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INTRODUCTION

The following is a translation of "De Transformatione Serium in Fractiones Con-
tinuas Ubi Simul Haec Theoria Non Mediocriter Amplificatur," an essay by Leon-
hard Euler.
Commentatio 593 indicis Enestroemiani

Opuscula analytica 2, 1785, p. 138-177

This paper was translated forReading Classics: Euler, a VIGRE working group
at The Ohio State University. Thanks to Vitaly Bergelson for helping me select
this paper and to Warren Sinnott for his assistance in translating.

1. Consider any continued fraction, which is

s = a +
1

b + 1
c+ 1

d+...

First, let us find simple fractions that continuously approach the values. We
construct the fractions as follows, so that

A
A = a, B

B = a + 1
b
, C

C = a + 1
b+ 1

c

, D
D = a + 1

b+ 1

c+ 1
d

, etc...

Therefore, the last of these fractions expresses the value of the proposed con-
tinued fraction. It will be shown immediately

A
A = a

1
, B

B = ab+1
b

, C
C = abc+a+c

bc+1
.

Let us investigate the way in which these fractions further proceed.

2. It is apparent that the second fraction arises from the first fraction, when in
place ofa,

a +
1

b

is written. In the same way the third arises from the second, if in place ofb,

b +
1

c
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is written, and the fourth from the third, if in place ofc,

c +
1

d

is written, and onward in this way. Here therefore, if the indefinite fractionP
P is

formed from the indicesa, b, c, d, ... , p and the pairQQ and R
R are the fractions

which correspond to the indicesa, b, c, d, ... , q anda, b, c, d, ... , r, it is clear
from the fractionP

P the next oneQ
Q , is obtained if

p +
1

q

is written in place ofp, and fromQ
Q , R

R will next arise, if

q +
1

r

is written in place ofq.

Now, it is apparent that in the fractionPP both the numeratorP and the denom-
inatorP involve all the lettersa, b, c, d, ... ,p, so that none of them have powers
greater than one. If all these indicesa, b, c, d, e, etc... are considered as unequal,
a square or higher power of one of them will never occur anywhere.

3. Because of this fact terms of two kinds occur inP and inP, while some do
not contain the indexp, others do involve this factor; the numeratorP will have
the form of this kindM + Np, and in the same way the denominatorP will have
this formM+Np, so that it is

P
P = M+Np

M+Np
.

Therefore, we write this form in place ofp

p + 1
q
,

so that we obtain the fractionQQ , which therefore, after we will multiply above and
below byq, will be

Q
Q = Mq+Npq+N

Mq+Npq+N = N+(M+Np)q
N+(M+Np)q

.
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Now, so that we obtain the fractionRR , in place ofq let us writeq + 1
r
, and after-

wards we will multiply above and below byr, producing

R
R = Nr+(M+Np)qr+M+Np

N r+(M+Np)qr+M+Np
,

or

R
R = M+Np+(N+Mq+Npq)r

M+Np+(N+Mq+Npq)r
.

Therefore, sinceP = M + Np andQ = N + (M + Np)q, it will be

R = P + Qr.

In the same way, sinceP = M+Np andQ = N + (M+Np)q, it will be

R = P +Qr.

So it is clear how any of our simple fractions are able to be formed easily from the
two preceding fractions.

4. Look, therefore it is a plain enough demonstration, and the well known
methods for the conversion of continued fractions to simple fractions are clear,
where both the numerators and the denominators are formed from the previous
two by the same rule. Therefore, since for the first fractionA = a, A = 1, then
B = ab + 1 andB = b, from these two fractions, all the rest are able to be
formed by easy effort. So that it is clear, let us write the corresponding fractions
in succession with the individual indicesa, b, c, d, e, etc...

a b c d e f g etc.
A
A

B
B

C
C

D
D

E
E

F
F

G
G etc.

and next both the numerators and the denominators will be determined in the same
way from the two preceding by the rule.

For the numerators: For the denominators:
A = a A = 1
B = Ab + 1 B = b
C = Bc + A, C = Bc +A
D = Cd + B, D = Cd + B
E = De + C, E = De + C
F = Ef + D, F = Ef +D

3



From which it is clear in the sequence of numerators that the previous term of
the progression should be1 by the rule; however, in the series of denominators the
previous term should be0 by the first limit, so that the first preceding fraction is
1
0
.

5. Since it is clear that these fractions

A
A , B

B , C
C , D

D , E
E , F

F , G
G , etc.

continually approach closer to the truth and they draw close to the value of the
continued fraction, it is necessary that the differences between two adjacent frac-
tions continuously become less. We will disclose why these differences become
smaller in succession. Therefore, first we will have

II − I = BA−AB
AB .

Now, in place ofB andB the values from the table are substituted and it will
produce the numeratorAAb+A−Ab, which becauseA = 1 reduces to1, so that

B
B −

A
A = 1

AB .

Again it will be

III − II = CB−BC
BC ,

if the assigned values are written in place ofC andC, the numerator will be

B(Bc + A)−B(Bc +A) = AB −BA.

Moreover, we saw thatBA−AB = 1, from which this numerator will be−1 and
therefore

C
C −

B
B = − 1

BC .

Again

IV − III = DC−CD
CD ,

where, if the assigned values are written in place ofD andD,

CD − CD = C(Cd + B)− C(Cd + B) = BC − CB.

Moreover, we saw thatCB −BC = −1, from which it is concluded
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D
D −

C
C = + 1

CD .

And it is found for the following

E
E −

D
D = − 1

DE , F
F −

E
E = + 1

EF , etc.

6. Hence we are able to define our fractions one by one from the first oneA
A =

a alone and we will be able to define the script letters alone from the progressing
fractions, since we will have

B
B = a + 1

AB ,

C
C = a + 1

AB −
1
BC ,

D
D = a + 1

AB −
1
BC + 1

CD ,

E
E = a + 1

AB −
1
BC + 1

CD −
1
DE ,

F
F = a + 1

AB −
1
BC + 1

CD −
1
DE + 1

EF ,

etc.

7. Therefore, since the last or infinitesimal term of these fractions exhibits the
true value, we have the proposed continued fraction designate with the letters

s = a +
1

AB
− 1

BC
+

1

CD
− 1

DE
+

1

EF
− 1

FG
+ etc.;

and so we reduced the continued fraction to an infinite series of fractions, all the
numerators of which are alternately+1 or−1, and the denominators are in terms
of script letters, so that it is not much work to determine the values of the letters
A, B, C, etc..., but it suffices to disentangle the next formulas

A = 1, B = b, C = Bc +A, D = Cd + B, E = De + C, etc.

8. Since every expression begins with the quantity a, for brevity it will be
omitted from the calculation, because the script letters do not depend on it; from
which, we come to this point so that the proposed continued fraction

s =
1

b + 1
c+ 1

d+...
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if script letters are defined by these indicesb, c, d, e, etc., where indeed it remains
A = 1, it will always be

s =
1

AB
− 1

BC
+

1

CD
− 1

DE
+

1

EF
− 1

FG
+ etc.;

the progression which continues infinitely. If the continued fraction is extended to
infinity, it will correspond to the limiting value.

9. Therefore, since in this way we will transform the continued fraction into a
regular series, it will not be difficult to convert any proposed series into a contin-
ued fraction. Therefore, let this be the proposed infinite series

s =
1

α
− 1

β
+

1

γ
− 1

δ
+ etc.,

the numerators of which are all1 endowed with alternating sign+ and−, the de-
nominators constitute any progression, which are non-negative, all are contained
in this form, not onlyα, β, γ, δ, but also the fractional numbers from the end of
the series are not negative.

10. Let us determine the continued fraction that is equal to this series. First let
us make

AB = α, BC = β, CD = γ,

and thus again, we will find the next values fromA = 1:

B = α C = β
α

D = αγ
β

E = βδ
αγ

F = αγε
βδ

G = βδζ
αγε

H = αγεν
βδζ

I = βδζθ
αγεν

etc.
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Therefore, now all that remains is to elicit from the values of script letters the in-
dicesb, c, d, e, etc. for the continued fraction.

11. From the formula, the script letters above are determined by the indices of
the continued fractions, in turn, let us define from these same letters the indicesb,
c, d, e, f , etc. and we will observe

b = B, c = C−A
B , d = D−B

C , e = E−C
D , f = F−D

E , etc.

Therefore, we unroll these values in succession, while we substitute the previously
determined formulas in place of the lettersB, C,D, etc.

12. FirstB = α, from whichb = α ; next

C − A =
β − α

α
,

from which

c =
β − α

α2
.

Again it will be

D − B =
α(γ − β)

β
,

from which

d =
α2(γ − β)

β2
.

Then we will have

D − C =
β(δ − γ)

αγ
,

and here

e =
β2(δ − γ)

α2γ2
.

7



And in the same way from

F −D =
αγ(ε− δ)

βδ
,

it will be

f =
α2γ2(ε− δ)

β2δ2
.

In the same way from

G − E =
βδ(ζ − ε)

αγε
,

it will be

g =
β2δ2(ζ − ε)

α2γ2ε2
.

etc.

Therefore, by this reasoning, the indices of the continued fraction, which we
are seeking, are expressed in the following way:

b = α, c =
β − α

α2
,

d =
α2(γ − β)

β2
, e =

β2(δ − γ)

α2γ2
,

f =
α2γ2(ε− δ)

β2δ2
, g =

β2δ2(ζ − ε)

α2γ2ε2
,

h =
α2γ2ε2(η − ζ)

β2δ2ζ2
, i =

β2δ2ζ2(θ − η)

α2γ2ε2η2

etc.

13. Therefore, it is enough to substitute these values in place of the indicesb,
c, d, e, f , etc in the continued fraction.
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s = a +
1

b + 1
c+ 1

d+...

Since these values are fractions, we extract a form from the continued fraction
quite easily. First let us multiply by the denominators of the discovered values,
and it will be

b = α, α2c = β − α,
β2d = α2(γ − β), α2γ2e = β2(δ − γ),
β2δ2f = α2γ2(ε− δ), α2γ2ε2g = β2δ2(ζ − ε),
β2δ2ζ2h = α2γ2ε2(η − ζ), α2γ2ε2η2i = β2δ2ζ2(θ − η)

etc.

14. Now let us transform the continued fraction in this way, so that the the ap-
propriate formulae occur in place of the indices, the values of which we assigned
here. Next, of course, let us multiply above and below byα2; third, byβ2; fourth,
by α2γ2; fifth, by β2δ2; sixth, byα2γ2ε2, etc. so that the result is this form

s =
1

b +
α2

α2c +
α2β2

β2d +
α2β2γ2

α2γ2e +
α2β2γ2δ2

β2δ2f + etc.

15. But if we substitute the above determined values in place of the new in-
dicesα2c, β2d, α2γ2e, etc., this continued fraction will spring forth

s =
1

α +
α2

β − α +
α2β2

α2(γ − β) +
α2β2γ2

β2(δ − γ) +
α2β2γ2δ2

α2γ2(ε− δ) + etc.

If we consider this form carefully, we recognize that the third fraction is able
to be factored above and below byα2, then the fourth byβ2, the fifth byγ2, the
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sixth byδ2, etc.; this continued fraction springs forth

s =
1

α +
α2

β − α +
β2

γ − β +
γ2

δ − γ +
δ2

ε− δ + etc.
Therefore, let us next establish

THEOREM 1

16. If such a infinite series will have been proposed

s =
1

α
−

1

β
+

1

γ
−

1

δ
+

1

ε
− etc.,

a continued fraction of the form

1

s
= α +

α2

β − α +
β2

γ − β +
γ2

δ − γ + etc.

can always be formed from it.

17. We elicited this reduction from the consideration of continued fractions
by many round-about means. We certainly satisfied our proposition, since we
transformed any series into a continued fraction. A direct method is desired, by
which the continued fraction equal to a given series can be immediately derived,
without these ambiguities. Therefore, such a method, will be illustrated by the
theory of continued fractions extraordinarily, which I will explain here.

PROBLEM 1

18. Transform the proposed infinite series

s =
1

α
− 1

β
+

1

γ
− 1

δ
+

1

ε
− etc.,

into a continued fraction.
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Solution

Since,

s =
1

α
− 1

β
+

1

γ
− 1

δ
+

1

ε
− etc.,

let us set

t =
1

β
− 1

γ
+

1

δ
− 1

ε
+ etc.,

and

u =
1

γ
− 1

δ
+

1

ε
− etc.,

etc...
Therefore,

s =
1

α
− t =

1− αt

α

from which it becomes

1

s
=

α

1− αt
= α +

α2t

1− αt
.

Then, it is

α2t

1− αt
=

α2

−α + 1
t

,

from which it becomes

1

s
= α +

α2

−α + 1
t

.

Therefore, in the same way

1

t
= β +

β2

−β + 1
u

and

1

u
= γ +

γ2

−γ + 1
v
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etc.,
from these substituted values, the next continued fraction will be obtained

1

s
= α +

α2

β − α +
β2

γ − β +
γ2

δ − γ + etc.

which is the very form given in the theorem.

19. If the proposed series is

s = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ etc. = log 2.

Since

α = 1, β = 2, γ = 3, δ = 4, etc.

it will be

1

log 2
= 1 +

1 · 1

1 +
2 · 2

1 +
3 · 3

1 + etc.

.

However, if we take this series

s = 1− 1

3
+

1

5
− 1

7
+

1

9
− etc. =

π

4
.

Since

α = 1, β = 3, γ = 5, δ = 7, etc.

then

4

π
= 1 +

1 · 1

2 +
3 · 3

2 +
5 · 5

2 + etc.
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which is the very continued fraction once mentioned by Brouncker.

20. Let us take

s =

∫
xm−1dx

1 + xn
,

and after integrating, let us setx = 1; because of this the same value ofs will be
expressed by the following series

s =
1

m
− 1

m + n
+

1

m + 2n
− 1

m + 3n
+ etc.,

so that

α = m, β = m + n, γ = m + 2n, δ = m + 3n, etc.;

therefore, the following continued fraction emerges here

1

s
= m +

m2

n +
(m + n)2

n +
(m + 2n)2

n + etc.

which was already given by [some reference].

21. However, if the proposed series is

s =
1

α
+

1

β
+

1

γ
+

1

δ
+

1

ε
+ etc.,

for which all the terms are positive, it is enough work that in the above continued
fraction in place of the lettersβ, δ, η, θ, etc. the letters−β, −δ, −η, and−θ, etc.
are written; then it will become

1

s
= α +

α2

−β − α +
β2

γ + β +
γ2

−δ − γ +
δ2

ε + δ + etc.
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which is easily transformed into this form

1

s
= α−

α2

α + β −
β2

β + γ −
γ2

γ + δ + etc.

.

22. The proposed series itself is able to be transformed by many methods,
from which many other continued fractions are obtained directly. Let us assess
carefully some forms of this kind here. Let

α = ab, β = bc, γ = cd, δ = de, etc.,

so that this series is obtained

s =
1

ab
− 1

bc
+

1

cd
− 1

de
+ etc.,

and here this continued fractions will be formed

1

s
= ab +

a2b2

b(c− a) +
c2d2

d(e− c) + etc.

which is easily reduced to the next form

1

s
= ab +

a2b

c− a +
bc

d− b +
cd

e− c + etc.
or

1

as
= b +

ab

c− a +
bc

d− b +
cd

e− c + etc.

which is supplied by our next Theorem.
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THEOREM II

23. If the proposed series is of this form

s =
1

ab
− 1

bc
+

1

cd
− 1

de
+

1

ef
− etc.,

from this, the following continued fraction springs forth

1

as
= b +

ab

c− a +
bc

d− b +
cd

e− c +
de

f − d + etc.

24. This form, although easily derived from its predecessor, for that reason it
is worth noting because it allows a continued fraction of quite a different form,
from which it will be worth the trouble to adapt examples given above to this
form. Since it was given

log 2 = 1− 1

2
+

1

3
− 1

4
+

1

5
− etc.,

it will be

log 2− 1 = −1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ etc.

and adding these series gives

2 log 2− 1 =
1

1 · 2
− 1

2 · 3
+

1

3 · 4
− 1

4 · 5
+

1

5 · 6
− etc.

Therefore, here it is

s = 2 log 2− 1

and

a = 1, b = 2, c = 3, d = 4, etc.;
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Therefore this continued fraction is formed

1

2 log 2− 1
= 2 +

1 · 2

2 +
2 · 3

2 +
3 · 4

2 + etc.

.

25. In the same way, because

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− etc.,

it will be

π

4
− 1 =

1

3
+

1

5
− 1

7
+

1

9
− etc.,

and the sum of that series gives

π

2
− 1

2
=

2

1 · 3
− 2

3 · 5
+

2

5 · 7
− 2

7 · 9
+ etc.

Therefore, here it will be

s =
π

4
− 1

2
,

then

a = 1, b = 3, c = 5, d = 7, etc.

from which the continued fraction will arise

4

π − 2
= 3 +

1 · 3

4 +
3 · 5

4 +
5 · 7

4 +
7 · 9

4 + etc

.

26. Now let us consider this even more general transformation. Let the value
of the integral ∫

xm−1dx

1 + xn
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be denoted by∆, after integrating setx = 1, and since it was as we saw above in
§20,

∆ =
1

m
− 1

m + n
+

1

m + 2n
− etc.,

it will be

∆− 1

m
= − 1

m + n
+

1

m + 2n
− etc.,

adding the series it becomes

2∆− 1

m
=

n

m(m + n)
− n

(m + n)(m + 2n)
+

n

(m + 2n)(m + 3n)
− etc.;

dividing byn it will be

2m∆− 1

mn
=

1

m(m + n)
− 1

(m + n)(m + 2n)
+

1

(m + 2n)(m + 3n)
− etc.

Therefore, here we have

s =
2m∆− 1

mn
,

then

a = m, b = m + n, c = m + 2n, d = m + 3n, etc.

because of which the continued fraction will be in this form

n

2m∆− 1
= m + n +

m(m + n)

2n +
(m + n)(m + 2n)

2n +
(m + 2n)(m + 3n)

2n +
(m + 3n)(m + 4n)

2n + etc.

which does not have a simpler form.

27. Let us now grant to the first continued fraction

1

α
− 1

β
+

1

γ
− 1

δ
+ etc.
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arbitrary numerators and let

s =
a

α
− b

β
+

c

γ
− d

δ
+ etc.

and it is proper to writeα
a
, β

b
, γ

c
, δ

d
, etc. in place of the lettersα, β, γ, δ, etc. in the

first Theorem. Because of this the continued fraction will be

1

s
=

α

a
+

α2

a2

β
b
− α

a
+

β2

b2

γ
c
− β

b
+

γ2

c2

δ
d
− γ

c
+ etc.

.

Now let the fraction be multiplied above and below byab, next bybc, third bycd,
and so on; then multiplying bya, this will be obtained

a

s
= α +

α2b

aβ − bα +
acβ2

bγ − cβ +
bdγ2

cδ − dγ + etc.

From here the following is concluded.

THEOREM III

28. If the proposed infinite series is of this form

s =
a

α
− b

β
+

c

γ
− d

δ
+ etc.,

then the following continued fraction will be formed from it

a

s
= α +

α2b

aβ − bα +
acβ2

bγ − cβ +
bdγ2

cδ − dγ + etc.

.

29. In order to illustrate the proposition, consider this series

1

1
− 2

2
+

3

3
− 4

4
+

5

5
− etc. =

1

2
,
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so thats = 1
2
; then the continued fraction will be

2 = 1 +
2

0 +
3 · 4

0 +
8 · 9

0 +
15 · 16

0 + etc.

which reduces to this infinite product

2 = 1 +
2 · 12 · 2 · 4 · 32 · 4 · 6 · 52 · 6 · 8 · 72 · etc.

1 · 3 · 22 · 3 · 5 · 42 · 5 · 7 · 62 · 7 · 9 · 82 · etc.
,

this is not easily observed to be true, since the number of factors in the numerator
and denominator are not able to be set as equal, and although they both are infi-
nite. No one is able to be doubtful, in fact, that the value of that product is= 1.

30. Let us consider now this series

s =
1

2
− 2

3
+

3

4
− 4

5
+

5

6
− etc.,

the sum iss = log 2− 1
2
. Because

a = 1, b = 2, c = 3, d = 4, etc.
α = 2, β = 3, γ = 4, δ = 5, etc.,

the continued fraction will be

1

log 2− 1
2

= 2 +
1 · 2 · 22

−1 +
1 · 3 · 32

−1 +
2 · 4 · 42

−1 +
3 · 5 · 52

−1 + etc.

31. If we take this series

s =
2

1
− 3

2
+

4

3
− 5

4
+

6

5
− etc.,

the value of which is1
2

+ log 2, we will have
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a = 2, b = 3, c = 4, d = 5, etc.
α = 1, β = 2, γ = 3, δ = 4, etc.,

here the continued fraction emerges

2
1
2

+ log 2
= 1 +

1 · 3 · 12

1 +
2 · 4 · 22

1 +
3 · 5 · 32

1 +
4 · 6 · 42

1 + etc.
or

4

2 log 2 + 1
2

= 1 +
13 · 3

1 +
23 · 4

1 +
33 · 5

1 + etc.

PROBLEM II

Transform this infinite series

s =
x

α
− x2

β
+

x3

γ
− x4

δ
+ etc.

into a continued fraction.

32. Consider the following series, formed from the proposed series:

t =
x

β
− x2

γ
+

x3

δ
− x4

ε
+ etc.

and continuing

u =
x

γ
− x2

δ
+

x3

ε
− x4

ζ
+ etc.

v =
x

δ
− x2

ε
+

x3

ζ
− x4

η
+ etc.

etc.
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and it will be

s =
x

α
− tx =

x(1− αt)

α
;

from which it becomes

x

s
=

α

1− αt
= α +

α2t

1− αt
= α +

α2

−α + 1
t

.

Therefore, here it will be

x

s
= α +

α2x

−αx + x
t

;

and in the same way it will be

x

t
= β +

β2x

−βx + x
u

.

Therefore, if we substitute all these values in order, this continued fraction emerges

x

s
= α +

α2x

β − αx +
β2x

γ − βx +
γx

δ − γx + etc.

.

33. If we write x
y

in place ofx here, so that we have this series

s =
x

αy
− x2

βy2
+

x3

γy3
− x4

δy4
+ etc.

then the continued fraction will be

x

sy
= α +

α2 x
y

β − ax
y

+
β2 x

y

y − βx
y

+ etc.

which gives one free from the fractions in the numerators and denominotors

x

sy
= α +

α2x

βy − αx +
β2xy

γy − βx +
γ2xy

δy − βx + etc.

,
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from which the next part emerges.

THEOREM IV

34. If the infinite series will have been of this form

s =
x

αy
− x2

βy2
+

x3

γy3
− x4

δy4
+ etc.,

it is possible to form the following continued fraction from this series

x

s
= αy +

α2xy

βy − αx +
β2xy

γy − βx +
γ2xy

δy − γx +
δ2xy

εy − δx + etc.

.

35. Since

log (1 +
x

y
) =

x

y
− x2

2y2
+

x3

3y3
− x4

4y4
+ etc.,

having set

s = log (1 +
x

y
)

it will be α = 1, β = 2, γ = 3, δ = 4, etc.
and hence this continued fraction emerges

x

log (1 + x
y
)

= y +
xy

2y − x +
4xy

3y − 2x +
9xy

4y − 3x + etc.

.

36. Since an arc, with tangent t, is expressed by this series

arctan t = t− t3

3
+

t5

5
− t7

7
+

t9

9
− etc.,

and it will be

t arctan t =
t2

1
− t4

3
+

t6

5
− t8

7
+

t10

9
− etc.
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Now lettingt2 = x
y
, so thatt =

√
x
y
, and it becomes

√
x

y
A tan

√
x

y
=

x

y
− x4

3y2
+

x3

5y3
− x4

7y4
+ etc.

Therefore, here

s =

√
x

y
A tan

√
x

y
,

then

α = 1, β = 3, γ = 5, δ = 7, etc.;

from which the continued fraction will emerge

√
xy

A tan
√

x
y

= y +
xy

3y − x +
9xy

5y − 3x +
25xy

7y − 5x + etc.

.

Just as ifx = 1 andy = 3,

Atan
1√
3

=
π

6

this continued fraction will be

6
√

3

π
= 3 +

1 · 3

8 +
3 · 9

12 +
3 · 25

16 + etc.

.

37. If we write in place of the lettersα, β, γ, δ, etc. in the theorem, the
fractions

α
a
, β

b
, γ

c
, δ

d
, etc.

so that we have this series

s =
ax

αy
− bx2

βy2
+

cx2

γy2
− dx4

δy4
+ etc.,
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so the continued fraction takes this form

x

s
=

α

a
y +

α2 xy
a2

β
b
y − α

a
x +

β2 xy
b2

γ
c
y − β

b
x +

γ2 xy
c2

δ
d
y − γ

c
x + etc.

.

Here, it is first multiplied bya, then the numerator and denominator of the first
fraction are multiplied byab, then bybc, third by cd, etc. and the continued
fraction takes on this form

ax

s
= ay +

α2bxy

αβy − bαx +
βacxy

bγy − cβx +
γ2bdxy

cδy − dγx + etc.

The reward of this work will be given next.

Theorem V

38. If the proposed infinite series will be of this form

s =
ax

αy
− bx2

βy2
+

cx3

γy3
− dx4

δy4
+ etc.

the following continued fraction will be formed from it

ax

s
= ay +

α2bxy

αβy − bαx +
β2acxy

bγy − cβx +
γ2bdxy

cδy − dγx + etc.

Problem III

Convert this proposed infinite series

s =
1

α
− 1

αβ
+

1

αβγ
− 1

αβγ
+ etc.

into a continued fraction.
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Solution

39. From the proposed series we form the following series

t =
1

β
− 1

βγ
+

1

βγδ
− 1

βγδε
+ etc.

u =
1

γ
− 1

γδ
+

1

γδε
− 1

γδεζ
+ etc.

etc.
and we will have

s = 1−t
α

, t = 1−u
β

, u = 1−v
γ

, etc.

therefore, we deduce

1

s
=

α

1− t
= α +

αt

1− t
= α +

α

−1 + 1
t

.

In the same way it will be

1

t
= β +

β

−1 +
1

u

,
1

u
= γ +

γ

−1 +
1

v

, etc.

from which we obtain this continued fraction by substituting each expression into
the previous one

1

s
= α +

α

β − 1 +
β

γ − 1 +
γ

δ − 1 + etc.

from which we deduce the next theorem.

Theorem VI

40. If the proposed infinite series will be of this type

s =
1

α
− a

αβ
+

1

αβγ
− 1

αβγ
+ etc.
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then it is possible to form this continued fraction

1

s
= α +

α

β − 1 +
β

γ − 1 +
γ

δ − 1 + etc.

41. If e denotes the number whose logarithm is one, then it is known that

1

e
= 1− 1

1
+

1

1 · 2
− 1

1 · 2 · 3
+

1

1 · 2 · 3 · 4
− etc.

or

e− 1

e
=

1

1
− 1

1 · 2
+

1

1 · 2 · 3
− 1

a · 2 · 3 · 4
+ etc.

Therefore, heres = e−1
e

, then

α = 1, β = 2, γ = 3, δ = 4, etc.;

from which this continued fraction arises

e

e− 1
= 1 +

1

1 +
2

2 +
3

3 + etc.

42. Then
1

1 +
2

2 +
3

3 + etc.

=
1

e− 1

since we are able to demonstrate without much difficulty, that if

a

a +
b

b +
c

c + etc.

= s
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then

a +
a

a +
b

b +
c

c + etc.

=
s

1− s
,

and in this case it is

s = 1
e−1

, a = 1, b = 2, c = 3, etc.

it becomes

1 +
1

1 +
2

2 +
3

3 +
3

4 + etc.

=
1

e− 2
.

43. If in place of the lettersα, β, γ, δ, etc. in the series in Theorem VI, the
fractionsα

a
, β

b
, γ

c
, δ

d
, etc. are written, so that

s =
a

α
− ab

αβ
+

abc

αβγ
− abcd

αβγδ
+ etc.,

here the continued fraction will be

1

s
=

α

a
+

α
a

β
b
− 1 +

β
b

γ
c
− 1 +

γ
c

δ
d
− 1 + etc.

If it is first multiplied by a, then the first fraction is multiplied above and below
by b, the second byc, the third byd, etc., this form arises

a

s
= α +

αb

β − b +
βc

γ − c +
γd

δ − d + etc.

which is included in the next theorem.
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Theorem VII

44. If the proposed infinite series will be of the form

s =
a

α
− ab

αβ
+

abc

αβγ
− abcd

αβγδ
+ etc.,

then this continued fraction arises

a

s
= α +

αb

β − b +
βc

γ − c +
γd

δ − d + etc.

45. Let us apply this to the next infinite series

s =
1

2
− 1 · 3

2 · 4
+

1 · 3 · 5
2 · 4 · 6

− 1 · 3 · 5 · 7
2 · 4 · 6 · 8

+ etc.,

the sum of which iss =
√

2−1√
2

; since

a = 1 b = 3 c = 5 d = 7 etc.
α = 2 β = 4 γ = 6 δ = 8 etc.;

therefore the continued fraction here will be
√

2√
2− 1

= 2 +
2 · 3

1 +
4 · 5

1 +
6 · 7

1 + etc.

.

So subtracting one it will be

1√
2− 1

= 1 +
2 · 3

1 +
4 · 5

1 +
6 · 7

1 + etc.

,

which produces
√

2 = 1 +
1 · 1

1 +
2 · 3

1 +
4 · 5

1 +
6 · 7

1 + etc.

.
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Problem IV

Convert the proposed infinite series of this form

s =
x

α
− x2

αβ
+

x3

αβγ
− x4

αβγδ
+ etc.

into a continued fraction.

Solution

Let us state that

t =
x

β
− x2

βγ
+

x3

βγδ
− x4

βγδε
+ etc.

and

u =
x

γ
− x2

γδ
+

x3

γδε
− x4

γδεζ
+ etc.

so that

s =
x− tx

α
;

and then
x

s
=

α

1− t
= α +

αt

1− t
.

So it is
αt

1− t
=

α

−1 + 1
t

=
αx

−x + x
t

and it will be
x

s
= α +

αx

−x + x
t

.

In the same way it will be discovered that

x

t
= β +

βx

−x + x
u

,

x

u
= γ +

γx

−x + x
v

, etc.
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If each of these values are substituted in turn into the preceding fraction, the fol-
lowing continued fraction will be obtained

x

s
= α +

αx

β − x +
βx

γ − x +
γx

δ − x + etc.

and from this arises

Theorem VIII

47. If the proposed infinite series will be of this kind

s =
x

α
− x2

αβ
+

x3

αβγ
− x4

αβγδ
+ etc.

then the next continued fraction will be formed from it

x

s
= α +

αx

β − x +
βx

γ − x +
γx

δ − x + etc.

48. If in place ofx we will write x
y
, so that we have this infinite series

s =
x

αy
− x2

αβy2
+

x3

αβγy3
− x4

αβγδy4
+ etc.

the next continued fraction arises

x

s
= αy +

αxy

βy − x +
βxy

γy − x +
γxy

δy − x + etc.

49. Let us supposeα = 1, β = 2, γ = 3, δ = 4, etc. so that

s =
x

y
− x2

1 · 2 · y2
+

x3

1 · 2 · 3y3
− x4

1 · 2 · 3 · 4y4
+ etc.
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where

s = 1− e
−x
y ,

and here this continued fraction is formed

x

1− e
−x
y

= y +
xy

2y − x +
2xy

3y − x +
3xy

4y − x + etc.

=
xe

x
y

e
x
y − 1

.

The next special formulas will be obtained from this assumingx = 1, and the
numbers1, 2, 3, 4, 5, etc. in succession in place ofy:

e

e− 1
= 1 +

1

1 +
2

2 +
3

3 + etc.

√
e√

e− 1
= 2 +

2

3 +
4

5 +
6

7 + etc.

3
√

e
3
√

e− 1
= 3 +

3

5 +
6

8 +
9

11 + etc.

4
√

e
4
√

e− 1
= 4 +

4

7 +
8

11 +
12

15 + etc.

etc.

Problem V
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If the proposed series will be of this form

s =
ax

αy
− abx2

αβy2
+

abcx3

αβγy3
− abcdx4

αβγδy4
+ etc.,

convert this into a continued fraction.

Solution

50. From the proposed series let us next form

t =
bx

βy
− bcx2

βγy2
+

bcdx3

βγδy3
− bcdex4

βγδεy4
+ etc.,

u =
cx

γy
− cdx2

γδy2
+

cdex3

γδεy3
− cdefx4

γδεζy4
+ etc.,

so that
s =

ax

αy
(1− t)

and here
ax

s
=

αy

1− t
= αy +

αyt

1− t
.

It is
αyt

1− t
=

αy

−1 + 1
t

=
abxy

−bx + bx
t

,

from which it becomes
ax

s
= αy +

abxy

−bx + bx
t

;

in the same way from the relation

t =
bx

βy
(1− u)

it becomes
bx

t
= βy =

βcxy

−cx + cx
u

and so again. Having substituted these values, this continued fraction is produced

ax

s
= αy +

αbxy

βy − bx +
βcxy

γy − cx +
γdxy

δy − dx + etc.

.
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THEOREM IX

51. If the proposed series will be

s =
ax

αy
− abx2

αβy2
+

abcx3

αβγy3
− abcdx4

αβγδy4
+ etc.,

then the continued fraction

ax

s
= αy +

αbxy

βy − bx +
βcxy

γy − cx +
γdxy

δy − dx + etc.

.

will be formed.

52. Let us give an example from this theorem worth noting. Let us consider
this integral formula:

Z =

∫
zm−1dz(1 + zn)

k
n
−1.

It is supposed that the integral vanishes whenz = 0, and we put

Z = v(1 + zn)
k
n

and differentiating it is

dZ = zm−1dz(1 + zn)
k
n
−1 = dv(1 + zn)

k
n + kvzn−1dz(1 + zn)

k
n
−1,

which divided by(1 + zn)
k
n
−1 is

zm−1dz = dv(1 + zn) + kvzn−1dz

and, therefore,
dv

dz
(1 + zn) + kvzn−1 − zm−1 = 0.

53. Sincez is assumed to be very small, it becomes

Z =
zm

m
= v,
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then we seek to express the quantityv by an infinite series whose the first term is
the powerzm, the exponents of the terms in the sequence increase by the number
n; let us now find the infinite series forv

v = Azm −Bzm+n + Czm+2n −Dzm+3m + etc,

let us substitute that value into the differential equation and write the same powers
of z in the following way

dv
dz

= mAzm−1 − (m + n)Bzm+n−1 + (m + 2n)Czm+2n−1 − (m + 3n)Dzm+3m−1 +etc.
zndv

dz
= + mA − (m + n)B + (m + 2n)C -etc.

+kvzn−1 = + kA − kB + kC -etc
−zm−1 = −1

.

54. Now, if the individual powers of eachz are reduced to zero, the next values
will be obtained:

mA− 1 = 0, therefore A =
1

m
,

−(m + n)B + (m + k)A = 0, therefore B =
(m + k)A

m + n
,

(m + 2n)C − (m + n + k)B = 0, therefore C =
(m + n + k)B

m + 2n
,

−(m + 3n)D + (m + 2n + k)C = 0, therefore D =
(m + 2n + k)C

m + 3n
,

etc. etc.

55.Therefore, let us substitute these obtained values and now find the infinite
series forv:

v =
1

m
zm − m + k

m(m + n)
zm+n +

(m + k)(m + n + k)

m(m + n)(m + 2n)
zm+2n

−(m + k)(m + n + k)(m + 2n + k)

m(m + n)(m + 2n)(m + 3n)
zm+3n + etc.,

Let us reduce this series to the form of our theorem, let us represent the series in
this way
v = zm−n

m
{zn − m+k

m+n
z2n + (m+k)(m+n+k)

(m+n)(m+2n)
z3n − (m+k)(m+n+k)(m+2n+k)

(m+n)(m+2n)(m+3n)
z4n + etc.}

56. Since

Z =

∫
zm−1dz(1 + zn)

k
n
−1,
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let us set

V =
mZ

zm−n(1 + z)
k
n

,

so that

V = zn−m + k

m + n
z2n+

(m + k)(m + n + k)

(m + n)(m + 2n)
z3n−(m + k)(m + n + k)(m + 2n + k)

(m + n)(m + 2n)(m + 3n)
z4n+etc.,

therefore, the functionV of z must annihilate the differential form by integration,
which for whatever value ofz, the determined value is found. So we are able
to evaluate the integral so that it vanishes whenz = 0. We are able to assign the
values tov more easily when the value of the variablez is a fraction, let us assume
in general

zn =
x

y
,

so that this form arises

V =
x

y
=

(m + k)x2

(m + n)y2
+

(m + k)(m + n + k)x2

(m + n)(m + 2n)y2
−(m + k)(m + n + k)(m + 2n + k)x4

(m + n)(m + 2n)(m + 3n)y4
+etc,

which produces the series discussed in our theorem whens = V , then

a = 1, b = m + k, c = m + n + k, etc.,
α = 1, β = m + n, γ = m + 2n, etc.

57. Now from this integral the formula supplies us with the continued fraction:

x

V
= y +

(m + k)xy

(m + n)y − (m + k)x +
(m + n)(m + n + k)xy

(m + 2n)y − (m + n + k)x +
(m + 2n)(m + 2n + k)xy

(m + 3n)y − (m + 2n + k)x + etc.

the value of it is
xzm−n(1 + zn)

k
n

mZ
.

58. Let us consider this form for the sake of an example

Z =

∫
dz√

1 + z2
= log(z +

√
1 + z2);

therefore,m = 1, n = 2, k = 1, and it will become

V =
z log(z +

√
1 + z2)√

1 + z2
,
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the value of which is equal to this series

z2 − 2

3
z4 +

2 · 4
3 · 5

z6 − 2 · 4 · 6
3 · 5 · 7

z8 + etc.,

if we write x
y

in place ofz2, it becomes

V =

√
x√

x + y
log(

√
x +

√
x + y

√
y

) =
x

y
− 2

3
· x2

y2
+

2 · 4
3 · 5

x3

y3
− 2 · 4 · 6

3 · 5 · 7
x4

y4
+ etc.;

this form will be the continued fraction
√

x(x + y)

log(
√

x+
√

x+y√
y

)
= y +

1 · 2xy

3y − 2x +
3 · 4xy

5y − 4x +
5 · 6xy

7y − 6x +
7 · 8xy

9y − 8x + etc.

59. Therefore, if we letx = 1 andy = 1, we will have this continued fraction
√

2

log((1 +
√

2)
= 1 +

1 · 2

1 +
3 · 4

1 +
5 · 6

1 + etc.

the same value appearing as an infinite series is

log(1 +
√

2)√
2

= 1− 2

3
+

2 · 4
3 · 5

− 2 · 4 · 6
3 · 5 · 7

+
2 · 4 · 6 · 8
3 · 5 · 7 · 9

− etc.

But allowingx = 1 to remain, and lettingy = 2, the infinite series will be

1

2
− 2

3
· 1

4
+

2 · 4
3 · 5

· 1

8
− 2 · 4 · 6

3 · 5 · 7
· 1

16
+ etc.,

and the continued fraction will be
√

3

log(1+
√

3√
2

)
= 2 +

1 · 2 · 2

4 +
3 · 4 · 2

6 +
5 · 6 · 2
8 + etc.

.
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The next form is deduced from it
√

3

2 log(1+
√

3√
2

)
= 1 +

1

2 +
6

3 +
15

4 +
28

5 + etc.

where the numerators are alternating triangular numbers.

60. We come to this case, in whichx = 1 andy = 3, since irrational numbers
arise by this; in this case it will be

1

4
log 3 =

1

3
− 2

3
· 1

9
+

2 · 4
3 · 5

· 1

27
− 2 · 4 · 6

3 · 5 · 7
· 1

81
+ etc.;

the continued fraction will be

4

log 3
= 3 +

1 · 2 · 3

7 +
3 · 4 · 3

11 +
5 · 6 · 3

15 +
7 · 8 · 3

19 + etc.

.

61. Therefore, since I plainly explained this new method of transforming any
infinite series into a continued fraction, I rightly seem to me to have enriched
the study of continued fractions by no little means. Therefore, may I unite the
theorems having observed them worthy, by the fraction in the above§42

1

1 +
2

2 +
3

3 +
4

4 + etc.

=
1

e− 1

let us transform it into this

1 +
1

2 +
2

3 +
3

4 + etc.

=
1

e− 2
.
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Theorem X
62. If

s =
aA

αA +
bB

βB +
cC

γC + etc.

then
bs

a− αs
= βA +

cA

γB +
dB

δC +
eC

εD + etc.

.

Demonstration
Since

s =
aA

αA +
bB

βB +
cC

γC + etc.

If we divide the first fraction byA, the next byB, the third byC, etc, it produces

s =
a

α +
b
A

β +
c
B

γ +
d
C

δ + etc.

.

Now, we multiply the second fraction of the form above and below byA, the third
by B, the forth byC, and continuing so we will obtain this form

a

α +
b

βA +
cA

γB +
dB

δC + etc.

.

If we let

t = βA +
cA

γB +
dB

δC + etc.
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then
s =

a

α + b
t

=
at

αt + b
,

from which is found

t =
bs

a− αs
.

q. e. d.
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