IMMERSE 2008: Assignment 2

2.1) (a) Prove that M is an abelian group if and only if M is a \mathbb{Z}-module.
(b) Is it true that every abelian group is also a \mathbb{Q}-module? If so give a proof. If not give a counterexample.
2.2) Let A be a ring and let F be an A-module which has a basis $X=\left\{f_{1}, \ldots, f_{i}, \ldots\right\}$. Prove that the map

$$
\begin{aligned}
\varphi: F & \rightarrow \bigoplus_{|X|} A \\
f_{i} & \mapsto(0, \ldots, 0, \underbrace{1}_{i \mathrm{th} \text { spot }}, 0, \ldots)
\end{aligned}
$$

is an isomorphism of A-modules.
2.3) Let M and N be A-modules and let $\alpha: M \rightarrow N$ and $\beta: N \rightarrow M$ be A-module homomorphisms. Prove that if $\beta \circ \alpha=\mathbb{1}_{M}$ and $\alpha \circ \beta=\mathbb{1}_{N}$, then α and β are isomorphisms.
2.4) If M and N are submodules of an R-module K prove that
(a) $M \cap N$ is a submodule of K, and
(b) $M+N=\{m+n: m \in M, n \in N\}$ is a submodule of K.
(c) If $M+N$ and $M \cap N$ are finitely generated then M and N are finitely generated.
2.5) Let M be an R-module and N a submodule. Prove that if N and M / N are finitely generated then M is finitely generated.
2.6) Let M and N be submodules of K such that $K=M \oplus N$. Show that M and N are finitely generated if and only if K is finitely generated.
2.7) Let M be an R-module and let $\operatorname{Ann}(M)=\{x \in R: x M=0\}$. Prove that $\operatorname{Ann}(M)$ is an ideal of R.
2.8) Let M be an R-module and let I and J be ideals of R. Prove that

$$
I\left(\frac{M}{J M}\right) \simeq \frac{(I+J) M}{J M}
$$

2.9) Let R be a ring and let I and J be ideals of R. If R / I and R / J are isomorphic as rings, prove $I \simeq J$ as R-modules.
2.10) Let R be a ring and let I and J be ideals of R. If the R-modules R / I and R / J are isomorphic, prove $I=J$. Note, we really do mean equals!
2.11) Let V be the set of all infinite sequences of real numbers. In other words, any $\mathbf{v} \in V$ is of the form $\left(v_{1}, v_{2}, v_{3}, \ldots\right)$ with $v_{i} \in \mathbb{R}$. Define addition by

$$
\left(u_{1}, u_{2}, u_{3}, \ldots\right)+\left(v_{1}, v_{2}, v_{3}, \ldots\right)=\left(u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}, \ldots\right)
$$

and scalar multiplication by

$$
r\left(u_{1}, u_{2}, u_{3}, \ldots\right)=\left(r u_{1}, r u_{2}, r u_{3}, \ldots\right)
$$

for $r \in \mathbb{R}$. Then V is a vector space over \mathbb{R}. Determine whether or not each of the following subsets of V is a subspace of V :
(a) All sequences containing only a finite number of nonzero terms.
(b) All sequences of the form $\left(u_{1}, u_{2}, u_{3}, \ldots, u_{n}, 0,0, \ldots\right)$ where n is a fixed positive integer.
(c) All decreasing sequences, i.e., sequences where $u_{i+1} \leq u_{i}$ for all i.
(d) All convergent sequences, i.e., sequences for which $\lim _{i \rightarrow \infty} u_{i}$ exists.
2.12) Is $\mathbb{Q} \simeq \mathbb{Q} \oplus \mathbb{Q}$ as a \mathbb{Z}-module? Justify your answer with a proof.
2.13) Is $\mathbb{R} \simeq \mathbb{R} \oplus \mathbb{R}$ as a \mathbb{Z}-module? Justify your answer with a proof.
2.14) Let F be a field.
(a) Prove that every field is either of characteristic 0 or is of characteristic p, where p is a prime integer.
(b) Prove that a finite field has characteristic p, where p is a prime integer.
(c) Prove that every field is either a \mathbb{Z}_{p}-vector space or is a \mathbb{Q}-vector space.
(d) Suppose further that F is a finite field. Show that the order of F is p^{n}.
(e) Can there be a finite field of order 6 ?
2.15) Let R be a ring. Prove that if every R-module is free, then R must be a field. [Hint: it's enough to prove that R has no proper non-zero ideals.]
2.16) Compute the kernel and image of the following homomorphism:

$$
\begin{gathered}
\Phi=\left[\begin{array}{ccc}
x y & x z & y z \\
x-1 & y-1 & z-1
\end{array}\right] \\
A^{3} \xrightarrow{\Phi} A^{2}
\end{gathered}
$$

where $A=\mathbb{Q}[x, y, z]$.
2.17) Show that $\mathbb{Q}[x]$ is a \mathbb{Q}-vector space, that is, a free \mathbb{Q}-module. Additionally, show the following:
(a) Given $p_{0}(x), p_{1}(x), p_{2}(x), \cdots \in \mathbb{Q}[x]$ such that $\operatorname{deg}\left(p_{n}\right)=n$, show that $p_{0}, p_{1}, p_{2}, \ldots$ is a \mathbb{Q}-basis for $\mathbb{Q}[x]$.
(b) Show that $p_{n}(x)=\binom{x+n}{n}$ for $n \in \mathbb{Z}, n \geq 0$ is a \mathbb{Q}-basis for $\mathbb{Q}[x]$.
2.18) A polynomial $p(x) \in \mathbb{Q}[x]$ is called integer-valued if $p(x) \in \mathbb{Z}$ for all $x \in \mathbb{Z}$. We will denote the set of integer valued polynomials by $\mathbb{P} \mathbb{P}$.
(a) Explain why $\mathbb{P} \neq \mathbb{Z}[x]$.
(b) Prove that $\mathbb{I P}$ is a \mathbb{Z}-module.
(c) Show that any $p(x) \in \mathbb{I} \mathbb{P}$ of degree d may be written as:

$$
p(x)=\sum_{n=0}^{d} a_{n}\binom{x+n}{n} \quad a_{i} \in \mathbb{Q}
$$

(d) Define $\Delta p(x):=p(x+1)-p(x)$ and define $\Delta^{i} p(x)$ to be the i th iteration of Δ. Show that

$$
\Delta^{i} p(x)=\sum_{n=0}^{d-i} a_{n+i}\binom{x+i+n}{n}
$$

and conclude that $\Delta^{n} p(-i-1)=a_{i}$.
(e) Show that the set of integer-valued polynomials is a free \mathbb{Z}-module with basis:

$$
\left\{\binom{x+n}{n}: n \in \mathbb{N}\right\}
$$

IMMERSE 2008: Extras 2

2.19) Let R be a ring and A and B be R-algebras.
(a) If $A \simeq B$ as R-modules, is $A \simeq B$ as rings? Prove or disprove your conclusion.
(b) If $A \simeq B$ as rings, is $A \simeq B$ as R-modules? Prove or disprove your conclusion.
2.20) Let F be a field and let $E=F \times F$. Define addition and multiplication in E by the rules:

$$
(a, b)+(c, d)=(a+c, b+d) \quad \text { and } \quad(a, b)(c, d)=(a c-b d, a d+b c)
$$

(a) Determine conditions on F under which E is a field.
(b) Explain how one can view $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ as a \mathbb{Z}_{3}-algebra.
(c) Will the same trick work for \mathbb{Z}_{2} ?

