IMMERSE 2008: Assignment 4

4.1) Let A be a ring and set $R=A\left[x_{1}, \ldots, x_{n}\right]$. For each

$$
\mathbf{a}=\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{N}^{N}
$$

let $R_{\mathbf{a}}=A \cdot x_{1}^{a_{1}} \ldots x_{N}^{a_{N}}$. Prove that

$$
R=\bigoplus_{\mathbf{a} \in \mathbb{N}^{N}} R_{\mathbf{a}}
$$

is an \mathbb{N}^{N}-graded ring.
4.2) Let R be a graded ring. Prove that if I is a homogeneous ideal of R, then R / I is a homogeneous R-module. That is, show that R / I is generated by homogeneous elements and is hence graded with the inherited grading.
4.3) Let K be a field and $R=K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ where we set $\operatorname{deg}\left(x_{i}\right)=(1,0)$ and $\operatorname{deg}\left(y_{j}\right)=(0,1)$. Let I be an ideal generated by finitely many monomials. By the previous exercise, $A=R / I$ is a graded R-module. Prove that the monomials of degree (λ, ν) form a basis for $A_{(\lambda, \nu)}$ over K.
4.4) Let $S=k\left[x_{1}, \ldots, x_{n}\right]$ be a standard graded ring and f_{1}, \ldots, f_{d} be homogeneous elements of S of degrees $\alpha_{1}, \ldots, \alpha_{d}$ respectively. Prove that $R=S_{0}\left[f_{1}, \ldots, f_{d}\right]$ is an \mathbb{N}-graded ring where

$$
R_{n}=\left\{\sum_{m \in \mathbb{N}^{d}} r_{m} f_{1}^{m_{1}} \ldots f_{d}^{m_{d}}: r_{m} \in S_{0} \text { and } \alpha_{1} m_{1}+\ldots \alpha_{d} m_{d}=n\right\} .
$$

4.5) Let k be a field and $R=k[x]$. Set

$$
R_{n}=\left\{c(x-1)^{n}: c \in k\right\}
$$

for all $n \in \mathbb{N}$.
(a) Prove that R is an \mathbb{N}-graded ring.
(b) Prove that $I=(x)$ is not an homogeneous ideal of R.

Note: This looks like a monomial ideal; however, it is not with this grading.
4.6) Assuming that all units in a \mathbb{Z}-graded domain are homogeneous, prove that if R is a \mathbb{Z}-graded field, then R is concentrated in degree 0 , meaning $R_{0}=R$ and $R_{n}=0$ for all $|n| \geqslant 1$.
4.7) Let R be a \mathbb{Z}-graded ring and I be an ideal of R_{0}. Prove that $I R \cap R_{0}=I$.
4.8) Let R be a nonnegatively graded ring and I_{0} an ideal of R_{0}. Prove that

$$
I=I_{0} \oplus R_{1} \oplus R_{2} \oplus \cdots
$$

is an ideal of R. Also, show that \mathfrak{M} is a homogeneous maximal ideal of R if and only if

$$
\mathfrak{M}=\mathfrak{m} \oplus R_{1} \oplus R_{2} \oplus \cdots
$$

for some maximal ideal \mathfrak{m} of R_{0}.
4.9) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be the integer function defined by

$$
f(n)=n!
$$

for $n>1$ and $f(n)=0$ for $n \leqslant 0$. Show that f is not of polynomial type.
4.10) Let k be a field. Suppose the following rings have the standard grading.
(a) If $R=k[x, y, z]$, compute $\operatorname{HF}_{R}(n)$ for all $n \geqslant 0$.
(b) If $R=k[x, y, z, w]$, compute $\operatorname{HF}_{R}(n)$ for all $n \geqslant 0$.
(c) If $R=k\left[x_{1}, \ldots, x_{i}\right]$, compute $\operatorname{HF}_{R}(n)$ for all $n \geqslant 0$.

For each of the cases above, what is the respective Hilbert polynomial and Hilbert series?
4.11) Let k be a field. Suppose the following rings have the standard grading.
(a) If $R=k\left[x^{3}\right]$, compute $\operatorname{HF}_{R}(n)$ for all $n \geqslant 0$.
(b) If $R=k\left[x^{3}, x^{5}\right]$, compute $\operatorname{HF}_{R}(n)$ for all $n \geqslant 0$.
(c) If $R=k\left[x, y^{2}\right]$, compute $\mathrm{HF}_{R}(n)$ for all $n \geqslant 0$.

For each of the cases above, what is the respective Hilbert series?
4.12) Let R be a graded ring and $M=\bigoplus_{i=1}^{\infty} M_{n}$ a finitely generated graded R-module. Prove $\operatorname{Ann}(M)$ is a homogeneous ideal.
4.13) Let $H(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$ be an infinite series with nonnegative integer coefficients, and assume that $H(t)=\frac{L(t)}{(1-t)^{d}}$, where $L(1) \neq 0$ and $L(t)=b_{s} t^{s}+b_{s+1} t^{s+1}+\cdots+b_{r} t^{r}$, with each $b_{i} \in \mathbb{Z}, b_{s} \neq 0, b_{r} \neq 0$. Prove that $a_{n}=0$ for all $n<s$ and there exists a polynomial $P(t)$ such that $P(n)=a_{n}$ for all $n \geq r$.
4.14) Let R be an \mathbb{N}-graded ring that is generated in degree one. For an ideal I of R, let I^{*} denote the ideal of R generated by the homogeneous elements of I. Prove that if P is a prime ideal then P^{*} is a prime ideal.
4.15) Let R be a graded ring and

$$
0 \rightarrow M_{k} \rightarrow M_{k-1} \rightarrow \cdots \rightarrow M_{0} \rightarrow 0
$$

an exact sequence of graded R-modules with degree 0 maps. Prove that $\sum_{i}(-1)^{i} \mathrm{HS}_{M_{i}}(t)=$ 0.

IMMERSE 2008: Extras 4

4.16) Prove that all units in a \mathbb{Z}-graded domain are homogeneous.
4.17) Suppose I is a homogeneous ideal of a \mathbb{Z}-graded ring R. Prove that \sqrt{I} is homogeneous.

