IMMERSE 2008: Assignment 1

1.1) Let R be a ring. Prove
(a) $0 a=a 0=0$ for all $a \in R$.
(b) $(-a) b=a(-b)=-(a b)$ for all $a, b \in R$.
(c) $(-a)(-b)=a b$ for all $a, b \in R$.
(d) If R has an identity 1 , then the identity is unique and $-a=(-1) a$.
1.2) Problems involving zerodivisors:
(a) Prove that a unit element of a ring cannot be a zerodivisor.
(b) Let a and b be elements of a ring whose product $a b$ is a zerodivisor. Show that either a or b is a zerodivisor.
(c) Is the sum of two zerodivisors necessarily a zerodivisor? If so, give a prove. If not, give a counterexample.
1.3) Let R be an integral domain. Determine the units of $R[x]$.
1.4) Let R be an integral domain. Determine the units of $R \llbracket x \rrbracket$.
1.5) Let A be the ring of all functions from $[0,1]$ to \mathbb{R}.
(a) What are the units of A ?
(b) Prove that if f is not a unit and not zero, then f is a zero divisor.
1.6) Let A be the ring of all continuous functions from $[0,1]$ to \mathbb{R}.
(a) What are the units of A ?
(b) Give an example of an element which is neither a unit nor a zero divisor.
(c) Give an example of a zero divisor in A.
1.7) Determine whether the following polynomials are irreducible in the rings indicated. For those that are reducible, determine their factorization into irreducibles. The notation \mathbb{F}_{p} denotes the finite field $\mathbb{Z} / p \mathbb{Z}$, where p is a prime.
(a) $x^{2}+x+1$ in $\mathbb{F}_{2}[x]$.
(b) $x^{3}+x+1$ in $\mathbb{F}_{3}[x]$.
(c) $x^{4}+1$ in $\mathbb{F}_{5}[x]$.
(d) $x^{4}+10 x^{2}+1$ in $\mathbb{Z}[x]$.
1.8) Let R be a non-zero ring. Prove that the following are equivalent:
(a) R is a field.
(b) The only ideals in R are (0) and (1).
(c) Every homomorphism of R into a non-zero ring B is injective.
1.9) Let $f: R \rightarrow S$ be a ring homomorphism.
(a) Prove that $\operatorname{Ker} f$ is an ideal of R.
(b) Prove that if J is an ideal of S then $f^{-1}(J)$ is an ideal of R that contains $\operatorname{Ker} f$.
(c) Prove that if P is a prime ideal of S then $f^{-1}(P)$ is a prime ideal of R.
1.10) Let p be a prime and consider the ring of polynomials in x with coefficients in \mathbb{F}_{p}. This ring is denoted by $\mathbb{F}_{p}[x]$. Let $\varphi: \mathbb{F}_{p}[x] \rightarrow \mathbb{F}_{p}[x]$ be the map given by $\varphi(f)=f^{p}$. Prove that φ is an endomorphism. This map is called the Frobenius endomorphism.
1.11) Let $S \subseteq R$ and let I be an ideal of R. Prove that the following statements are equivalent:
(a) $S \subseteq I$.
(b) $(S) \subseteq I$.

This fact is useful when you want to show that one ideal is contained in another.
1.12) Prove the following equalities in the polynomial ring $R=\mathbb{Q}[x, y]$:
(a) $(x+y, x-y)=(x, y)$.
(b) $\left(x+x y, y+x y, x^{2}, y^{2}\right)=(x, y)$.
(c) $\left(2 x^{2}+3 y^{2}-11, x^{2}-y^{2}-3\right)=\left(x^{2}-4, y^{2}-1\right)$.

This illustrates that the same ideal can have many different generating sets and that different generating sets may have different numbers of elements.
1.13) Let R be a ring and let I, J and K be ideals of R.
(a) Prove that $I \cap J$ is an ideal of R.
(b) Prove that $I(J+K)=I J+I K$.
(c) Prove that if either $J \subseteq I$ or $K \subseteq I$ then $I \cap(J+K)=I \cap J+I \cap K$. (modular law)
1.14) In the ring of integers \mathbb{Z} compute the ideals:
(a) $(2)+(3)$,
(b) $(2)+(4)$,
(c) $(2)((3)+(4))$,
(d) $(2)(3) \cap(2)(4)$,
(e) $(6) \cap(8)$,
(f) $(6)(8)$
1.15) Let $\mathbb{Q}[x, y]$. Compute the ideals:
(a) $(x) \cap(y)$,
(b) $(x+y)^{2}$,
(c) $(x, y)^{2}$,
(d) $\left(x^{2}\right) \cap(x, y)$,
(e) $\left(x^{2}+x y\right) \cap\left(x y+y^{2}\right)$,
(f) $(x)+(y)$,
(g) $(x+1)+(x)$,
(h) $\left(x^{2}+x y\right)(x-y)$,
(i) $\left(x^{2}\right) \cap\left((x y)+\left(y^{2}\right)\right)$,
(j) $(x-y)\left((x)+\left(y^{2}\right)\right)$
1.16) Let R be a ring. The nilradical $\sqrt{0}$ of R is the set of nilpotent elements of R. Prove that $\sqrt{0}$ is an ideal, and if $\bar{x}^{n}=0$ in $R / \sqrt{0}$ for some n then $\bar{x}=0$.
1.17) Let R be a ring, and $I \subseteq \sqrt{0}$ an ideal, where $\sqrt{0}$ is the nilradical of R. Prove that if \bar{x} is a unit of R / I then x is a unit of R.
1.18) Let R be a ring and P a prime ideal of R. Let I be the ideal generated by all the idempotent elements of P. Prove that R / I has no non-trivial idempotents.

IMMERSE 2008: Extras 1

1.19) A (not neccessarily commutative) ring R is boolean if $x^{2}=x$ for all $x \in R$. If R is a boolean ring show that
(a) $2 x=0$ for all $x \in R$,
(b) R is commutative,
(c) every prime ideal p is maximal, and R / p is a field with two elements, and
(d) every finitely generated ideal is principal.
1.20) Let R be a ring in which every ideal of R except (1) is prime. Prove that R is a field.
1.21) For ideals I and J in a ring R their ideal quotient is

$$
\left(I:_{R} J\right)=\{x \in R \mid x J \subseteq I\} .
$$

Let R be a ring and let P be a finitely generated prime ideal of R with $\left(0:_{R} P\right)=0$. Prove that $\left(P:_{R} P^{2}\right)=P$.
1.22) Let K be a field and let R be the ring of polynomials in x over K subject to the condition that they contain no terms in x or x^{2}. Let I be the ideal in R generated by x^{3} and x^{4}. Prove that $x^{5} \notin I$ and $x^{5} I \subseteq I^{2}$. (This shows that the assumption that P is prime in 1.21 is necessary.)
1.23) Let F be a field and let $E=F \times F$. Define addition and multiplication in E by the rules:

$$
(a, b)+(c, d)=(a+c, b+d) \quad \text { and } \quad(a, b)(c, d)=(a c-b d, a d+b c)
$$

Determine conditions on F under which E is a field.
1.24) Find all the monic irreducible polynomials of degree less than or equal to 3 in $\mathbb{F}_{2}[x]$, and the same in $\mathbb{F}_{3}[x]$.
1.25) Construct fields of each of the following orders:
(a) 9
(b) 49
(c) 8
(d) 81
1.26) Exhibit all the ideals in the $\operatorname{ring} F[x] /(p(x))$, where F is a field and $p(x)$ is a polynomial in $F[x]$ (describe them in terms of the factorizations of $p(x)$).
1.27) An element x of a ring is idempotent if $x^{2}=x$. Prove that a local ring contains no non-trivial idempotents. (The trivial idempotents are 0 and 1.)

