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Abstract. Using equal arc-length vortex sheet formulation, we prove global
existence of solutions in a two phase Hele-Shaw flow with surface tension for
near-circular sufficiently smooth initial interface shape. Further, the circular
bubble is shown to be asymptotically stable to all sufficiently smooth initial
perturbation.

1. Introduction.

The displacement of a more viscous fluid by a less viscous one in a Hele-Shaw
cell has been a problem of considerable physical as well as mathematical interest.
Over the years, many reviews have appeared from a range of perspectives (Saffman
[32], Bensimon et al. [7], Homsy [17], Pelce [27], Kessler et al. [24], Tanveer [34],
[35]; Hohlov [16], Howison [21], [22]).

There is a vast literature on the zero surface tension problem though the initial
value problem in this case is ill-posed [20], [14] and not always physically relevant
[See [35] for detailed discussion of this issue]. With surface tension, there are
rigorous local existence results for general initial conditions both for one and two
phase problems [10], [12] using different approaches. It is recognized that the global
existence problem with surface tension for arbitrary initial shape is a difficult open
problem, though there is quite a substantial literature involving formal asymptotic
and numerical computations (see cited reviews above). Even the restricted problem
of stability of steadily propagating shapes such as a semi-infinite finger [37], [38] or
a finite translating bubble [38] for nonzero surface tension remains an open problem
for rigorous analysis. Translation causes complications in global analysis due to a
less viscous fluid displacing a more viscous fluid – a planar front is known to be
unstable [31] in this case.

There are however some global existence and nonlinear stability results [9], [15]
for one-phase and two phase Hele-Shaw for near circular initial shapes in the ab-
sence of any forcing such as fluid injection or pressure gradient. These have been
generalized to non-Newtonian one phase fluids [11]. There are similar results avail-
able for the two phase Stefan problem [13], [29], which is mathematically close
to but distinct from the two-phase Hele-Shaw (also called Muskat problem) being
studied here.
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The unforced two-phase Hele-Shaw problem is described mathematically as fol-
lows: let Ω(t) ⊂ R2 be a simply connected bounded domain occupied by fluid with
viscosity µ2 at time t, while a different fluid of viscosity µ1 occupies the exterior
region R2 \ Ω. We define functions φ1 and φ2, outside and inside Ω such that

∆φ1 = 0 in R2 \ Ω,
∆φ2 = 0 in Ω,

with φ1 → constant, as (x, y) → ∞.
On the free boundary ∂Ω(t) between two fluids, we require two conditions:

µ1φ1 − µ2φ2 = σκ,

∂φ1
∂n

=
∂φ2
∂n

= vn,

σ is the coefficient of surface tension, n is the inward unit normal vector on ∂Ω(t),
and vn is the normal velocity of the interface.

For the problem defined above, global existence for near-circular and analytic
initial shape ∂Ω(0) has been established by Constantin & Pugh [9] for µ2 = 0,
i.e. the one-phase problem. They also showed that the circle is asymptotically
stable to sufficiently small analytic disturbances. More recently Friedman & Tao
[15] proved the similar result for the two-phase Hele-Shaw problem in the exterior
of a small circle. While they allow initial shapes to be non-analytic, they are highly
constrained.

In the present paper, we extend the Friedman & Tao [15] results to more general
non-analytic initial conditions though in the absence of any walls. Our methodology
is also different and uses a boundary integral formulation due to Hou et al [18]. This
formulation has been widely used for numerical calculations for a wide variety of
free boundary problems involving Laplace’s equation. Ambrose [3] has recently
used this formulation to prove local existence for the Hele-Shaw flow of general
initial shapes [3] without surface tension. Given the wide use of boundary integral
methods in computations, one motivation for the present paper is to further develop
the mathematical machinery associated with this method so as to be applicable to
more general existence problems. Indeed, in another paper [40], we use some lemmas
proved here for global existence results for the much more difficult problem of a
translating bubble in a Hele-Shaw channel in the presence of a pressure gradient
for any nonzero surface tension.

Adapting the equal arc-length vortex sheet formulation of Hou et al [18] to the
present geometry, the boundary curve between the two fluids of differing viscosities
is described parametrically at any time t by z = x(α, t)+ iy(α, t), where α is chosen
so that z(α+2π, t) = z(α, t). θ is defined so that α+θ for the angle formed between
the tangent to the curve and the horizontal (x-axis), as the boundary is traversed
counter-clockwise with increasing α. Hou, Lowengrub and Shelley in [19] observed
that a choice1 of the tangent velocity T is possible so that sα becomes independent
of α. Here s denotes arc-length. They also observed that this choice simplifies the
evolution equation for θ.

It is convenient to introduce the map Φ : R2 → C by Φ(a, b) = a+ ib. Then the
velocity W (see [18]) generated by a vortex sheet of strength γ(α) on the boundary

1This choice or any other choice of tangential speed of points on the interface has no effect on
the interface shape itself.
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is given by the Birkhoff-Rott integral which has the complex representation:

[Φ(W)]∗ =
1

2πi
PV

∫ 2π

0

γ(α′)

z(α)− z(α′)
dα′.(1.1)

The unit tangent and normal vectors to the curve clearly satisfy

Φ(t) =
2πzα
L

, Φ(n) =
2πizα
L

.

The normal velocity U(α, t) of the curve is given by

(1.2) U(α, t) = W · n.

It is known [18] that the equations for the evolution of a Hele-Shaw interface in
the infinite domain with surface tension is equivalent to the following equations:

(A.1)





θt(α, t) =
2π

L
Uα(α, t) +

2π

L
T (α, t)

(
1 + θα(α, t)

)
,

Lt(t) = −
∫ 2π

0

(
1 + θα(α, t)

)
U(α, t)dα,

with
(A.2)



γ(α, t) = −L
π
AµW · t+ 2π

L
σθαα,

T (α, t) =

∫ α

0

(
1 + θα′(α′, t)

)
U(α′, t)dα′ − α

2π

∫ 2π

0

(
1 + θα(α, t)

)
U(α, t)dα,

where

Aµ =
µ1 − µ2

µ1 + µ2
.

The initial condition is given by

θ(α, 0) = θ0(α), L(0) = 2π.(1.3)

In order that zα = L
2π exp [iα+ iθ], the specified θ0(α) must satisfy the consistency

condition

(1.4)

∫ 2π

0

exp [iα+ iθ0(α)] dα = 0.

Definition 1.1. Let s ≥ 0. The Sobolev space Hs
(
T[0, 2π]

)
is the set of all 2π-

periodic function f =
∑∞

−∞ f̂(k)eikα such that

‖f‖s =

√√√√
∞∑

k=−∞

|k|2s|f̂(k)|2 + |f̂(0)|2 <∞.

Note 1.2. For f, g ∈ Hs (T[0, 2π]), the Banach Algebra property ‖fg‖s ≤ Cs‖f‖s‖g‖s
for s ≥ 1 for some constant Cs depending on s is easily proved and will be useful
in the sequel.
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Definition 1.3. The Hilbert transform, H, of a function f ∈ H0 (T[0, 2π]) with

Fourier Series f =
∑∞

−∞ f̂(k)eikα is given by

H[f ](α) =
1

2π
PV

∫ 2π

0

f(α′) cot
1

2
(α− α′)dα′

=
∑

k 6=0

−i sgn(k)f̂(k)eikα.

Note 1.4. The Hilbert transform commutes with differentiation. We will denote
derivative with respect to α, either by D or subscript α. Also, for the sake of brevity
of notation, the time t dependence will often be omitted, except where this might
cause confusion.

Definition 1.5. We define the operator Λ to be one derivative followed by the
Hilbert transform: Λ = HD.

Note 1.6. It is clear that

(∫ 2π

0

(
f2 + fΛf

)
dα
)1/2

is equivalent to H1/2
(
T[0, 2π]

)
norm for a real-valued 2π-periodic function f . Fur-

ther, if f̂(0) = 0, then it is easily seen that
(∫ 2π

0 fΛfdα
)1/2

= ‖f‖1/2. Note that

operator Λ is self-adjoint in H1/2
(
T[0, 2π]

)
.

Definition 1.7. Following Ambrose [3], we define commutator

[H, f ]g = H(fg)− fH(g).

The linear integral operator K[z], depending on z, is also defined by

(K[z]f) (α) =
1

2πi

∫ α+π

α−π

f(α′)

[
1

z(α)− z(α′)
− 1

2zα(α′)
cot

1

2
(α− α′)

]
dα′.

Remark. For 2π-periodic functions f and z, it is clear that the upper and lower
limits of the integral above can be replaced by a and a+2π respectively for arbitrary

a. Further, in terms of the operators
[
H, 1

zα

]
and K, we may express W in the

following form (see [1]):

[Φ(W)]∗ =
1

2i

[
H, 1

zα

]
γ +

1

2izα
Hγ +K[z]γ.(1.5)

�

Definition 1.8. A complex operator G[z], depending on z, is defined by

(1.6) G[z]γ = zα

[
H, 1

zα

]
γ + 2izαK

[
z
]
γ.

It is also convenient to define a related real operator F [z], depending on z, so that

(1.7) F [z]γ = Re

(
zα(α)

πi
PV

∫ 2π

0

γ(α′)

z(α)− z(α′)
dα′

)
= Re

(1
i
G[z]γ

)
.
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From the expressions for U and W · t, it follows that

(1.8) U =
π

L
H[γ] +

π

L
Re (G[z]γ) ,

(1.9) W · t = π

L
F [z]γ.

Definition 1.9. We introduce the projection operator Q1 so that

[Q1f ] (α) = f(α)− f̂(0)− f̂(1)eiα − f̂(−1)e−iα,

where f =
∑∞

−∞ f̂(k)eikα. In general, .̂ symbol will be reserved for Fourier compo-

nents. Further, we will denote θ̃ = Q1θ.

Definition 1.10. We define Ḣs as the subspace of Hs (T[0, 2π]) containing real-

valued functions so that φ ∈ Ḣs implies Q1φ = φ. Note ‖φ‖s = ‖Dsφ‖0 for s ≥ 1.

The significant new aspect of the present paper is a vortex sheet formulation
(B.1)-(B.4) equivalent to the evolution system (A.1)-(A.2) with the initial condition
(1.3) that projects away the neutral linear modes so that exponential decay of
the remaining Fourier modes helps to control small nonlinearities. The equivalent

system involves the evolution of θ̃, θ̂(0; t) and L, where θ̂(1; t) and θ̂(−1; t) are

determined as complex functionals of θ̃.
The main result in this paper is the following theorem:

Theorem 1.11. There exists ǫ > 0 such that for r ≥ 4, if ‖Q1θ0‖r < ǫ, then there
exists (θ, L) ∈ C

(
[0,∞);Hr

(
T[0, 2π]

)
×R
)
∩C1

(
[0,∞);Hr−3

(
T[0, 2π]

)
× R

)
, which

satisfies (A.1)-(A.2) with the initial condition (1.3) globally. Furthermore, ‖θ̃‖r,
θ̂(1; t) and θ̂(−1; t) each decay exponentially as t→ ∞, |θ̂(0; t)| remains finite, while

L approaches 2
√
πS, S being the area of the bubble, which is invariant with time.

Thus a near-circular bubble is asymptotically stable for sufficiently small distortions
in the Hr

(
T[0, 2π]

)
space.

In §2, we introduce a modified evolution system (B.1)-(B.4) with the initial
condition (2.5), which is shown to be equivalent to (A.1)-(A.2) with the initial
condition (1.3). We formulate a Galerkin approximation (2.11) and show how
Theorem 1.11 follows from Theorem 2.13, Lemma 2.14 and Proposition 2.16.

In §3, we prove several preliminary lemmas. In §4, we prove a priori estimates on
the growth of solutions to the approximate initial value problem (2.11). In §5, first
we use a priori estimates to prove global existence and uniqueness of solutions to
the Galerkin approximation (2.11), then show the same to be true for (B.1)-(B.4)

with the initial condition (2.5). Finally, we also show that ‖θ̃‖r, for the solution to
(B.1)-(B.4) with the initial condition (2.5) decays exponentially in time.

2. Equivalent evolution equations

In this section, we derive an equivalent system of the evolution equations, which
will be analyzed in the whole of the paper. Much of the difficulty in this problem
is to control the energy appropriately. We find that an equivalent system provides
exponentially decaying energy estimates, unlike the original system which contains
the neutrally stable modes corresponding to the bubble translation degeneracy.
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Definition 2.1. We introduce the functions

ω0(α) =

∫ α

0

eiα
′

dα′, ω(α) =

∫ α

0

eiα
′+iθ̂(1;t)eiα

′

+iθ̂(−1;t)e−iα′

+iθ̃(α′)dα′.

Remark. It is readily checked that

(2.1) Re
(ω0,α

π
PV

∫ 2π

0

f(α′)

ω0(α) − ω0(α′)
dα′
)
= H(f).

From the expressions (1.6) and (1.7), it is also easily checked that if f(α) =∑∞
k=−∞ f̂(k)eikα, then we have

(2.2) G[ω0]f = if̂(0),

which by (1.7) implies

(2.3) F [ω0] f = f̂(0).

�

We will show that the evolution system (A.1)-(A.2) is equivalent to the following

evolution system for
(
θ̃(α, t), L(t), θ̂(0; t)

)
with θ̃(α, t) =

∑
k 6=0,±1 θ̂(k; t)e

ikα and

θ(α, t) = θ̂(0; t) + θ̂(−1; t)e−iα + θ̂(1; t)eiα + θ̃(α, t):

(B.1)





∂θ̃(α, t)

∂t
=

2π

L
Q1

(
Uα + T (1 + θα)

)
,

dL(t)

dt
= −

∫ 2π

0

(
1 + θα

)
Udα,

(B.2)
dθ̂(0; t)

dt
=

1

L

∫ 2π

0

T (1 + θα)dα,

with γ(α, t), T (α, t), θ̂(1; t) and θ̂(−1; t) determined2 by

(B.3)





γ(α, t) = −AµF [ω]γ +
2π

L
σθαα,

T (α, t) =

∫ α

0

(
1 + θα′(α′)

)
U(α′)dα′ − α

2π

∫ 2π

0

(
1 + θα(α)

)
U(α)dα,

(B.4)

∫ 2π

0

exp
(
iα+ i

(
θ̂(−1; t)e−iα + θ̂(1; t)eiα + θ̃(α, t)

))
dα = 0,

where U is given by

U =
π

L
H[γ] +

π

L
Re (G[ω]γ) .(2.4)

Remark. The formulae for U in (2.4) and F [ω]γ are equivalent to those in (1.8)

and (1.7) since θ̂(0; t) cancels out. �

The appropriate initial condition is

θ̃(α, 0) = Q1θ0, L(0) = 2π, θ̂(0; 0) = θ̂0(0).(2.5)

Note that the first equation in (B.3) can be rewritten as

(
I +AµF [ω]

)
γ =

2π

L
σθαα.(2.6)

2Since θ(α, t) is real valued, note θ̂∗(1; t) = θ̂(−1, t).
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Note 2.2. Later we shall see that if θ̃ ∈ H1
(
T[0, 2π]

)
and ‖θ̃‖1 is sufficiently

small, then I + AµF [ω] is invertible from {u ∈ H0
(
T[0, 2π]

)
|û(0) = 0} to itself for

any Aµ ∈ [−1, 1]. More general results are available [1], [5] for non self-intersecting
interface; however, since we need the sharper estimates for near-circular interface in
any case, we construct a direct proof rather than rely on the more general theorems.

Definition 2.3. Let r ≥ 3. We define an open ball B:

B =
{
u ∈ Ḣr|‖u‖r < ǫ

}
.

We also define the open balls:

O =
{
(u, v, w) ∈ Ḣr × R2

∣∣u ∈ B, |v − 2π|+ |w| < 1
}
,

V =
{
(u, v) ∈ Ḣr × R

∣∣u ∈ B, |v − 2π| < 1
}
,

U =
{
(u, v) ∈ Hr

(
T[0, 2π]

)
× R

∣∣Q1u ∈ B, ‖u‖r + |v − 2π| < 1
}
.

Remark. We choose ǫ > 0 is small enough for Lemma 2.14 to apply. �

For (B.4), we also have the following result:

Proposition 2.4. There exists ǫ1 > 0 so that (B.4) implicitly defines a unique

C1 function g :
{
u ∈ Ḣ1|‖u‖1 < ǫ1

}
→ R2 satisfying

(
Re θ̂(1), Im θ̂(1)

)
= g(θ̃)

and g(0) = 0. Further, g satisfies the following estimates for all u, u1, u2 ∈
{
u ∈

Ḣ1|‖u‖1 < ǫ1
}
:

|g(u)| ≤ 1

2
‖u‖1,(2.7)

|g(u1)− g(u2)| ≤ 1

2
‖u1 − u2‖1.(2.8)

Remark. Having determined γ, θ̂(1; t) and θ̂(−1; t), (2.4) and the second equation
in (B.3) also determine U and T needed in (B.1) and (B.2). �

Lemma 2.5. If (θ, L) ∈ C1
(
[0, S];U

)
with θ real-valued is the solution of the

evolution equations (A.1), where γ, T and U are determined by (A.2) and (1.2)

with initial condition (1.3), then
(
θ̃ = Q1θ, L, θ̂(0; t)

)
will satisfy the equations

(B.1) and (B.2) where γ, T , θ̂(±1; t) and U are determined by (B.3), (B.4) and
(2.4) with the initial condition (2.5) for t ∈ [0, S].

Conversely, if
(
θ̃, L, θ̂(0; t)

)
∈ C1

(
[0, S];O

)
is the solution of the system (B.1)

and (B.2) where γ, T , θ̂(±1; t) and U are determined by (B.3), (B.4) and (2.4)

with the initial condition (2.5), then θ = θ̃ + θ̂(0; t) + θ̂(1; t)eiα + θ̂(−1; t)e−iα is
a real-valued function and (θ, L) satisfies the system (A.1) for t ∈ [0, S] with the
initial condition (1.3), where γ, T and U are determined by (A.2) and (1.2).

Proof. Let (θ, L) ∈ C1
(
[0, S];U

)
be the solution of the evolution equations (A.1)

where γ, T and U are determined by (A.2) and (1.2) with the initial condition

(1.3). Then we define p(t) =
∫ 2π

0
eiα+iθ(α,t)dα. From the consistency condition

(1.4), p(0) = 0. We consider

p′(t) = i

∫ 2π

0

eiα+iθ(α,t)θtdα.



8 J. YE & S. TANVEER

Substituting for θt from (A.1), and using the identity (eiα+iθ)α = i(1 + θα)e
iα+iθ,

we have

p′(t) =
2π

L

∫ 2π

0

[
iUαe

iα+iθ + T (eiα+iθ)α
]
dα.

We integrate the last term by parts; we use (A.2) to substitute for Tα. There is no
boundary term from integrating by parts since T and eiα+iθ are periodic. We have

p′(t) =
2π

L

∫ 2π

0

(
iUαe

iα+iθ − (1 + θα)Ue
iα+iθ − 1

2π
Lte

iα+iθ
)
dα.

Since iUαe
iα+iθ − (1 + θα)Ue

iα+iθ = (iUeiα+iθ)α, we have

p′ = −Lt

L
p.

Note that (θ, L) ∈ U implies that L > 2π − 1 > 0. Furthermore, Lt is continuous
in [0, S] from (A.1). So p(t) = 0 is the unique solution to the above ordinary
differential equation with p(0) = 0 for t ∈ [0, S]. Hence

eiθ̂(0;t)
∫ 2π

0

exp
(
iα+ i

(
θ̂(−1; t)e−iα + θ̂(1; t)eiα + θ̃(α, t)

))
dα = 0,

implying
∫ 2π

0

exp
(
iα+ i

(
θ̂(−1; t)e−iα + θ̂(1; t)eiα + θ̃(α, t)

))
dα = 0 for t ∈ [0, S].

Thus
(
θ̃ = Q1θ, L, θ̂(0; t)

)
satisfies the equations (B.1) and (B.2) where γ, T ,

θ̂(±1; t) and U are determined by (B.3), (B.4) and (2.4) with the initial condi-
tion (2.5) for t ∈ [0, S].

Conversely, suppose that
(
θ̃, L, θ̂(0; t)

)
∈ C1

(
[0, S];O

)
satisfies (B.1) and (B.2)

with the initial condition (2.5), where γ, T , θ̂(±1; t) and U are determined by

(B.3), (B.4) and (2.4). Let θ = θ̃+ θ̂(0; t)+ θ̂(1; t)eiα + θ̂(−1; t)e−iα. We note from

Proposition 2.4 that θ̂(±1; t) scale as ǫ1 and hence is small. We note from (B.4)
that

p(t) = eiθ̂(0;t)
∫ 2π

0

exp
(
iα+ i

(
θ̂(−1; t)e−iα + θ̂(1; t)eiα + θ̃(α, t)

))
dα = 0.

It is convenient to define Γ(α, t) = Uα +T (1+ θα). From p′(t) = 0, using (B.1), we
obtain

(2.9) 0 =

∫ 2π

0

eiα+iθ
((
θ̂t(−1; t)− 2π

L
Γ̂(−1; t)

)
e−iα+

(
θ̂t(1; t)−

2π

L
Γ̂(1; t)

)
eiα
)
dα.

Let eiα+iθ =
∑∞

k=−∞ ĉ(k)eikα. Hence for sufficiently small ball size ǫ of B, using
Proposition 2.4 and Sobolev inequality |.|∞ < C‖.‖1,

|θ − θ̂(0; t)|∞ = |θ̃(α, t) + θ̂(1; t)eiα + θ̂(−1; t)|∞ ≤ C‖θ̃‖1
is small, which clearly ensures |ĉ(1)| > |ĉ(k)| for k 6= 1. Note further that (2.9)
implies

(
θ̂t(−1; t)− 2π

L
Γ̂(−1; t)

)
ĉ(1) +

(
θ̂t(1; t)−

2π

L
Γ̂(1; t)

)
ĉ(−1) = 0.
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Since Γ(α, t) and θ̃ are real valued, θ̂t(−1; t)− 2π
L Γ̂(−1; t) is the complex conjugate

of θ̂t(1; t) − 2π
L Γ̂(1; t). It is clear that if |a1| 6= |a2|, then the only solution to

a1η + a2η
∗ = 0 is η = 0. Hence

θ̂t(−1; t)− 2π

L
Γ̂(−1; t) = 0 and θ̂t(1; t)−

2π

L
Γ̂(1; t) = 0.

Hence, (θ = θ̃+ θ̂(0; t)+ θ̂(1; t)eiα + θ̂(−1; t)e−iα+ θ̂e−iα, L) will satisfy the system
(A.1) where γ, T and U are determined by (A.2) and (1.2) with the initial condition
(1.3) for t ∈ [0, S]. �

We will henceforth discuss the global solutions of the evolution equations (B.1)

where γ, T , θ̂(±1; t) and U are determined by (B.3), (B.4) and (2.4) with initial
condition (2.5).

Definition 2.6. Define θ̂(1; t) = r1 + ir2. Then since θ is real valued, θ̂(−1; t) =
r1 − ir2.

Remark. (B.4) becomes

(2.10)

∫ 2π

0

exp
(
iα+i

(
(r1+ir2)e

iα+(r1−ir2)e−iα+

∞∑

k=−∞, 6=0,±1

θ̂(k)eikα
))
dα = 0.

�

In order to prove Proposition 2.4, we need the following lemma:

Lemma 2.7. Implicit function Theorem([30]): Let G1, G2 and G3 be Banach spaces
and F a mapping from an open subset of G1 × G2 into G3. Let (u0, v0) be a point
in G1 × G2 satisfying:

(i) F (u0, v0) = 0;
(ii) F is continuously differentiable at (u0, v0);
(iii) the partial Fréchet derivative DvF (u0, v0) is invertible from G2 to G3.

Then, there are neighborhood V1 of u0 in G1 and neighborhood V2 of v0 in G2 and
a C1 map g : V1 → V2 so that F

(
u, g(u)

)
= 0 for all u ∈ V1 and for each u ∈ V1,

g(u) is the unique point v in V2 satisfying F (u, v) = 0.

Definition 2.8. In the bubble context, we define

F (u, v) =

∫ 2π

0

exp
(
iα+ i

(
2(r1 cosα− r2 sinα) + u

))
dα

with v = (r1, r2).

Remark. Note F : Ḣ1 × R2 → C. �

Proof of Proposition 2.4: Let us show that the Fréchet derivative of F (u, v)

with respect to u exists in Ḣ1 × R2. Since
∥∥∥ exp

[
ih(·)

]
− 1− ih(·)

∥∥∥
0
=
∥∥∥ih(·)

∫ 1

0

(
eiτh(·) − 1

)
dτ
∥∥∥
0
≤ c‖h‖21,

we have
∣∣∣F (u+ h, v)− F (u, v)−

∫ 2π

0

ih(α) exp
(
iα+ i

[
2(r1 cosα− r2 sinα) + u(α)

])
dα
∣∣∣

=
∣∣∣
∫ 2π

0

exp
(
iα+ i

[
2(r1 cosα− r2 sinα) + u(α)

]){
exp

[
ih(α)

]
− 1− ih(α)

}
dα
∣∣∣ ≤ c‖h‖21.
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Hence the Fréchet derivative of F with respect to u is

DuF (u, v)h =

∫ 2π

0

ih(α) exp
(
iα+ i

(
2(r1 cosα− r2 sinα) + u(α)

))
dα,

for h ∈ Ḣ1. It is clear that DuF (u, v) : Ḣ
1 → C is the bounded linear operator for

all (u, v) ∈ Ḣ1 × R2.
Similarly,

DvF (u, v)δv = 2i

∫ 2π

0

(
δr1 cosα−δr2 sinα

)
exp

(
iα+i

(
2(r1 cosα−r2 sinα)+u(α)

))
dα,

with δv = (δr1, δr2) ∈ R2 is a bounded linear operator for all (u, v) ∈ Ḣ1 × R2,
with

DvF (0, 0)δv = 2i

∫ 2π

0

(
δr1 cosα− δr2 sinα

)
eiαdα = 2π(δr2 + iδr1).

Clearly DvF (0, 0) is invertible. So by the implicit function theorem (Lemma 2.7),

for (u0, v0) = (0, 0), there exist neighborhood V1 = {u ∈ Ḣ1 : ‖u‖1 < 2ǫ1} of

0 in Ḣ1, and a neighborhood V2 of (0, 0) in R2, and a C1 map g : V1 → V2, so
that F (u, g(u)) = 0 for all u ∈ V1. We also have ‖Dg(u)‖ ≤ 1

2 for u ∈ V1 since
Dg(0) = 0. Hence we have

|g(u)| ≤
∣∣∣
∫ 1

0

Dg(tu)udt
∣∣∣ ≤ 1

2
‖u‖1,

|g(u1)− g(u2)| ≤
∣∣∣
∫ 1

0

Dg
(
u1 + t(u2 − u1)

)
(u2 − u1)dt

∣∣∣ ≤ 1

2
‖u1 − u2‖1

for all u, u1, u2 ∈ {u ∈ Ḣ1 : ‖u‖1 < ǫ1}.
Corollary 2.9. There exists sufficiently small ǫ1 > 0 so that for θ ∈ Hs+1 (T[0, 2π])

with s ≥ 0, if ‖θ̃‖1 < ǫ1, then θ satisfying (B.4) implies ‖θα‖s ≤ 2‖θ̃α‖s.
Proof. We note from the relation between θ and θ̃ that

‖θα‖2s =
∑

k

|k|2s+2|θ̂(k)|2 = 2|g(θ̃)|2 + ‖θ̃α‖2s.

The rest follows from bounds on g(θ̃) in Proposition 2.4. �

2.1. Galerkin approximation. From the set of equations in (B.1)-(B.4), it is

easily seen that θ̂(0; t) does not effect the evolution of θ̃ and L, so it is convenient

to first determine the solution (θ̃, L); determination of θ̂(0; t) is then simply reduced
to an integration of the equation (B.2). It is convenient to introduce a Galerkin
approximations as described in this section.

Definition 2.10. We define a family of Galerkin projections {Pn}∞n=2, as

Pnu(α) =

n∑

k=−n,k 6=0,±1

û(k)eikα, for all u =

∞∑

−∞

û(k)eikα.

We define the approximate solution θ̃n(α, t) of order n of the problem in the
following way:

θ̃n(α, t) =
n∑

k=−n,k 6=0,±1

θ̂n(k; t)e
ikα.
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The approximate equations are

(C.1)





∂θ̃n(α, t)

∂t
=

2π

Ln
Pn

(
Un,α + Tn

(
1 + θn,α

))
,

dLn(t)

dt
= −

∫ 2π

0

(
1 + θn,α

)
Undα,

with γn, Tn and θ̂n(±1; t) (where θ̂∗n(1; t) = θ̂n(−1; t) because θn is real) determined
by

(C.2)





(
I +AµF [ωn]

)
γn(t) =

2π

Ln
σθn,αα,

Tn(α, t) =

∫ α

0

(1 + θn,α′)Un(α
′)dα′ − α

2π

∫ 2π

0

(1 + θn,α′)Un(α
′)dα′,

∫ 2π

0

exp
(
iα+ i

(
θ̂n(−1; t)e−iα + θ̂n(1; t)e

iα + θ̃n(α, t)
))
dα = 0,

where

θn(α, t) = θ̃n(α, t) + θ̂n(−1; t)e−iα + θ̂n(1; t)e
iα,

ωn(α) =

∫ α

0

eiτ+iθn(τ)dτ,

Un =
π

Ln
H[γn] +

π

Ln
Re (G[ωn]γn) .

2.2. Main results. Let Xn =
(
θ̃n, Ln

)
. The Galerkin approximate equations

(C.1)-(C.2) reduce to an ODE in the Banach space Ḣr × R:

(2.11)
dXn

dt
= Fn(Xn), Xn(0) = (Pnθ0, 2π),

where Fn(Xn) =
(
Fn,1(Xn), Fn,2(Xn)

)
are given by

Fn,1 =
2π

Ln
Pn (Un,α + Tn(1 + θn,α)) ,(2.12)

Fn,2 = −
∫ 2π

0

(1 + θn,α)Un(α)dα.(2.13)

For the approximate equation (2.11), we have the following results:

Proposition 2.11. Assume Pnθ0 ∈ B for r ≥ 3. For the sufficiently small ball
size ǫ of B, there exists the unique solution Xn ∈ C1 ([0, Sn);V) to the ODE in Eq.
(2.11), where Sn depends on n, r and ǫ.

Remark. We will prove this proposition in §5 using Picard theorem (See for
instance Chapter 3 in [26]). �

Proposition 2.12. Assume Xn =
(
θ̃n, Ln

)
∈ C1 ([0, S);V) is a solution of the

initial value problem (2.11). Then there exists ǫ > 0 such that if ‖Pnθ0‖r < ǫ for
r ≥ 3, then

‖θ̃n(·, t)‖r ≤ ‖Pnθ0(·)‖re−
1
36σt, |L3

n − 8π3| ≤ Cǫ
(
1− e−

1
18σt

)
,

with a constant C independent of n for any time t ≥ 0 where the solution exists.

Remark. We will prove a priori estimates in §4. �
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Theorem 2.13. Given the initial condition Xn(0) ∈ V, for any n ≥ 2 and r ≥
3. For sufficiently small ǫ, there exists for all time a unique solution Xn(t) ∈
C1([0,∞);V) to the approximate equation (2.11).

Proof. Proposition 2.11 shows the existence and uniqueness of solutions Xn locally
in time. Then by continuation of an autonomous ODE on a Banach space (see
Chapter 3 in [26]), we know that the unique solution Xn ∈ C1([0, S]);V) either
exists globally in time or S < ∞ and Xn(t) leaves the open set V as t ր S.
Suppose S < ∞. Combining Propositions 2.12 and 4.3, we know that solution
remains in the open set V as tր S. Hence it shows that the solution to Eq. (2.11)
exists globally in time. �

From the solutions to the approximate equation (2.11), we will deduce the ex-
istence and uniqueness of solutions to the evolution system (B.1), (B.3) and (B.4)
globally in time (Theorem 1.11) using the following lemma and proposition:

Lemma 2.14. For r ≥ 4, there exists sufficiently small ǫ > 0 such that for any
S > 0, solutions Xn = (θ̃n, Ln) ∈ C1([0,∞);V) of the approximate equation (2.11)

for different n form a Cauchy sequence in C
(
[0, S]; Ḣ1 × R

)
. As n→ ∞, the limit

X =
(
θ̃, L

)
∈ C

(
[0, S]; Ḣr ×R

)
∩C1

(
[0, S]; Ḣr−3 × R

)
and is the unique classical

solution to (B.1), (B.3) and (B.4) satisfying the initial condition (2.5).

Remark. The proof is given in §5. �

Definition 2.15. The area of bubble is defined by S(t). That is

S(t) = 1

2
Im

∫ 2π

0

zαz
∗dα.(2.14)

Proposition 2.16. Let (θ̃, L) ∈ C
(
[0,∞); Ḣr × R

)
∩ C1

(
[0,∞); Ḣr−3 × R

)
be a

solution to the system (B.1), (B.3) and (B.4) with the initial condition (2.5) for
r ≥ 4. If Q1θ0 ∈ B, then the area S is invariant with time and for sufficient small
ǫ, we have

‖θ̃(·, t)‖r ≤ ‖Q1θ0(·)‖re−
1
36σt,

|θ̂(1; t)| = |θ̂(−1; t)| ≤ 1

2
‖Q1θ0(·)‖re−

1
36σt,

|L(t)− 2
√
πS| ≤ C‖Q1θ0‖re−

1
36σt,

|θ̂(0; t)− θ̂0(0)| ≤ C‖Q1θ0‖r,

where C depends on S.

Remark. We will prove Lemma 2.14 and Proposition 2.16 in §5. Further, the

result above together with Proposition 2.4 shows that θ(α, t) − θ̂(0; t) goes to 0
exponentially as t→ ∞. �

Proof of Theorem 1.11: This immediately follows from Lemma 2.14 and Propo-
sition 2.16 since Lemma 2.5 gives equivalence between (A.1)-(A.2) and (B.1)-(B.4).
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3. Preliminary Lemmas

We will need to use a variety of routine estimates for integral operators and

other functions in terms of θ̃ and θ̂(0; t). Recall tangent angle of the curve is

α+ θ(α) = α+ θ̃(α) + θ̂(0; t) + θ̂(−1; t)e−iα + θ̂(1; t)eiα, where θ̂(1; t) and θ̂(−1; t)

are determined by g(θ̃).

The next lemma gives a bound for ωα in terms of θ̃.

Lemma 3.1. Assume ‖θ̃‖1 < ǫ1 where ǫ1 is small enough for Corollary 2.9 to
apply.

If ω determined by θ̃ ∈ Ḣs, then for s ≥ 1,
(3.1)

‖ωα‖s ≤ C1(‖θ̃‖s + 1) exp
(
C2‖θ̃‖s−1

)
,
∥∥∥ 1

ωα

∥∥∥
s
≤ C1(‖θ̃‖s + 1) exp

(
C2‖θ̃‖s−1

)
,

where constants C1 and C2, depend only on s, and particularly for s = 1, C2 = 0.
Further, if ω(1), ω(2) correspond respectively to θ̃(1), θ̃(2) ∈ Ḣs, where ‖θ̃(1)‖1,

‖θ̃(2)‖1 < ǫ1, then for s ≥ 1,

‖ω(1)
α − ω(2)

α ‖s ≤ C1‖θ̃(1) − θ̃(2)‖s exp
[
C2

(
‖θ̃1‖s + ‖θ̃2‖s

)]
,(3.2)

∥∥∥∥
1

ω
(1)
α

− 1

ω
(2)
α

∥∥∥∥
s

≤ C1‖θ̃(1) − θ̃(2)‖s exp
[
C2

(
‖θ̃(1)‖s + ‖θ̃(2)‖s

)]
,(3.3)

while for s ≥ 2,

‖ω(1)
α − ω(2)

α ‖s ≤ C1

(
‖θ̃(1) − θ̃(2)‖s + ‖θ̃(2)‖s‖θ̃(1) − θ̃(2)‖s−1

)
(3.4)

× exp
[
C2

(
‖θ̃(1)‖s−1 + ‖θ̃(2)‖s−1

)]
,

∥∥∥∥
1

ω
(1)
α

− 1

ω
(2)
α

∥∥∥∥
s

≤ C1

(
‖θ̃(1) − θ̃(2)‖s + ‖θ̃(2)‖s‖θ̃(1) − θ̃(2)‖s−1

)
(3.5)

× exp
[
C2

(
‖θ̃(1)‖s−1 + ‖θ̃(2)‖s−1

)]
,

where the constants C1 and C2 depend only on s.

Proof. For the formula ωα = eiα+iθ−iθ̂(0;t), it is easy to obtain

‖ωα‖0 ≤ C.

Let us consider for 0 < k ≤ s. The chain rule gives

Dkωα =
∑

β1+···+βµ=k,βi≥1

CβD
β1(α + θ) · · ·Dβµ(α+ θ)ωα.

So by Sobolev embedding Theorem, |f |∞ ≤ C‖f‖1, we have
(3.6)

‖Dkωα‖0 ≤ C‖1 + θα‖k−1(1 + ‖θα‖k−1 + · · ·+ ‖θα‖k−1
k−1) ≤ C1 exp (C2‖θα‖k−1),

where the constants, C1 and C2, depend only on s.
For s = 1, we have

‖Dωα‖0 = ‖1 + θα‖0 ≤ C(1 + ‖θ̃‖1).
For s ≥ 2, we note

Dsωα = Ds−1
[
i(1 + θα)ωα

]
.
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Hence, by noting Banach algebra property (see Note 1.2), Corollary 2.9 and (3.6),
we get

‖Dsωα‖0 ≤
∥∥∥i(1 + θα)ωα

∥∥∥
s−1

≤ C1(‖θ̃‖s + 1) exp
(
C2‖θ̃‖s−1

)
,

where the constants, C1 and C2, depend only on s. Since 1
ωα

= e−iα−iθ(α)+iθ̂(0;t),

the preceding arguments are clearly applied to 1
ωα

as well and (3.1) follows from
Corollary 2.9 for a modified constant C2.

To prove (3.2), we note that

ω(1)
α − ω(2)

α =

[
ei
(
θ(1)−θ̂(1)(0;t)−θ(2)+θ̂(2)(0;t)

)
− 1

]
eiα+iθ(2)−iθ̂(2)(0;t)

From the series representation of the exponential and application of Banach algebra
property of ‖.‖s norm to each term in the series, we deduce

∥∥∥ei
(
θ(1)−θ̂(1)(0;t)−θ(2)+θ̂(2)(0;t)

)
− 1
∥∥∥
s

≤ C1‖θ(1)−θ̂(1)(0; t)−θ(2)+θ̂(2)(0; t)‖s exp
(
C2

∥∥∥θ(1) − θ̂(1)(0; t)− θ(2) + θ̂(2)(0; t)
∥∥∥
s

)
,

where the constants, C1 and C2, depend only on s. Using Banach algebra property
and Corollary 2.9, (3.2) follows. Almost identical arguments are applied to prove
(3.3).

Further, if s ≥ 2 we have

∥∥∥Ds(ω(1)
α − ω(2)

α )
∥∥∥
0
=
∥∥∥Ds−1

[
i(1 + θ(1)α )ω(1)

α − i(1 + θ(2)α )ω(2)
α

]∥∥∥
0

≤ C1

(
‖θ̃(1) − θ̃(2)‖s + ‖θ̃(2)‖s‖θ̃(1) − θ̃(2)‖s−1

)
exp

(
C2‖θ̃(1)‖s−1 + C2‖θ̃(2)‖s−1

)
,

where the constants, C1 and C2, depend only on s. So (3.4) follows. Almost
identical arguments are applied for (3.5). �

In simplifying our integral operators, we find divided differences to be very useful.

Definition 3.2. The divided differences q1 and q2 are defined as follows:

q1[ω](α, α
′) =

ω(α)− ω(α′)

α− α′
=

∫ 1

0

ωα(tα+ (1− t)α′)dt,

q2[ω](α, α
′) =

ω(α)− ω(α′)− ωα(α)(α − α′)

(α − α′)2
=

∫ 1

0

(t− 1)ωαα((1 − t)α+ tα′)dt.

Proposition 3.3. There exists ǫ1 > 0 so that ‖θ̃‖1 ≤ ǫ1 implies

|q1[ω](α, α′)| ≥ 1

8
, for 0 < |α− α′| ≤ π(3.7)

Proof. We note that

q1[ω](α, α
′) =

∫ α

α′
eiτ+iθ̃(τ)+iθ̂(1)eiτ+iθ̂(−1)e−iτ

dτ

α− α′
.
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Further,

∣∣∣
∫ α

α′
eiτ+iθ̃(τ)+iθ̂(1)eiτ+iθ̂(−1)e−iτ

dτ

α− α′
−
∫ α

α′
eiτdτ

α− α′

∣∣∣

=
∣∣∣
∫ α

α′
eiτ (eiθ̃(τ)+iθ̂(1)eiτ+iθ̂(−1)e−iτ − 1)dτ

α− α′

∣∣∣

≤ 2
√
2 max
τ∈[0,2π]

∣∣θ̃(τ) + θ̂(1)eiτ + θ̂(−1)e−iτ
∣∣.

This bound is a consequence of the inequality

|eiζ − eiζ
′ | ≤

√
2|ζ − ζ′|, for all ζ, ζ′ in R.

We choose ǫ1 > 0 small enough so that Proposition 2.4 holds and from Sobolev
embedding theorem,

2
√
2 max
τ∈[0,2π]

∣∣θ̃(τ) + θ̂(1)eiτ + θ̂(−1)e−iτ
∣∣ ≤ c‖θ̃‖1 ≤ 1

8
,

where c is some constant.
It is easy to see that

∣∣∣
∫ α

α′
eiτdτ

α− α′

∣∣∣ ≥ 1

4
, for 0 < |α− α′| ≤ π.

Thus, if ‖θ̃‖1 ≤ ǫ1, we have

∣∣∣
∫ α

α′
eiτ+iθ̃(τ)+iθ̂(1)eiτ+iθ̂(−1)e−iτ

dτ

α− α′

∣∣∣ ≥ 1

8
.

�

Lemma 3.4. (See [1] or appendix for proof) Let ωα ∈ Hk
(
T[0, 2π]

)
for k ≥ 0.

Then Dk
αq1, D

k
α′q1 ∈ H0[a, a+ 2π] in both variables α or α′ and satisfy the bounds

‖Dk
αq1[ω]‖0 ≤ C‖ωα‖k , ‖Dk

α′q1[ω]‖0 ≤ C‖ωα‖k
with C only depending on k (in particular independent of a). Further if ωαα ∈
Hk
(
T[0, 2π]

)
for k ≥ 0, then Dk

αq2, D
k
α′q2 ∈ H0[a, a + 2π] in both variables α and

α′ and satisfy

‖Dk
αq2[ω]‖0 ≤ C‖ωαα‖k , ‖Dk

α′q2[ω]‖0 ≤ C‖ωαα‖k
with C only depending on k.

Lemma 3.5. Let ω(1), ω(2) ∈ Hk+1
(
T[0, 2π]

)
for k ≥ 0. Suppose

|q1[ω(1)](α, α′)| ≥ 1

8
, for 0 < |α− α′| ≤ π.

Then
( ∫ α+π

α−π

∣∣∣Dk
α

q2[ω
(2)](α, α′)

q1[ω(1)](α, α′)

∣∣∣
2

dα′
) 1

2 ≤ C1‖ω(2)
α ‖k+1 exp(C2‖ω(1)

α ‖k),(3.8)

( ∫ α+π

α−π

∣∣∣Dk
α

q2[ω
(2)](α′, α)

q1[ω(1)](α′, α)

∣∣∣
2

dα′
) 1

2 ≤ C1‖ω(2)
α ‖k+1 exp(C2‖ω(1)

α ‖k),

where C1 and C2 depend on k alone, but not on α.
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Proof. Clearly for k = 0, (3.8) holds. Consider k ≥ 1. It is easy to have

Dk
α

q2
q1

=

k∑

j=0

Ck,jD
k−j
α q2D

j
α

1

q1
.

We have from Lemma 3.4, for 0 ≤ j ≤ k,

‖Dk−j
α q2[ω

(2)](α, α′)‖0 ≤ C1‖ω(2)
αα‖k−j

and

‖Dj
αq1[ω

(1)](α, α′)‖0 ≤ C1‖ω(1)
α ‖j.

Further, since q1 is bounded below by 1
8 , it follows that for 0 ≤ j ≤ k, Hence

‖Dj
α

1

q1
‖0 ≤ C exp

[
c2

j∑

m=1

‖Dm
α q1‖0

]
≤ C1 exp

[
C2‖ω(1)

α ‖j
]
.

∥∥∥∥Dk
α

q2
q1

∥∥∥∥
0

≤
k∑

j=0

Ck,j

∥∥∥∥Dk−j
α q2D

j
α

1

q1

∥∥∥∥
0

≤ C1‖ω(2)
α ‖k+1 exp(C2‖ω(1)

α ‖k),

since ‖ 1
q1
Dk

αq2‖0 ≤ | 1
q1
|∞‖Dk

αq2‖0 and for 1 ≤ j ≤ k,

‖Dk−j
α q2 D

j
α

1

q1
‖0 ≤ |Dk−j

α q2|∞‖Dj
α

1

q1
‖0 ≤ c‖q2‖k−j+1‖Dj

α

1

q1
‖0.

The second part follows in a very similar manner since Lemma 3.4 can be applied
by switching variables α′ and α in the expression. We note that Lemma 3.4 gives
the same H0[a, a + 2π] estimates for derivatives of q1 and q2 with respect to α or
α′, independent of a. �

Definition 3.6. We write the cotangent as a function which is analytic at the
origin plus a singular part:

cot(β) =
1

β
+ l(β).

Lemma 3.7. (See [1] or appendix for proof) Let s ≥ 2 and ω ∈ Hs
(
T[0, 2π]

)

with corresponding ‖θ̃‖1 sufficiently small to ensure |q1[ω](α, α′)| ≥ 1
8 . Then K[ω] :

H0
(
T[0, 2π]

)
→ Hs−2

(
T[0, 2π]

)
, and in particular, there are positive constants C1

and C2 depending on s such that

‖K[ω]f‖s−2 ≤ C1‖f‖0 exp (C2‖ωα‖s−1).(3.9)

Further, K[ω] : H1
(
T[0, 2π]

)
→ Hs−1

(
T[0, 2π]

)
, and

‖K[ω]f‖s−1 ≤ C1‖f‖1 exp (C2‖ωα‖s−1).(3.10)

Lemma 3.8. If f ∈ H1 (T[0, 2π]), ω(1) and ω(2) correspond to θ̃(1) and θ̃(2), each

in Ḣ1, respectively with ‖θ̃(1)‖1, ‖θ̃(2)‖1 < ǫ1, then for sufficient small ǫ1,

‖K[ω(1)]f −K[ω(2)]f‖0 ≤ C1‖f‖0‖θ̃(1) − θ̃(2)‖1.
Suppose θ̃1, θ̃2 ∈ Ḣs. Then for s ≥ 1,

‖K[ω(1)]f −K[ω(2)]f‖s
≤ C1 exp

(
C2

(
‖θ̃(1)‖s + ‖θ̃(2)‖s

))
‖θ̃(1) − θ̃(2)‖s‖f‖1,
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while for for s ≥ 3,

‖K[ω(1)]f −K[ω(2)]f‖s
≤ C1 exp

(
C2

(
‖θ̃(1)‖s−1 + ‖θ̃(2)‖s−1

))((
‖θ̃(1)‖s + ‖θ̃(2)‖s

)
‖θ̃(1) − θ̃(2)‖s−1

+‖θ̃(1) − θ̃(2)‖s
)
‖f‖1,

where the constants C1 and C2 depend on s only.

Proof. We note that

K[ω(1)]f−K[ω(2)]f = − 1

2πi

∫ α+π

α−π

f(α′)

ω
(1)
α (α′)

(
q2[ω

(1)](α′, α)

q1[ω(1)](α′, α)
− q2[ω

(2)](α′, α)

q1[ω(2)](α′, α)

)
dα′

− 1

2πi

∫ α+π

α−π

f(α′)

(
1

ω
(1)
α (α′)

− 1

ω
(2)
α (α′)

)
q2[ω

(2)](α′, α)

q1[ω(2)](α′, α)
dα′

− 1

2πi

∫ α+π

α−π

f(α′)

(
1

2ω
(1)
α (α′)

− 1

2ω
(2)
α (α′)

)
l
(1
2
(α− α′)

)
dα′.

We also have

q2[ω
(1)](α′, α)

q1[ω(1)](α′, α)
− q2[ω

(2)](α′, α)

q1[ω(2)](α′, α)
=
q2[ω

(1) − ω(2)](α′, α)

q1[ω(1)](α′, α)

− q2[ω
(2)(α′, α)q1[ω

(1) − ω(2)](α′, α)

q1[ω(2)](α′, α)q1[ω(1)](α′, α)
.

Therefore, using Sobolev inequality |.|∞ ≤ C‖.‖1, we obtain

‖K[ω(1)]f −K[ω(2)]f‖0 ≤ C1‖f‖0
∥∥∥∥

1

ω
(1)
α

∥∥∥∥
1

(
‖q2[ω(1) − ω(2)]‖0

+‖q1[ω(1) − ω(2)]‖1‖q2[ω(2)‖0
)
+ C2‖f‖0

∥∥∥∥
1

ω
(1)
α

− 1

ω
(2)
α

∥∥∥∥
1

(
‖q2[ω(2)]‖0 + 1

)
.

The first statement follows easily from Lemmas 3.1, 3.4 and 3.5. Further, using one
integration by parts, the sth derivative of K[ω]f is

Ds
αK[ω]f(α) = Ds−1

α

1

2πi

∫ α+π

α−π

Dα′

( f(α′)

ωα(α′)

)[ ωα(α)

ω(α)− ω(α′)
− 1

2
cot

1

2
(α− α′)

]
dα′

=
1

2πi

∫ α+π

α−π

Dα′

( f(α′)

ωα(α′)

)
Ds−1

α

[ ωα(α)

ω(α)− ω(α′)
− 1

2
cot

1

2
(α− α′)

]
dα′

=
1

2πi

∫ α+π

α−π

Dα′

( f(α′)

ωα(α′)

)
Ds−1

α

[ ωα(α)

ω(α)− ω(α′)
− 1

α− α′

]
dα′

− 1

2πi

∫ α+π

α−π

Dα′

( f(α′)

2ωα(α′)

)
Ds−1

α l
(1
2
(α− α′)

)
dα′.(3.11)
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Hence, we have

(3.12) Ds
α

(
K[ω(1)]f(α)−K[ω(2)]f(α)

)

= − 1

2πi

∫ α+π

α−π

(
Dα′

( f(α′)

ω
(1)
α (α′)

)
Ds−1

α

q2[ω
(1)](α, α′)

q1[ω(1)](α, α′)
−Dα′

( f(α′)

ω
(2)
α (α′)

)
Ds−1

α

q2[ω
(2)](α, α′)

q1[ω(2)](α, α′)

)
dα′

− 1

2πi

∫ α+π

α−π

(
Dα′

( f(α′)

2ω
(1)
α (α′)

)
−Dα′

( f(α′)

2ω
(2)
α (α′)

))
Ds−1

α l
(1
2
(α− α′)

)
dα′.

Let us see the first part on the right side of (3.12). It can be split as

(3.13)
1

2πi

∫ α+π

α−π

Dα′

(
f(α′)

ω
(2)
α (α′)− ω

(1)
α (α′)

ω
(1)
α (α′)ω

(2)
α (α′)

)
Ds−1

α

q2[ω
(1)](α, α′)

q1[ω(1)](α, α′)
dα′

+
1

2πi

∫ α+π

α−π

Dα′

( f(α′)

ω
(2)
α (α′)

)
Ds−1

α

[q2[ω(1) − ω(2)](α, α′)

q1[ω(1)](α, α′)

]
dα′

+
1

2πi

∫ α+π

α−π

Dα′

( f(α′)

ω
(2)
α (α′)

)
Ds−1

α

[q2[ω(2)](α, α′)

q1[ω(2)](α, α′)

q1[ω
(2) − ω(1)](α, α′)

q1[ω(1)](α, α′)

]
dα′.

By Proposition 2.4, Lemma 3.1, Lemma 3.5 and Note 1.2, the L∞-norm of the first
part of (3.13) is bounded by

C1

∥∥∥ f

ω
(1)
α ω

(2)
α

(ω(1)
α − ω(2)

α )
∥∥∥
1
‖ω(1)

α ‖s exp
(
C2‖ω(1)

α ‖s−1

)

≤ C1

(
‖θ̃(1)‖s + ‖θ̃(2)‖s + 1

)
exp

(
C2

(
‖θ̃(1)‖s−1+‖θ̃(2)‖s−1

))
‖θ̃(1)− θ̃(2)‖1‖f‖1,

with C1 and C2 depending on s. For the second term in (3.13), we use the Cauchy-
Schwartz inequality, Lemmas 3.1, 3.5 to obtain the bound as quoted in the lemma.
For the third term, we apply the similar argument. We note that for 0 ≤ l < s− 1,

∥∥∥∥Dl
α

[
q2[ω

(2)](α, α′)

q1[ω(2)](α, α′)

]
Ds−1−l

α

[
q1[ω

(2) − ω(1)](α, α′)

q1[ω(1)](α, α′)

]∥∥∥∥
0

≤
∣∣∣∣Dl

α

[
q2[ω

(2)](α, α′)

q1[ω(2)](α, α′)

]∣∣∣∣
∞

∥∥∥∥Ds−1−l
α

[
q1[ω

(2) − ω(1)](α, α′)

q1[ω(1)](α, α′)

]∥∥∥∥
0

.

It is readily checked that

Dα′

[
q2[ω

(2)](α, α′)

q1[ω(2)](α, α′)

]
= −Dα

[
q2[ω

(2)](α′, α)

q1[ω(2)](α′, α)

]
.

Since |.|∞ ≤ C‖, ‖1, it follows from Lemma 3.5 that for l < s− 1.
∣∣∣∣Dl

α

[
q2[ω

(2)](α, α′)

q1[ω(2)](α, α′)

]∣∣∣∣
∞

≤ C1‖ω(2)
α ‖s exp

(
C2‖ω(2)

α ‖s−1

)

with C1 and C2 depending on s. When l = s− 1,

∥∥∥∥Ds−1
α

[
q2[ω

(2)](α, α′)

q1[ω(2)](α, α′)

]
q1[ω

(2) − ω(1)](α, α′)

q1[ω(1)](α, α′)

∥∥∥∥
0

≤
∣∣∣∣
[
q1[ω

(2) − ω(1)](α, α′)

q1[ω(1)](α, α′)

]∣∣∣∣
∞

∥∥∥∥Ds−1
α

[
q2[ω

(2)](α, α′)

q1[ω(2)](α, α′)

]∥∥∥∥
0

.
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Once again using Sobolev inequality |.|∞ ≤ C‖.‖1 and using Lemmas 3.1, 3.5 we
obtain the stated bounds.

Since the function l is symmetric about α and α′, it is easy to see that the stated
bounds also hold for the second part on the right side of (3.12).

For s ≥ 3, we use the more refined estimates in Lemma 3.1 to obtain the third
statement.

�

Lemma 3.9. (See [1] or appendix for proof) For ψ ∈ Hs
(
T[0, 2π]

)
with s ≥ 1, the

operator [H, ψ] is bounded from H0
(
T[0, 2π]

)
to Hs−1

(
T[0, 2π]

)
. And we have

‖[H, ψ]f‖s−1 ≤ C‖f‖0‖ψ‖s,

where C depends on s.

Lemma 3.10. For s > 1
2 and ψ ∈ Hs

(
T[0, 2π]

)
, the operator [H, ψ] is bounded

from H1
(
T[0, 2π]

)
to Hs

(
T[0, 2π]

)
, and

‖[H, ψ]f‖s ≤ C‖f‖1‖ψ‖s,
where C depends on s.

Proof. We know that

‖[H, ψ]f‖2s =
∑

k 6=0

|k|2s
∣∣Ĥ(ψf)(k)− ψ̂Hf(k)

∣∣2 +
∣∣Ĥ(ψf)(0)− ψ̂Hf(0)

∣∣2.

Since

Ĥ(ψf)(k) = (−i) sgn(k)ψ̂f(k) = (−i) sgn(k)
∞∑

j=−∞

ψ̂(j)f̂(k − j), for k 6= 0,

and

ψ̂Hf(k) =
∞∑

j=−∞

ψ̂(j)Ĥf(k − j) = (−i)
∑

j 6=k

ψ̂(j) sgn(k − j)f̂(k − j),

by Cauchy’s inequality and the inequality ‖gh‖0 ≤ |h|∞‖g‖0 ≤ C‖h‖1‖g‖0, we have
∥∥[H, ψ]f

∥∥2
s

=
∑

k 6=0

|k|2s
∣∣∣− i sgn(k)

∞∑

j=−∞

ψ̂(j)f̂(k − j) + i
∑

j 6=k

ψ̂(j) sgn(k − j)f̂(k − j)
∣∣∣
2

+
∣∣∣− i

∑

j 6=0

ψ̂(j) sgn(−j)f̂(−j)
∣∣∣
2

=
∑

k>0

|k|2s
∣∣∣2
∑

j>k

ψ̂(j)f̂(k − j) + ψ̂(k)f̂(0)
∣∣∣
2

+
∑

k<0

|k|2s
∣∣∣2
∑

j<k

ψ̂(j)f̂(k − j) + ψ̂(k)f̂(0)
∣∣∣
2

+
∣∣∣
∑

j 6=0

ψ̂(j) sgn(−j)f̂(−j)
∣∣∣
2

≤
∑

k>0

8|k|2s
∣∣∣
∑

j>k

ψ̂(j)f̂(k − j)
∣∣∣
2

+
∑

k<0

8|k|2s
∣∣∣
∑

j<k

ψ̂(j)f̂(k − j)
∣∣∣
2
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+2‖ψ‖2s|f̂(0)|2 +
∣∣∣
∑

j 6=0

ψ̂(j) sgn(−j)f̂(−j)
∣∣∣
2

≤
∑

k>0

8
∣∣∣
∑

j>k

|j|s
∣∣ψ̂(j)f̂(k − j)

∣∣
∣∣∣
2

+
∑

k<0

8
∣∣∣
∑

j<k

|j|s
∣∣ψ̂(j)f̂(k − j)

∣∣
∣∣∣
2

+2‖ψ‖2s|f̂(0)|2 + ‖ψ‖20‖f‖20

≤ 8

∞∑

k=−∞

∣∣∣
∞∑

j=−∞

∣∣|j|sψ̂(j)
∣∣∣∣f̂(k − j)

∣∣
∣∣∣
2

+ 3‖ψ‖2s‖f‖20.

We define {
|j|s|ψ̂(s)|

}
j∈Z

= Ψ and
{
f̂(j)

}
j∈Z

= f .

By Proposition 3.1999 in [23], we know that ‖f ∗ Ψ‖2 ≤ ‖f‖1‖Ψ‖2. Hence we
obtain the result of the lemma.

�

Lemma 3.11. If f ∈ H1 (T[0, 2π]), ω(1) and ω(2) correspond to θ̃(1) and θ̃(2)

respectively, each in Ḣ1, ‖θ̃(1)‖1 and ‖θ̃(2)‖1 < ǫ1, then

‖G[ω(1)]f − G[ω(2)]f‖0 ≤ C1‖f‖0‖θ̃(1) − θ̃(2)‖1.
Suppose θ̃1, θ̃2 ∈ Ḣs. Then for s ≥ 1,

‖G[ω(1)]f − G[ω(2)]f‖s
≤ C1 exp

(
C2

(
‖θ̃(1)‖s + ‖θ̃(2)‖s

))
‖θ̃(1) − θ̃(2)‖s‖f‖1,

while for s ≥ 3,

‖G[ω(1)]f − G[ω(2)]f‖s
≤ C1 exp

(
C2

(
‖θ̃(1)‖s−1 + ‖θ̃(2)‖s−1

))((
‖θ̃(1)‖s + ‖θ̃(2)‖s

)
‖θ̃(1) − θ̃(2)‖s−1

+‖θ̃(1) − θ̃(2)‖s
)
‖f‖1,

where the constants C1 and C2 depend on s only.

Proof. From (1.6), it follows that

‖G[ω(1)]f−G[ω(2)]f‖0 ≤
∥∥∥∥(ω(1)

α − ω(2)
α )

[
H, 1

ω
(1)
α

]
f

∥∥∥∥
0

+

∥∥∥∥ω2
α

[
H, 1

ω
(1)
α

− 1

ω
(2)
α

]
f

∥∥∥∥
0

+ 2
∥∥∥(ω(1)

α − ω(2)
α )K[ω(1)]f

∥∥∥
0
+ 2

∥∥∥ω(2)
α

(
K[ω(1)]−K[ω(2)]

)
f
∥∥∥
0
.

Using Lemma 3.1, 3.8, 3.10 and ‖hg‖0 ≤ |h|∞‖g‖0 ≤ C‖h‖1‖g‖0, the first statement
holds.

Now, consider

‖G[ω(1)]f−G[ω(2)]f‖s ≤
∥∥∥∥(ω(1)

α − ω(2)
α )

[
H, 1

ω
(1)
α

]
f

∥∥∥∥
s

+

∥∥∥∥ω2
α

[
H, 1

ω
(1)
α

− 1

ω
(2)
α

]
f

∥∥∥∥
s

+ 2
∥∥∥(ω(1)

α − ω(2)
α )K[ω(1)]f

∥∥∥
s
+ 2

∥∥∥ω(2)
α

(
K[ω(1)]−K[ω(2)]

)
f
∥∥∥
s
.

Using Lemmas 3.1, 3.8, 3.10, using ‖hg‖s ≤ Cs‖h‖s‖g‖s for s ≥ 1 and ‖hg‖s ≤
Cs(‖h‖s−1‖g‖s + ‖h‖s‖g‖s−1) for s ≥ 2 , we see that the last two statements hold.

�
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Proposition 3.12. Assume θ̃ ∈ Ḣs for s ≥ 3. If ‖θ̃‖1 < ǫ1, then for sufficiently
small ǫ1, there exists unique solution γ ∈ {u ∈ Hs−2

(
T[0, 2π]

)
|û(0) = 0} satisfying

(2.6). This solution γ satisfies the estimates

‖γ‖0 ≤ C0σ

L
‖θ̃‖2,

‖γ‖s−2 ≤ C1σ

L
exp(C2‖θ̃‖s−2)‖θ̃‖s,

∥∥∥∥γ − 2π

L
σθαα

∥∥∥∥
s

≤ C3σ

L
exp(C4‖θ̃‖s−1)‖θ̃‖s‖θ̃‖3,

where C1, C2, C3 and C4 depend on s, but all are independent of L. And for s = 3,
C2 = 0.

If γ(1) and γ(2) correspond respectively to (θ̃(1), L(1)) ∈ V and (θ̃(2), L(2)) ∈ V,
then for 3 ≤ s ≤ r,

‖γ(1) − γ(2)‖s−2 ≤ C
(
‖θ̃(1) − θ̃(2)‖s + |L(1) − L(2)|

)
,

∥∥∥∥γ(1) −
2πσ

L(1)
θ(1)αα − γ(2) +

2πσ

L(2)
θ(2)αα

∥∥∥∥
s−2

≤ C
(
‖θ̃(1) − θ̃(2)‖s−2 + |L(1) − L(2)|

)
,

where C depends on the diameter of V and s.

Proof. From (2.3), since γ̂(0) = 0, F [ω0]γ = 0. Therefore, (2.6) implies

[I +Aµ (F [ω]−F [ω0])] γ =
2πσ

L
θαα

Therefore, if θ̃ ∈ Ḣ2, then Lemma 3.11 implies

‖F [ω]γ −F [ω0]γ‖0 ≤ C‖θ̃‖1‖γ‖0.
where C depends on ǫ1. So, for sufficiently small ǫ1, if ‖θ̃‖1 ≤ ǫ1, then

[1 +Aµ (F [ω]−F [ω0])]
−1

exists and from the bounds above and Corollary 2.9,

‖γ‖0 ≤
C0σ

L
‖θαα‖0 ≤ C0σ

L
‖θ̃‖2.

Further, we obtain from the second part of Lemma 3.11,

‖F [ω]γ −F [ω0]γ‖s−2 ≤ C1 exp(C2‖θ̃‖s−2)‖θ̃‖s−2‖γ‖1,
where C1 and C2 depend on s. Therefore, for s ≥ 3, it follows from (2.6) that

‖γ‖s−2 ≤ 2πσ

L
‖θ̃‖s + C1 exp(C2‖θ̃‖s−2)‖θ̃‖s−2‖γ‖1

which C1 and C2 depend on s, which implies for sufficiently small ǫ1 that the second
statement holds.

For the third statement, we note that (2.6) and the third part of Lemma 3.11
implies that ∥∥∥∥γ − 2πσ

L
θαα

∥∥∥∥
s

≤ C3σ

L
exp(C4‖θ̃‖s−1)‖θ̃‖s‖θ̃‖3,

where C3 and C4 depend on s.
From (2.6), we obtain

‖γ(1) − γ(2)‖s−2 ≤
∥∥∥∥
2πσ

L(1)
θ(1)αα − 2πσ

L(2)
θ(2)αα

∥∥∥∥
s−2

+ ‖F [ω(1)]γ(1) −F [ω(2)]γ(2)‖s−2.
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Using

‖ 1

L(1)
θ(1)αα − 1

L(2)
θ(2)αα‖s−2 ≤ |L(1) − L(2)|

L(1)L(2)
‖θ(1)αα‖s−2 +

1

L(2)
‖θ(1)αα − θ(2)αα‖s−2,

and using Lemmas 3.11 and the first part of the proposition,

(3.14)

‖F [ω(1)]γ(1) −F [ω(2)]γ(2)‖s−2 ≤
∥∥∥F [ω(1)](γ(1) − γ(2))−F [ω0](γ

(1) − γ(2))
∥∥∥
s−2

+
∥∥∥F [ω(1)]γ(2) −F [ω(2)]γ(2)

∥∥∥
s−2

≤ C‖θ̃(2)‖s−2‖γ(1) − γ(2)‖1 +
C

L(2)
‖θ̃(1) − θ̃(2)‖s−2‖θ̃(2)‖3

with C depending on s and the diameter of V . The fourth statement in the propo-
sition follows since (θ̃(1), L(1)), (θ̃(2), L(2)) ∈ V . The fifth statement follows from
(2.6) by the same set of arguments as above.

�

Lemma 3.13. Assume θ̃ ∈ Ḣs for s ≥ 3. If ‖θ̃‖1 < ǫ1, for sufficiently small ǫ1,

the corresponding U and T in (2.4) and (B.3), with θ̂(1; t) and θ̂(−1; t) determined

from θ̃ using (B.4), satisfies the following estimates:
∥∥∥∥U − 2π2σ

L2
H[θαα]

∥∥∥∥
0

≤ C1σ

L2
‖θ̃‖1‖θ̃‖2,

∥∥∥∥U − 2π2σ

L2
H[θαα]

∥∥∥∥
s−2

≤ C2σ

L2
exp(C3‖θ̃‖s−2)‖θ̃‖s−2‖θ̃‖3,

∥∥∥∥U − 2π2σ

L2
H[θαα]

∥∥∥∥
s

≤ C2σ

L2
exp(C3‖θ̃‖s−1)‖θ̃‖s‖θ̃‖3,

‖U‖s−2 ≤
C2σ

L2
exp(C3‖θ̃‖s−2)‖θ̃‖s,

‖T ‖s−1 ≤
C2σ

L2
exp(C3‖θ̃‖s)‖θ̃‖s,

where C1 depends on ǫ1, C2 and C3 depend on s.

If U (1) and U (2) (or T (1), T (2)) correspond respectively to
(
θ̃(1), L(1)

)
∈ V and

(
θ̃(2), L(2)

)
∈ V, then for r ≥ 3,

‖U (1) − U (2)‖r−2 ≤ C4

(
‖θ̃(1) − θ̃(2)‖r + |L(1) − L(2)|

)
,

∥∥∥∥U (1) − 2π2

(L(1))2
H[θ(1)αα]− U (2) − 2π2

(L(2))2
H[θ(2)αα]

∥∥∥∥
r−2

≤ C4

(
‖θ̃(1)‖r + ‖θ̃(2)‖r

)(
‖θ̃(1) − θ̃(2)‖r−2 + |L(1) − L(2)|

)
,

‖T (1) − T (2)‖r−1 ≤ C4

(
‖θ̃(1) − θ̃(2)‖r + |L(1) − L(2)|

)
,

where C4 depends on the diameter of V and r.
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Proof. From (1.6) and (2.2), Lemma 3.11 it follows that
∥∥∥U − π

L
Hγ
∥∥∥
0
≤ π

L
‖G[ω]γ − G[ω0]γ‖0 ≤

C1

L
‖θ̃‖1‖γ‖0,

with C1 depending on ǫ1. Using Proposition 3.12, we obtain
∥∥∥∥U − 2π2σ

L2
H[θαα]

∥∥∥∥
0

≤ C1σ

L2
‖θ̃‖1‖θ̃‖2

with C1 depending on ǫ1. Again from (1.6) and (2.2), Lemma 3.11 and Proposition
3.12, we obtain
∥∥∥∥U − 2π2σ

L2
H[θαα]

∥∥∥∥
s

≤ π

L
‖G[ω]γ − G[ω0]γ‖s +

π

L

∥∥∥∥H
[
γ − 2πσ

L
θαα

]∥∥∥∥
s

≤ C2

L
exp(C3‖θ̃‖s−1)‖θ̃‖s‖γ‖1 ≤

C2σ

L2
exp(C3‖θ̃‖s−1)‖θ̃‖s‖θ̃‖3,

where C2 and C3 depend on s. Similarly, we can get the second and fourth state-
ments. This gives all the desired results for U in terms of θ̃.

Again, from noting that the second equation from (B.3), and the above estimates
on U , we obtain

‖T ‖0 ≤ C‖U(1 + θα)‖1 ≤ C2σ

L2
exp(C3‖θ̃‖3)‖θ̃‖3,(3.15)

and ∥∥∥∥Tα − 2π2σ

L2
H[θαα]

∥∥∥∥
s−2

≤
∥∥∥∥U − 2π2σ

L2
H[θαα]

∥∥∥∥
s−2

+ ‖Uθα‖s−2

≤ C2σ

L2
exp(C3‖θ̃‖s)

[
‖θ̃‖s−2‖θ̃‖3 + ‖θ̃‖s‖θ̃‖s−1

]
,

where C2 and C3 depend on s. Hence the fourth statement holds.
Also, we obtain from (1.6), (2.2),

‖U (1)− 2π2

(L(1))2
H[θ(1)αα]−U (2)+

2π2

(L(2))2
H[θ(2)αα]‖r−2 ≤ ‖ π

L1
G[ω(1)]γ(1)− π

L2
G[ω(2)]γ(2)‖r−2

≤ |L(1) − L(2)|
L(1)L(2)

‖G[ω(1)]γ(1) − G[ω0]γ
(1)‖r−2 +

C

L(2)
‖G[ω(1)]γ(1) − G[ω(2)]γ(1)‖r−2

+
C

L(2)

∥∥∥G[ω(2)]
(
γ(1) − γ(2)

)∥∥∥
r−2

.

The stated results on the differences between U (1) and U (2) follow from Lemma 3.11

and Proposition 3.12 on using the condition that each of
(
θ̃(1), L(1)

)
,
(
θ̃(2), L(2)

)
∈

V . We note the second equation from (B.3), so the stated result follows for T (1) −
T (2) as well. �

4. Energy estimate

We define energy we will use is the Hr
(
T[0, 2π]

)
norm of θ̃n; it is defined by

En(t) =
1

2

∫ 2π

0

(Dr θ̃n)
2dα.
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We first need to estimate the following terms in the evolution equations.

Lemma 4.1. Let Xn =
(
θ̃n, Ln

)
∈ C1

(
[0, S);V

)
be the solution to the initial value

problem (2.11) for r ≥ 3. If the size ǫ of the ball B is small enough, then the
corresponding energy En, as defined above, satisfies the inequality

dEn

dt
≤ −π

2σ

L2
n

En.

Proof. For r ≥ 3, taking the derivative of En(t) with respect to t, we have

d

dt
En(t) =

∫ 2π

0

(Dr θ̃n)(D
r θ̃n,t)dα.

Using (C.1) and (C.2), on integration by parts we find

d

dt
En = I1 + I2 + I3 + I4,where

I1 = −
∫ 2π

0

Dr+1θ̃nD
r (PnUn) dα,

I2 =

∫ 2π

0

Drθ̃nD
r−1 (PnUn) dα,

I3 =

∫ 2π

0

Drθ̃nD
r−1Pn (θn,αUn) dα,

I4 =

∫ 2π

0

Drθ̃nD
rPn (Tnθn,α) dα.

On using θ̃n = Pnθn, we can rewrite

I1 = −2π2σ

L2
n

∫ 2π

0

Dr+1θ̃nD
r+2H[θ̃n]dα−

∫ 2π

0

Dr+1θ̃nPnD
r

[
Un − 2π2σ

L2
n

H[θn,αα]

]
dα.

Using Lemma 3.13 to bound the second term I1, it follows from Cauchy-Scwartz
inequality that

I1 ≤ −2π2σ

L2
n

‖θ̃n‖2r+3/2 +
C1σ

L2
n

exp(C2‖θ̃n‖r−1)‖θ̃n‖r‖θ̃‖r+1‖θ̃n‖3,

where C1 and C2 depend on s. Applying Lemma 3.13 once again, we obtain

I2 =
2π2σ

L2
n

∫ 2π

0

Dr θ̃nD
r+1H[θ̃n]dα+

∫ 2π

0

Dr θ̃nD
r−1Pn

[
Un − 2πσ

L2
n

H[θn,αα]

]
dα

≤ 2π2σ

L2
n

‖θ̃n‖2r+1/2 +
C1σ

L2
n

exp(C2‖θ̃n‖r−1)‖θ̃n‖2r‖θ̃n‖3,

I3 =
2π2σ

L2
n

∫ 2π

0

Dr θ̃nD
r−1Pn

(
θn,αH[θn,αα]

)
dα

+

∫ 2π

0

Dr θ̃nD
r−1Pn

{
θn,α

[
Un − 2πσ

L2
n

H[θn,αα]

]}
dα

≤ C1σ

L2
n

‖θ̃n‖r+1‖θ̃n‖r‖θ̃n‖r−1 +
C1σ

L2
n

exp(C2‖θ̃n‖r−1)‖θ̃n‖2r‖θ̃n‖3,
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I4 =

∫ 2π

0

Dr θ̃nPn

( r∑

j=0

Cr,jD
jTnD

r+1−jθn
)
dα

=

∫ 2π

0

Dr θ̃nPn(TnD
r+1θn)dα+ Cr,1

∫ 2π

0

Drθ̃nPn (Tn,αD
rθn) dα

+

∫ 2π

0

Dr θ̃nPn




r∑

j=2

Cr,jD
j−2 (Un(1 + θn,α))D

r+1−jθn


 dα

≤ C1σ

L2
n

(
exp(C3‖θ̃n‖3)‖θ̃n‖3‖θ̃n‖2r+1 + exp(C2‖θ̃n‖r−1)‖θ̃n‖2r‖θ̃n‖r−1

)
,

where C1 and C2 depend on s. Adding up I1 through I4, using θ̃n ∈ B and the fact
that ‖θ̃n‖2r+1/2 ≤ 1

4‖θ̃n‖2r+3/2 since the Fourier 0 and ±1 modes for θ̃n are zero, we

obtain for r = 3,

(4.1)
d

dt
En ≤ −3π2σ

2L2
n

‖θ̃n‖2r+3/2 +
Cσ

L2
n

‖θ̃n‖2r+1‖θ̃n‖3

≤ − σ

L2
n

‖θ̃n‖2r+3/2

(
3

2
π2 − C‖θ̃n‖3

)
≤ −3π2σ

2L2
n

En

(
1− 2C

3π2
(2En)

1/2

)
,

and for r > 3,

(4.2)
d

dt
En ≤ −3π2σ

2L2
n

‖θ̃n‖2r+3/2 +
Cσ

L2
n

‖θ̃n‖2r+1‖θ̃n‖r−1

≤ − σ

L2
n

‖θ̃n‖2r+3/2

(
3

2
π2 − C‖θ̃n‖r−1

)
≤ −3π2σ

2L2
n

En

(
1− 2C

3π2
(2En)

1/2

)
,

where C = C1 exp(C2‖θ̃‖r−1) with C1 and C2 depending on r. It immediately
follows that if 1 − C 2

3π2 (2En)
1/2 > 0 initially, then En(t) decreases in time and

En(t) ≤ En(0) for all t. This implies that for small enough ǫ, if θ̃n ∈ B initially, it
remains there for any t for which the solution exists. More, generally, we have

dEn

dt
≤ −π

2σ

L2
n

En.

�

Corollary 4.2. Let
(
θ̃n, Ln

)
∈ C1

(
[0, S);V

)
be the solution to the initial value

problem (2.11) with r ≥ 3. Then for the sufficiently small ball size ǫ of B, as long
as the solution exists, we have

dEn

dt
≤ −π

2σ

L2
n

‖θ̃n‖2r+3/2,

d‖θ̃n‖2r+1

dt
≤ −π

2σ

L2
n

‖θ̃n‖2r+1.

Proof. The proof of the first statement comes from (4.1) and (4.2).
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Replacing r by r + 1 in (4.2), we obtain

(4.3)
d‖θ̃n‖2r+1

dt
≤ −3π2σ

2L2
n

‖θ̃n‖2r+5/2 +
Cσ

L2
n

‖θ̃n‖2r+2‖θ̃n‖r

≤ −3σπ2

2L2
n

‖θ̃n‖2r+5/2

(
1− 2C

3π2
‖θ̃n‖r

)
,

where C = C1 exp
(
C2‖θ̃n‖r

)
with C1 and C2 depending only on r. Hence for small

enough ǫ, if θ̃n ∈ B, then by (4.2), we have

d‖θ̃n‖2r+1

dt
≤ −σπ

2

L2
n

‖θ̃n‖2r+1.

�

Proposition 4.3. Let (θ̃n, Ln) ∈ C1
(
[0, S);V

)
be the solution to the initial value

problem (2.11) with r ≥ 3. Then for the sufficiently small ball size ǫ of B, as long
as the solution exists,

En(t) ≤ En(0) exp

[
−σt
18

]
,(4.4)

‖θ̃n(·, t)‖2r+1 ≤ ‖θ̃n(·, 0)‖2r+1 exp

[
−σt
18

]
,(4.5)

∣∣L3
n(t)− 8π3

∣∣ ≤ C
√
En(0)

(
1− exp(− 1

18
σt)
)
,(4.6)

where C is independent of n.

Proof. We note from the evolution equation for Ln may be rewritten as

L2
n

dLn

dt
= −L2

n

∫ 2π

0

[
Un − 2π2

L2
n

H[θn,αα]

]
dα− L2

n

∫ 2π

0

Unθn,αdα.

Using Lemma 3.13, on integration, it follows that

(4.7) |L3
n(t)− (2π)3| ≤ C

∫ t

0

‖θ̃(·, t′)‖23dt′ ≤ C

∫ t

0

En(t
′)dt′,

where C is independent of n. Since En(t) ≤ En(0), it follows that

|L3
n(t)| ≤ 8π3 + CEn(0)t,

where C is independent of n. Using Lemma 4.1, we obtain preliminary estimates:

En(t) ≤ En(0) exp

{
− 3σπ2

CEn(0)

[(
8π3 + CEn(0)t

)1/3 − 2π
]}

.

Going back to (4.7), it follows that for sufficiently small En(0), for any t,

|L3
n(t)− 8π3| < 1(4.8)

which implies that Ln cannot escape the interval (2π − 1, 2π + 1). Going back to
Lemma 4.1, this implies that

d

dt
En ≤ − π2σ

(2π + 1)2
En ≤ − σ

18
En
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and therefore (4.4) follows. (4.5) follows from Corollary 4.2 once we use (4.8).
Furthermore, plugging estimates (4.4) into (4.7), we have

|L3
n(t)− 8π3| ≤ 18CEn(0)

σ

[
1− exp

(
−σt
18

)]
.

�

Proof of Proposition 2.12: This follows readily from Lemma 4.1 and Proposition
4.3, since Lemma 4.1 assures that as long as the solution Xn to the initial value
problem (2.11) exists, the corresponding θ̃n does not exit the ball B and therefore
Proposition 4.3 can be applied to obtain estimates on En(t) and Ln(t).

5. Existence of Solutions

In this section, we demonstrate existence of solutions to the initial value problem
(2.11). We then show that these solutions converge (as the truncation n tends to
∞ ) to a solution of (B.1), (B.3) and (B.4) with the initial condition (2.5). We
demonstrate that this solution to (B.1), (B.3) and (B.4) with the initial condition
(2.5) is unique and has the same regularity as the initial data.

Definition 5.1. We define

‖|X‖| = ‖u‖r + |v|
for X = (u, v) ∈ Hr

(
T[0, 2π]

)
× R.

Proof of Proposition 2.11: First we show that the operator Fn : V → Hr
(
T[0, 2π]

)
×

R is bounded, i.e. ‖Fn,1‖r+ |Fn,2| <∞, ∀Xn ∈ V . It follows from Lemma 3.13 that
∥∥PnUn,α + PnTn(1 + θn,α)

∥∥
r

≤ ‖Un,α‖r + ‖Tn‖r + ‖Tn‖r‖θn,α‖r
≤ C

(
‖θ̃n‖r+3 + ‖θ̃n‖r+1 + ‖θ̃n‖2r+1

)
≤ Cn3‖θ̃n‖r,

|Fn,2| ≤ ‖1 + θn,α‖0‖Un‖0 ≤ C‖θ̃n‖2
(
1 + ‖θ̃n‖1

)
,

where C depends on n, r and the diameter of V .
Consider X

(1)
n , X

(2)
n ∈ V . We have

(5.1) ‖Fn,1(X
(1)
n )− Fn,1(X

(2)
n )‖r ≤

∥∥∥
( 2π

L
(1)
n

− 2π

L
(2)
n

)
Pn

(
U (1)
n,α + T (1)

n (1 + θ(1)n,α)
)∥∥∥

r

+
2π

L
(2)
n

∥∥Pn

(
U (1)
n,α − U (2)

n,α

)∥∥
r
+

2π

L
(2)
n

∥∥∥Pn

(
T (1)
n (1 + θ(1)n,α)− T (2)

n (1 + θ(2)n,α)
)∥∥∥

r
.

It follows from Lemma 3.13 that
∥∥∥
( 2π

L
(1)
n

− 2π

L
(2)
n

)
Pn

(
U (1)
n,α + T (1)

n (1 + θ(1)n,α)
)∥∥∥

r
(5.2)

≤ Cn3[|L(1)
n − L(2)

n | ≤ c‖|X(1)
n −X(2)

n ‖|,
where c depends on n, r and the diameter of V . Further, using Lemma 3.13

|F (2)
n,2 − F

(2)
n,2 | ≤ C

(
‖U (1)

n − U (2)
n ‖0

(
1 + ‖θ̃(1)n ‖1

)
+ ‖U (2)

n ‖0‖θ̃(1) − θ̃(2)‖1
)

≤ C
(
|L1 − L2|+ ‖θ̃(1) − θ̃(2)‖1

)
≤ c‖|X(1)

n −X(2)
n ‖|,
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where c depends on n, r and the diameter of V . Therefore, from ODE theory, it
follows that there exists local solution Xn ∈ C1

(
[0, Sn];V

)
over some time interval

Sn that may depend on n, r and ǫ.

Lemma 5.2. There exists sufficiently small ǫ > 0 such that solutions Xn =
(θ̃n, Ln) ∈ C1 ([0, S];V) of the initial value problem (2.11) form a Cauchy sequence

in C
(
[0, S]; Ḣ1 × R

)
for any S > 0.

Proof. We define difference energy function Emn as

Emn = E1
mn + (Ln − Lm)2

where E1
mn = 1

2

∫ 2π

0

(
D(θ̃n− θ̃m)

)2
dα. Notice that Emn(0) = E1

mn(0). Without loss
of generality, we assume m > n as otherwise we can switch the role of m and n in
the ensuing argument.

Using the first equation in (C.1),

(5.3)
dE1

mn

dt
=

∫ 2π

0

D(θ̃n − θ̃m)D2
( 2π
Ln

PnUn − 2π

Lm
PmUm

)
dα

+

∫ 2π

0

D(θ̃n− θ̃m)D
( 2π
Ln

Pn

(
Tn(1+θn,α)

)
− 2π

Lm
Pm

(
Tm(1+θm,α)

))
dα ≡ I1+I2.

Defining θ̃nm = θ̃n − θ̃m, it is clear that

I1 = −2π

(
1

Ln
− 1

Lm

)∫ 2π

0

D2θ̃nmPnDUndα+
2π

Lm

∫ 2π

0

Dθ̃mn(Pn − Pm)D2Un

+
2π

Lm

∫ 2π

0

Dθ̃mnPmD
2(Un − Um) ≡ I1,1 + I1,2 + I1,3

From estimates in Lemma 3.13 and restrictions due to
(
θ̃n, Ln

)
,
(
θ̃m, Ln

)
∈ V , we

obtain
|I1,1| ≤ cǫE1/2

mn‖θ̃nm‖2,
where c depends on the diameter of V . We note that since Pnθn = θ̃n and Pmθn =
θ̃n, as m > n, we can write I1,2

I1,2 =
2π

Lm

∫ 2π

0

Dθ̃mnD
2[Pn − Pm]

(
Un − 2π2σ

L2
n

H[θn,αα]

)
dα.

Therefore, using Lemma 3.13,

|I1,2| ≤
c

n
E1/2

mn

∥∥∥∥Un − 2π2σ

L2
n

H[θn,αα]

∥∥∥∥
3

≤ Cǫ

n
E1/2

mn ,

where C depends on the diameter of V . Using Pmθn = θ̃n, Pmθm = θ̃m,

I1,3 =
2π

Lm

∫ 2π

0

Dθ̃nmPmD
2

(
Un − 2π2σ

L2
n

H[θn,αα]− Um +
2π2σ

L2
m

H[θm,αα]

)

+
4π3σ

LmL2
n

∫ 2π

0

Dθ̃nmD
2H[θ̃nm,αα]−

4π3σ

Lm

(
1

L2
n

− 1

L2
m

)∫ 2π

0

D2θ̃nmDH[θ̃m,αα]dα.

Integrating by parts the second term in I1,3 above and using Lemma 3.13 again,
we obtain

|I1,3| ≤ − 4π3σ

LmL2
n

‖θ̃nm‖5/2 + CǫEmn + CǫE1/2
mn‖θ̃nm‖2,
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where C depends on the diameter of V . Now using Lemma 3.13, we obtain

d(Ln − Lm)2

dt
= 2(Lm − Ln)

∫ 2π

0

[(Un − Um)(1 + θn,α) + Um(θn,α − θm,α)] dα

≤ cE1/2
nm

(
ǫ‖Un − Um‖0 +

∥∥∥∥Un − 2π2σ

L2
n

H[θn,αα]− Um +
2π2σ

L2
m

H[θm,αα]

∥∥∥∥
0

+‖θ̃nm‖1‖Um‖0
)
≤ Cǫ

(
Enm + E1/2

nm‖θ̃nm‖2
)
,

C depends on the diameter of V . So for I2, we use the same method as we did for
I1 and combine all the terms. So we obtain

dEmn

dt
≤ − 4π3σ

LmL2
n

‖θ̃nm‖25/2 +
4π3σ

LmL2
n

‖θ̃nm‖23/2 + cǫE1/2
mn‖θ̃nm‖2 +

c

n
ǫE1/2

mn + cǫEmn

≤ − 3π3σ

2(2π + 1)3
‖θ̃nm‖25/2 +

c

2
ǫ‖θ̃nm‖22 +

c

n
E1/2

mn + c1ǫEmn,

where c and c1 depends on the diameter of V . Since ‖θ̃nm‖5/2 ≥ ‖θ̃nm‖2, it follows
that for ǫ sufficiently small

− 3π3σ

(2π + 1)3
‖θ̃nm‖25/2 + cǫ‖θ̃nm‖22 ≤ 0.

So,

dEmn

dt
≤ cEmn +

c

n
E1/2

mn .

This can be restated as
dE

1/2
mn

dt
≤ cE1/2

mn +
c

n
.

We solve the differential inequality to see that

E1/2
mn (t) ≤ E1/2

mn (0)e
ct +

1

n
(ect − 1).

Since
Emn(0) = E1

mn(0) ≤
c

n2
‖θ̃0‖2r,

we have
E1/2

mn (t) ≤
c

n
(‖θ̃0‖r + 1)ect.

Thus, solutions do form a Cauchy sequence in C
(
[0, S]; Ḣ1 × R

)
. �

Remark. We now know that the solutions of the initial value problem (2.11),

(θ̃n, Ln), approach a limit as n → ∞ in C
(
[0, S]; Ḣ1 × R

)
. Call this limit X =

(θ̃, L). �

Note 5.3. By Proposition 2.12, we know that ‖θ̃n(·, t)‖r ≤ ‖Q1θ0‖r for all t ≥ 0.

Since Ḣr is a Hilbert space, its unit ball is weakly compact. Thus, θ̃n ⇀ θ̃ in Ḣr.
Furthermore, by Fatou’s Lemma, we also have

‖θ̃‖r ≤ lim inf
n→∞

‖θ̃n‖r ≤ ‖Q1θ0‖r.

Lemma 5.4. For r ≥ 3, there exists the sufficiently small ball size ǫ of B such that
as n → ∞, the limit of the initial value problem (2.11), X = (θ̃, L) ∈ C ((0, S];V)
for any S > 0.
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Proof. Note that estimates in Corollary 4.2 and Proposition 4.3. Since Ln ∈
(2π − 1, 2π + 1), we have

dEn

dt
≤ −σ

9
‖θ̃n‖2r+3/2.

It implies

1

2
En(t) +

σ

9

∫ t

0

‖θ̃n‖2r+3/2dt ≤
1

2
En(0) ≤

1

2
‖Q1θ0‖r.

Hence θ̃n is a bounded sequence in L2
(
[0,∞), Ḣr+3/2

)
. So, there exists a sub-

sequence that converges weakly, and it is easily argued that the limit can only
be θ̃. This means that for any interval (0, S′) there exists S0 in that interval so

that ‖θ̃(., S0)‖r+3/2 < ∞. Now consider the solution to (B.1), (B.3) and (B.4)

with S0 as the initial time. In particular, θ̃(., S0) ∈ Ḣr+1 ∩ B. Taking θ̃(., S0)

as initial data in Ḣr+1 ∩ B, repeating the proof of Proposition 2.11 with r + 1
instead of r, and by Corollary 4.2 and Proposition 4.3, we have global solutions

θ̃S0
n ∈ C1

(
[S0,∞), Ḣr+1 ∩ B

)
for sufficiently small ǫ. Again, by uniqueness of so-

lutions to the approximate equation (2.11) (Proposition 2.11), these solutions are

identical to θ̃n in their intervals of existence. Also, by Proposition 4.3, we have
(5.4)

‖θ̃n(·, t)‖r+1 ≤ ‖θ̃n(·, S0)‖r+1e
− σ

36 (t−S0) ≤ ‖θ̃(·, S0)‖r+1e
−

σ(t−S0)
36 , for all t ≥ S0.

From interpolation theorem in Sobolev space, we have

(5.5) ‖θ̃m − θ̃n‖s ≤ C‖θ̃m − θ̃n‖
1− s

r+1

0 ‖θ̃m − θ̃n‖
s

r+1

r+1 .

By Lemma 5.2 and (5.4), we know that the right side of (5.5) goes to zero uni-
formly on [S0, S], as n,m → ∞ for any 1 ≤ s < r + 1. This implies X ∈
C
(
[S0, S]; Ḣ

s × R

)
. Since the choice of S′ is arbitrarily small, it follows that

θ̃ ∈ C
(
(0, S], Ḣr

)
. �

Proposition 5.5. (continuity at t = 0 in Ḣr) For r ≥ 3, we have

(5.6) lim
t→0+

‖θ̃(·, t)−Q1θ0‖r = 0.

Proof. Replacing r + 1 by r in (5.5), using the uniform bound of θ̃n in Ḣr and

θ̃n ∈ C1
(
[0,∞); Ḣr

)
, we find that θ̃n → θ̃ in C

(
[0, S]; Ḣs

)
as n → ∞ for any

S > 0, where 1 ≤ s < r.
Let η > 0 and φ ∈ H−r

(
T[0, 2π]

)
. For any s satisfying 1 ≤ s < r, choose

ϕ ∈ H−s
(
T[0, 2π]

)
so that

‖φ− ϕ‖−r ≤ η

3
.(5.7)

We know that such a ϕ can be found since H−s
(
T[0, 2π]

)
is dense in H−r

(
T[0, 2π]

)
.

We have

〈φ, θ̃n〉 − 〈φ, θ̃〉 = 〈φ− ϕ, θ̃n〉+ 〈ϕ− φ, θ̃〉+ 〈ϕ, θ̃n − θ̃〉,(5.8)

where 〈·, ·〉 denotes the pairing with dual spaces. The first two terms can be bounded

by η
3 using (5.7) and uniform bounds on θ̃ and θ̃n in Ḣr. For the third term,

we choose n large enough so that ‖θ̃ − θ̃n‖s ≤ η/3. Thus, (5.8) is bounded by
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η. Since η is arbitrary and these bounds are uniform in time, we conclude that

θ̃ ∈ CW

(
[0, S]; Ḣr

)
. To prove the lemma, it is enough to show limt→0+ ‖θ̃(·, t)‖r =

‖Q1θ0‖r = 0.

By Note 5.3, we know ‖θ̃(·, t)‖r ≤ ‖Q1θ0‖r. This means lim supt→0+ ‖θ̃(·, t)‖r ≤
‖Q1θ0‖r. From the fact that θ̃ ∈ CW

(
[0, S]; Ḣr

)
, we have lim inf t→0+ ‖θ̃(·, t)‖r ≥

‖Q1θ0‖r. Hence, (5.6) holds. This gives us strong right continuity at t = 0. �

By Lemma 5.4 and Proposition 5.5, we have

Corollary 5.6. For r ≥ 3, there exists the sufficiently small ball size ǫ of B such
that X ∈ C ([0, S];V) for any S > 0.

Proposition 5.7. For r ≥ 4, X is a classical solution to the initial value problem
(B.1), (B.3) and (B.4) with the initial condition (2.5) for any S > 0, where θ̃ ∈
C
(
[0, S];C3 (T[0, 2π])

)
∩ C1

(
[0, S];C (T[0, 2π])

)
and L ∈ C1[0, S].

Proof. For r ≥ 4, by Sobolev embedding theorem and Corollary 5.6, we know
X ∈ C

(
[0, S];C3 (T[0, 2π])× R

)
and θ̃n → θ̃ as n→ ∞ in C

(
[0, S];C3 (T[0, 2π])

)
∩

C
(
[0, S]; Ḣs

)
, for 1 ≤ s < r.

Since g is C1 in the open ball Ḣ1, g(θ̃n) → g(θ̃) as n → ∞. So θ̂(1; t) = g(θ̃)

and θ̃ satisfy (B.4). By Proposition 3.12 and (3.14), we see that both {γn}∞n=2 and
{F [ωn]γn}∞n=2 are Cauchy sequences in C

(
[0, S];H1 (T[0, 2π])

)
. Hence, it allows us

to pass to the limit as n→ ∞ in the equation

(I +AµF [ωn]) γn =
2π

Ln
θn,αα,

and obtain
(
I +AµF [ω]

)
γ =

2π

L
θαα.

By Proposition 3.12 again , we have γ ∈ C
(
[0, S];Hr−2 (T[0, 2π])

)
. We also have

(5.9) θ̃n(α, t) = Pnθ0(α) +

∫ t

0

Fn,1

(
Xn(t

′)
)
dt′.

From Lemma 3.13, it follows that {Fn,1}∞n=2 is a Cauchy sequence in C
(
[0, S]; Ḣ0

)
.

Replacing r+1 by r− 3 and θ̃n by Fn,1 in (5.5) with the uniform bound of Fn,1 in

Ḣr−3, we see {Fn,1}∞n=2 is a Cauchy sequence in C
(
[0, S]; Ḣs

)
for 0 ≤ s < r − 3.

Hence, we take the limit in (5.9), yielding

θ̃(α, t) = Q1θ0(α) +

∫ t

0

F 1
(
X(t′)

)
dt′,

where F 1 is the right-hand side of the first equation in (B.1). This is differentiable in

time, giving θ̃t = F 1(X) ∈ C ([0, S];C (T[0, 2π])). Similarly, L satisfies the second
equation of (B.1) and Lt ∈ C[0, S]. Thus, X is a classical solution to (B.1), (B.3)
and (B.4) with the initial condition (2.5). �

Lemma 5.8. For r ≥ 3, there exists the sufficiently small ball size ǫ of B such that
if X(1), X(2) ∈ C

(
[0, S]; Ḣr ×R

)
∩C1

(
[0, S]; Ḣr−3 ×R

)
are solutions to the initial
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value problem (B.1), (B.3) and (B.4) with the initial condition (2.5) for any S > 0,
and the corresponding initial data X(1)(α, 0), X(2)(α, 0) ∈ V, then for 0 ≤ t ≤ S,

∥∥∥θ̃(1)(·, t)− θ̃(2)(·, t)
∥∥∥
1
+
∣∣∣L(1)(t)− L(2)(t)

∣∣∣

≤
(∥∥∥θ̃(1)(·, 0)− θ̃(2)(·, 0)

∥∥∥
1
+
∣∣∣L(1)(0)− L(2)(0)

∣∣∣
)
exp{Bt}.

Proof. This proof is very similar to the proof of Lemma 5.2, and we re-use some
notation. Define Ed, the energy function for the difference of two solutions, by
E1

d + (L(1) − L(2))2. Here,

E1
d =

1

2

∫ 2π

0

(Dα(θ̃
(1) − θ̃(2)))2dα.

We now wish to estimate how this energy changes over time.

dE1
d

dt
=

∫ 2π

0

Dα(θ̃
(1) − θ̃(2))Dα(θ̃

(1)
t − θ̃

(2)
t )dα

=

∫ 2π

0

Dα(θ̃
(1) − θ̃(2))D2

αQ1

( 2π

L(1)
U (1) − 2π

L(2)
U (2)

)
dα

+

∫ 2π

0

Dα(θ̃
(1) − θ̃(2))DαQ1

( 2π

L(1)

(
T (1)(1 + θ(1)α )

)
− 2π

L(2)

(
T (2)(1 + θ(2)α )

))
dα.

Using the same estimates as that in Lemma 5.2, we have

dE1
d

dt
≤ − 4π3

(L(2))3
σ
(∥∥θ̃(1) − θ̃(2)

∥∥2
5/2

−
∥∥θ̃(1) − θ̃(2)

∥∥2
3/2

)
+ cǫ

(∥∥θ̃(1) − θ̃(2)
∥∥2
2
+ Ed

)
,

with c depends on the diameter of V . We also have

d(L(1) − L(2))2

dt
≤ cǫ

(
‖θ̃(1) − θ̃(2)‖22 + Ed

)
,

with c depends on the diameter of V . As what we did in Lemma 5.2, for sufficiently
small ǫ, there exists a positive constant B such that

dEd

dt
≤ BEd.

We solve the differential inequality to see that

Ed(t) ≤ Ed(0)e
Bt.

This proves the theorem. �

Hence, uniqueness follows from Lemma 5.8.

Lemma 5.9. For r ≥ 3, there exists the sufficiently small ball size ǫ of B such that
solution X =

(
θ̃, L

)
∈ C

(
[0, S]; Ḣr×R

)
∩C1

(
[0, S]; Ḣr−3×R

)
to (B.1) , (B.3) and

(B.4) with initial condition (2.5) is unique in Ḣ1 × R.

Proof of Lemma 2.14: This follows from Lemmas 5.2, 5.4, 5.9, Corollary 5.6 and
Proposition 5.7.
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Proof of Proposition 2.16: Taking the derivative with respect to t on both sides
of (2.14), we have

dS(t)
dt

=
1

2
Im

∫ 2π

0

(
zαz

∗
t − ztz

∗
α

)
dα

= − L

4π
Re

∫ 2π

0

(
iei

π
2 +iα+iθ(α)z∗t + zt(−ie−iπ2 −iα−iθ(α))

)
dα

= − L

2π

∫ 2π

0

(xt, yt) · ndα = − L

2π

∫ 2π

0

Udα

= −Re
( ∫ 2π

0

zα(α)

2π
PV

∫ α+π

α−π

γ(α′)

z(α)− z(α′)
dα′dα

)
.

Since

Re
(
PV

∫ 2π

0

zα(α)

z(α)− z(α′)
dα
)

= Re
(
lim
b→0

∫ α′−b

0

+

∫ 2π

α′+b

d

dα
log(z(α)− z(α′))

)

= log
∣∣z(2π)− z(α′)

∣∣− log
∣∣z(0)− z(α′)

∣∣ = 0,

we have

dS(t)
dt

= 0.

Hence the area of the bubble is invariant with time.

Since
(
θ̃n, Ln

)
converges to (θ̃, L) in C

(
(0, S]; Ḣr × R

)
for any S > 0, by Propo-

sition 2.12 and ‖Pnθ0‖r ≤ ‖Q1θ0‖r, we have

‖θ̃(·, t)‖r = lim
n→∞

‖θ̃n(·, t)‖r ≤ ‖Q1θ0‖re−
1
36σt.(5.10)

By (2.7) and (5.10), the statement for θ̂(±1; t) hold.
Since the area is invariant with time, we have

L2

8π2
Im

∫ 2π

0

ωαω
∗dα = S 1

2π
Im

∫ 2π

0

ω0,αω
∗
0dα.(5.11)

(5.11) gives us

(
L2 − 4πS

)
Im

∫ 2π

0

ωαω
∗dα+ 4πS

(
Im

∫ 2π

0

ωαω
∗dα− Im

∫ 2π

0

ω0,αω
∗
0dα

)
= 0.

It implies that

L− 2
√
πS = − L2

2π(L+ 2
√
πS)

(
Im

∫ 2π

0

ωαω
∗dα− Im

∫ 2π

0

ω0,αω
∗
0dα

)
.

Hence, using 2π − 1 < L < 2π + 1, we induce the following estimate:

|L− 2
√
πS| ≤ C‖θ̃‖1

with C depending on S. From (5.10), the result for L follows.
From (B.2), using (3.15) and 2π − 1 < L < 2π + 1, we have

(5.12)
∣∣∣θ̂(0; t)− θ̂0(0)

∣∣∣ ≤ C

∫ t

0

‖T (·, t′)‖0
(
1 + ‖θ̃(·, t′)‖1

)
dt ≤ C

∫ t

0

‖θ̃(·, t′)‖3dt.
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Hence, plugging estimates (5.10) into (5.12), the result for θ̂(0; t) holds.

6. appendix

Proof of Lemma 3.4 ([1]):

Proof. We note that

Dk
αq1[ω] =

∫ 1

0

tkDkωα(tα+(1−t)α′)dt , Dk
α′q1[ω] =

∫ 1

0

(1−t)kDkωα(tα+(1−t)α′)dt.

Then, using 2π periodicity of Dkωα, we obtain
∫ a+2π

a

∣∣∣
∫ 1

0

tkDkωα(tα+ (1− t)α′)dt
∣∣∣
2

dα′

≤
∫ a+2π

a

( ∫ 1

0

|Dkωα(tα+ (1− t)α′)(1 − t)1/4|2dt
)( ∫ 1

0

t2k(1− t)−1/2dt
)
dα′

≤ C

∫ 1

0

∫ a+2π

a

|Dkωα(tα + (1− t)α′)(1− t)1/4|2dα′dt

≤ C

∫ 1

0

∫ (a+2π)(1−t)+tα

a(1−t)+tα

|Dkωα(u)|2(1− t)−1/2dudt

≤ C

∫ 1

0

(1− t)−1/2dt

∫ 2π

0

|Dkωα(u)|2du ≤ C‖Dkωα‖20.

So Dk
αq1 ∈ Hk[a, a + 2π] in variable α′ and ‖Dk

αq1[ω]‖0 ≤ C‖ωα‖k with C only
dependent on k. Again

∫ a+2π

a

∣∣∣
∫ 1

0

(1− t)kDkωα(tα+ (1 − t)α′)dt
∣∣∣
2

dα′

≤
∫ a+2π

a

( ∫ 1

0

|Dkωα(tα+ (1− t)α′)(1 − t)1/4|2dt
)( ∫ 1

0

(1− t)2k−1/2dt
)
dα′

≤ C

∫ 1

0

∫ a+2π

a

|Dkωα(tα + (1− t)α′)(1− t)1/4|2dα′dt

≤ C

∫ 1

0

∫ (a+2π)(1−t)+tα

a(1−t)+tα

|Dkωα(u)|2(1− t)−1/2dudt ≤ C‖Dkωα‖20.

So Dk
α′q1 ∈ Hk[a, a + 2π] in variable α′ and ‖Dk

α′q1[ω]‖0 ≤ C‖ωα‖k with C only
dependent on k.

We note that for k ≥ 0

Dk
αq2[ω] = −

∫ 1

0

tk(1− t)Dkωαα(tα + (1− t)α′)dt,

Dk
α′q2[ω] = −

∫ 1

0

(1 − t)k+1Dkωαα(tα+ (1− t)α′)dt.

Similar arguments as above leads to the stated bounds for q2.
From symmetry of q1, q2 in α and α′, clearly the same results hold with respect

to α instead of α′ integration. �

Proof of Lemma 3.8 ([1]):
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Proof. We begin by taking r − 2 derivatives of K[ω]f .

Dr−2
α K[ω]f(α) = Dr−2

α

1

2πi

∫ α+π

α−π

f(α′)
[ 1

ω(α)− z(α′)
− 1

2ωα(α′)
cot

1

2
(α − α′)

]
dα′

=
1

2πi

∫ α+π

α−π

f(α′)Dr−2
α

[ 1

ω(α)− ω(α′)
− 1

2ωα(α′)
cot

1

2
(α− α′)

]
dα′

=
1

2πi

∫ α+π

α−π

f(α′)Dr−2
α

[ 1

ω(α)− ω(α′)
− 1

ωα(α′)(α − α′)

]
dα′

− 1

2πi

∫ α+π

α−π

f(α′)

2ωα(α′)
Dr−2

α l
(1
2
(α− α′)

)
dα′

= P1 + P2.

Since the function l(β) is analytical for −π
2 ≤ β ≤ π

2 , it is easy to have

‖P2‖0 ≤ C

L
‖f‖0, where C depends on r.

Let us see P1.

P1 =
1

2πi

∫ α+π

α−π

f(α′)

ωα(α′)
Dr−2

α

[ ωα(α
′)

ω(α)− ω(α′)
− 1

α− α′

]
dα′

=
1

2πi

∫ α+π

α−π

f(α′)

ωα(α′)
Dr−2

α

(q2[ω](α′, α)

q1[ω](α′, α)

)
dα′.

(3.7) implies that
∣∣q1[ω](α, α′)

∣∣ ≥ 1
4 . So by Lemma 3.5, we have

‖P1‖0 ≤ C1

L
‖f‖0 exp (

C2

L
‖ωα‖r−1).

Hence first result follows. Taking α-derivative r − 1 times K[ω]f and integrating
by parts once,

Dr−1
α K[ω]f(α) = Dr−2

α

1

2πi

∫ α+π

α−π

Dα′

( f(α′)

ωα(α′)

)[ ωα(α)

ω(α)− ω(α′)
− 1

2
cot

1

2
(α− α′)

]
dα′

=
1

2πi

∫ α+π

α−π

Dα′

( f(α′)

ωα(α′)

)
Dr−2

α

[ ωα(α)

ω(α)− ω(α′)
− 1

2
cot

1

2
(α− α′)

]
dα′

= − 1

2πi

∫ α+π

α−π

Dα′

( f(α′)

ωα(α′)

)
Dr−2

α

(
q2[ω](α, α

′)

q1[ω](α, α′)

)
dα′

− 1

2πi

∫ α+π

α−π

Dα′

( f(α′)

2ωα(α′)

)
Dr−2

α l
(1
2
(α− α′)

)
dα′.

Using Lemma 3.5, the the second inequality follows from Cauchy-Schwartz inequal-

ity after noting that ‖D
(

f
ωα

)
‖0 ≤ C‖f‖1‖ωα‖1 �

Proof of Lemma 3.10 ([1]):

Proof. We begin by writing [H, ψ] as an integral operator:

[H, ψ]f(α) = 1

2π

∫ α+π

α−π

f(α′)
(
ψ(α′)− ψ(α)

)
cot
(1
2
(α− α′)

)
dα′.

We can write the kernel as
(ψ(α′)− ψ(α)

α− α′

)(
(α− α′) cot

(1
2
(α− α′)

)
.
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The first part of this product is a divided difference, and the second part is an ana-
lytic function on the domain [−π

2 ,
π
2 ]. The lemma now follows from the Generalized

Young’s Inequality. �
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[23] Iorio, R. J. and Iorio, V. de Magalhães Fourier Analysis and Partial Differential Equations,

Cambridge University Press, Cambridge, UK, 2001.

[24] Kessler, D., Koplik, J. and Levine, H. (1988) Patterned Selection in fingered growth phe-
nomena. Adv. Phys. 37, 255.

[25] Maclean, J. W. and Saffman, P. G. (1981) The effect of surface tension on the shape of
fingers in the Hele-Shaw cell. J. Fluid Mech. 102, 455.



GLOBAL SOLUTIONS TO THE BUBBLE 37

[26] Majda, A. and Bertozzi, A. Voricity and Incompressible Flow. Cambridge University Press,
Cambridge, UK, 2002.

[27] Pelce, P. (1988) Dynamics of Curved Fronts. Academic.
[28] Prokert, G. (1998) Existence results for Hele-Shaw flow driven by surface tension. Euro. Jnl

of Applied Mathematics 9, 195.
[29] Prüss, J. and Simonett, G. (2008) Stability of equilibria for the Stefan problem with surface

tension. SIAM J. Math. Anal. 40 (2), 675.
[30] Reed, Michael and Simon, Barry Methods of Modern Mathematical Physics, Vol I: Func-

tional Analysis, revised and enlarged Edition

[31] Saffman, P.G. and Taylor, G.I. (1958) The penetration of a fluid into a porous medium or
Hele-Shaw cell containing a more viscous fluid. Proc. Royal Society 245, 312.

[32] Saffman, P.G. (1986) Viscous fingering in a Hele-Shaw cell. J. Fluid Mech. 173, 73.
[33] Tanveer, S. (1986) The effect of surface tension in the shape of a Hele-Shaw cell bubble.

Phys. Fluids 29, 3537.
[34] Tanveer, S. (1991) Viscous Displacement in a Hele-Shaw cell. In Asymptotics Beyond all

orders (ed. H. Segur, S. Tanveer and H. Levine). Plenum.
[35] Tanveer, S.(2000) Surprise in viscous fingering. J. Fluid Mech. 409, 273.
[36] Taylor, M. Partial Differential Equations III: Nonlinear Equations, Volume 117 of Applied

Mathematical Sciences. Springer-Verlag, New York, 1996.

[37] Xie, X. & Tanveer, S. (2003) Rigorous results in steady finger selection in viscous fingering.
Arch. Ration. Mech. Anal. 166, 3, 219.

[38] Tanveer, S. & Xie, X. (2003) Analyticity and Nonexistence of Classical Steady Hele-Shaw
Fingers. Communications on Pure and Applied Mathematics, Vol. LVI, 353.

[39] Xie, X. (2009) Nonexistence of classical steady Hele-Shaw bubble. Nonlinear Anal. 70, 3,
1217.

[40] Ye, J. and Tanveer, S., Global Existence for a translating near-circular Hele-Shaw bubble
with surface tension, Submitted, 2009.


