IMMERSE 2008: Assignment 1

- **1.1)** Let R be a ring. Prove
 - (a) 0a = a0 = 0 for all $a \in R$.
 - (b) (-a)b = a(-b) = -(ab) for all $a, b \in R$.
 - (c) (-a)(-b) = ab for all $a, b \in R$.
 - (d) If R has an identity 1, then the identity is unique and -a = (-1)a.
- **1.2)** Problems involving zerodivisors:
 - (a) Prove that a unit element of a ring cannot be a zerodivisor.
 - (b) Let a and b be elements of a ring whose product ab is a zerodivisor. Show that either a or b is a zerodivisor.
 - (c) Is the sum of two zerodivisors necessarily a zerodivisor? If so, give a prove. If not, give a counterexample.
- **1.3)** Let R be an integral domain. Determine the units of R[x].
- **1.4)** Let R be an integral domain. Determine the units of R[[x]].
- **1.5)** Let A be the ring of all functions from [0, 1] to \mathbb{R} .
 - (a) What are the units of A?
 - (b) Prove that if f is not a unit and not zero, then f is a zero divisor.
- **1.6)** Let A be the ring of all continuous functions from [0, 1] to \mathbb{R} .
 - (a) What are the units of A?
 - (b) Give an example of an element which is neither a unit nor a zero divisor.
 - (c) Give an example of a zero divisor in A.
- 1.7) Determine whether the following polynomials are irreducible in the rings indicated. For those that are reducible, determine their factorization into irreducibles. The notation \mathbb{F}_p denotes the finite field $\mathbb{Z}/p\mathbb{Z}$, where p is a prime.
 - (a) $x^2 + x + 1$ in $\mathbb{F}_2[x]$.
 - (b) $x^3 + x + 1$ in $\mathbb{F}_3[x]$.
 - (c) $x^4 + 1$ in $\mathbb{F}_5[x]$.
 - (d) $x^4 + 10x^2 + 1$ in $\mathbb{Z}[x]$.
- **1.8)** Let R be a non-zero ring. Prove that the following are equivalent:
 - (a) R is a field.
 - (b) The only ideals in R are (0) and (1).
 - (c) Every homomorphism of R into a non-zero ring B is injective.

- **1.9)** Let $f : R \to S$ be a ring homomorphism.
 - (a) Prove that $\operatorname{Ker} f$ is an ideal of R.
 - (b) Prove that if J is an ideal of S then $f^{-1}(J)$ is an ideal of R that contains Ker f.
 - (c) Prove that if P is a prime ideal of S then $f^{-1}(P)$ is a prime ideal of R.
- **1.10)** Let p be a prime and consider the ring of polynomials in x with coefficients in \mathbb{F}_p . This ring is denoted by $\mathbb{F}_p[x]$. Let $\varphi : \mathbb{F}_p[x] \to \mathbb{F}_p[x]$ be the map given by $\varphi(f) = f^p$. Prove that φ is an endomorphism. This map is called the **Frobenius endomorphism**.
- **1.11)** Let $S \subseteq R$ and let I be an ideal of R. Prove that the following statements are equivalent:
 - (a) $S \subseteq I$.
 - (b) $(S) \subseteq I$.

This fact is useful when you want to show that one ideal is contained in another.

- **1.12)** Prove the following equalities in the polynomial ring $R = \mathbb{Q}[x, y]$:
 - (a) (x+y, x-y) = (x, y).
 - (b) $(x + xy, y + xy, x^2, y^2) = (x, y).$
 - (c) $(2x^2 + 3y^2 11, x^2 y^2 3) = (x^2 4, y^2 1).$

This illustrates that the same ideal can have many different generating sets and that different generating sets may have different numbers of elements.

- **1.13)** Let R be a ring and let I, J and K be ideals of R.
 - (a) Prove that $I \cap J$ is an ideal of R.
 - (b) Prove that I(J+K) = IJ + IK.
 - (c) Prove that if either $J \subseteq I$ or $K \subseteq I$ then $I \cap (J+K) = I \cap J + I \cap K$. (modular law)

1.14) In the ring of integers \mathbb{Z} compute the ideals:

- (a) (2) + (3),
 (b) (2) + (4),
- (c) (2)((3) + (4)),
- (d) $(2)(3) \cap (2)(4)$,
- (e) $(6) \cap (8)$,
- (f) (6)(8)
- **1.15)** Let $\mathbb{Q}[x, y]$. Compute the ideals:
 - (a) $(x) \cap (y)$,
 - (b) $(x+y)^2$,
 - (c) $(x, y)^2$,
 - (d) $(x^2) \cap (x, y),$

- (e) $(x^2 + xy) \cap (xy + y^2)$,
- (f) (x) + (y),
- (g) (x+1) + (x),
- (h) $(x^2 + xy)(x y)$,
- (i) $(x^2) \cap ((xy) + (y^2)),$
- (j) $(x-y)((x) + (y^2))$
- **1.16)** Let R be a ring. The nilradical $\sqrt{0}$ of R is the set of nilpotent elements of R. Prove that $\sqrt{0}$ is an ideal, and if $\overline{x}^n = 0$ in $R/\sqrt{0}$ for some n then $\overline{x} = 0$.
- **1.17)** Let R be a ring, and $I \subseteq \sqrt{0}$ an ideal, where $\sqrt{0}$ is the nilradical of R. Prove that if \overline{x} is a unit of R/I then x is a unit of R.
- **1.18)** Let R be a ring and P a prime ideal of R. Let I be the ideal generated by all the idempotent elements of P. Prove that R/I has no non-trivial idempotents.

IMMERSE 2008: Extras 1

- **1.19)** A (not neccessarily commutative) ring R is *boolean* if $x^2 = x$ for all $x \in R$. If R is a boolean ring show that
 - (a) 2x = 0 for all $x \in R$,
 - (b) R is commutative,
 - (c) every prime ideal p is maximal, and R/p is a field with two elements, and
 - (d) every finitely generated ideal is principal.
- **1.20)** Let R be a ring in which every ideal of R except (1) is prime. Prove that R is a field.
- **1.21)** For ideals I and J in a ring R their ideal quotient is

$$(I:_R J) = \{x \in R \mid xJ \subseteq I\}.$$

Let R be a ring and let P be a finitely generated prime ideal of R with $(0:_R P) = 0$. Prove that $(P:_R P^2) = P$.

- **1.22)** Let K be a field and let R be the ring of polynomials in x over K subject to the condition that they contain no terms in x or x^2 . Let I be the ideal in R generated by x^3 and x^4 . Prove that $x^5 \notin I$ and $x^5 I \subseteq I^2$. (This shows that the assumption that P is prime in 1.21 is necessary.)
- **1.23)** Let F be a field and let $E = F \times F$. Define addition and multiplication in E by the rules:

$$(a,b) + (c,d) = (a+c,b+d)$$
 and $(a,b)(c,d) = (ac-bd,ad+bc)$

Determine conditions on F under which E is a field.

1.24) Find all the monic irreducible polynomials of degree less than or equal to 3 in $\mathbb{F}_2[x]$, and the same in $\mathbb{F}_3[x]$.

1.25) Construct fields of each of the following orders:

- (a) 9
- (b) 49
- (c) 8
- (d) 81
- **1.26)** Exhibit all the ideals in the ring F[x]/(p(x)), where F is a field and p(x) is a polynomial in F[x] (describe them in terms of the factorizations of p(x)).
- **1.27)** An element x of a ring is *idempotent* if $x^2 = x$. Prove that a local ring contains no non-trivial idempotents. (The trivial idempotents are 0 and 1.)