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Goal

◮ The goal of this presentation is to show you some homological
techniques in commutative algebra.

◮ The example discussed in this talk is a famous example due to
Hartshorne. It is discussed in depth in:

Lectures in Local Cohomology by Craig Huneke with
Appendix 1 by Amelia Taylor.

which can be downloaded from:

http://www.math.ku.edu/~huneke/Vita/Preprints.html
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Setup

Consider the ring A = k[x , y , u, v ] and the ideals:

I = (x , y)

J = (u, v)

We can take the sum of the ideals

I + J = (x , y , u, v)

and the intersection of the ideals

I ∩ J = (xu, xv , yu, yv)
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Radical of an ideal

Recall the definition of the radical of an ideal:

√
I = {a ∈ A : at ∈ I for some t > 0}

Question
Recalling I = (x , y), what is

√
I ?

Answer
It is pretty clear that

√
I = I .

The same is true for J and I + J.
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A question and answer

Question
We see that we can find two elements

√

(x , y) = I

Why? Can you find fewer elements that will generate I up to

radical?

No. Same is true for J and I + J.
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Free Radicals

√
I = {a ∈ A : at ∈ I for some t > 0}

Question
Recalling I ∩ J = (xu, xv , yu, yv), what is

√
I ∩ J?

Answer√
I ∩ J = I ∩ J.

Why?
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A question and partial answer

Question
We see that we can find four elements

√

(xu, xv , yu, yv) = I ∩ J

Can you find fewer elements that will generate I ∩ J up to radical?

Answer
Yes!

√

(xu, yv , xv + yu) = I ∩ J
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Some details

Why is it that
√

(xu, yv , xv + yu) = (xu, xv , yu, yv)?

(xv)2 = (xv)2 + xvyu − xvyu

= xv(xv + yu) − (xu)(yv)

Hence (xv) ∈
√

(xu, yv , xv + yu).
Hence

√

(xu, yv , xv + yu) =
√

(xu, xv , yu, yv) = I ∩ J.
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The question

Question
Ok we can generate I ∩ J with three elements up to radical. Can

we generate I ∩ J with two elements up to radical? What about

one element?

We will use “homological methods” to solve this problem.
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Complexes

Definition
A chain complex is a sequence of A-modules and A-module
homomorphisms

· · · −→ E i−1 d i−1

−→ E i d i

−→ E i+1 −→ · · ·

such that d i ◦ d i−1 = 0 for all i ∈ Z. We denote a chain complex
by E •.

Bart Snapp CCU

A computation with local cohomology



The problem Complexes and cohomology Local cohomology Saving the day

Cohomology

The upshot is that when given a chain complex (E •, d•), one has

Im(d i−1) ⊆ Ker(d i ) ⊆ E i

we can make a new module:

H i (E •) =
Ker(d i )

Im(d i−1)

called the ith cohomology of E •.
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How do we make these things?

Question
But where do we get our complexes from?

Answer
This will take some explaining.
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Injective modules

If A is noetherian and M is any A-module, then there exists a
special module with nice proprieties which we can inject M into.
The type of module which we desire is called an injective module.
Specifically, we are looking for the injective hull of M.

Aside
How does this relate to free modules?
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An injective resolution
Time to build a complex: Start with

0−→ M
ι−→ E 0 −→ C 1 −→ 0

0−→ C 1 −→ E 1 −→ C 2 −→ 0

0−→ C 2 −→ E 2 −→ C 3 −→ 0

and so on. Put it all together and it sounds like this:

0 0

C 2

0 M
ι

E 0 d0

E 1 d1
. . .

C 1

0 0
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Boring cohomology

Now lose the extraneous parts to get

0−→ M
ι−→ E 0 d0

−→ E 1 d1

−→ E 2 d2

−→ E 3 −→ · · ·

Note by the construction of our complex, it is necessarily exact.

Question
What is the cohomology?

That’s not very interesting.
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Functors

Roughly speaking, a functor is a mapping of both objects and
morphisms. Whatever that means. Consider

ΓI (M) = {a ∈ M : I ta = 0 for some t > 0}.

So if we have
M

ϕ−→ N

we may write

ΓI (M)
ΓI (ϕ)−→ ΓI (N)
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Enter cohomology

We define local cohomology as follows:

1. Take an injective resolution E • of M.

2. Apply ΓI (−) to the resolution above.

3. Take cohomology.

Explicitly:

H
i

I (M) =
Ker ΓI (d

i )

Im ΓI (d i−1)

What does that mean?
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Here be dragons: Mayer-Vietoris
If A is a noetherian ring, I and J are two ideals, and M is an
A-module, then we have a long exact sequence of local
cohomology modules:

0 H
0
I+J

(M) H
0
I
(M) ⊕ H

0
J
(M) H

0
I∩J

(M)

H
1
I+J

(M) H
1
I
(M) ⊕ H

1
J
(M) H

1
I∩J

(M)

· · · · · ·

H
i

I+J
(M) H

i

I
(M) ⊕ H

i

J
(M) H

i

I∩J
(M) · · ·
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Big theorems

Theorem (Invariance up to radical)

Given an ideal I

H
i

I (A) ≃ H
i√

I
(A)

Theorem (Grothendieck)

An ideal I can be generated by no fewer than n elements up to

radical if and only if

H
n

I (A) 6= 0

and

H
i

I (A) = 0 for all i > n.
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Just remember

Remember

I = (x , y)

J = (u, v)

I + J = (x , y , u, v)

I ∩ J = (xu, xv , yu, yv)
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Don’t forget

Remember our Mayer-Vietoris sequence:

· · · → H
3
I (A)⊕H

3
J(A) → H

3
I∩J(A) → H

4
I+J(A) → H

4
I (A)⊕H

4
J(A) → · · ·

Remember what Grothendieck said:

· · · → 0 → H
3
I∩J(A) → H

4
I+J(A) → 0 → · · ·

and so H
3
I∩J

(A) ≃ H
4
I+J

(A) 6= 0. Hence we are done! Why?
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The end

THE END ?
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