) ? That is, for which
a ∈ Z+ does there exist n with αk(n) ≡ a (mod k)? For example, Table 1 shows
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0 1 16 27 4 17 36

7 22 15 4 23 36 13

28 15 16 5 36 19 22

21 22 11 36 25 16 27

28 29 36 31 4 27 22

35 36 37 4 15 16 41

Table 3. α42(n) for n = 0, 1, . . . , 41.

that the sequence αk(n) assumes all the values in Z/kZ when k = 2, 3, 5, 7. How-
ever, when k = 4, 6, 8, 9 some values are missed. An easy argument settles the
question when k is a prime, or more generally when k and λ(k) have no prime
factors in common.

Lemma 3.1. Suppose k and λ(k) are coprime. For any t ≥ 1 and any a ∈ Z, there
exists n satisfying n↑↑ t ≡ a (mod k).

Proof. If t = 1 the claim is trivial, so assume t ≥ 2. Note that R(k) = 1. By the
Chinese Remainder Theorem there exists n ∈ Z+ such that n ≡ a (mod k) and
n ≡ 1 (mod λ(k)). Then n ↑↑ t = n ↑ nm where m = n ↑↑ (t − 2). Corollary 1.7
implies: n↑↑ t = n↑nm ≡ a↑1 ≡ a (mod k), . �

Define the map Et : Z+ → Z/kZ by Et(n) = n↑↑ t. It is not always surjective,
but we will show that every Et is at least surjective on units.

Since Et is eventually periodic with period L = Lt(k), we can restrict to values
n ≥ R(k) to get an induced map Z/LZ → Z/kZ. Since L | L(k) we can use the
possibly larger domain Z/L(k)Z for all values of t. Then Et induces a map

Et : Z/L(k)Z → Z/kZ, which restricts to a map UL(k) → Uk.

Here is a key observation: When c is an exponent coprime to λ(k) then:
nc ≡ 1 (mod k) implies n ≡ 1 (mod k). Consequently,

if x, y ∈ Uk then: xc ≡ yc (mod k) =⇒ x ≡ y (mod k).

Proposition 3.2. Suppose λ(k) | k so that k = L(k). Then for every t, the map
Et : Uk → Uk is bijective.

Proof. Since Uk is a finite set it suffices to prove Et is injective. The case t = 1 is
trivial so assume t ≥ 2. The initial cases k = 1, 2 are also easy, so we may assume
k > 2 and use induction on k. From λ(k) |k we know λ(λ(k)) |λ(k) and the induction
hypothesis implies Et : Uλ(k) → Uλ(k) is injective. Suppose x, y ∈ Uk and Et(x) ≡
Et(y) (mod k). Then this congruence holds (mod λ(k)) so that x ≡ y (mod λ(k)),
by induction. Since Lt−1(λ(k)) = λ(k) by (2.11) we find that Et−1(x) ≡ Et−1(y)
(mod λ(k)). Letting c = Et−1(x) we have xc ≡ Et(x) ≡ Et(y) ≡ yc (mod k). From
the key observation above we conclude that x ≡ y (mod k). �

Corollary 3.3. For any k, the restriction Et : UL(k) → Uk is surjective. In
particular, the map αk : Z+ → Z/kZ induces a surjective map αk : UL(k) → Uk.

Proof. Let a ∈ Uk. Since k |L(k) we can choose b ∈ UL(k) with b ≡ a (mod k).
Since L(L(k)) = L(k) by (2.11), Proposition 3.2 provides n ∈ UL(k) with Et(n) ≡ b

(mod L(k)). Reducing this congruence shows that Et(n) ≡ a (mod k). The final
statement follows since αk(n) ≡ Et(n) (mod k) whenever t ≥ h(k). �
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Here is an alternative approach to the map αk. If c = αk(n) then by (2.2), nc ≡ c
(mod k). We can solve for n to get n ≡ c1/c (mod k), provided that fractional
exponent makes sense. Recall that for cs (mod k), the exponent s behaves modulo
λ(k). If s is a unit (mod λ(k)), choose t ∈ Z+ with t ≡ s−1 (mod λ(k)). Then for
c ∈ Uk:

x ≡ ct (mod k) is the unique solution to xs ≡ c (mod k).
Therefore c1/c (mod k) makes sense whenever c ∈ Z+ is coprime to both k and λ(k).
Since lcm{k, λ(k)} divides L(k), we obtain a well-defined map δ : UL(k) → Uk given
by δ(x) = x1/x. This proves the following result, related to (3.2).

Proposition 3.4. Suppose λ(k) | k so that L(k) = k. The map αk : Uk → Uk is
bijective with inverse map δ.

Proposition 3.2 can be improved by allowing certain non-units. We will state
our best result along these lines.

Theorem 3.5. Define Wk = {n ∈ Z/kZ : gcd(n, k, λ(k)) = 1}. Then for every t,
the restriction Et : WL(k) →Wk is surjective.

When λ(k) |k the method used in Proposition 3.4 can extended to Wk. However
the full theorem does not seem to follow easily from that case. Our proof of the
theorem starts with the idea in Lemma 3.1 and uses induction, building up k one
prime at a time. It is too long to include here.

We have not found any other useful conditions to ensure that a occurs as a value
of αk(n). In the other direction there is one easy condition for the number a to be
a missing value for the sequences (mod k).

Proposition 3.6. Suppose a, k, and t are given and t ≥ 2, and suppose there exists
large x with Et(x) ≡ a (mod k). If pd | k where pd is a prime power, then either
p - a or pd |a.

Proof. Suppose p |a. Since Et(x) ≡ a (mod pd) we see that p |x. Since x is large it
follows that a ≡ x↑Et−1(x) ≡ 0 (mod pd). �

4. p-adic interpretations.

In this section we assume the reader has some knowledge of the ring Zp of p-adic
integers. However, to keep the presentation more elementary we include a review
of some of the definitions and basic properties. More details appear in various texts
like Borevich-Shafarevich (1966) or Koblitz (1977).

Let p be a fixed prime number. If n ≥ m there is a natural reduction map
πn,m : Z/pnZ → Z/pmZ. The ring Zp of p-adic integers is the projective limit
lim←−(Z/pnZ) relative to these maps πn,m. An element c ∈ Zp is defined to be a
sequence (c1, c2, c3, . . . ) where cn ∈ Z/pnZ satisfying the following “coherence”
condition: if n ≥ m then πn,m(cn) = cm. With component-wise addition and
multiplication, Zp becomes an integral domain. The ring of integers Z is embedded
as a subring of Zp by viewing k ∈ Z as a constant sequence (k, k, . . . ) in Zp. Then
u ∈ Zp is a p-adic unit (i.e. u is invertible) iff u 6≡ 0 (mod p), and every nonzero
c ∈ Zp factors uniquely as c = pmu for some m ≥ 0 in Z and some p-adic unit
u ∈ Z∗p. Let ord(c) be that exponent m.

Define the p-adic absolute value on Zp by setting |0|p = 0 and if c 6= 0:
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|c|p = p−ord(c).

This absolute value satisfies several rules:

|a|p ≤ 1, with equality ⇐⇒ a is a unit in Zp;
|ab|p = |a|p · |b|p and |a + b|p ≤ max{|a|p, |b|p}.

That last inequality is stronger than the triangle inequality |a + b|p ≤ |a|p + |b|p.
This absolute value makes Zp into a complete metric space (every Cauchy sequence
converges), with Z+ as a dense subset.

Elements of Zp are often viewed as series: every c ∈ Zp can be expressed as a
“power series” c = a0 + a1p + a2p

2 + . . . , where every an ∈ {0, 1, . . . , p− 1}. Every
such power series

∑
anpn (with 0 ≤ an < p) converges relative to the metric above.

Lemma 4.1. For any positive integers b1, b2, b3 . . . , the iterated exponential
∞
E

j=1
bj = b1 ↑b2 ↑b3 ↑ . . . converges in Zp.

Proof. Let cn = b1 ↑ b2 ↑ . . . ↑ bn. By Corollary 1.11, if s, t > h(pm) then cs ≡ ct

(mod pm), that is, |cs − ct|p < p−m. Then {cn} is a Cauchy sequence so its limit
exists in Zp. �

Definition 4.2. If n ∈ Z+ define α(n) = a(p)(n) =
∞
E

j=1
(n) in Zp. We could also

write this as: α(n) = n↑↑∞.

Since α(n) = n↑n↑n↑· · · , it is natural to expect that nα(n) = α(n) in Zp. This
fails when p |n, because in that case α(n) = 0 in Zp. Difficulties arise even when
n 6≡ 0 (mod p) because it’s not clear how to define nx for a p-adic integer x. The
function f(x) = nx is defined for x in Z, but it might have no continuous extension
to the larger ring Zp. The next lemma shows that when n ≡ 1 (mod p) there is no
obstruction to extending the domain of f(x) = nx from Z+ to Zp.

Lemma 4.3. Suppose a ∈ Zp and |a − 1|p < 1. Equivalently, a ≡ 1 (mod p).
Suppose x, y ∈ Zp.
(1) For m ≥ 1, x ≡ y (mod pm) implies xp ≡ yp (mod pm+1).
(2) If s, t ∈ Z+ and s ≡ t (mod pm) then as ≡ at (mod pm+1).
(3) If x ∈ Zp, express x = lim

n→∞
xn where xn ∈ Z+, and define ax = lim axn .

Then ax is well defined, independent of the choice of the sequence {xn}. Moreover,
f(x) = ax defines a continuous function Zp → Zp satisfying:
(4) ax+y = axay.

ax ≡ 1 (mod p) and (ax)y = axy.
|ax − ay|p ≤ 1

p |x− y|p.
(5) If a, b ∈ Zp and a ≡ b ≡ 1 (mod p) then (ab)x = axbx.

Proof Sketch. (1) Express y = x+pmt and use the binomial theorem. (2) By (1) we
know apm ≡ 1 (mod pm+1), and the claim follows. Statement (2) is equivalent to:
|as−at|p ≤ 1

p |s− t|p. (3) If {xn} is convergent, then {axn} is a Cauchy sequence, so
ax is defined. Triangle inequalities yield the inequality in (4) and this helps show
that ax is independent of the choice of {xn}. The remaining statements follow
similarly. �

A more sophisticated approach to these ideas is to introduce p-adic exponen-
tial and logarithm functions and then define ax = exp(x log a). Details appear
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in Borevich-Shafarevich (1966) pp. 285-288 or Koblitz (1977) pp. 75-82. Since
log(1 + x) converges on the open unit ball, log(a) is defined only if |a − 1|p < 1.
These two definitions of ax coincide because they both are continuous extensions
of f(n) = an on Z+, which is dense in Zp.

The lemma implies that if n ≡ 1 (mod p) and f(x) = nx then f : Zp → Zp is a
contraction mapping: |f(x)− f(y)|p < 1

p |x− y|p. The Banach fixed point theorem
states that a contraction mapping f on a complete metric space has a unique fixed
point, obtained as limn→∞ fn(c) for any initial point c. Then in our case, this
process reflects ideas developed in earlier sections: the unique α ∈ Zp satisfying
α = nα is obtained from the map f(x) = nx by choosing any c ∈ Zp and taking
the limit of the iterates f(c) = n ↑ c, ff(c) = n ↑n ↑ c, fff(c) = n ↑n ↑n ↑ c, . . . .
This α = α(n) is the unique solution x ∈ Zp to x = nx, in the case n ≡ 1 (mod p).

Before considering cases when n 6≡ 1, we note that another contraction map
appears in Lemma 4.3(1). The map g(x) = xp satisfies: |g(x)− g(y)|p ≤ 1

p |x− y|p.
However, on closer examination we find that this g isn’t a contraction on the whole
space Zp, since that inequality fails if x 6≡ y (mod p). We can fix this by separating
the metric space Zp into p parts,

Sb = {k ∈ Zp : k ≡ b (mod p)}.
Each Sb is a closed subspace of Zp, and g(x) = xp is a contraction sending Sb to
itself. Consequently there is a unique value ω(b) ∈ Sb satisfying ω(b)p = ω(b).
The uniqueness implies that this value depends only on the residue b ∈ Z/pZ.
Since ω(0) = 0 we ignore that case and consider ω as a map on the nonzero classes
ω : (Z/pZ)∗ → Zp. It’s not hard to check that the image of ω is the group of (p−1)st

roots of unity in Zp. This p-adic integer ω(b) = lim
m→∞

bpm

is the “Teichmüller

representative” of the residue class b.
When n 6≡ 1 (mod p) the function f(k) = nk on Z+ does not extend continuously

to Zp. Instead there are p− 1 continuous “branches”, or partial extensions. Since
np−1 ≡ 1 (mod p), the powers (np−1)x are well defined for x ∈ Zp, by (4.3). We
would like to take the (p − 1)st root to define nx, but there are several choices
involved.

Following Koblitz (1977) p. 27, if n 6≡ 0 (mod p), define 〈n〉 = n/ω(n) ∈ Zp.
Then 〈n〉 ≡ 1 (mod p) (so that 〈n〉x is well defined) and 〈n〉p−1 = np−1. We can
now find continuous (p − 1)st roots of (np−1)x by setting f(x) = ζ · 〈n〉x, where
ζ ∈ Zp and ζp−1 = 1. For k ∈ Z+, this f(k) equals nk exactly when ζ = ω(n)k.
This leads to the definition

fn,b(x) = ω(n)b〈n〉x, where b ∈ Z.

Then fn,b : Zp → Zp is continuous, fn,b(x)p−1 = (np−1)x for all x, and fn,b(k) = nk

for every k ∈ Sb. This is the unique function with those properties since Sb is dense
in Zp. The number of different functions here is op(n), since fn,b depends on nb

(mod p).

Proposition 4.4. Suppose n ∈ Z+ and p - n. Then α(n) is the unique fixed point
of the map fn,b when b = αp−1(n).

Proof. fn,b is a contraction since |fn,b(x) − fn,b(y)|p = |〈n〉x − 〈n〉y|p ≤ 1
p |x − y|p.

Therefore there is a unique fixed point in Zp. For any large t, n↑↑ t ≡ αp−1(n) ≡ b
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(mod p−1). Therefore n↑↑ t ∈ Sb. Hence Et+1(n) = n↑(n↑↑ t) = fn,b(n↑↑ t). Now
take the limit as t→∞. �

For every b the function fn,b has a unique fixed point in Zp. Generally, for
a, c ∈ Zp with c ≡ 1 (mod p), the function f(x) = a·cx is a contraction with a fixed
point β. Then β/a is the fixed point of g(y) = cay, obtained as the limit ca ↑ca ↑· · · .

As an application of (4.4) we consider the injectivity of α on Z+.

Proposition 4.5. The map α = α(p) : Z+ → Zp sends every multiple of p to 0.
On the other positive integers, α(p) is injective.

Proof. If p |n then n ↑n ↑ . . . ↑n involves high powers of p so the limit is 0 in Zp.
Note that if c 6= 1 and |c − 1|p < 1 then the map g(x) = cx is injective. (This
follows from the p-adic logarithm, but there is a more elementary proof in the style
of (4.3).)

Now suppose n, m ∈ Z+, n,m 6≡ 0 (mod p), and and x = α(n) = α(m) in Zp.
By (4.4), x = fn,b(x) = fm,c(x) for some b, c. Then xp−1 = (np−1)x = (mp−1)x

in Zp and we find that ((nm−1)p−1)x = 1. With c = (nm−1)p−1 we have c ≡ 1
(mod p) and cx = 1. The injectivity mentioned above implies c = 1. But then
np−1 = mp−1 in Z, so that n = m. �

We have been considering towers of powers in Zp. However it is perhaps more
natural to consider those limits without restricting to a single prime p. Whenever
d | k there is a natural reduction map πk,d : Z/kZ → Z/dZ, and the projective
limit makes sense: Ẑ = lim←−(Z/kZ). An element ĉ ∈ Ẑ is defined to be a sequence
ĉ = (c1, c2, . . . ) with ck ∈ Z/kZ satisfying the “coherence” condition: if d | k then
πk,d(ck) = cd. Unique factorization and the Chinese Remainder Theorem provide
a ring isomorphism:

Ẑ
∼=−→

∏
p

Zp ,

where the direct product is taken over all primes p. Elements of Ẑ can also be
thought of as “profinite integers” as described using factorial representations in
Lenstra’s paper [17].

If {an} is a sequence in Z+, then by (1.11), the numbers cn = a1 ↑a2 ↑ . . .↑an

define an element ĉ =
∞
E

j=1
aj ∈ Ẑ. In particular, for n ∈ Z+ we have an element

α̂(n) =
∞
E

j=1
n = n↑n↑n↑· · · in Ẑ, which induces the element α(p)(n) ∈ Zp for every

prime p. The domain of α̂ can be enlarged to include all n̂ ∈ Ẑ by just taking the
limit of the maps αk : Z/L(k)Z → Z/kZ defined in §2 to build α̂ : Ẑ → Ẑ. That
is, if ĉ = (c1, c2, . . . ), we define α̂(ĉ) by setting:

α̂(ĉ)k = αk(cL(k)).

By (4.5) it follows that the restriction α̂ : Z+ → Ẑ is injective. However α̂ is
not injective on Ẑ. To see this, note that any ĉ ∈ Ẑ is determined by its list of
components c(p) ∈ Zp. Define ĉ by requiring c(p) = p for every p. Check that ĉ 6= 0
but α̂(ĉ) = 0.

To extend our work with p-adic numbers, we would like to define exponential
functions and consider their fixed points. Starting at the finite level, define an
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exponential map

exponk : (Z/kZ)× (Z/λ(k)Z)→ (Z/kZ) by: exponk(a, b) = ab.

This can be a bit confusing since b is a residue class (not an integer) and the value
ab corresponds to a term in the “cycle” part of the sequence 1, a, a2, a3, . . . . For
instance, when k = 40 the powers of 2 are: 1, 2, 4, 8, 16, 32, 24, 8, 16, . . . .
Since λ(40) = 4, we find that:

expon40(2, 1) = 21 = 32 in Z/40Z,

since that’s the term in the cycle corresponding to 1 (mod 4).
Now take the limit of those maps exponk as k →∞, to obtain:

expon : Ẑ× Ẑ→ Ẑ.

We can write expon(â, b̂) as âb̂, but repeat the warning about interpretations. Al-
though Z embeds as a subring of Ẑ, this exponential map isn’t consistent with tra-
ditional exponents of integers. For example, 1 and 2 embed as constant sequences
1̂, 2̂ in Ẑ, but 2̂1̂ does not match 21 in Z.

One interesting point is that this exponential map generalizes all the p-adic
exponential maps, but without the concerns about convergence. The point is that
defining ax for a ∈ Z/pmZ requires the exponent x to live in Z/pm−1(p − 1)Z ∼=
Z/pm−1Z× Z/(p− 1)Z. Ignoring the (Z/(p− 1)Z)-component of x leads to p− 1
different branches of the exponential function. In Ẑ those components are not
ignored and that difficulty vanishes.

Not surprisingly, the analysis of functions on Ẑ present various difficulties not
arising in Zp. It should be interesting to investigate whether the exponential maps
on Ẑ are contractions relative to some nice metric, and whether α̂(n) is the unique
fixed point of the function f(x̂) = nx̂. We leave further development of this theory
to the reader.

5. Some problems.

Here are a few open problems related to topics discussed above.
By (1.11) for given k every sequence n, nn, nnn

, n↑↑4, . . . (mod k) becomes
stable after at most h(k) + 1 steps.

Problem 5.1. How fast does the height function h(k) grow?

The corresponding question for the ϕ-height has been studied. In analogy to
Definition 1.10 let the ϕ-height be hϕ(k) = min{s : ϕs(k) = 1}. In 1943 H. N.
Shapiro [23] proved that hϕ(k) has multiplicative properties and grows logarithmi-
cally.

Does h(k) have the same order of magnitude as hϕ(k)?

See H. N. Shapiro [24] , Parnami [20] and Erdös and Graham [12] pp. 80-81 for
related questions.

Rather than considering all n simultaneously, define a height for each n:

`k(n) = min{t : Et(n) ≡ Et+1(n) (mod k).

For given n, k, note that the sequence Et(n) (mod k) stabilizes after `k(n) steps:
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Lemma 5.2. If Et−1(n) ≡ Et(n) (mod k) then Et(n) ≡ Et+1(n) (mod k).

Proof. To prove that Et(n)−Et−1(n) divides Et+1(n)−Et(n) for every n, check
that (na − a) |(nb − b) =⇒ (nna − na) |(nnb − nb). �

Consequently, `k(n) ≤ h(k). Since `k(n) = 1 + `ok(n)(n) it follows that if s and
L(k) are coprime then `k(ns) = `k(n).

Problem 5.3. Investigate `k(n). As n varies, how do the values `k(n) compare
with h(k)?

Let Nt(a mod k) be the number of solutions to Et(x) ≡ a (mod k), counted in
one period. In (3.3) we proved that Nt(a mod k) > 0 whenever a is a unit. In some
cases when (Z/kZ)∗ is cyclic, there is an explicit formula for N2. For instance, if p
is an odd prime and a is coprime to p then:

N2(a mod pm) =
∑

d| p−1
r

d ϕ(p−1
d ) ,

where r = op(a). The proof involves choosing a generator g and counting x values
by tabulating s, t such that x ≡ gt (mod pm) and x ≡ s (mod pm−1(p − 1)) such
that xx ≡ gst ≡ a (mod pm). Details are omitted.

Problem 5.4. Given k, for which a is there a solution to xx ≡ a (mod k)?
How about Et(x) ≡ a (mod k)? More generally, is there a simple formula for
Nt(a mod k)? For these questions, we consider only those x lying in the cyclic
part, Z/Lt(k)Z.

Most of the information derived so far about the image of Et in Z/kZ is indepen-
dent of t. In addition to Lemma 5.2, we make another small observation relating
these images for different t values:

If Et(n) ≡ 1 (mod k) then Et+1(n) ≡ 1 (mod k).

To see this note that (Et(n)− 1) | (Et+1(n)− 1) since a |b =⇒ (na − 1) |(nb − 1).

Problem 5.5. As t varies, how are the sets image(Et) ⊂ Z/kZ related?

Approximations to α(n) = α(p)(n) ∈ Zp can be easily computed, but not much
is known about its algebraic properties. We note that α(n) /∈ Q:

If 1 < n ∈ Z+ and p - n then α(n) is irrational.

For if α(n) = r/s in lowest terms, then by (4.4), (r/s)p−1 = (np−1)r/s in Zp. This
implies r(p−1)s = n(p−1)rs(p−1)s in Z. But that equation yields s = 1 and r = nr,
a contradiction.

Problem 5.6. For n as above, is α(p)(n) ∈ Zp transcendental over the field Q of
rational numbers?

For any sequence {a1, a2, a3, . . . } in Z+, the limit
∞
E

j=1
aj = a

a·
··

2
1 is a well-defined

element in Ẑ, the ring of profinite integers. If {bn} is a different sequence in Z+,
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it can happen that
∞
E

j=1
aj =

∞
E

j=1
bj in Ẑ. Examples are easy to produce when some

ai, bj are allowed to equal 1. For instance:

245
= 4232

and 923
= 3222

.

Examples of such equalities seem to be harder to find with infinite towers.

Problem 5.7. Suppose a1, a2, a3, . . . and b1, b2, b3, . . . are sequences in Z+ and

every ai, bi ≥ 2. If
∞
E

j=1
aj =

∞
E

j=1
bj in Ẑ, does it follow that every ai = bi?
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