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Abstract

This paper concerns analyticity of a classical, steadily translating finger in a
Hele-Shaw cell and nonexistence of solutions when the relative finger width λ
is smaller than 1

2 . It is proven that any classical solution to the finger problem,
if it exists for sufficiently small but nonzero surface tension, is close to some
Saffman-Taylor zero-surface-tension solution, and satisfies some algebraic decay
conditions at ∞, must belong to the analytic function space A0, as defined in
Section 1, and chosen in a previous study [34] of the existence of finger solutions.
Further, it is proven that for any fixed λ ∈ (0, 1

2 ), there can be no classical steady-
finger solution when surface tension is sufficiently small, which contradicts a
previous conclusion based on numerical simulation.
c© 2002 Wiley Periodicals, Inc.

1 Introduction

1.1 Background
The problem of a less viscous fluid displacing a more viscous fluid in a Hele-

Shaw cell has been the subject of numerous investigations since the 1950s. Re-
views of the subject from various perspectives can be found in [1, 10, 12, 19, 22,
31]. In a seminal paper, Saffman and Taylor [23] found experimentally that an
unstable planar interface evolves through finger competition to a steady translat-
ing finger, with relative finger width λ close to a half at large displacement rates.
Theoretical calculations [23, 35] ignoring surface tension revealed a one-parameter
family of exact steady solutions, parametrized by width λ. When the experimen-
tally determined λ was used, the theoretical shape (usually referred to in the lit-
erature as the Saffman-Taylor finger) agreed well with experiments for relatively
large displacement rates, or, equivalently, for small surface tension. However, in
the zero-surface-tension steady-state theory, λ remained undetermined in the (0, 1)
interval.
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The selection of λ remained unresolved until the mid 1980s. Numerical calcula-
tions [14, 17, 32] supported by formal asymptotic calculations in the steady finger
[3, 4, 5, 9, 11, 25, 29] and the closely related steady Hele-Shaw bubble problem
[6, 27] suggested that a discrete family of solutions exists for which the limiting
shape, as surface tension tends to zero, approaches the Saffman-Taylor with λ = 1

2 .
Subsequent numerical [13] and formal asymptotic [28] calculations suggest that
only a branch of the solutions is stable. However, the conclusion about the exis-
tence of steady states is not universally accepted. Based on numerical simulation
of a time-evolving interface for small but nonzero surface tension, and with the
same model equations used in [5, 17], it was suggested [8] that the limiting steady
shape was a Saffman-Taylor solution with λ < 1

2 . In this paper, we conclude other-
wise through rigorous mathematical analysis. It is to be noted that selection of the
Saffman-Taylor finger with λ < 1

2 is possible for a more mathematically compli-
cated model that incorporates thin-film effects [18, 19, 21], as shown in [20, 30].
The same is true when anisotropy [9] in surface tension or other perturbations near
the tip are introduced.

There has been a rigorous study [26] for a problem mathematically similar,
though not identical, to the steady viscous fingering problem considered here. In
that case, it was proven that at least one finger solution exists for fixed surface ten-
sion, though the relative finger width and shape remains unknown. On the other
hand, our primary focus is the selection of finger width as surface tension tends to
zero. A mathematically rigorous study of selection is difficult in this limit since
exponentially small terms in surface tension play a critical role. While a rigorous
theory of exponential asymptotics for nonlinear ordinary differential equations is
by now well developed ([7], for instance), this is not the case for integro-differential
equations, even though such problems have arisen in a number of other physical
contexts like dendritic crystal growth and water waves; see, for instance, [24].
Formal calculations rely on the assumption that integral terms do not contribute
to exponentially small terms, at least to the leading order. With this assumption,
integro-differential equations are simplified to essentially nonlinear ordinary differ-
ential equations, where variants of the procedure due to Kruskal and Segur [15, 16]
have been used. We have recently shown [33, 34] how integral terms can be con-
trolled and a rigorous theory was developed for the integro-differential equation
presented here.

1.2 Conditions and Definitions
Following [31], a steady symmetric finger is equivalent to finding function F

analytic in the upper-half ξ -plane (C+) and twice differentiable in its closure, i.e.,
in C2(C̄+), such that the following conditions are satisfied:

CONDITION 1: On the real ξ -axis, F satisfies

(1.1) Re F = ε2

|F ′ + H | Im
[

F ′′ + H ′

F ′ + H

]

,
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where

(1.2) H(ξ) = ξ + iγ
ξ 2 + 1

with γ = λ

1 − λ
, ε2 = π2λB

4(1 − λ)2
,

where λ is the relative finger width and B is a nondimensional surface
tension parameter.

CONDITION 2:

(1.3) F(ξ), ξF ′(ξ) → 0 as ξ → ±∞ .

CONDITION 3 (SYMMETRY CONDITION):

(1.4) Re F(−ξ) = Re F(ξ), Im F(−ξ) = − Im F(ξ) for real ξ .

DEFINITION 1.1 Let R be the open connected set between Im ξ = 0 and `+ ∪ `−

where

`+ =
{

ξ : ξ = −ib + re−iϕ0, 0 < r < ∞, b > 0, π
2 > ϕ0 > 0 fixed

}

,

`− =
{

ξ : ξ = −ib − reiϕ0, 0 < r < ∞
}

.

We also define R− = R ∩ {ξ : Re ξ < 0} and R+ = R ∩ {ξ : Re ξ > 0}.
DEFINITION 1.2 For fixed τ ∈ (0, 1),

Aj =
{

F : F(ξ) is analytic in {Im ξ ≥ 0} ∪ R

with ‖F‖j ≡ sup
ξ∈R

|(ξ − 2i) j+τ F(ξ)| < ∞
}

, j = 0, 1, 2,

A0,δ̂ =
{

F : F ∈ A0, ‖F‖0 ≤ δ̂
}

, A1,δ̂1
=

{

F : F ∈ A1, ‖F‖1 ≤ δ̂1
}

.

1.3 Findings
Our previous result [34] on the existence of a solution satisfying Conditions 1

through 3 involved F ∈ A0,δ̂ and F ′ ∈ A1,δ̂1
, where δ̂ and δ̂1 are assumed a priori to

be small but independent of ε. In this function space, for λ ∈ [ 1
2 , λm), with λm − 1

2
small enough (though independent of ε), it was shown that a solution existed if and
only if

2λ− 1
1 − λ

= ε4/3βn(ε
2/3) ,

where {βn}∞n=1 is a sequence of functions that are analytic at the origin.
However, there are two limitations of this result: The first is the choice of the

function space. Nonexistence in this function space need not mean nonexistence
of a classical solution F , analytic in C

+ and C2 in its closure C̄
+. The second lim-

itation is the restriction on λ. In this paper, we prove two theorems (Theorems 1.3
and 1.8) to relax these restrictions to a great degree.

THEOREM 1.3 For small enough ε, any analytic function F in the upper-half ξ -
plane C

+, which is C2 on its closure and satisfies Conditions 1 through 3 belongs
to function space A0,δ̂, with F ′ ∈ A1,δ̂1

, where δ̂ = O(ε2) and δ̂1 = O(ε), provided
the following two assumptions are also satisfied:
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ASSUMPTION 1: There exists τ independent of ε, 0 < τ < 1, so that

(1.5) sup
ξ∈(−∞,∞)

|ξ − 2i |τ |F(ξ)| ≡ δ < ∞ .

ASSUMPTION 2: We assume that each of δ1 and ε ln 1
ε
δ2 are sufficiently

small, where

(1.6) sup
ξ∈(−∞,∞)

|ξ − 2i |1+τ |F ′(ξ)| = δ1, sup
ξ∈(−∞,∞)

|ξ − 2i |2+τ |F ′′(ξ)| = δ2 ,

Remark 1.4. Assumption 1 is consistent with the results from McLean and Saff-
man’s formal procedure [17] near the tail of a finger that in our formulation implies
F ∼ a0eiπτ̂/2ξ−τ̂ as ξ → +∞, where τ̂ is a positive root of the transcendental
equation cot(π2 τ̂ ) = ε2τ̂ 2 and a0 is real. Condition 3 on symmetry implies similar
behavior as ξ → −∞. This asymptotic relation was also found to be consistent
with numerical calculations [17]. While τ̂ depends on ε, we can clearly choose
τ < τ̂ independent of ε for small ε (τ = 1

2 would suffice, for instance). The next
lemma shows that we need not assume a priori that δ1 and δ2 in Assumption 2 exist
and are finite, only that δ1 and ε ln 1

ε
δ2 are small. Note that Assumptions 1 and 2

are stronger than Condition 2. However, these assumptions are mild since the slope
deviation from some Saffman and Taylor solution (which scales as δ1 in the above
theory) is observed to be small in experiment for large displacement rates and in all
numerical calculations for small ε; we are not making any a priori assumption on
how this deviation scales with ε. Also, the curvature deviation (which scales as F ′′,
and hence δ2) a priori is allowed to be large, though not as large as 1/(ε ln 1/ε).

LEMMA 1.5 If F satisfies Assumption 1 in addition to being analytic in C
+, C2 in

C̄
+, and satisfying Conditions 1 through 3, then

sup
ξ∈C+

|ξ + 2i |τ |F(ξ)| = δ < ∞ ,(1.7)

sup
ξ∈C+

|ξ + 2i |1+τ |F ′(ξ)| = δ1 < ∞ ,(1.8)

sup
ξ∈C+

|ξ + 2i |2+τ |F ′′| = δ2 < ∞ .(1.9)

The proof of this lemma relies on some straightforward properties of the Hilbert
transform and the use of Phragmen-Lindelof methods and is relegated to Appen-
dix A.

Remark 1.6. From examining (1.1), supξ∈(−∞,∞) |ξ − 2i |τ | Re F(ξ)| = O(ε2δ2).
From the Hilbert transform of Re F (which gives Im F on the real axis) and by
using Lemma A.1 with g = Re F and k = ε, it follows from Assumption 2 and
Lemma 1.5 that δ = o(ε).

DEFINITION 1.7 F will be called a classical solution if F is analytic in the up-
per half ξ -plane (C+), C2 in its closure C̄

+, satisfies Conditions 1 through 3 and
Assumptions 1 and 2.
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In Section 4 we will prove the following theorem:

THEOREM 1.8 For any fixed λ ∈ (0, 1
2), there exists ε0 > 0 small so that there can

be no classical solution F for any ε in the interval (0, ε0].
1.4 Outline of the Paper

The strategy followed in this paper is as follows: We first derive the integro-
differential equation for F in the lower half-plane, if indeed F can be analytically
continued, as done before. Besides F and its derivatives, this integro-differential
equation involves functions I (ξ) and F̄(ξ), each of which are analytic in the lower
half-plane for any classical solution F . I (ξ) can be calculated from F on the real
axis alone, while F̄(ξ) is defined as the analytic function that equals F ∗(ξ) on the
the real axis. F̄ in the lower half-plane is completely determined by the classi-
cal solution F in the upper half-plane. We replace F in this integro-differential
equation by f , which we now think of as an unknown, unlike I and F̄ , which are
considered known in terms of a classical solution F (if one exists). Thus, we ob-
tain a second-order nonlinear differential equation for f in the lower half-plane.
We prove that a unique solution f exists in the appropriate analytic function space
in part of the lower half-plane. The uniqueness argument is repeated for ξ on a
real-line segment. Since f = F is a solution on the real-line segment, it follows
that any classical solution F , if it exists, must be analytic in some region of the
lower half-plane. All the above arguments are detailed in Section 2. In Section 3,
we use additional arguments to prove that analyticity of F extends to other regions
in the lower half ξ -plane region, including part of the negative imaginary ξ -axis.
Thus, we complete the proof that a classical solution, if one exists, must be in the
function space A0 for any fixed λ ∈ (0, 1).

In Section 4, we consider the special case λ ∈ (0, 1
2). By considering a neigh-

borhood of a turning point ξ = −iγ in the lower half-plane, considering the
leading-order inner equation, and using continuity arguments, we prove that on
an imaginary ξ , just above −iγ , Im F 6= 0 for sufficiently small ε, provided the
Stokes constant for a particular nonlinear parameter-free ODE is nonzero. This
Stokes constant was computed by other researchers and found to be nonzero. We
then invoke analyticity arguments of previous sections to prove that a nonvanishing
Im F on a part of the imaginary ξ -axis above ξ = −iγ is inconsistent with sym-
metry Condition 3. Hence we conclude that no classical solution can exist for any
fixed λ in the (0, 1

2) interval for sufficiently small ε.

2 Analytic Continuation to the Lower Half-Plane

DEFINITION 2.1 Let F be analytic in the upper half ξ -plane and F̄ is an analytic
function in the lower half ξ -plane defined by

F̄(ξ) = [F(ξ ∗)]∗ ,(2.1)

H̄ = ξ − iγ
ξ 2 + 1

.(2.2)
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We define operator G so that

(2.3) G( f, g)[t] :=
1

( f ′(t)+ H(t))1/2(g′(t)+ H̄(t))1/2

[

f ′′(t)+ H ′(t)
f ′(t)+ H(t)

− g′′(t)+ H̄ ′(t)
g′(t)+ H̄(t)

]

.

LEMMA 2.2 If F is a classical solution as in Definition 1.7, then

(2.4) G(F, F̄)[ξ ] = O(ξ−τ ) as ξ → ±∞ .

PROOF: Since the right-hand side of (1.1) can be written as ε2

2i G(F, F̄)(ξ), the
lemma follows from (1.5). �

DEFINITION 2.3 We define operator I so that

(2.5) I (ξ) ≡ I(F)[ξ ] = − 1
2π

∫ ∞

−∞

G(F, F̄)[t]dt
t − ξ

for Im ξ < 0 .

LEMMA 2.4 For I (ξ) in the lower half-plane C
− = {ξ : Im ξ < 0}, we have

(2.6) sup
ξ∈C−

|ξ − 2i |τε2|I (ξ)| = sup
ξ∈(−∞,∞)

|ξ − 2i |τ |F(ξ)| = δ .

PROOF: From (1.1), (2.3), and (2.5), limIm ξ→0− ε2 I (ξ) = −F̄(ξ) for ξ real.
Since I (ξ) is analytic in the lower half-plane, this lemma follows from Lemma A.5.

�

LEMMA 2.5 Let F be a classical solution to the finger problem. If F(ξ) can be
analytically continued at least to a part of C

−, then F satisfies

(2.7) ε2 F ′′(ξ)+ L(ξ)F(ξ) = N (F, I, F̄)[ξ ] for {ξ ∈ C
−} ,

where

L(ξ) = −i H 3/2(ξ)H̄ 1/2(ξ) = − i
√

γ 2 + ξ 2(ξ + iγ )
(ξ 2 + 1)2

,

F̄(ξ) ≡ [F(ξ ∗)]∗ ,
(2.8)

and the operator N is defined as

N (F, I, F̄) = ε2
(

H̄ ′ H
H̄

− H ′
)

− iε2(F ′ + H)3/2(F̄ ′ + H̄)1/2 I

+ i F
[

(F ′ + H)3/2(F̄ ′ + H̄)1/2 − H 3/2 H̄ 1/2]

+ ε2
[

(F̄ ′′ + H̄ ′)
F ′ + H
F̄ ′ + H̄

− H̄ ′ H
H̄

]

.

(2.9)
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PROOF: Since F is analytic in the upper half ξ -plane and satisfies equation
(1.1), using Poisson formula, we have in the upper half-plane

F(ξ) = ε2

π i

∫ ∞

−∞

dt
(t − ξ)

1
|F ′(t)+ H(t)| Im

[

F ′′(t)+ H ′(t)
F ′(t)+ H(t)

]

= − ε2

2π

∫ ∞

−∞

G(F, F̄)[t]dt
t − ξ

, Im ξ > 0 .
(2.10)

Using Plemelj formula [2], analytic continuation to the lower half ξ -plane leads to

(2.11) F(ξ) = ε2 I (ξ)+ ε2

i
G(F, F̄)(ξ) for Im ξ < 0 .

Multiplying the above by i(F ′ + H)3/2(F̄ ′ + H̄)1/2 results in (2.7). �

DEFINITION 2.6

g1(ξ) = L−1/4(ξ) exp
{

− P(ξ)
ε

}

,(2.12)

g2(ξ) = L−1/4(ξ) exp
{

P(ξ)
ε

}

,(2.13)

where

(2.14) P(ξ) = i
∫ ξ

−iγ
L1/2(t)dt = i

∫ ξ

−iγ

(γ − i t)3/4(γ + i t)
1
4

(1 + t2)
dt .

A branch of L1/2 in the definition of P is chosen so that, as ξ → −∞, P ′(ξ) ∼
e−iπ/4/ξ . The choice of branch for L−1/4 in (2.12) is not as important as long as
the same branch is consistently chosen.

We will use the following properties of P(ξ), which are shown in Appendix B.
Some of these properties were shown in the appendix of Xie and Tanveer [34] for
the restricted case λ ∈ [ 1

2 , λm).
PROPERTY 1: Re P(ξ) decreases along the negative Re ξ -axis (−∞, 0) with

Re P(−∞) = ∞. Re P(ξ) decreases monotonically on the imaginary ξ -
axis from −ib to 0 where 0 < b < min{1, γ }.

PROPERTY 2: There exists a constant R independent of ε so that for |ξ | ≥ R,
Re P(t) increases with increasing s along any ray

r =
{

t : t = ξ − seiϕ, 0 < s < ∞, 0 ≤ ϕ ≤ ϕ0 <
π
2

}

in R from ξ to ξ + ∞eiϕ and

C1|t − 2i |−1 ≤
∣

∣

∣

∣

d
ds

Re P(t (s))
∣

∣

∣

∣

≤ C2|t − 2i |−1 ,

where C1 and C2 are constants, independent of ε, with C1 > 0.
PROPERTY 3: There exists sufficiently small ν > 0 independent of ε so that

d
ds [Re P(t (s))] ≥ C > 0 on the parametrized straight line {t (s) = −ν +
se−i π4 : 0 ≤ s ≤

√
2ν}, where C is some constant independent of ε and ν.
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ξ

ξRe

−bi

Im

−ν i

−ν

FIGURE 2.1. Region D in the complex ξ -plane.

PROPERTY 4: There exist b and ϕ0, with ν < b < min{1, γ }, 0 < ϕ0 <
π
2 ,

each independent of ε, so that d
ds Re P(t (s)) ≥ C

|t (s)−2i | on t (s) = −bi +
sei(π+ϕ0), where C > 0 is independent of ε.

g1(ξ) and g2(ξ) are the two WKB solutions of the homogeneous equation cor-
responding to (2.7). They satisfy the following equation exactly:

(2.15) ε2g′′(ξ)+
(

L(ξ)+ ε2L1(ξ)
)

g(ξ) = 0 ,

where

(2.16) L1(ξ) = L ′′(ξ)

4L(ξ)
− 5L ′2(ξ)

16L2(ξ)
.

Remark 2.7. By (2.8) and (2.16), L1(ξ) ∼ O(ξ−2) as |ξ | → ∞.

The Wronskian of g1 and g2 is

(2.17) W (ξ) = g1(ξ)g′
2(ξ)− g2(ξ)g′

1(ξ) = 2i
ε
.

DEFINITION 2.8 We define the operator V so that

(2.18) VF(ξ) ≡ ε2 F ′′(ξ)+
(

L(ξ)+ ε2L1(ξ)
)

F(ξ) .

Remark 2.9. Equation (2.7) implies

(2.19) VF(ξ) = N1(ξ) ≡ N (F, I, F̄)[ξ ] + ε2L1(ξ)F(ξ) .

DEFINITION 2.10 Let D be an open, connected domain (see Figure 2.1) in the
lower left complex ξ -plane bounded by lines

R1 =
{

ξ : Im ξ = 0, −∞ < Re ξ < −ν
}

,

R2 =
{

ξ : ξ = −ν + se−π i/4, 0 ≤ s ≤
√

2ν
}

,

R3 =
{

ξ : Re ξ = 0, −b < Im ξ < −
√

2ν
}

,

R4 =
{

ξ : ξ = −bi + sei(π+ϕ0), 0 ≤ s < ∞
}

.

where ν, φ0, and b are chosen so that Properties 3 and 4 are satisfied.
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In addition to Properties 1 through 4 above, we show in Appendix B two other
properties:

PROPERTY 5: For any ξ ∈ D, there is a path P(−ν, ξ) = {t : t = t (s)},
parametrized by arc length s, going from −ν to ξ , entirely contained in D,
so that d

ds Re P(t (s)) ≥ C > 0 for a constant C independent of ε.
PROPERTY 6: For any ξ ∈ D, there is a path P(ξ,−∞) = {t : t = t (s)}

parametrized by arc length s, going from ξ to −∞, entirely contained in
D so that d

ds [Re P(t (s))] ≥ C
|t−2i | > 0, where C > 0 is independent of ε.

We now introduce spaces of functions.

DEFINITION 2.11 Bj =
{

F(ξ) : F(ξ) is analytic in D and continuous in D,

with sup
ξ∈D

|(ξ−2i) j+τ F(ξ)| < ∞
}

, j = 0, 1, 2,

‖F‖j := sup
ξ∈D

|(ξ − 2i) j+τ F(ξ)| .

Remark 2.12. Bj are Banach spaces and B0 ⊃ B1 ⊃ B2.

DEFINITION 2.13 Let Q be any connected set in the complex ξ -plane. We intro-
duce norms ‖F(ξ)‖j,Q := supξ∈Q|(ξ − 2i) j+τ F(ξ)|, j = 0, 1, 2.

DEFINITION 2.14 Let δ̃ > 0 and δ̃1 > 0 be two constants; define balls

B0,δ̃ =
{

f : f ∈ B0, ‖ f ‖0 ≤ δ̃
}

and B1,δ̃1
=

{

g : g ∈ B1, ‖g‖1 ≤ δ̃1
}

.

Remark 2.15. In order to avoid a proliferation of constants, we have used C (and
sometimes C1 and C2) as a generic constant whose value differs from lemma to
lemma, and sometimes even from step to step within a lemma. However, C does
not depend on ε. For more specific constants, we have reserved the symbol K , K1,
K2, etc.

LEMMA 2.16 Let N ∈ B2; then

f1(ξ) := 1
ε2

g2(ξ)

∫ −∞

ξ

N (t)
W (t)

g1(t)dt ∈ B0 and ‖ f1‖0 ≤ K1‖N‖2 ,

where K1 is a constant independent of ε.

PROOF: Case 1. |ξ | ≥ R, where R is large enough for Property 2 to hold
but independent of ε. On path P(ξ,−∞) = {t : t = ξ − s, 0 < s < ∞},
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Re(P(t)− P(ξ)) increases monotonically from 0 to ∞ as s increases.

(2.20) | f1(ξ)| =
∣

∣

∣

∣

2
ε

L−1/4(ξ)

∫

P(ξ,−∞)

N (t)L−1/4(t) exp
{

1
ε
(P(ξ)− P(t))

}

dt
∣

∣

∣

∣

≤ ‖N‖2|L−1/4(ξ)|

×
∫ 1

0

|(t (s)− 2i)−2−τ ||L−1/4(t (s))|
d
ds Re P(t (s))

d
[

exp
{

1
ε
(Re P(ξ)− Re P(t (s)))

}]

.

Since |ξ − 2i | ≤ |t (s)− 2i | for any s, we have |L−1/4(ξ)| ≤ C |ξ − 2i |1/2 and

d
ds

Re P(t (s)) = Re(P ′(t)t ′(s)) ≥ C |L1/2(t)| ≥ C |t (s)− 2i |−1 ,

|L−1/4(ξ)| |(t (s)− 2i)−2−τ ||L−1/4(t (s))|
d
ds Re P(t (s))

≤ C |ξ − 2i |−τ ,

so ‖ f1‖0 ≤ K1‖N‖2 and the lemma follows.

Case 2. For ξ ∈ D∩ {|ξ | ≤ R}, by Property 6, there exists a path P(ξ,−∞) so
that Re(P ′(t (s)t ′(s)) ≥ C

|t (s)−2i | . Then in (2.20)

(2.21) |L−1/4(ξ)| |(t (s)− 2i)−2−τ ||L−1/4(t (s))|
| d

ds Re P(t (s))|
≤ C ,

and therefore the lemma follows since ξ is bounded in this region. �

LEMMA 2.17 Let N ∈ B2; then for sufficiently small ε0 > 0, we have for all
ε ∈ (0, ε0],

f2(ξ) := 1
ε2

g1(ξ)

∫ ξ

−ν

N (t)
W (t)

g2(t)dt ∈ A0 and ‖ f2‖0 ≤ K2‖N‖2 ,

where K2 is independent of ε.

PROOF: Case 1. For |ξ | ≤ 4R2, by Property 5, there is a path P(−ν, ξ) entirely
in D so that d

ds Re P(t (s)) ≥ C > 0 for t (s) going from −ν to ξ . So

| f2(ξ)| ≤ C‖N‖2|L−1/4(ξ)|

×
∫ 1

0

∣

∣(t − 2i)−2−τ ∣
∣

∣

∣L−1/4(t)
∣

∣

∣

∣d
[

exp
{

− 1
ε
(Re P(ξ)− Re P(t))

}]∣

∣

d
ds Re P(t (s))

.

Since (2.21) holds here, too, the result follows since |ξ − 2i |τ is bounded in this
case as well.



ANALYTICITY AND NONEXISTENCE OF FINGERS 11

Case 2. For the case where ξ ∈ D, |ξ | ≥ 4R2, we choose path P(−ν, ξ) =
P1 + P2 + P3, where

P1 =
{

t : t = ρei arg ξ , |ξ | ≥ ρ ≥
√

|ξ |
}

,

P2 =
{

t : t = ρei arg ξ ,
√

|ξ | ≥ ρ ≥ 2R
}

,

P3 = P(−ν, ξ 0) where ξ0 = 2 Rei arg ξ .

We break up integral
∫

P
=

∫

P3
+

∫

P2
+

∫

P1
and accordingly write f2 = f2,1 +

f2,2 + f2,3.

Now from (2.14), from the asymptotics for large |ξ | and |t |, it follows that

Re(P(t)− P(ξ)) ≤ C1

∫ |t |

|ξ |

1
r

dr ≤ C1 ln
( |t |

|ξ |

)

where C1 is independent of ε,
(2.22)

| f2,1(ξ)| =
∣

∣

∣

∣

2
ε

L−1/4(ξ)

∫

P1

N (t)L−1/4(t) exp
{

−1
ε
(P(ξ)− P(t))

}

dt
∣

∣

∣

∣

≤ C
2
ε
‖N‖2

∣

∣L−1/4(ξ)
∣

∣

∫ |ξ |

√
|ξ |
ρ− 3

2 −τ exp
{

C1

ε
ln(

ρ

|ξ |)
}

dρ

≤ C‖N‖2|ξ |−τ .

(2.23)

Also, (2.22) and (2.23) are still valid on P2; hence

| f2,2(ξ) =
∣

∣

∣

∣

2
ε

L− 1
4 (ξ)

∫

P2

N (t)L− 1
4 (t) exp

{

−1
ε
(P(ξ)− P(t))

}

dt
∣

∣

∣

∣

≤ C
2
ε
‖N‖2

∣

∣L− 1
4 (ξ)

∣

∣

∫

√
|ξ |

|ξ0|
ρ− 3

2 −τ exp
{

C1

ε
ln

(

ρ

|ξ |

)}

dρ

≤ C‖N‖2
∣

∣L− 1
4 (ξ)

∣

∣|ξ |−
C1
2ε − 1

4 − τ
2

≤ C‖N‖2 |ξ |−τ for ε < C1 .
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On P3,

| f2,3(ξ)| ≤ ‖N‖2
∣

∣L− 1
4 (ξ)

∣

∣

×
∫ exp[− 1

ε
(Re P(ξ)−Re P(ξ0))]

0

|(t (s)− 2i)−2−τ ||L− 1
4 (t (s))|

d
ds Re P(t (s))

× d
[

exp
{

1
ε

(

Re P(ξ)− Re P(t (s))
)

}]

≤ C‖N‖2
∣

∣L− 1
4 (ξ)

∣

∣ exp
[

−1
ε

(

Re P(ξ)− Re P(ξ0)
)

]

≤ C‖N‖2 |ξ |−
C1
ε

+ 1
2 ≤ C‖N‖2|ξ |−τ when ε ≤ C1

2
.

(2.24)

Combining bounds for f2,1, f2,2, and f2,3, the proof of the lemma follows. �

DEFINITION 2.18 Define operator U : B2 → B0 and U1 : B2 → B1 so that

UN (ξ) := − 1
ε2

g1(ξ)

∫ ξ

−ν

N (t)
W (t)

g2(t)dt + 1
ε2

g2(ξ)

∫ ξ

−∞

N (t)
W (t)

g1(t)dt ,(2.25)

U1 N (ξ) := − 1
ε2

h1(ξ)g1(ξ)

∫ ξ

−ν

N (t)
W (t)

g2(t)dt(2.26)

+ 1
ε2

h2(ξ)g2(ξ)

∫ ξ

−∞

N (t)
W (t)

g1(t)dt, ,

where

(2.27) h1(ξ) = − L ′(ξ)

4L(ξ)
− 1
ε

P ′(ξ) , h2(ξ) = − L ′(ξ)

4L(ξ)
+ 1
ε

P ′(ξ) .

LEMMA 2.19

(2.28) sup
D

|(ξ − 2i)h j (ξ)| ≤ K3

ε
, j = 1, 2,

where K3 is a constant independent of ε.

PROOF: The lemma follows from the fact that P ′(ξ) = i L1/2(ξ) and equations
(2.8), (2.14), and (2.27). �

DEFINITION 2.20 Let R
− = {ξ : Im ξ = 0, Re ξ < −ν}.

LEMMA 2.21 ‖N1‖2,R− < ∞.

PROOF: From (1.2), (2.2), (2.16), and Lemmas 1.5 and 2.4, it follows that as
ξ → −∞,

H̄ ′ H
H̄

− H ′ = O(ξ−3) , (F ′ + H)3/2(F̄ ′ + H̄ ′)1/2 I = O(ξ−2−τ ) ,

F
[

(F ′ + H)3/2(F̄ ′ + H̄ ′)1/2 − H 3/2 H̄ 1/2] = O(ξ−2−2τ ) ,
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and
F̄ ′′ + H̄ ′

F̄ + H̄
(F ′ + H)− H̄ ′ H

H̄
= O(ξ−2−τ ) , L1 F = O(ξ−2−τ ) .

Using these relations in (2.9) and (2.19) in the expression for N1, the lemma fol-
lows. �

LEMMA 2.22 Let F(ξ) be a classical solution as in Definition 1.7. If F can be
analytically extended to D, then F satisfies the following equation for ξ ∈ D:

(2.29) F(ξ) = βg1(ξ)+ UN1(ξ) ,

where β is given by

(2.30) β = g−1
1 (−ν)

(

F(−ν)− 1
ε2

g2(−ν)
∫ −ν

−∞

N1(t)
W (t)

g1(t)dt
)

.

PROOF: First, we consider ξ ∈ R
− on the boundary of D. From continuity,

(2.29) holds, where I (ξ) occurring in N1(ξ) is understood as limIm ξ→0− I (ξ). Us-
ing the method of variation of parameters for ξ ∈ R

−, we have

(2.31) F(ξ) = C1g1 + C2g2 + UN1(ξ) .

Since ‖N1‖2,R− < ∞, it follows on using Lemmas 2.16 and 2.17, restricted to R
−

instead of D, that ‖UN1‖0,R− < ∞. Since g1(−∞) = 0 and g2(−∞) = +∞,
it follows from supξ∈R− |ξ − 2i |τ |F | < ∞ that C2 = 0. Using C2 = 0 in (2.31)
and evaluating it at ξ = −ν, we obtain F(−ν) = C1g1(−ν) + UN1(−ν). Hence
C1 = β as given by (2.30). So (2.29) holds for ξ ∈ R

−. By analytic continuation
of each side of the equation, it follows that it must be valid in D as well. �

DEFINITION 2.23 n1(ξ) = N ( f, I, F̄)[ξ ] + ε2L1(ξ) f (ξ).

We consider the integral equation

(2.32) f (ξ) = βg1(ξ)+ Un1(ξ) ,

where β is still given as before by (2.30).

LEMMA 2.24 F̄ ′ ∈ B1, F̄ ′′ ∈ B2, with ‖F̄ ′‖1 ≤ δ1 and ‖F̄ ′′‖2 ≤ δ2.

PROOF: The lemma follows from Definition 2.1 and Lemma 1.5. �

DEFINITION 2.25 Hm ≡ inf
ξ∈D

{

|ξ − 2i ||H(ξ)|, |ξ − 2i ||H̄(ξ)|
}

.

LEMMA 2.26 Define operator G1 so that

G1( f ′)[t] = ( f ′(t)+ H(t))3/2(F̄ ′(t)+ H̄(t))1/2 .

Let f ′ ∈ B1,δ̃1
and δ̃1, δ1 < Hm/2, where δ1 is as defined in (1.8). Then, for ξ ∈ D,

(2.33) |G1( f ′)[ξ ]| ≤ C |ξ − 2i |−2 ,

where C is independent of ε.
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PROOF: From (1.2) and (2.2),

Hm |ξ − 2i |−1 ≤ |H | ≤ C2|ξ − 2i |−1 ,(2.34)

Hm |ξ − 2i |−1 ≤ |H̄ | ≤ C2|ξ − 2i |−1 ,(2.35)

where C1 and Hm are independent of ε.

|G1( f ′)| =
∣

∣H 3/2 H̄ 1/2
∣

∣

∣

∣

∣

∣

f ′

H
+ 1

∣

∣

∣

∣

3/2 ∣

∣

∣

∣

F̄ ′

H̄
+ 1

∣

∣

∣

∣

1/2

≤ C |ξ − 2i |−2 .

�

LEMMA 2.27 Let G2 be an operator so that

(2.36) G2( f ′)[ξ ] =
[

(F̄ ′′ + H̄ ′)
f ′ + H
F̄ ′ + H̄

− H̄ ′ H
H̄

]

(ξ) .

If f ′ ∈ B1,δ̃1
and δ1, δ̃1 < Hm/2, then for ξ ∈ D,

(2.37) |G2( f ′)[ξ ]| ≤ C |ξ − 2i |−2−τ [δ1 + δ̃1 + δ2
]

,

where C is independent of ε, and δ1 and δ2 are as defined in (1.6).

PROOF: Note from (2.2), for large |ξ | we have

H̄ ′ = −(ξ − iγ )2 + (γ 2 − 1)
(ξ 2 + 1)2

= O(ξ − 2i)−2 ,(2.38)

H̄ ′ H
H̄

= −[(ξ − iγ )2 + (γ 2 − 1)](ξ + iγ )
(ξ 2 + 1)2(ξ − iγ )

= O((ξ − 2i)−2) ,(2.39)

and

|G2( f ′)| =
∣

∣

∣

∣

f ′ H̄ ′

F̄ ′ + H̄
− H̄ ′ H

H̄
F̄ ′

F̄ ′ + H̄
+ F̄ ′′ f ′ + H

F̄ ′ + H̄

∣

∣

∣

∣

≤ C |ξ − 2i |−2−τ [δ1 + δ̃1 + δ2] .

�

LEMMA 2.28 We define operator G3 so that

(2.40) G3( f ′) = ( f ′ + H)3/2(F̄ ′ + H̄)1/2 − H 3/2 H̄ 1/2 .

Assume that f ′ ∈ B1,δ̃1
with δ1, δ̃1 < Hm/2; then for ξ ∈ D,

(2.41) |G3( f ′)[ξ ]| ≤ C |ξ − 2i |−2−τ (δ1 + δ̃1) ,

where C is independent of ε.



ANALYTICITY AND NONEXISTENCE OF FINGERS 15

PROOF: Using (2.40) we obtain

|G3( f )| ≤ |H 3/2 H̄ 1/2|
∣

∣

∣

∣

(

f ′

H
+ 1

)3/2( F̄ ′

H̄
+ 1

)1/2

− 1
∣

∣

∣

∣

≤ C |ξ − 2i |−2
{( | f ′|

|H | + 1
)3/2( |F̄ |

|H̄ |
+ 1

)1/2

− 1
}

≤ C |ξ − 2i |−2−τ (δ1 + δ̃1) .

�

LEMMA 2.29 Let f ∈ B0,δ̃ and f ′ ∈ B1,δ̃1
; then n1 ∈ B2 for δ̃1, δ1 < Hm/2, and

‖n1‖2 ≤ K4
(

ε2(1 + δ2)+ δ + δ̃(ε2 + δ̃1 + δ1)
)

,

where K4 is independent of ε.

PROOF: Note that

n1 = N ( f, I(F), F̄)(2.42)

= ε2
(

H̄ ′ H
H̄

− H ′
)

− iε2G1( f ′)I (F)+ i f G3( f ′)+ ε2G2( f ′)+ ε2L1 f ,
∣

∣

∣

∣

ε2
(

H̄ ′ H
H̄

− H ′
)∣

∣

∣

∣

= ε2 2γ
|(ξ 2 + 1)(ξ − iγ )| ≤ Cε2|ξ − 2i |−3 ;(2.43)

from Lemmas 2.4 and 2.26,

(2.44) |ε2G1( f ′)(ξ)I(F)[ξ ]| ≤ Cδ|ξ − 2i |−2−τ .

Applying Lemmas 2.26, 2.27, and 2.28, we obtain

| f ||G3( f ′)| ≤ C |ξ − 2i |−2−τ δ̃
(

δ1 + δ̃1
)

,

ε2|G2( f ′)| ≤ Cε2|ξ − 2i |−2−τ (δ̃1 + δ1 + δ2
)

.

From the expression of L1(ξ), we have

(2.45) |ε2 f ||L1(ξ)| ≤ Cε2|ξ − 2i |−2−τ δ̃ .

On using the expression for n1 in (2.42), we have the proof by combining the
above inequalities. It is to be noted that terms like ε2δ̃, ε2δ1, etc., do not appear
because they are smaller than terms explicitly appearing on the right-hand side
of the lemma statement. Clearly, for suitable choice of K4, such terms can be
estimated away. �

LEMMA 2.30 Let G1 be as defined in Lemma 2.26. Let f ′
j ∈ B1,δ̃1

, j = 1, 2; then
for δ1, δ̃1 < Hm/2,

(2.46)
∣

∣G1( f ′
1)(ξ)− G1( f ′

2)(ξ)
∣

∣ ≤ C |ξ − 2i |−2−τ∥
∥ f ′

1 − f ′
2

∥

∥

1 ,

where C is independent of ε.
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PROOF: By straightforward algebra,

G1( f ′
1)− G1( f ′

2) =
( f ′

1 − f ′
2)(F̄

′ + H̄)1/2[( f ′
1 + H)2 + ( f ′

1 + H)( f ′
2 + H)+ ( f ′

2 + H)2]
( f ′

1 + H)3/2 + ( f ′
2 + H)3/2

.

The lemma follows from the equation above, on using upper and lower estimates
for | f ′

i + H | and |F̄ ′ + H̄ | as in preceding lemmas. �

LEMMA 2.31 Let f ′
j ∈ B1,δ̃1

, j = 1, 2. Let G2( f ′) be defined as in Lemma 2.27;
then for δ1 < Hm/2,

(2.47)
∥

∥G2( f ′
1)− G2( f ′

2)
∥

∥

2 ≤ C(δ2 + 1)
∥

∥ f ′
1 − f ′

2

∥

∥

1 .

PROOF: We note
∣

∣(F̄ ′′ + H̄ ′)
∣

∣ ≤ C
|ξ − 2i |2 + δ2

|ξ − 2i |2+τ ≤ C |ξ − 2i |−2(1 + δ2)

and
∣

∣(H̄ + F̄ ′)−1
∣

∣ ≤ 4
Hm

|ξ − 2i | .

By straightforward algebra,

G2( f ′
1)− G2( f ′

2) = (F̄ ′′
2 + H̄ ′)

(F̄ ′
1 + H̄)

( f ′
1 − f ′

2) .

Using inequalities as above, we obtain the proof of the lemma. �

LEMMA 2.32 Let f j ∈ B0,δ̃ and f ′
j ∈ B1,δ̃1

, j = 1, 2; then for δ̃1, δ1 < Hm/2,
∥

∥N ( f1, I, F̄)− N ( f2, I, F̄)+ ε2L1( f2 − f1)
∥

∥

2 ≤
K5

(

(ε2 + δ1 + δ̃1)‖ f1 − f2‖0 + (ε2 + δ + δ̃ + ε2δ2)‖ f ′
1 − f ′

2‖1
)

,
(2.48)

where K5 is independent of ε.

PROOF: From (2.42),

N ( f1, I, F̄)− N ( f2, I, F̄) =(2.49)

− iε2I(F)
(

G1( f ′
1)− G1( f ′

2)
)

+ i( f1 − f2)G3( f ′
1)

+ i f2
(

G1( f ′
1)− G1( f ′

2)
)

+ ε2(G2( f ′
1)− G2( f ′

2)
)

.

On using Lemmas 2.4, 2.28, 2.30, and 2.31 and the expression for L 1(ξ), we obtain
∥

∥ε2 I
(

G1( f ′
1)− G1( f ′

2)
)
∥

∥

2 ≤ Cδ‖ f ′
1 − f ′

2‖1 ,
∥

∥( f1 − f2)G3( f ′
1)

∥

∥

2 ≤ C
(

δ1 + δ̃1
)∥

∥ f1 − f2
∥

∥

0 ,
∥

∥ f2
(

G1( f ′
1)− G1( f ′

2)
)
∥

∥

2 ≤ C δ̃
∥

∥ f ′
1 − f ′

2

∥

∥

1 ,
∥

∥ε2(G2( f ′
1)− G2( f ′

2)
)
∥

∥

2 ≤ Cε2(1 + δ2)
∥

∥ f ′
1 − f ′

2

∥

∥

1 ,
∥

∥ε2L1( f1 − f2)
∥

∥

2 ≤ Cε2‖ f1 − f2‖0 .
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Combining all these inequalities, we get the proof. �

LEMMA 2.33 For sufficiently small ε, we have

(2.50) ‖βg1‖0 ≤ K6
(

ε2 + δ + ε2δ2
)

,

where K6 is independent of ε.

PROOF: For |ξ | ≤ R, from (2.30),

|βg1(ξ)| ≤ |βg1(−ν)| ≤ |F(−ν)| + |UN1(−ν)| ≤ δ + ‖UN1‖2,R− ,

but from (2.9) and (2.19) and by using Lemma 2.29 with domain D replaced by
R−, and f replaced by F (and hence δ̃ by δ and δ̃1 by δ1), we get

‖N1‖2,R− ≤ C
(

ε2 + δ + ε2δ2
)

.

So ‖UN1‖0 ≤ C(K1 + K2)(ε
2 + δ+ ε2δ2) from Lemmas 2.16 and 2.17. Therefore

|βg1(−ν)| < K̃6(ε
2 + δ + ε2δ2) for some K̃6 independent of ε. For |ξ | ≥ R, on

using equations (2.12) and (2.22),
∣

∣g1(ξ)g−1
1 (−ν)

∣

∣ < C
(

|ξ | 1
2 − C1

ε

)

,

where C and C1 are independent of ε. For ε ≤ C1/2, the above expression is
< C |ξ − 2i |−τ , and the lemma follows. �

Remark 2.34. The estimates in each of the Lemmas 2.16 through 2.33 generally
depend on γ and therefore λ, as quantities such as Hm and upper bounds for (ξ −
2i)H or (ξ − 2i)H̄ are dependent on γ . If we consider λ in any fixed compact
subset of the interval (0, 1), i.e., for γ = λ/(1 − λ) in a compact subset of (0,∞),
such dependence can be removed since H and H̄ are continuous functions of γ in
this interval.

DEFINITION 2.35 We define the space E := B⊕B1. For e(ξ) = (u(ξ), v(ξ)) ∈ E,

‖e‖E := ‖u(ξ)‖0 + ε‖v(ξ)‖1 .

It is easy to see that E is Banach space. We replace ( f, f ′) by (u, v). Also, we
denote operator n so that n(u, v)(ξ) = n1(ξ).

DEFINITION 2.36 Let O : E 7−→ E,

e(ξ) = (u(ξ), v(ξ)) 7−→ O(e) = (O1(e),O2(e)) ,
where

O1(e) = βg1 + Un(u, v) ,(2.51)
O2(e) = βh1g1 + U1n(u, v) .(2.52)

DEFINITION 2.37 Let

(2.53) 1 = 8K
(

δ + ε2(1 + δ2)
)

where

(2.54) K = max
{

K6, (K1 + K2)K4, K3 K6, K3 K4(K1 + K2)
}

.
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We define space E1 = {e ∈ E : ‖e‖E ≤ 1}.

LEMMA 2.38 If e = (u(ξ), v(ξ)) ∈ E1, then for ε, δ1, and ε ln 1
ε
δ2, each suffi-

ciently small (the latter two are part of Assumption 2, O(e) ∈ E1.

PROOF: If e ∈ E1, it follows from the expression for 1 that

(2.55)
1

ε
≤ 8K

[

ε + δ

ε
+ εδ2

]

,

and this is small by assumption and Remark 1.6. Thus, both ‖v‖1 (and therefore
δ̃1) and δ1 can be taken smaller than Hm/2 so as to apply Lemmas 2.29 and 2.33,
which together with Lemmas 2.16 and 2.17, give the following:

‖O1(e)‖0 ≤ ‖βg1‖0 + ‖Un(u, v)‖0

≤ K6
(

ε2 + δ + ε2δ2
)

+ (K1 + K2)K4
[

ε2(1 + δ2)+ δ + ‖u‖0(ε
2 + δ1 + ‖v‖1)

]

≤ 2K
[

ε2(1 + δ2)+ δ
]

+ K‖u‖0
(

ε2 + δ1 + ‖v‖1
)

.

Using ‖u‖0 ≤ 1, ε‖v‖1 ≤ 1, and (2.55), we get

K‖u‖0
(

ε2 + δ1 + ‖v‖1
)

≤ 1

[

K (ε2 + δ1)+ K
1

ε

]

,

so

‖O1(e)‖0 ≤ 1

[

1
4

+ K (ε2 + δ1)+ K
1

ε

]

.

From Lemma 2.19

ε‖O2(e)‖1 ≤ K3
[

‖βg1‖0 + ‖Un(u, v)‖0
]

≤ 1

[

1
4

+ K (ε2 + δ1)+ K
1

ε

]

;

then, for sufficiently small ε, δ1, and ε ln 1
ε
δ2,

‖O(e)‖ = ‖O1(e)‖0 + ε‖O2(e)‖1 ≤ 1

[

1
2

+ 2K (ε2 + δ1)+ 2K
1

ε

]

≤ 1 .

�

LEMMA 2.39 If ej = (u(ξ), v(ξ)) ∈ E1, j = 1, 2, then for ε, δ1, and ε ln 1
ε
δ2

small enough,
‖O(e1)− O(e2)‖ ≤ 11‖e1 − e2‖ ,

where

(2.56) 11 = K̃
[

2ε + δ1 + εδ2 + 1

ε

]

,

where K̃ = 2 max{K5(K1 + K2), K3 K5(K1 + K2)}.
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PROOF: Since (u1, v1), (u2, v2) ∈ E1, it follows that each of ‖u1‖0, ‖u2‖0,
ε‖v1‖1, and ε‖v2‖1 are bounded by 1 and that we can assume each of ‖v1‖1 and
‖v2‖1 < Hm/2 so as to apply Lemmas 2.32, 2.16, and 2.17, which, on using δ̃ ≤ 1

and δ̃1 ≤ 1
ε

, gives the following:

‖O1(e1)− O1(e2)‖0 ≤ (K1 + K2)K5

{(

ε2 + δ1 + 1

ε

)

‖u1 − u2‖0

+
(

ε + εδ2 + δ

ε
+ 1

ε

)

ε‖v1 − v2‖1

}

≤ 11

2
‖e1 − e2‖ ,

ε‖O2(e1 − O1(e2)‖1 ≤ K3(K1 + K2)K5

{(

ε2 + δ1 + 1

ε

)

‖u1 − u2‖0

+
(

ε + εδ2 + δ

ε
+ 1

ε

)

ε‖v1 − v2‖1

}

≤ 11

2
‖e1 − e2‖ .

So, the proof of the lemma follows from combining the above. �

THEOREM 2.40 For sufficiently small δ1, ε ln 1
ε
δ2, and ε, the operator O is a con-

traction mapping from E1 to E1. Therefore, a unique solution (u(ξ), v(ξ)) ∈ E1

to e = O(e) exists and hence a unique solution to the integral equation (2.32)
exists, where f = u and f ′ = v.

PROOF: From assumptions and Remark 1.6, we know that 11 < 1. The theo-
rem follows from Lemmas 2.38 and 2.39. �

LEMMA 2.41 If f is the solution in Theorem 2.40 and F is a classical solution as
defined earlier, then f (ξ) ≡ F(ξ) for ξ ∈ (−∞,−ν] for small enough ε, δ1, and
ε ln 1

ε
δ2.

PROOF: Let u = f − F and v = f ′ − F ′. From (2.29) and (2.32), u and v
satisfy the following equations:

u = U(n1 − N1) , v = U1(n1 − N1) .

By Lemma 2.32 restricted to domain R
−, with f1 = f and f2 = F and using

‖ε2L1u‖0,R− ≤ Cε2‖u‖0,R− ,

‖n1 − N1‖2,R− ≤ C
[(

ε2 + δ1 + 1

ε

)

‖u‖0,R− +
(

ε2 + ε2δ2 + δ +1
)

‖v‖1,R−

]

.
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So, from using Lemmas 2.16 and 2.17, restricted to domain R
−,

‖u‖0,R− ≤ C
[(

ε2 + δ1 + 1

ε

)

‖u‖0,R− +
(

ε + εδ2 + δ

ε
+ 1

ε

)

ε‖v‖1,R−

]

,

ε‖v‖1,R− ≤ C
[(

ε2 + δ1 + 1

ε

)

‖u‖0,R− +
(

ε + εδ2 + δ

ε
+ 1

ε

)

ε‖v‖1,R−

]

,

where C is a constant independent of ε. So, combining the above,

‖u‖0,R− + ε‖v‖1,R− ≤ C
(

ε + δ1 + 1

ε
+ εδ2 + δ

ε

)

(

‖u‖0,R− + ε‖v‖1,R−
)

.

Since the constant C is independent of ε in the estimate on the right side of the
above equation, it follows that for small ε, ε ln 1

ε
δ2, and δ1 (and hence small 1/ε

because of Remark 1.6), (u, v) ≡ 0. Hence, the lemma follows. �

THEOREM 2.42 If F is a classical solution satisfying Assumptions 1 and 2, then
for small enough ε, F ∈ B0,1 and F ′ ∈ B1,1/ε .

PROOF: The theorem follows from Theorem 2.40 and Lemma 2.41. �

3 Analyticity in the Triangular Region

Let S = {ξ : Re ξ = −a,−ν + a ≤ Im ξ ≤ 0} where 0 ≤ a < ν be a
vertical straight-line segment in the triangular region T bounded by negative real
axis, negative imaginary axis, and line segment {ξ : ξ = −ν + se−π i/4, 0 ≤
s ≤

√
2ν}. This is the triangular region (see Figure 2.1) in the third quadrant

in the complement of D. It is to be noted that in the triangular region , P(ξ) =
P(0)+iγ ξ+ O(ν2) and so on S when ξ = −a−is, Re P increases monotonically
with s such that d

ds Re P(ξ(s)) > C > 0, where C is independent of ε and ν for
sufficiently small ν.

We consider the following boundary value problem on the line segment S:

(3.1)
ε2 f ′′ +

(

L(ξ)+ ε2L1(ξ)
)

f = N ( f, I (F), F̄)[ξ ] + ε2L1 f (ξ) ≡ n1(ξ) ,

f (−a) = F(−a) , f (−a1) = F(−a1) ,

where a1 = a + i(ν − a).

LEMMA 3.1 f ∈ C2(S) is a solution of boundary value problem (3.1) if and only
if f is a solution of the following integral equation:

(3.2) f = α1g1 + α2g2 + U3n1 ,

where

U3n1 = − 1
ε2

g1

∫ ξ

−a

n1(t)
W (t)

g2(t)dt + 1
ε2

g2

∫ ξ

−a1

n1(t)
W (t)

g1(t)dt ,(3.3)

α1 = γ1g2(−a1)− γ2g2(−a)
g1(−a)g2(−a1)− g1(−a1)g2(−a)

,(3.4)



ANALYTICITY AND NONEXISTENCE OF FINGERS 21

α2 = γ1g1(−a1)− γ2g1(−a)
g1(−a)g2(−a1)− g1(−a1)g2(−a)

,(3.5)

where

γ1 = F(−a)− 1
ε2

g2(−a)
∫ −a

−a1

n1(t)
W (t)

g1(t)dt ,(3.6)

γ2 = F(−a1)+ 1
ε2

g1(−a1)

∫ −a1

−a

n1(t)
W (t)

g2(t)dt .(3.7)

PROOF: If f ∈ C2(S) is a solution of boundary value problem (3.1), then by
variation of parameters, we have

(3.8) f = α1g1 + α2g2 + U3n1

for some α1 and α2. Plugging the boundary conditions in (3.1) and solving for
α1 and α2, we have (3.4) and (3.5). By straightforward computation, we get that
a solution of (3.2) is a solution of the boundary problem (3.1). We note that the
denominator D in the expressions for α1 and α2 is given by

(3.9) D = g1(−a)g2(−a1)− g2(−a)g1(−a1) ,

and using (2.12), we have

D = L− 1
4 (−a)L− 1

4 (−a1) exp
{

1
ε
(P(−a1)− P(−a))

}

(3.10)

×
[

1 − exp
{

2
ε
(P(−a)− P(−a1))

}]

,

which is nonzero because Re P(−a1) > Re P(−a). �

Remark 3.2. γ1 and γ2 depend on f and f ′ through n1, γ1 and γ2 are functionals
of f and f ′, and so are α1 and α2. We use the notation αj ( f, f ′) to indicate the
dependence on f and f ′. The norm ‖·‖ means the maximum norm ‖·‖∞ in this
section.

LEMMA 3.3 If ñ ∈ C(S), let

f̃1(ξ) = 1
ε2

g2(ξ)

∫ ξ

−a1

ñ(t)
W (t)

g1(t)dt ;

then f̃1 ∈ C(S) and ‖ f̃1‖ ≤ K1‖ñ‖ for constant K1 independent of ε.
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PROOF: Using monotonicity of Re P on S with s, as noted before,

| f̃1(ξ)| =
∣

∣

∣

∣

1
2iε

∫ ξ

−a1

L− 1
4 (ξ)L− 1

4 (t)ñ(t) exp
{

−1
ε
(P(t)− P(ξ))

}

dt
∣

∣

∣

∣

≤ C
∫ 1

exp{− 1
ε
(P(−a1)−P(ξ))}

|L− 1
4 (ξ)L− 1

4 (t)ñ(t)|
d
ds Re P(t (s))

× d
[

exp
{

−1
ε
(P(t)− P(ξ))

}]

≤ K1‖ñ‖ .

�

LEMMA 3.4 If ñ ∈ C(S), let

f̃2 = 1
ε2

g1(ξ)

∫ ξ

−a

ñ(t)
W (t)

g2(t)dt ,

then f̃2 ∈ C(S) and ‖ f̃2‖ ≤ K2‖ f ‖.

PROOF: The proof is very similar to Lemma 3.3. �

LEMMA 3.5 Let f j ∈ C(S) and f ′
j ∈ C(S), j = 1, 2; then

(3.11)
∥

∥N ( f1, I, F̄)− N ( f2, I, F̄)+ ε2L1( f1 − f2)
∥

∥ ≤
K5

((

ε2 + δ1 + ‖ f ′
1‖

)

‖ f1 − f2‖ +
(

ε2 + δ + ‖ f2‖ + ε2δ2
)

‖ f ′
1 − f ′

2‖
)

.

PROOF: The proof parallels that of Lemma 2.32 except that the domain is S

instead of D and the norm is the max norm. �

LEMMA 3.6 If f ′ ∈ C(S), then αj gj ∈ C(S) for j = 1, 2, and

(3.12) ‖αj gj‖ ≤ k1
(

|F(−a)|+|F(−a1)|+‖n1‖
)

where k1 is independent of ε.

PROOF: If we define D as in (3.9), it follows from (3.10) that D−1 is exponen-
tially small in ε, Re P(ξ) ≥ Re P(−a) for ξ ∈ S , since Re P(−a1) > Re P(−a).
We also have

∣

∣

∣

∣

g2(−a)g1(ξ)

D

∣

∣

∣

∣

=
∣

∣

∣

∣

L− 1
4 (ξ)

L− 1
4 (−a1)

∣

∣

∣

∣

∣

∣

∣

∣

exp{ 1
ε
(2P(−a)− P(ξ)− P(−a1i))}

1 − exp{ 2
ε
(P(−a)− P(−a1))}

∣

∣

∣

∣

≤ C

(3.13)

with C independent of ε, and

(3.14)
∣

∣

∣

∣

g2(−a1)g1(ξ)

D

∣

∣

∣

∣

=
∣

∣

∣

∣

L− 1
4 (ξ)

L− 1
4 (−a)

∣

∣

∣

∣

∣

∣

∣

∣

exp{− 1
ε
(P(ξ)− P(−a))}

1 − exp{ 2
ε
(P(−a)− P(−a1))}

∣

∣

∣

∣

≤ C .
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Similarly, we get constant upper bounds for g1(−a1)g2(ξ)/D and g1(−a)g2(ξ)/D.
Using Lemmas 3.3 and 3.4 in (3.6) and (3.7), we have

|γ1| ≤ (|F(−a)| + K1‖n1‖) ,(3.15)
|γ2| ≤ (|F(−a1)| + K2‖n1‖) .(3.16)

Using (3.13), (3.14), and similar bounds in (3.4) and (3.5), we get the lemma. �

LEMMA 3.7 If f ′
j ∈ C(S), j = 1, 2, then (αj ( f1, f ′

1)− αj ( f2, f ′
2))gj ∈ C(S) and

(3.17)
∥

∥

(

αj ( f1, f ′
1)− αj ( f2, f ′

2)
)

gj
∥

∥ ≤
C

(

ε2 + δ1 + ‖ f ′
1‖

)

‖ f1 − f2‖ +
(

ε2 + ‖ f2‖ + δ + ε2δ2
)

‖ f ′
1 − f ′

2‖ .

PROOF:
∣

∣

(

α1( f1, f ′
1)− α1( f2, f ′

2)
)

g1
∣

∣

≤
∣

∣γ1( f1, f ′
1)− γ1( f2, f ′

2)
∣

∣

∣

∣

∣

∣

g2(−a)g1(ξ)

D

∣

∣

∣

∣

+
∣

∣γ2( f1, f ′
1)− γ2( f2, f ′

2)
∣

∣

∣

∣

∣

∣

g2(−a1)g1(ξ)

D

∣

∣

∣

∣

.

(3.18)

Using formulae (3.6) and (3.7) and Lemmas 3.3 and 3.4, we obtain
∣

∣γ1( f1, f ′
1)− γ1( f2, f ′

2)
∣

∣ ≤(3.19)

C
∥

∥N ( f1, I, F̄)− N ( f2, I, F̄)+ ε2L1( f1 − f2)
∥

∥ ,
∣

∣γ2( f1, f ′
1)− γ2( f2, f ′

2)
∣

∣ ≤(3.20)

C
∥

∥N ( f1, I, F̄)− N ( f2, I, F̄)+ ε2L1( f1 − f2)
∥

∥ .

The lemma follows from (3.13), (3.14), (3.18), and Lemma 3.5. The proof is simi-
lar for j = 2. �

We consider the following integral equations:

f (ξ) = o3( f, f ′) := α1g1(ξ)+ α2g2(ξ)+ U3n1(ξ) ,(3.21)

f ′(ξ) = o4( f, f ′) := α1h1(ξ)g1(ξ)+ α2h2(ξ)g2(ξ)+ U4n1(ξ) ,(3.22)

where

(3.23) U4n1 = − 1
ε2

h1(ξ)g1

∫ ξ

−a

n1(t)
W (t)

g2(t)dt + 1
ε2

h2(ξ)g2

∫ ξ

−a1

n1(t)
W (t)

g1(t)dt .

We define the following spaces:

DEFINITION 3.8 E(S) := C(S)⊕ C(S). For e(ξ) = (u(ξ), v(ξ)) ∈ E(S),

‖e‖E(S) := ‖u(ξ)‖∞ + ε‖v(ξ)‖∞ .

It is easy to see that E(S) is a Banach space.
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DEFINITION 3.9 We define k3 independent of ε so that

k3 ≥ sup
ξ∈T

{

ε|h1(ξ)|, ε|h2(ξ)|
}

,

where h1 and h2 are as defined by (2.27).

DEFINITION 3.10

(3.24) E1,S :=
{

e = (u(ξ), v(ξ)) ∈ E(S) : ‖u(ξ)‖ ≤ 8k11, ‖v(ξ)‖ ≤ 8k1k3
1

ε

}

.

where k1 and k3 are O(1) constants, as defined in Lemma 3.6 and Definition 3.9
and 1 is as defined in (2.53).

DEFINITION 3.11 Let O(S) : E(S) 7−→ E(S),
e(ξ) = (u(ξ), v(ξ)) 7−→ O(S)(e) =

(

O3(e),O4(e)
)

.

THEOREM 3.12 For sufficiently small δ1, ε ln 1
ε
δ2, and ε, the operator O(S) is a

contraction mapping from E1,S to E1,S . Therefore, there exists a unique solution
(u(ξ), v(ξ)) ∈ E1,S to equations (3.21) and (3.22).

PROOF: Replacing space Bj with C(S), the proof is parallel to that for Theo-
rem 2.40. �

THEOREM 3.13 Let F be the classical solution in Theorem 2.40; then F is analytic
inside the triangular region T .

PROOF: Let f be the solution in Theorem 3.12; then f satisfies the boundary
value problem (3.1). Since all the coefficients in equation (3.1) are analytic in a
neighborhood of S , it follows from the classical local theory of ordinary differential
equations that f must be analytic in a neighborhood of S . Since a is arbitrary
in interval (0, ν), f is analytic in T and continuous on the closure of T . From
boundary conditions in (3.1), f equals the analytic function F on (−ν, 0) ∪ {ξ :
ξ = −ν + se−π i/4, 0 ≤ s ≤

√
2ν}. From properties of analytic continuation, f

must be an analytic continuation of F across (−ν, 0) ∪ {ξ : ξ = −ν + se−π i/4} in
the region T . Therefore, the theorem follows. �

LEMMA 3.14 Let F be the classical solution in Theorem 2.40; then F is analytic
on the line segment on imaginary axis S0 = {ξ : Re ξ = 0,−b ≤ Im ξ ≤ 0}.

PROOF: Considering the boundary problem for ξ ∈ S0:

(3.25)
ε2 f ′′ +

(

L(ξ)+ ε2L1(ξ)
)

f = N ( f, I (F), F̄)(ξ)+ ε2L1 f (ξ) ≡ n1(ξ) ,

f (−a) = F(−a) , f (−bi) = F(−bi) .

It follows from a variation of the proof of Theorem 3.12 that there exists a unique
solution f in E1,S0 to the above boundary problem. Since the coefficients of (3.25)
are all analytic in a neighborhood of S0, the solution must be analytic on S0 from
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the classical theory of differential equations. On the other hand, from Theorem
3.13, F satisfies equation (3.25) in D ∪ T , since F and F ′ are continuous up to
the closure of D ∪ T . From continuity, F restricted on S0 satisfies the boundary
problem (3.25) and F ∈ E1,S0 . By uniqueness, F ≡ f ; therefore, the theorem
follows. �

DEFINITION 3.15

(3.26) k2 = sup
ξ∈T

{

|ξ − 2i |τ , |ξ − 2i |τ+1} .

Remark 3.16. It is to be noted that
sup
ξ∈T

|ξ − 2i |τ |F(ξ)| ≤ k2 sup
ξ∈T

|F(ξ)| ,

sup
ξ∈T

|ξ − 2i |τ+1|F ′(ξ)| ≤ k2 sup
ξ∈T

|F ′(ξ)| .

DEFINITION 3.17

(3.27) 1̂ = max
{

1, 8k1k21, 8k1k2k31
}

.

THEOREM 3.18 If F is a classical solution as in Definition 1.7, then F is analytic
in R ∪ C̄

+ and F ∈ A0,1̂, F ′ ∈ A1,1̂/ε .

PROOF: Combining Theorems 2.42, 3.12, and 3.13, F is analytic in the domain
R−, as defined in Definition 1.1, with

sup
ξ∈R−

|ξ − 2i |τ |F(ξ)| ≤ 1̂ and sup
ξ∈R−

|ξ − 2i |τ+1|F ′(ξ)| ≤ 1̂

ε
.

Since F is analytic in C
+ as well as on the line segment S0 on the imaginary

axis, from Condition 3 and successive Taylor expansions of F on the imaginary
ξ -axis, starting at ξ = 0, this implies that Im F = 0 on S0. From the Schwartz
reflection principle for ξ ∈ R+, F(ξ) = [F(−ξ ∗)]∗ provides the analytic extension
to Re ξ > 0. Thus F is analytic in R and continuous up to its boundary, including
the real axis. Thus, F must be analytic in R∪C̄

+. Since from reflection, ‖F‖0,R =
‖F‖0,R− and ‖F ′‖1,R = ‖F ′‖1,R− , the proof of theorem is complete. �

LEMMA 3.19 If F is a classical solution as in Definition 1.7, then δ, δ1, and δ2,
as defined in (1.5) and (1.6), equals O(ε2). Therefore, in the domain R, ‖F‖0 =
O(ε2) and ‖F ′‖1 = O(ε).

PROOF: Since F is analytic in R ∪ C
+ and decays algebraically at ∞ in this

region, it follows from Cauchy’s formula that for real ξ ∈ (−∞,∞),

F ( j)(ξ) = j !
2π i

∫

l1∪l2

F(t)
(t − ξ) j+1

dt .

Using Lemma 2.11 in [34], it follows that

δj ≡ sup
ξ∈(−∞,∞)

|ξ − 2i | j+τ |F ( j)(ξ)| ≤ C j‖F‖0 = O(1̂) .
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Therefore, using (1.1), on the real axis, we have

sup
ξ∈(−∞,∞)

|ξ − 2i |τ | Re F(ξ)| = O(ε2) .

Further, on taking the derivative of (1.1) with respect to ξ and using O(1̂) a priori
bounds on F ′, F ′′, and F ′′′ on the real axis as above, it follows that

sup
ξ∈(−∞,∞)

|ξ − 2i |τ+1| Re F ′(ξ)| = O(ε2) .

Using the Hilbert transform property (see Lemma A.1 for k = 1
2 ) yields

‖(ξ − 2i)τH(g)[ξ ]‖∞ ≤ C1‖(ξ − 2i)τ g‖∞ + C2‖(ξ − 2i)τ+1g′‖∞ ;
it then follows that for g(ξ) = Re F(ξ), because Im F(ξ) = H(Re F)[ξ ], we have
that supξ∈(−∞,∞) |ξ − 2i |τ | Im F(ξ)| = O(ε2). Therefore,

sup
ξ∈(−∞,∞)

|ξ − 2i |τ |F(ξ)| = O(ε2) .

Hence δ = O(ε2). By taking up to the third derivative of (1.1) and using a priori
bounds on all derivatives of F for real ξ occurring on the right of (1.1), we get
O(ε2) upper bounds for |ξ−2i |τ+1|g′(ξ)|, |ξ−2i |τ+2|g′′(ξ)|, and |ξ−2i |τ+3|g′′′(ξ)|
where g(ξ) = Re F(ξ), as before.

Using properties of the Hilbert transform (Lemmas A.2 and A.3), it follows that
|ξ − 2i |τ+1| Im F ′(ξ)| and |ξ − 2i |τ+2| Im F ′′(ξ)| also have O(ε2) upper bounds.
Hence δ1, δ2 = O(ε2). Therefore, 1̂ = O(ε2), where 1̂ is as defined in Def-
inition 3.17. From the previous theorem, in the domain R, ‖F‖0 = O(ε2) and
‖F ′‖1 = O(ε). �

PROOF OF THEOREM 1.3: The proof follows from Theorem 3.18 after using
Lemma 3.19. �

4 Nonexistence of a Solution for λ < 1
2

Rewriting (2.11), we have

(4.1)
F(ξ) = ε2 I (ξ)

+ ε2

i(F ′(ξ)+ H)1/2(F̄ ′(ξ)+ H̄)1/2

[

F ′′(ξ)+ H ′

F ′(ξ)+ H
− F̄ ′′(ξ)+ H̄ ′

F̄ ′(ξ)+ H̄

]

.

On multiplying (4.1) by (F ′ + H)3/2(F̄ ′ + H̄)1/2 and introducing the change of
variable

ξ + iγ = i k̃1ε
4/7χ where k̃1 = (1 − γ 2)3/7

[

i F̄ ′(−iγ )+ i H̄(−iγ )
]−1/7

,(4.2)

F(ξ(χ)) = k̃2
1ε

8/7G(χ)
(1 − γ 2)

,(4.3)
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equation (4.1) becomes

G ′′ − 1 − χ3/2
(

1 − G ′

χ

)3/2

G(4.4)

= ε4/7χ Ã1(ε
4/7χ)

[

1 − G ′

χ
+ ε4/7χ Ã2(ε

4/7χ)

]

+
[(

1 − G ′

χ
+ ε4/7χ Ã2(ε

4/7χ)

)3/2

−
(

1 − G ′

χ

)3/2]

Gχ3/2

+ ε4/7χ Ã3(ε
4/7χ)

[

1 − G ′

χ
+ ε4/7χ Ã2(ε

4/7χ)

]3/2

×
[

Gχ3/2 + (ε4/7χ)3/2 Ã4(ε
4/7χ)

]

+ (ε4/7χ)3/2 Ã4(ε
4/7χ)

[

1 − G ′

χ
+ ε4/7χ Ã2(ε

4/7χ)

]3/2

+ ε4/7χ Ã5(ε
4/7χ) ,

where Ãj (ε
4/7χ) are analytic functions in ε4/7χ .

The additional change of variable

(4.5) χ =
(

7
4
η

)4/7

, χ3/2G(χ) = −ηφ(η) ,

leads to

Lφ ≡ d2φ

dη2
+ 5

7η
dφ
dη

−
(

1 + 45
196η2

)

φ(4.6)

= −1
η

− 33
196η2

φ + φ

{[

1 + 4
49η

φ + 4
7
φ′

]3/2

− 1
}

+ (εη)4/7

η
E

(

(εη)2/7, φ, φ′, η−1) .

Remark 4.1. It is to be noted that E has a convergent series in φ and φ ′,

(4.7) E =
∞

∑

j1, j2≥0

E j1, j2

(

(εη)2/7,
1
η

)

φ j1(φ′) j2 ,

where we can choose ρ and C independently of ε and η so that

|E j1, j2 | < Cρ− j1− j2

in the domain q1/ε ≥ |η| ≥ R for R sufficiently large and ε small for some q1

independent of ε.
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η
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FIGURE 4.1. Region R2,R .

THEOREM 4.2 Let F(ξ) be the solution in Theorem 1.3. After the changes of
variables (4.2), (4.3), and (4.5), φ(η, ε, a) satisfies (4.6) for q0ε

−1 ≤ |η| ≤ q1ε
−1,

at least for 0 ≤ arg η ≤ 5π/8 (where q0, q1 = O(γ − b)7/4 but are independent
of ε). In that domain, φ(η, ε), φ ′(η, ε) = O(ε) as ε → 0+. Furthermore, in this
domain |ηφ| = O((γ −b)3/2), |ηφ′| = O((γ −b)3/4, ε

(γ−b)
1
4
). Also, on the positive

real η-axis in the interval q0ε
−1 ≤ η ≤ q1ε

−1, Imφ = 0.

PROOF: From (2.11) and the definition of G, the solution F(ξ) in Theorem 1.3
clearly satisfies (4.1). Notice from transformation (4.2) and (4.5), if η = O(ε−1),
ξ + iγ = O(1) and if 0 ≤ arg η ≤ 5π/8, then 0 ≤ arg(γ + iξ) ≤ 5π/14, and
for suitable q0, q1 = O(γ − b)7/4, this corresponds to ξ ∈ R− close to ξ = −ib,
where F is known to satisfy (4.1) with ‖F‖0 = O(ε2) and ‖F ′‖1 = O(ε). Hence
φ(η, ε) must satisfy transformed equation (4.6). Also, from (4.2), (4.3), and (4.5),
it is clear that φ(η, ε), φ ′(η, ε) = O(ε) as ε → 0+, and that ηφ = O(γ − b)3/2

and ηφ′ = O((γ − b)3/4, ε(γ − b)−
1
4 ). Since F(ξ) is real at least on the imaginary

ξ -axis segment [−ib, 0], it follows from (4.2) that for suitable q0 and q1, Imφ = 0
for η real and positive, at least when q0/ε ≤ η ≤ q1/ε. �

DEFINITION 4.3 R2,R = {η : R < Im η+Re η < k̃0ε
−1, arg η ∈ [0, 5π

8 ); − Im η+
R < Re η < Im η+ k̃0ε

−1, arg η ∈ (−π
8 , 0]}, where q0 < k̃0 < q1 (see Figure 4.1).

DEFINITION 4.4 We define φ̃(η) (suppressing the ε-dependence) as the solution
φ(η, ε) in Theorem 4.1.

DEFINITION 4.5

(4.8) φ1(η) = η−5/14e−η , φ2(η) = η−5/14eη .
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φ1(η) and φ2(η) satisfy the following equation exactly:

Lφ ≡ d2φ

dη2
+ 5

7η
dφ
dη

−
(

1 + 45
196η2

)

φ = 0 .

The Wronskian of φ1 and φ2 is

(4.9) W(φ1, φ2)(η) = 2η−5/7

Equation (4.6) can be rewritten as

(4.10) Lφ = N1(φ, φ
′, ε)

where the operator N1 is defined by

N1(φ, φ
′, ε)[η] = −1

η
− 33

196η2
φ + φ

{[

1 + 4
49η

φ + 4
7
φ′

]3/2

− 1
}

+ (εη)4/7

η
E

(

(εη)2/7, φ, φ′, η−1) .

(4.11)

DEFINITION 4.6

(4.12) η0 = k̃0ε
−1 , η1 = k̃0ε

−1 sin π
4

sin π
8

e
5iπ

8 , η2 = i k̃0ε
−1 .

LEMMA 4.7 The solution φ̃(η) as defined earlier satisfies the following integral
equation:

φ̃ = −φ1(η)

∫ η

η1

φ2(t)
2t−5/7

N1(φ̃, φ̃
′, ε)[t]dt

+ φ2(η)

∫ η

η0

φ1(t)
2t−5/7

N1(φ̃, φ̃
′, ε)[t]dt

− φ1(η)
(φ2(η1)φ̃

′(η1)− φ′
2(η1)φ̃(η1))

2η−5/7
1

+ φ2(η)
(φ1(η0)φ̃

′(η0)− φ′
1(η0)φ̃(η0))

2η−5/7
0

.

(4.13)

PROOF: By using a variation of parameters on (4.6), with φ(η, ε) replaced by
φ̃(η), we get

φ̃(t) = −φ1(t)
∫ t

η2

φ2(s)
2s−5/7

N1(φ̃, φ̃
′, ε)[s]ds

+ φ2(t)
∫ t

η2

φ1(s)
2s−5/7

N1(φ̃, φ̃
′, ε)[s]ds + A1φ1(t)+ A2φ2(t) .

(4.14)
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After evaluating (4.14) and its derivative at t = η2 and solving for A1 and A2, we
have

A1 = φ̃(η2)φ
′
2(η2)− φ̃′(η2)φ2(η2)

2η−5/7
2

,

A2 = φ̃(η2)φ
′
1(η2)− φ̃′(η2)φ1(η2)

2η−5/7
2

.

(4.15)

However, on using integration by parts twice, we get

− φ1(t)
∫ η1

η2

φ2(t)
2t−5/7

Lφ̃(t)dt + φ2(t)
∫ η0

η2

φ1(t)
2t−5/7

Lφ̃(t)dt

=
{

−φ1(t)
(φ2(η1)φ̃

′(η1)− φ′
2(η1)φ̃(η1))

2η−5/7
1

+ φ2(t)
(φ1(η0)φ̃

′(η0)− φ′
1(η0)φ̃(η0))

2η−5/7
0

− A1φ1(t)− A2φ2(t)
}

.

(4.16)

Using Lφ̃ = N1(φ̃, φ̃
′, ε) in (4.16) and using this expression in (4.14), we get

(4.13) and hence the lemma follows. �

DEFINITION 4.8

(4.17) W =
{

φ : φ(η) is analytic in R2,R and continuous in its closure,

with ‖φ‖ := sup
R2,R

|ηφ(η)| < ∞
}

.

LEMMA 4.9 Let N ∈ W and define

ψ1(η) := φ1(η)

∫ η

η1

φ2(t)
2t−5/7

N (t)dt , ψ2(η) := φ2(η)

∫ η

η0

φ1(t)
2t−5/7

N (t)dt ,

ψ3(η) := φ′
1(η)

∫ η

η1

φ2(t)
2t−5/7

N (t)dt , ψ4(η) := φ′
2(η)

∫ η

η0

φ1(t)
2t−5/7

N (t)dt .

Then ‖ψ1‖ ≤ K‖N (t)‖, ‖ψ2‖ ≤ K‖N (t)‖, ‖ψ3‖ ≤ K‖N (t)‖, and ‖ψ4‖ ≤
K‖N (t)‖, where K is some constant independent of R and ε.

PROOF: From the nature of the domain R2,R , any point η ∈ R2,R can be con-
nected to η0 by a straight line within R2,R . So on line t (s), parametrized by arc
length s, Re(t (s) − η) increases from η to η0 so that d

ds Re(t (s) − η) > C1 > 0,
where C1 is a constant independent of ε. Further, on this straight line, 0 < C2 <

|t/η|, where C2 is independent of ε. Then

|ψ2(η)| =
∣

∣

∣

∣

∫ η

η0

t−9/14η−5/14e−(t−η)(t N (t))dt
∣

∣

∣

∣

≤ C−9/14
2 |η|−1‖N‖

∫ 1

0

d{e− Re(t (s)−η)}
d
ds Re t (s)

≤ C−1
1 C−9/14

2 |η|−1‖N‖ .
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So ‖ψ2‖ ≤ K‖N‖, and similarly for ψ4 since |φ′
2|/|φ2| ≤ C .

Also, it is clear that any point η can be connected to η1 by a straight line entirely
within R2,R , and on such a path t (s), d

ds Re(η − t (s)) > C1 > 0, where C1 is
independent of ε. Furthermore, on this straight line, |t/η| > C2 > 0, where C2 is
independent of ε. So

|ψ1(η)| =
∣

∣

∣

∣

∫ η

η1

t−9/14η−5/14e−(η−t)t N (t)dt
∣

∣

∣

∣

≤ C−9/14
2 C−1

1 |η|−1‖N‖ ≤ K |η|−1‖N‖ ,

and similarly for ‖ψ3‖ since |φ′
1/φ1| ≤ C . �

DEFINITION 4.10 We define φ3 and φ4 so that

φ3(η) = −φ1(η)
(φ2(η1)φ̃

′(η1)− φ′
2(η1)φ̃(η1))

2η−5/7
1

,(4.18)

φ4(η) = φ2(η)
(φ1(η0)φ̃

′(η0)− φ′
1(η0)φ̃(η0))

2η−5/7
0

.(4.19)

LEMMA 4.11

‖φ′
3‖, ‖φ3‖ ≤ C1

[

|η1φ̃(η1)| + |φ̃′(η1)η1|
]

,

‖φ′
4‖, ‖φ4‖ ≤ C1

[

|η0φ̃(η0)| + |φ̃′(η0)η0|
]

,

where C1 is independent of ε.

PROOF: Since |η1| > |η|, it follows that
∣

∣

∣

∣

φ1(η)φ2(η1)

η1(η
−5/7
1 )

∣

∣

∣

∣

= exp
[

Re η1 − Re η
]

|η1|−9/14|η|−5/14 ≤ C1|η|−1 .

Also, since |η| < C |η0|, for constant C independent of ε,
∣

∣

∣

∣

φ2(η)φ1(η0)

η0(η
−5/7
0 )

∣

∣

∣

∣

= exp
[

Re η − Re η0
]

|η0|−9/14|η|−5/14 ≤ C2|η|−1 .

Since φ′
2(η) = φ2(η)[1 − 5/(14η)] and φ ′

1(η) = φ1(η)[−1 − 5/(14η)], the same
arguments as above show that

∣

∣

∣

∣

φ1(η)φ
′
2(η1)

η1(η
−5/7
1 )

∣

∣

∣

∣

≤ C2|η|−1 and
∣

∣

∣

∣

φ2(η)φ
′
1(η0)

η0(η
−5/7
0 )

∣

∣

∣

∣

≤ C1|η|−1 .

Hence, the lemma follows from the definition of φ3 and φ4 in Definition 4.10. �

DEFINITION 4.12
Wσ ≡ {φ ∈ W : ‖φ‖ < σ } .
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DEFINITION 4.13

D
(

φ, φ′,
1
η

)

≡ φ

{(

1 + 4
49η

φ

η
+ 4

7
φ′

)3/2

− 1
}

=
∑

j1+ j2≥2

Ãj1, j2(η)φ
j1(φ′)

j2 .

We define a constant ρ̃ that is independent of η and ε in the domain R2,R so that

| Ãj1, j2(η)| < C ρ̃− j1− j2 .

LEMMA 4.14 If φ, φ ′ ∈ Wσ , then N1(φ, φ
′, ε) ∈ Wσ and

‖N1(φ, φ
′, ε)‖ < 1 + C

(

1
R3
σ + k̃4/7

0 + σ 2

Rρ2

)

for R large enough so that σ/ρ̃R, σ/ρR ≤ 1
2 , where ρ and ρ̃ are as in Remark 4.1

and Definition 4.13.

PROOF: In (4.11),
∥

∥

∥

∥

−33
196η2

φ

∥

∥

∥

∥

<
c

R3
‖φ‖ ,

∥

∥

∥

∥

1
η

∥

∥

∥

∥

≤ 1 .

The norm of the first nonlinear term in (4.11) can be estimated by noting
∣

∣

∣

∣

ηD
(

φ, φ′,
1
η

)∣

∣

∣

∣

=
∣

∣

∣

∣

∑

j1+ j2≥2

Ãj1, j2(η)φ
j1φ′ j2η

∣

∣

∣

∣

≤ C
∑

j1+ j2≥2

1
|η| j1+ j2−1

1
ρ̃ j1+ j2

|ηφ| j1 |ηφ′| j2 ≤ C
σ 2

Rρ̃2
.

The norm of the second nonlinear term in (4.11) can be estimated by using (4.7)
and noting

∣

∣(εη)4/7 E
∣

∣ ≤ (εη0)
4/7

∣

∣

∣

∣

∞
∑

j1, j2≥0

E j1, j2

(

(εη)2/7,
1
η

)

φ j1(φ′) j2

∣

∣

∣

∣

≤ C(εη0)
4/7

( ∞
∑

j1, j2≥0

1
R j1+ j2

1
ρ j1+ j2

σ j1+ j2

)

≤ Ck̃4/7
0 = O(γ − b) ,

where ρ is as defined in Remark 4.1. The lemma follows from combining the above
results. �

LEMMA 4.15 If φ ∈ Wσ , ψ ∈ Wσ , φ′ ∈ Wσ , and ψ ′ ∈ Wσ , then for R >

{ 2σ
ρ̃
, 2σ
ρ

},
∥

∥N1(φ, φ
′, ε)− N1(ψ,ψ

′, ε)
∥

∥ ≤

C
[

1
R3

+ σ

ρ̃2 R
+ k̃4/7

0

]

(‖φ − ψ‖ + ‖φ′ − ψ ′‖) ,

where ρ and ρ̃ are as in Remark 4.1 and Definition 4.13 and C is independent of
φ, ψ , and ε.
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PROOF:
∥

∥

∥

∥

−33
196η2

(φ − ψ)

∥

∥

∥

∥

≤ C
R3

‖(φ − ψ)‖ .

Note that
∣

∣η(φ j1ψ j2 − ψ j1φ j2)
∣

∣ =
∣

∣ηφ j1(φ′ j2 − ψ ′ j2)+ ηψ ′ j2(φ j1 − ψ j1)
∣

∣

≤ ‖φ‖ j1 1
R j1+ j2−1

j2(‖φ′‖ + ‖ψ ′‖) j2−1‖ψ ′ − φ′‖

+ ‖ψ‖ j2

R j1+ j2−1
j1(‖ψ‖ + ‖φ‖) j1−1‖ψ − φ‖

≤
(

σ

R

) j1+ j2−1
[

j2‖ψ ′ − φ′‖ + j1‖φ − ψ‖
]

.

(4.20)

So in (4.11),
∣

∣

∣

∣

ηD
(

φ, φ′,
1
η

)

− ηD
(

ψ,ψ ′,
1
η

)∣

∣

∣

∣

≤
∑

j1+ j2≥2

| Ãj1, j2(η)|
∣

∣η(φ j1φ′ j2 − ψ j1ψ ′ j2)
∣

∣

≤ C
∑

j1+ j2≥2

1
ρ̃ j1+ j2

(

σ

R

) j1+ j2−1
{

j2‖ψ ′ − φ′‖ + j1‖ψ − φ‖
}

≤ C
ρ̃2

σ

R

[

‖ψ ′ − φ′‖ + ‖ψ − φ‖
]

for R >
2σ
ρ̃
.

From (4.7) and (4.20)
∣

∣

∣

∣

(εη)4/7
[

E
(

(εη)4/7,
1
η
, φ, φ′

)

− E
(

(εη)2/7,
1
η
,ψ,ψ ′

)]
∣

∣

∣

∣

≤ C |εη0|4/7
∑

j1, j2≥0

1
ρ j1+ j2

(

σ

R

) j1+ j2−1
{

j2‖ψ ′ − φ′‖ + j1‖ψ − φ‖
}

≤ Ck̃4/7
0

[

‖ψ ′ − φ′‖ + ‖ψ − φ‖
]

for R >
2σ
ρ̃
.

�

Consider the integral equation in the domain R2,R:

φ(η) = L1φ(η)− φ1(η)
(φ2(η1)φ̃

′(η1)− φ′
2(η1)φ̃(η1))

2η−5/7
1

+ φ2(η)
(φ1(η0)φ̃

′(η0)− φ′
1(η0)φ̃(η0))

2η−5/7
0

,

(4.21)
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where

L1φ ≡ −φ1(η)

∫ η

η1

φ2(t)
2t−5/7

N1(φ, φ
′, ε)[t]dt

+ φ2(η)

∫ η

η0

φ1(t)
2t−5/7

N1(φ, φ
′, ε)[t]dt .

(4.22)

DEFINITION 4.16

(4.23) E1 := W ⊕ W , ‖(φ, φ ′)‖E1 = ‖φ‖ + ‖φ′‖ .
This is clearly a Banach space. Similarly, E1

σ = {(φ, φ′) ∈ E1 with ‖(φ, φ′)‖ ≤ σ }.

Define

M : E1 → E1 , M(φ, φ′) =
(

M1(φ, φ
′),M2(φ, φ

′)
)

,

where

M1(φ, φ
′) = L1φ(η)+ φ3(η)+ φ4(η) ,(4.24)

M2(φ, φ
′) = L2φ(η)+ φ′

3(η)+ φ′
4(η) ,(4.25)

where

L2φ ≡ −φ′
1(η)

∫ η

η1

φ2(t)
2t−5/7

N1(φ, φ
′, ε)dt

+ φ′
2(η)

∫ η

η0

φ1(t)
2t−5/7

N1(φ, φ
′, ε)(t)dt .

(4.26)

THEOREM 4.17 For fixed σ ≥ 4K , where K is as defined in Lemma 4.9, there
exists k̃0 small enough but independent of ε (i.e., b is chosen so that γ − b is small
but independent of ε), and R large enough so that for any ε small enough, M is a
contraction mapping from E1

σ to E1
σ .

PROOF: Using Lemmas 4.9, 4.11, and 4.14 in (4.24) and (4.25), it follows that

‖M(φ, φ′)‖ = ‖M1(φ, φ
′)‖ + ‖M2(φ, φ

′)‖

≤ 2K
[

1 + C
(

σ

R3
+ k̃4/7

0 + σ 2

Rρ̃2

)]

+ C1
[

|η0φ̃(η0)| + |φ̃′(η0)η0| + |η1φ̃(η1)| + |η1φ̃
′(η1)|

]

.

(4.27)

From Theorem 4.2,

ηφ̃(η), ηφ̃′(η) = O
(

(γ − b)3/4,
ε

(γ − b)
1
4

)

for η = η0 or η1. But since (γ − b)7/4 = O(k̃0), it follows that k̃0 can be chosen
small enough (but independent of ε) and R can be chosen large enough so that the
right-hand side of (4.27) is less than 4K for small enough ε.
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Furthermore, from Lemma 4.9 and Lemma 4.15,
∥

∥M1,2(φ1, φ2)− M1,2(φ2, φ
′
2)

∥

∥

≤ K‖N (φ1, φ
′
1, ε)− N (φ2, φ

′
2, ε)‖

≤ K C
[

‖φ1 − φ2‖ + ‖φ′
1 − φ′

1‖
]

[

1
R3

+ σ

ρ̃2 R
+ k̃4/7

0

]

,

so
∥

∥M(φ1, φ
′
1)− M(φ2, φ

′
2)

∥

∥ ≤

2K C
[

1
R3

+ σ

ρ̃2 R
+ k̃4/7

0

]

∥

∥

(

φ1 − φ2, φ
′
1 − φ′

2

)
∥

∥ ,

which is a contraction for k̃0 small and R large. �

Remark 4.18. Note that R can be chosen large enough and k̃0 small enough and the
theorem holds for all small ε. In other words, the choice of R and k̃0 can be made
independent of ε, although the theorem also holds if R = O(1/ε) for sufficiently
small ε and k̃0.

COROLLARY 4.19 Integral equation (4.21) has the unique analytic solution φ(η)
and φ(η) = φ̃(η) in the domain R2,R .

PROOF: The unique solution φ follows from Theorem 4.17 using the contrac-
tion mapping theorem. If we choose R = O(1/ε) suitably, then Theorem 4.2
applies to domain R2,R , and from Lemma 4.7, φ = φ̃. From analytic continuation,
φ − φ̃ = 0 everywhere on R2,R even when R is independent of ε but large. �

LEMMA 4.20 The solution φ̃(η) satisfies Im φ̃(η) = 0 for R < η < q1/ε for
sufficiently large R and small enough ε for R independent of ε.

PROOF: From Corollary 4.19, it follows that φ̃(η) is analytic, in particular, on
the real axis for R < η < k̃0/ε. However, from Theorem 4.2, Im φ̃ = 0 for
q0/ε ≤ η ≤ q1/ε. Since k̃0 > q0, the lemma follows. �

LEMMA 4.21 For any fixed η in the domain {η : Re η+Im η > R, 5π/8 > arg η >
−π/8} and limε→0 φ̃(η, ε) = φ0(η), where φ0(η) satisfies

(4.28) φ0(η) =

− φ2(η)

∫ η

∞e5iπ/8

N1(φ0, φ
′
0, 0)[t]

2t−5/7
dt + φ1(η)

∫ η

∞

N1(φ0, φ
′
0, 0)[t]

2t−5/7
dt .

PROOF: The lemma follows from (4.13) by taking the limit as ε → 0 and using
Theorem 4.2; φ̃(η1), φ̃′(η1), φ̃(η0), and φ′(η0) all tend to 0 while

φ1(η)φ2(η1)

2η−5/7
1

→ 0 and
φ2(η)φ1(η0)

2η−5/7
0

→ 0 as ε → 0
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since η1, η0 → ∞. �

COROLLARY 4.22 φ0(η) satisfies the differential equation

(4.29) L1φ0 = N1
(

φ0, φ
′
0, 0

)

= −33
196η2

− 1
η

+ φ0

{(

1 + 4
49
φ0

η
+ 4

7
φ′

0

)3/2

− 1
}

with ηφ0(η) finite as η → ∞, at least for arg η ∈ (−π/8, 5π/8).

PROOF: L1φ0 = N1(φ0, φ
′
0, 0) follows simply from applying L1 to (4.28).

Since |ηφ(η)| was bounded independently of ε in the domain R2,R , it follows that
as ε → 0, |ηφ0| is also bounded at least for arg η ∈ (−π/8, 5π/8). �

Remark 4.23. It is known from the general theory worked out by Costin [7] that
(4.29) has a unique solution with asymptotic expansion

φ0 ∼
∞

∑

j=1

aj

η j
valid for − π

2 < arg η < π ,

and that on the positive real axis

(4.30) Imφ0 ∼ Sη−5/14e−η

for some Stokes constant S (which is a numerical constant independent of any
parameter) that can be computed.

However, applying transformation (4.2), (4.3), and (4.5) and going back to vari-
able χ and G, it is clear that limε→0 G(χ(η)) = G0(χ(η)) and that G0(χ) satisfies

(4.31) G ′′
0 = 1 + (χ − G ′

0)
3/2G0 .

If we use transformation

(4.32) V0(χ) = (χ − G ′
0)

−1/2 ,

then it follows from (4.31) that V0(χ) satisfies

(4.33) 2V ′′
0 (χ) = χ − V −2

0

with V0(χ) → χ−1/2 as χ → ∞, at least for 5π/14 ≥ argχ ≥ 0.
Combescot et al. [5] considered (4.33), and by computing many terms in the

asymptotic expansion for large χ , were able to use a Borel summation procedure
to compute the constant S̃ in the asymptotic expression

(4.34) Im V0(χ) ∼ S̃χ− 3
8 e− 4

7χ
7/4

for large positive χ . The number S̃ was found to be nonzero. By using the trans-
formation from χ to η, it follows that S in (4.31) must also be nonzero.

LEMMA 4.24 For all sufficiently small ε,

(4.35) Im φ̃(η, ε) 6= 0 for any η ∈
(

R,
q1

ε

)

.
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PROOF: Since limε→0 φ̃(η) = φ0(η), limε→0 Im φ̃(η, ε) = Imφ0(η) 6= 0 from
(4.30), since S is nonzero. �

COROLLARY 4.25 Im F 6= 0 on some imaginary ξ -axis segment [−ib,−ib′] for
some b′ < b.

PROOF: On using transformation (4.2), (4.3), and (4.5), the interval (R, q1/ε)

in η corresponds to an Im ξ -axis interval that includes [−ib,−ib′] for some suit-
ably chosen b′ < b. So, at least on this segment, Im F(ξ) = Imφ(η(ξ)) 6= 0. �

PROOF OF THEOREM 1.8: We have shown that any classical solution F(ξ), if
it exists, is analytic in R∪ C̄

+ and belongs to A0. It is also analytic in the Im ξ -axis
segment [−ib, i∞). From successive Taylor expansions on the imaginary ξ -axis,
starting at ξ = 0, it follows that the symmetry Condition 3 implies Im F = 0 for
ξ ∈ [−ib, i∞). But this contradicts the previous corollary for all sufficiently small
ε. Hence the proof of Theorem 1.8 follows. �

Appendix A: Proof of Some Lemmas

LEMMA A.1 Let g ∈ C1(−∞,∞) such that ‖(ξ − 2i)τ g‖∞ < ∞ for some 0 <
τ < 1, and let ‖|ξ − 2i |τ+1g′‖∞ < ∞ as well. Then, for any k ∈ (0, 1

2 ],

(A.1) ‖(ξ − 2i)τH(g)‖∞ ≤ C1 ln
1
k
‖(ξ − 2i)τ g‖∞ + C2k‖(ξ − 2i)τ+1g′‖∞ ,

where C1 and C2 are independent of k and H is the Hilbert transform operator
defined as

(A.2) H(g)[ξ ] ≡ 1
π
(P)

∫ ∞

−∞

g(ξ + ξ ′)

ξ ′ dξ ′ .

PROOF: We first take ξ ≥ 1. Denote k ′ = 2 − k; clearly 3
2 ≤ k ′ < 2. We break

up the integral in (A.2) into four parts:

(A.3)
∫ ∞

−∞
=

∫ kξ

−kξ
+

∫ −kξ

−k′ξ
+

∫ −k′ξ

−∞
+

∫ ∞

kξ

1
π

g(ξ + ξ ′)

ξ ′ dξ ′ .

Consider the first term
∣

∣

∣

∣

1
π
(P)

∫ kξ

−kξ

g(ξ + ξ ′)− g(ξ)
ξ ′ dξ ′

∣

∣

∣

∣

≤
∣

∣

∣

∣

1
π

∫ kξ

−kξ
g′(ξ̄ + ξ)dξ ′

∣

∣

∣

∣

≤ 1
π

‖(ξ − 2i)1+τ g′‖∞

∫ kξ

−kξ
|ξ̄ + ξ − 2i |−τ−1 dξ ′ ,

where ξ̄ ∈ (−kξ, kξ). But
∫ kξ

−kξ
|ξ̄ + ξ − 2i |−τ−1 dξ ′ ≤ |ξ(1 − k)− 2i |−1−τ2kξ ≤ C2k|ξ − 2i |−τ ,
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where C2 can be made independent of k ∈ (0, 1
2 ]. Hence

∣

∣

∣

∣

1
π

∫ kξ

−kξ

g(ξ + ξ ′)− g(ξ)
ξ ′ dξ ′

∣

∣

∣

∣

≤ kC2|ξ − 2i |−τ‖(ξ − 2i)1+τ g′‖∞ .

Now consider the second term. Make the change of variable ξ ′ + ξ = ξ ′′ and
let L = (1 − k)ξ ; we get

1
π

∫ L

−L

g(ξ ′′)

(ξ ′′ − ξ)
dξ ′′ .

We write this integral as

(A.4)
1
π

∫ L

−L

g(ξ ′′)

(ξ ′′ − ξ)
dξ ′′ =

1
π

∫ L

−L

[

g(ξ ′′)

(ξ ′′ − ξ)
+ g(ξ ′′)

ξ

]

dξ ′′ − 1
πξ

∫ L

−L
g(ξ ′′)dξ ′′

and estimate each term separately. The second term on the right-hand side above
can be estimated as

∣

∣

∣

∣

1
πξ

∫ L

L
|g(ξ ′)(ξ ′ − 2i)τ ||ξ ′ − 2i |−τ dξ ′

∣

∣

∣

∣

≤

C
L1−τ

ξ
‖(ξ − 2i)τ g‖∞ ≤ Cξ−τ‖(ξ − 2i)g‖∞ ,

(A.5)

where C can be made independent of k. Now consider the first term in (A.4):

∣

∣

∣

∣

1
π

∫ L

−L

[

g(ξ ′′)

ξ ′′ − ξ
+ g(ξ ′′)

ξ

]

dξ ′′
∣

∣

∣

∣

=
∣

∣

∣

∣

1
π

∫ L

−L

g(ξ ′′)ξ ′′

(ξ − ξ ′′)ξ
dξ ′′

∣

∣

∣

∣

≤ C‖(ξ − 2i)τ g‖∞

∫ L

−L

|ξ ′′|1−τ

(ξ − ξ ′′)ξ
dξ ′′

≤ C‖(ξ − 2i)τ g‖∞ξ
−τ

[ ∫ 1−k

(1−k)

|ξ̂ |1−τ

(1 − ξ̂ )
d ξ̂

]

≤ C1 ln
1
k
|ξ − 2i |−τ‖(ξ − 2i)τ g‖∞ ,

(A.6)

where C1 is independent of k, and the ln 1
k term accounts for the behavior of the

estimate on the right-hand side as k → 0+.
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We now estimate the third term in (A.3):
∣

∣

∣

∣

1
π

∫ −k′ξ

−∞

g(ξ ′ + ξ)

ξ ′ dξ ′
∣

∣

∣

∣

=
∣

∣

∣

∣

1
π

∫ ∞

k′ξ

g(−ξ ′ + ξ)

ξ ′ dξ ′
∣

∣

∣

∣

≤ ‖(ξ − 2i)τ g‖∞
1
π

∫ ∞

k′ξ

(ξ ′ − ξ)−τ

ξ ′ dξ ′

≤ C‖(ξ − 2i)τ g‖∞ξ
−τ ,

where C above can be chosen independently of k.
Now consider the fourth term in (A.3).

∣

∣

∣

∣

1
π

∫ ∞

kξ

g(ξ ′ + ξ)

ξ ′ dξ ′
∣

∣

∣

∣

≤ ‖(ξ − 2i)τ g‖∞
1
π

∫ ∞

kξ

(ξ ′ + ξ)−τ

ξ ′ dξ ′

≤ ‖(ξ − 2i)τ g‖∞ξ
−τ

∫ ∞

k

(1 + ξ̂ )−τ

ξ̂
d ξ̂

≤ C1 ln
1
k
‖ξ τ g‖∞ξ

−τ ,

where C1 is chosen independently of k and ln 1
k accounts for the asymptotic be-

havior of the integral on the right-hand side as k → 0+. Combining all the terms
above, we obtain the proof of the lemma for ξ > 1. Now for 0 ≤ ξ ≤ 1, we split
the integral in (A.2) into

1
π

∫ k

−k

g(ξ ′ + ξ)− g(ξ)
ξ ′ dξ ′ + 1

π

∫ ∞

k

g(ξ ′ + ξ)

ξ ′ dξ ′ + 1
π

∫ −k

−∞

g(ξ ′ + ξ)

ξ ′ dξ ′ .

The first term yields
∣

∣

∣

∣

1
π

∫ k

−k

g(ξ ′ + ξ)− g(ξ)
ξ ′ dξ ′

∣

∣

∣

∣

≤ 1
π

∫ k

−k
|g′(ξ̂ )dξ ′| ≤ C2k‖(ξ − 2i)1+τ g′‖∞ ,

where C2 is independent of ε.
For the second term, we have

1
π

∫ ∞

k

g(ξ ′ + ξ)

ξ ′ dξ ′ ≤ C‖(ξ − 2i)τ g‖∞

∫ ∞

k

|ξ ′ + ξ − 2i |−τ
ξ ′ dξ ′

≤ C‖(ξ − 2i)τ g‖∞

∫ ∞

k

(ξ ′2 + 4)−τ/2

ξ ′ dξ ′

≤ C1 ln
1
k
‖(ξ − 2i)τ g‖∞ ,

where C1 is independent of k and ln 1
k accounts for the asymptotic behavior of the

right-hand side estimate as k → 0+.
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For the third term,
∣

∣

∣

∣

1
π

∫ −k

−∞

g(ξ ′ + ξ)

ξ ′ dξ ′
∣

∣

∣

∣

≤
∣

∣

∣

∣

1
π

∫ ∞

k

g(−ξ ′ + ξ)

ξ ′ dξ ′
∣

∣

∣

∣

≤ ‖(ξ − 2i)τ g‖∞
1
π

∫ ∞

k

|ξ ′ − ξ − 2i |−τ
ξ ′ dξ ′

≤ C1 ln
1
k
‖(ξ − 2i)τ g‖∞ ,

where C1 is made independent of k by using the asymptotic behavior of the right-
hand side estimate as k → 0+.

For ξ < 0, we note that

H(g)[ξ ] = 1
π

∫ ∞

−∞
g(ξ ′)

dξ ′

ξ ′ − ξ
= − 1

π

∫ ∞

−∞

g(−ξ ′)dξ ′

ξ ′ − (−ξ) ,

which is the negative of the Hilbert transform of the function g(−ξ) evaluated at
the point −ξ > 0. Since g(−ξ) satisfies the same conditions as those given for
g(ξ) in this lemma, it follows that all bounds also hold for ξ < 0. �

LEMMA A.2 Let g ∈ C2(−∞,∞) such that ‖(ξ−2i)τ g‖∞ and ‖(ξ−2i)τ+2g′′‖∞
exist for some τ ∈ (0, 1). Then

(A.7)
∥

∥(ξ − 2i)τ+1H(g′)
∥

∥

∞ ≤ C2
∥

∥(ξ − 2i)τ+2g′′∥
∥

∞ + C0
∥

∥(ξ − 2i)τ g
∥

∥

∞ .

PROOF: First, we consider the case ξ > 1. Then we decompose

H(g′)[ξ ]

= 1
π

∫ ξ/2

−ξ/2

[

g′(ξ + ξ ′)− g′(ξ)

ξ ′

]

dξ ′ − 2
πξ

(

g
(

3
2
ξ

)

+ g
(

ξ

2

))

+ 1
π

( ∫ ∞

ξ/2
+

∫ − 3
2 ξ

−∞

)

g(ξ + ξ ′)

ξ ′2 dξ ′ + 1
π

∫ − ξ
2

− 3
2 ξ

g(ξ + ξ ′)

ξ ′2 dξ ′ .

(A.8)

Using arguments similar to Lemma A.1 for k = 1
2 , it is clear that the first term on

the right of (A.8) is bounded by
∣

∣

∣

∣

1
π

∫ ξ/2

−ξ/2

[

g′(ξ + ξ ′)− g′(ξ)

ξ ′

]

dξ ′
∣

∣

∣

∣

≤ C1|ξ − 2i |−τ−1‖(ξ − 2i)τ+2g′′‖∞ .

The second term of (A.8) is easily seen to be bounded by
∣

∣

∣

∣

2
πξ

(

g
(

3
2
ξ

)

+ g
(

ξ

2

))
∣

∣

∣

∣

≤ C |ξ − 2i |−τ−1‖(ξ − 2i)τ g‖∞ .
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Using arguments similar to Lemma A.1, with k = 1
2 , the third term in (A.8) is also

bounded:
∣

∣

∣

∣

1
π

( ∫ ∞

ξ/2
+

∫ − 3
2 ξ

−∞

)

g(ξ + ξ ′)

ξ ′2 dξ ′
∣

∣

∣

∣

≤

Cξ−1−τ‖(ξ − 2i)τ g‖∞

[ ∫ ∞

1/2

(1 + ξ̂ )−τ

ξ̂ 2
d ξ̂ +

∫ ∞

3/2

(ξ̂ − 1)−τ

ξ̂ 2
d ξ̂

]

.

Now, with the change of variable ξ ′ +ξ = ξ ′′, the last term on the right of (A.8)
can be bounded by

(A.9)
∣

∣

∣

∣

∫ ξ/2

−ξ/2

g(ξ ′′)

(ξ ′′ − ξ)2
dξ ′′

∣

∣

∣

∣

= Cξ−1−τ‖(ξ − 2i)τ g‖∞

∫ 1/2

−1/2

|ξ̂ |−τ

(1 − ξ̂ )2
d ξ̂ .

Therefore, combining the bounds on each term, we get

(A.10)
∣

∣H(g′)[ξ ]
∣

∣ ≤ |ξ − 2i |−1−τ (C2‖(ξ − 2i)τ+2g′′‖∞ + C0‖(ξ − 2i)τ g‖∞
)

.

We now consider 0 ≤ ξ ≤ 1. In this case, it is convenient to write

πH(g′)[ξ ] =
∫ 1

−1

g′(ξ ′ + ξ)− g′(ξ)

ξ ′ dξ ′ − [g(ξ + 1)+ g(ξ − 1)]

+
( ∫ ∞

1
+

∫ −1

−∞

)

g(ξ + ξ ′)

ξ ′2 dξ ′ .

(A.11)

Consider the first term in (A.11):

(A.12)
∣

∣

∣

∣

∫ 1

−1

g′(ξ ′ + ξ)− g′(ξ)

ξ ′ dξ ′
∣

∣

∣

∣

≤ C1
∥

∥(ξ − 2i)2+τ g′′∥
∥

∞ .

For the second term,

(A.13)
∣

∣g(ξ + 1)+ g(ξ − 1)
∣

∣ ≤ C‖(ξ − 2i)τ g‖0 .

For the third term in (A.11),

(A.14)
∣

∣

∣

∣

( ∫ ∞

1
+

∫ −1

−∞

)

g(ξ + ξ ′)

ξ ′2

∣

∣

∣

∣

≤

C‖(ξ − 2i)τ g‖∞

[ ∫ ∞

1
ξ ′−2−τ dξ ′ +

∫ ∞

1

(ξ ′ − 1)−τ

ξ ′2 dξ ′
]

.

By combining the above inequalities, it follows that (A.10) holds for 0 ≤ ξ ≤ 1 as
well. Also, it is to be noted that as in Lemma A.1, for ξ < 0, H(g)[ξ ] can be related
to the Hilbert transform of g(−ξ) evaluated at −ξ . Thus, the same inequalities as
above hold for ξ < 0. Therefore, (A.10) holds for all ξ ∈ (−∞,∞) and the lemma
follows. �
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LEMMA A.3 Let g ∈ C3(−∞,∞) such that ‖(ξ − 2i)τ g‖∞, ‖(ξ − 2i)τ+1g′‖∞,
and ‖(ξ − 2i)τ+3g′′′‖∞ are each bounded for some τ ∈ (0, 1); then

(A.15)
∥

∥(ξ − 2i)τ+2H(g′′)
∥

∥

∞ ≤
C3

∥

∥(ξ − 2i)τ+3g′′′∥
∥

∞ + C1
∥

∥(ξ − 2i)τ+1g′∥
∥

∞ + C0‖(ξ − 2i)τ g‖∞ .

PROOF: For ξ > 1, we decompose

πH(g′′)[ξ ] =
∫ ξ/2

−ξ/2

g′′(ξ ′ + ξ)− g′′(ξ)

ξ ′ dξ ′ + 4
ξ 2

[

−g
(

3
2
ξ

)

+ g
(

ξ

2

)]

− 2
ξ

[

g′
(

3
2
ξ

)

+ g′
(

ξ

2

)]

+
( ∫ ∞

ξ/2
+

∫ − 3
2 ξ

−∞

)

2g(ξ ′ + ξ)

ξ ′3 dξ ′ +
∫ ξ/2

−ξ/2

2g(ξ ′′)

(ξ ′′ − ξ)3
dξ ′′ .

(A.16)

For ξ > 1, we get from the estimates for each term in the above, using the same
procedure as in Lemma A.2,

∣

∣|H(g′′)[ξ ]
∣

∣ ≤
|ξ − 2i |−2−τ{C3‖(ξ − 2i)3+τ g′′′‖∞ + C1‖(ξ − 2i)1+τ g′‖∞

+ C0‖(ξ − 2i)τ g‖∞
}

.

(A.17)

For 0 ≤ ξ ≤ 1, we decompose

πH(g′′)[ξ ] =(A.18)
∫ 1

−1

g′′(ξ ′ + ξ)− g′′(ξ)

ξ ′ dξ ′ +
( ∫ ∞

1
+

∫ −1

−∞

)

2g(ξ + ξ ′)

ξ ′3 dξ ′

+
[

g(ξ − 1)− g(ξ + 1)− g′(ξ + 1)− g′(ξ − 1)
]

.

As before in Lemma A.2, each term can be estimated, and one obtains (A.17) for
0 ≤ ξ ≤ 1 as well. Again, for ξ < 0, H(g)[ξ ] can be related to the Hilbert
transform of g(−ξ ′) evaluated at −ξ ; hence the inequality (A.17) is valid in that
case as well. Therefore, the lemma follows. �

LEMMA A.4 If F satisfies Conditions 1 through 3 and Assumption 1, then

sup
ξ∈(−∞,∞)

|ξ + 2i |1+τ |F ′| < ∞ .

PROOF: Define g(ξ) = ε2 Im ln[1 + F ′/H ] on the real ξ -axis. From Condi-
tion 1,

g′(ξ) = −ε2 Im
H ′

H
(ξ)+ |F ′ + H | Re F = O(ξ−τ−1) as ξ → ±∞ .
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Hence, on integration, g(ξ) = O(ξ−τ ) as ξ → ±∞. We note that ln(1 + F ′/H)
is analytic in C

+, and so on the real ξ -axis, ε2 Re ln(1 + F ′/H) = H(g)[ξ ]. Since
the conditions for Lemma A.1 are met by g(ξ), it follows that

H(g)[ξ ] = O(ξ−τ ) as ξ → ±∞ ,

and therefore ε2 ln(1 + F ′/H) = O(ξ−τ ) as ξ → ±∞, which implies F ′ =
O(ξ−1−τ ). The lemma follows since F is continuously differentiable in (−∞,∞).

�

LEMMA A.5 If f is analytic in the upper half-plane C
+ and continuous on C̄

+,
the closure of C

+, and supξ∈(−∞,∞) |ξ − 2i |τ1 | f (ξ)| = δ < ∞ for some τ1 > 0,
then

(A.19) sup
ξ∈C+

|ξ + 2i |τ1 | f (ξ)| = δ .

On the other hand, if f is analytic in the lower half-plane C
− and continuous on

C̄
− with supξ∈(−∞,∞) |ξ − 2i |τ1 | f (ξ)| = δ < ∞, then

(A.20) sup
ξ∈C−

|ξ − 2i |τ1 | f (ξ)| ≤ δ .

PROOF: Since f is analytic in the upper half-plane, supξ∈C̄+ | f (ξ)| ≤ M0. Let
us define integer n = Int[τ1/2] + 2. Choosing hε1(ξ) = 1/(1 − iξε1)

2n , we note
that

|hε1(ξ)| = 1
(1 + ε1 Im ξ)2 + ε2

1(Re ξ)2)n
≤ 1 .

Consider g(ξ) = f (ξ)(ξ + 2i)τ1 hε1(ξ) and domain D := {Im ξ ≥ 0, |ξ | ≤
2τ1/2 M0/ε

2
1δ}. We will assume that ε1 is small enough so that 2τ1/2 M0/ε

2
1δ > 1.

On the circular part of ∂D,

|g(ξ)| ≤ M0[(Re ξ)2 + (Im ξ + 2)2]τ1/2

(1 + ε1 Im ξ)2 + (Re ξ)2ε2
1

≤ 2τ1/2 M0[(Re ξ)2 + (Im ξ)2]τ1/2

ε2
1((Re ξ)2 + (Im ξ)2)n

≤ δ .

On the straight part of ∂D, |g| ≤ δ. So |g| ≤ δ inside D, from the maximum
principle. Also, outside D, but for Im ξ ≥ 0, it is clear that |g| ≤ δ. So for
Im ξ ≥ 0, we have |g| ≤ δ. So for any fixed ξ , as ε1 → 0, g(ξ) → f (ξ)(ξ + 2i)τ1 .
So | f (ξ)||ξ + 2i |τ1 ≤ δ for all ξ ∈ C̄

+. The proof of the second part is very
similar. �

PROOF OF LEMMA 1.5: (1.7) and (1.8) follow from Lemma A.5 on using Lem-
ma A.4. Since g(ξ) = ε2 Im ln(1 + F ′/H) satisfies

g′ = −ε2 Im
H ′

H
+ |F ′ + H | Re F ,

it is clear that g′ = O(ξ−1−τ ) as ξ → ±∞, and

g′′ = −ε2 Im
(

H ′

H

)′
+ |F ′ + H | Re F ′ + |F ′ + H | Re

[

F ′′ + H ′

F ′ + H

]

Re F .
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Since H(g′)[ξ ] is a priori O(ξ−1) as ξ → ±∞, it follows that

Re
[

ε2 d
dξ

ln(F ′ + H)− ε2 H ′

H

]

= H(g′)[ξ ] = O(ξ−1) at best.

Therefore,

Re
F ′′ + H ′

F ′ + H
= O(ξ−1) for large |ξ |.

Also, using large-|ξ | behavior, Im(H ′/H)′ = O(ξ−3), |H + F ′| = O(ξ−1), and
using Re F = O(ξ−τ ) and (1.8) to obtain Re F ′ = O(ξ−1−τ ), it follows that
g′′ = O(ξ−2−τ ). From using Lemma A.2, it follows that H(g ′)[ξ ] = O(ξ−1−τ ).
So,

F ′′ + H ′

F ′ + H
− H ′

H
= g′ + iH(g)[ξ ] = O(ξ−1−τ ) .

Therefore, F ′′ = O(ξ−2−τ ) as ξ → ±∞ and hence

sup
ξ∈(−∞,∞)

|ξ − 2i |τ+2|F ′′(ξ)| ≡ δ2 < ∞ .

Using Lemma A.5, with f replaced by F ′′, the proof of Lemma 1.5 is complete.
�

Appendix B: Proofs of the Properties of Function P(ξ)

In this section we discuss properties of the following function:

(B.1) P(ξ) =
∫ ξ

−iγ
i L1/2(t)dt = i

∫ ξ

−iγ

(γ − i t)3/4(γ + i t)
1
4

(1 + t2)
dt .

We choose the branch cut {ξ : ξ = ρi, ρ > γ }, −π ≤ arg(γ + iξ) ≤ π , for the
function (γ +iξ)

1
4 , and the branch cut {ξ : ξ = −ρi, ρ > γ }, −π ≤ arg(γ −iξ) ≤

π , for the function (γ − iξ)3/4.

PROOF OF PROPERTY 1: First consider ξ ∈ (−∞, 0),

Re P(ξ) =
∫ 0

ξ

(γ 2 + t2)1/2

(1 + t2)
sin

{

1
2

arg(γ − i t)
}

dt + Re P(0) .

Clearly, Re P(−∞) = ∞ since arg(γ − i t) → π
2 as t → −∞, and Re P(ξ)

decreases as ξ increases since arg(γ − i t) ∈ (0, π2 ).
For −b < ρ < 0,

P(ρi) = −
∫ ρ

0

(γ + t)3/4(γ − t)
1
4

(1 − t2)
dt + P(0) ,

so

Re P(ρi) = −
∫ ρ

0

(γ + t)3/4(γ − t)
1
4

(1 − t2)
dt + Re P(0) .

On inspection, as ρ increases in the interval (−b, 0), Re P(iρ) decreases. �
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PROOF OF PROPERTY 2:

P ′(t) = e
π
4 i (t + iγ )3/4(t − iγ )

1
4

(t + i)(t − i)
.

It is to be noted that |t − 2i ||P ′(t)| has nonzero upper and lower bounds in the
domain R. Furthermore, on a ray t (s) = ξ − seiϕ , 0 ≤ s < ∞, where 0 ≤
ϕ < π

2 , as s → ∞, it is clear from the behavior of P ′(t) for large t that since
arg P ′(t (s)) ∼ −5π/4 − ϕ,

d
ds

Re P(t (s)) = Re[P ′(t (s))eiϕ+iπ ]

= |P ′(t (s))| cos[arg P ′(t (s)+ π + ϕ)] > C
|t (s)− 2i |

satisfies Property 2. �

PROOF OF PROPERTY 3: P ′ ∼ iγ as ξ → 0, so P(ξ) = P(0)+ iγ ξ + O(ν2).
Therefore, on ξ = −ν + se−iπ/4, 0 ≤ s ≤

√
2ν,

P(ξ) ∼ P(0)+ iγ (−ν + se−iπ/4)+ O(ν2) ∼ P(0)− iγ ν + γ seiπ/4 + O(ν2) ,

d
ds

Re P(ξ(s)) ∼ γ cosπ/4 + O(ν) > C > 0 ,

with C independent of ν and ε for sufficiently small ν. �

PROOF OF PROPERTY 4: Step 1. For 0 < γ < 1

P ′(ξ) = i(γ + iξ)
1
4 (γ − iξ)3/4

1
(ξ 2 + 1)

.

On l− = {ξ : ξ = −ib − eiπ/4s}, it suffices to consider arg(−eiπ/4 P ′) and ensure
it is in (−π

2 ,
π
2 ), modulo an additive multiple of 2π . This will ensure Property 4,

since |P ′||ξ − 2i | has a lower bound in the region D.
Consider

ξ 2 + 1 = 1 − b2 + is2 + 2e3iπ/4bs =
(

1 − b2 −
√

2 bs
)

+ i
(
√

2 bs + s2) ,

arg(ξ 2 + 1) = π − arctan
(

√
2 bs + s2

√
2 bs − (1 − b2)

)

.

Put s =
√

2 bρ to get

arg(ξ 2 + 1) = π − arctan
[

2b2(ρ2 + ρ)

2b2
(

ρ − 1−b2

2b2

)

]

= π − arctan
[

ρ2 + ρ

ρ − q

]

where q = (1 − b2)/2b2. In the range ρ > q , the minimum of the function
(ρ2 + ρ)/(ρ − q) is (

√
1 + q + √

q)2. Since

q = 1 − b2

2b2
≥ 1 − γ 2

2γ 2
:= qmin ,
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define
θmin = tan−1 (

√

1 + qmin + √
qmin

)2
>
π

4
;

then

(B.2) −π + θmin ≤ − arg(ξ 2 + 1) ≤ 0 .

Since arg(ξ − iγ ) ∈ (− 3
4π,−

π
2 ],

(B.3) arg i(γ + iξ)
1
4 = arg

[

eiπ/2eiπ/8(ξ − iγ )
1
4
]

∈
(

7π
16
,
π

2

]

.

Let ε2 = 1
2(θmin − π

4 ). Near ξ = −iγ ,

(B.4) P ′(ξ) = i(2γ )
1
4

(1 − γ 2)
(γ − iξ)3/4{1 + O(γ − iξ)} .

Clearly, there exists R0 large enough (depending on b) so that for ξ ∈ l−,

3
4

arg(γ − iξ) ∈
[

9
16
π − ε2,

9
16
π

)

for |ξ + iγ | ≥ R0(B.5)

and

3
4

arg(γ − iξ) ∈
[

0,
9
16
π − ε2

)

for |ξ + iγ | < R0 .

From a geometric consideration, it is clear that R0(b) → 0 as b → γ −. We choose
b close enough to γ so that the approximation in (B.4) is good enough to ensure
that on l−,

arg(P ′(ξ)e−3π i/4) ∈
(

−5π
16
,

7π
16

)

for |ξ + iγ | < R0(b) .

On the other hand, on l− for |ξ + iγ | ≥ R0(b), by using (B.5), along with (B.2)
and (B.3), it follows that

(B.6) arg
(

ei −3π
4 P ′(ξ)

)

∈
(

−3π
4

+ π

4
+

(

θmin − π

4

)

− ε2,
5π
16

)

⊂
(

−π
2
,
π

2

)

.

Step 2. Now consider γ > 1 (i.e., λ > 1
2 ) but make γ − 1 small enough so that

we can choose b so that 10(γ−1) ≤ |b−1|. (See [34] for an alternate proof without
this restriction). We want to show that on ray l− ≡ {ξ = −bi−seiπ/3, 0 ≤ s < ∞},

(B.7)
d
ds

Re P(ξ(s)) = Re
{

P ′(ξ)e−i2π/3} >
C

|ξ(s)− 2i | > 0 .

We note that since |ξ − 2i ||P ′| is bounded above and below by nonzero constants,
it suffices to show that

arg
(

P ′(ξ(s))e−i2π/3) ∈
(

−π
2
,
π

2

)

mod 2π .
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Note that

(B.8) P ′(ξ) = i
(ξ − iγ )
(ξ + i)

(

γ + iξ
γ − iξ

)
1
4 1
(1 + iξ)

.

Let B(s) be the positive angle between ξ(s)+ γ i and ξ(s)+ i ; then by geometry

arg
(

e−i2π/3 P ′(ξ)
)

∈
(

−B − 5π
12
, 0

)

,

and we can see that B < π
12 implies (B.7).

Let d1 = |b − 1| + |γ − 1|; by geometry

cos B =
(

s2 − 2s|b − 1| sin π
3 + |b − 1|2

)

+
(

s2 − 2s d1 sin π
3 + d2

1

)

− |γ − 1|2

2
√

(

s2 − 2s|b − 1| sin π
3 + |b − 1|2

)

√

(

s2 − 2sd1 sin π
3 + d2

1

)

.

Let

t = |γ − 1|2s
|b − 1| sin π

3

, d = |γ − 1|
|b − 1| ,

cos B =
(

t − 1 − d
2

)2 + (1 + d) cot2 π
3 − 1

4 d2

√

(t − 1)2 + cot2 π
3

√

(t − 1 − d)2 + (1 + d)2 cot2 π
3

.

The minimum of the above function over 0 < t < ∞, d ≤ 0.1, is 0.9688749307,
but cos π

12 = 0.9330127, so B < π
12 .

�

PROOF OF PROPERTIES 5 AND 6: Recall that in our proof of Property 4, we
showed that there exist φ0 and b with π

4 ≤ φ0 <
π
2 , 0 < b < min{1, γ }, so that on

ξ = −ib − eiφ0s

arg[P ′e−i(π−φ0)] ∈ (−θ1, θ2) ⊂
(

−π
2 ,

π
2

)

where 0 < θ1, θ2 <
π
2 ;

without loss of generality, we assume that π/4 ≤ θ1, θ2 < π/2. Then it is clear
that on ξ = −ib − eiφ0s,

arg P ′ ∈ (π − φ0 − θ1, (π − φ0)+ θ2) .

Note that [π2 ,
3π
4 ) ⊂ (π − φ0 − θ1, (π − φ0) + θ2). On the real axis, arg P ′ =

arg i + 1
2 arg(γ − iξ) ∈ π

2 + (0, π4 ) = (π2 ,
3π
4 ). On the imaginary axis between

O and ib, arg P ′ = π
2 . In all cases, on the boundary of the domain R−, bounded

by the negative real axis, the imaginary axis between 0 and ib, and the line ξ =
−bi − eiφ0s, we have arg P ′ ∈ (π − φ0 − θ1, π − φ0 + θ2). On ξ = −bi − seiφ for
φ < φ0, as s → ∞, we have

arg(ξ + iγ ) → (π + φ) , arg(ξ − iγ ) → (−π + φ) ,

arg(ξ + i) → (π + φ) , arg(ξ − i) → (−π + φ) .



48 S. TANVEER AND X. XIE

So, as s → ∞, arg P ′ → 3π
4 − φ ∈ ( 3π

4 − φ0,
3π
4 ). So as ξ → ∞ and ξ ∈ R−,

arg P ′ ∈ ( 3π
4 − φ0,

3π
4 ) ⊂ (π2 ,

3π
4 ). Using the maximum principle, arg P ′ ∈ (π −

φ0 − θ1, π − φ0 + θ2) everywhere inside the domain R−.
Now if we choose P(ξ,−∞) = {t : t = ξ − eiφ0s, 0 < s < ∞}, it is clear on

P we have
d
ds
(Re P) = |P ′| cos

[

arg(P ′e−i(π−φ0))
]

>
C

|ξ − 2i | > 0 ,

where C can be made independent of γ for γ in a compact subset of (0,∞). Hence
Property 6 follows.

Now to find P(ξ,−ν) so that Re P decreases monotonically from ξ to −ν, we
use line P0 = {t = ξ + eiφ0s, s > 0} where

d
ds

Re P = |P ′| cos[arg P ′ + φ0] ≤ − C
|ξ − 2i | < 0 .

This line intersects ∂D at some point ξ1 ∈ ∂D. Now clearly ξ1 can be connected
to ξ = −ν by P1(ξ1,−ν) on a path coinciding with ∂D so that Re P decreases
monotonically from ξ1 to −ν such that

− d
ds
(Re P) >

C
|ξ − 2i | > 0 .

Then P(ξ,−ν) = P0(ξ, ξ1)+P1(ξ1,−ν). Reversing this path leads to the desired
path P(−ν, ξ) having Property 5. �
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