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Analytic functions and Convergent Series

Recall: f(z) is said to have a derivative at z, if

f ′(z) ≡ limh→0
f(z+h)−f(z)

h
exists independent of arg h.

Recall f is analytic at z if f ′ exists in an open set containing z

Also, f is analytic in a domain D if it is analytic at each point in D.

If f is analytic at z0, then it has a convergent Taylor expansion:

f(z) =
∑

∞

n=0
f(n)(z0)

n!
(z − z0)

n in some neighborhood of z

Conversely, a convergent series
∑

∞

n=0 an(z − z0)
n defines an

analytic function.

1-1 correspondence between convergent series and analytic fns.

Isomorphism under usual algebraic operations.



Series solution to differential equation

Series representation useful in differential equation, eg :

d2y

dz2
− zy = 0

Seek solution y =
∑

∞

n=0 anzn, plug into ODE and equate like

powers of x, to obtain recurrence relation for n ≥ 1:

an+2 =
an−1

(n + 2)(n + 1)
, with a2 = 0

General Theory gives both linearly independent solutions i n the

series form; also gives infinite radius of convergence in thi s case.

Method can be extended some nonlinear ODEs as well or 1st

order system of PDEs with analytic coefficients and initial d ata on

a non-characteristic curve.



Example of naturally occurring divergent series

Suppose we tried y =
∑

∞

n=0 anzn as solution to z2 dy
dz

+ y = z.

Recurrence relation:

an+1 = −nan for n ≥ 1, with a0 = 0, a1 = 1

gives

y = −
∞
∑

n=1

(−1)n(n − 1)!zn (1)

With z = 1/x, obtain dy
dx

− y = − 1
x

. Unique solution y satisfying

y → 0 as x → +∞:

y(x) = −ex

∫ x

∞

e−t

t
dt (2)

Q: In what sense is (1) a representation of solution (2) ?

"Divergent Series is the Devil’s invention" (Abel)



Asymptotic Power Series in Poincare’s sense

Definition:

f(x) ∼
∞
∑

n=1

an

xn
, as x → +∞

implies for any M ≥ 1,

lim
x→+∞

[

[f(x) −
∑M

n=1 anx−n
]

x−M
= 0

or f(x) −
M
∑

n=1

anx−n = o
(

x−M
)

Example: Integration by parts shows that as x → +∞.

f(x) = ex

∫ x

∞

e−t

t
dt ∼

∞
∑

n=1

(−1)n(n − 1)!

xn



Divergent Series in PDEs

Consider for instance the heat equation for (x, t) ∈ R × R
+:

ut = uxx , u(x, 0) = u0(x) with u0 analytic

Try a formal series u(x, t) =
∑

∞

n=0 tnun(x) to obtain:

un+1 =
1

(n + 1)
u′′

n get u(x, t) =
∞
∑

n=0

tn u
(2n)
0 (x)

n!

Divergent for generic analytic initial condition u0



Asymptotic series and functions

If f(x) has an asymptotic power series representation as x → ∞,

then it is unique.

Not all functions have an asymptotic power series. Sometime s

more general representations needed:

f(x) ∼
∞
∑

n=1

anφn(x)

Further asymptotic series in the sense of Poincare does not

provide unique correspondence between asymptotic series a nd

actual functions, example: Let g(x) = f(x) + e−x. Then if

f(x) ∼
∞
∑

n=1

anx−n, then g(x) ∼
∞
∑

n=1

anx−n



Borel Transform and Borel Sum of divergent series

Borel Transform:

B[x−k](p) =
pk−1

(k − 1)!
for k ≥ 1

B[ỹ] = B

[

∞
∑

k=1

akx−k

]

(p) =
∞
∑

k=1

ak

(k − 1)!
pk−1

If the following conditions hold:

1. The Borel Transform Y (p) ≡ B[ỹ](p) analytic for p ≥ 0,

2. e−αpY (p) absolutely integrable in (0, ∞) for some α > 0

Then, LB[ỹ] = [LY ](x) ≡
∫

∞

0
e−pxY (p)dx exists for Re x > α

and called Borel sum of ỹ. When defined, Borel sum is an

isomorphism between classes of divergent series and functi ons

they correspond to, under usual algebraic operations.



Borel Sum of formal ODE solutions

For the ODE, dy
dx

− y = − 1
x

, we obtained ỹ(x) =
∑

∞

n=0
(−1)nn!

xn+1

Y (p) = B[ỹ](p) =
∞
∑

n=0

(−1)npn =
1

1 + p

LBỹ = LY =

∫

∞

0

e−px

1 + p
dx = ex

∫ x

∞

e−t

t
dt

Reliance on explicit series for Borel Sum too much to ask



Borel sum of nonlinear ODE solution

Instead, directly apply L−1 to equation; for instance

y′ − y = −
1

x
+ y2; with lim

x→∞

y = 0

Defining [u ∗ v][p] =
∫ p

0
u(s)v(p − s)ds, Y (p) = [L−1y](p)

satisfies:

−pY (p) − Y (p) = −1 + Y ∗ Y implying Y (p) =
1

1 + p
−

Y ∗ Y

1 + p

(3)

For functions Y analytic for p ≥ 0 and e−αpY (p) bounded, can

be shown that (3) has unique solution for sufficiently large α.

Implies ODE solution y(x) =
∫

∞

0
Y (p)e−pxdp for Re x > α

Above results special case of general ODE results (O. Costin , 98)



3-D Navier-Stokes (NS) fluid dynamics problem

vt + (v · ∇)v = −∇p + ν∆v + f ; ∇ · v = 0,

where v = (v1, v2, v3) ∈ R
3 is the fluid velocity and p ∈ R

pressure at x = (x1, x2, x3) ∈ Ω at time t ≥ 0. Further, the

operator (v · ∇) =
∑3

j=1 vj∂xj
, ν = nondimensional visocity

(inverse Reynolds number)

The problem supplemented by initial and boundary condition s:

v(x, 0) = v0(x) (IC) , v = 0 on ∂Ω for stationary solid boundary

We take Ω = R
3 or Ω = T

3[0, 2π]; no-slip boundary condition

avoided, but assume in the former case ‖v0‖L2(R3) < ∞.

Millenium problem: Given smooth v0 and f , prove or disprove

that there exists smooth 3-D NS solution v for all t > 0. Note:

global solution known in 2-D.



NS - a fluid flow model; importance of blow-up

vt + (v · ∇)v = −∇p + ν∆v + f ; ∇ · v = 0,

Navier-Stokes equation models incompressible fluid flow.

vt + (v · ∇)v ≡ Dv
Dt

represents fluid particle acceleration. The

right side (force/mass) can be written: ∇ · T + f , where T : a

tensor of rank 2, called stress with

Tjl = −pδj,l +
ν

2

[

∂vj

∂xl

+
∂vl

∂xj

]

The second term on the right is viscous stress approximated t o

linear order in ∇v. Invalid for large ‖∇v‖ or for non-Newtonian

fluid (toothpaste, blood)

Incompressibility not valid if v comparable to sound velocity

If NS exhibited blow up, the model itself becomes invalid; te rms

not included in NS approximation potentially important.



Classical results for 3-D NS problem

Smooth solutions known only for t ∈ [0, T ] for small enough T

Classical approaches to global existence of PDEs rely on

"energy" bounds, i.e. bounds on positive definite functionals of v.

It is known that Kinetic energy is 1
2
‖v(., t)‖2

L2(Ω) is controlled in

time. Bound not enough to ensure smooth solution for any t.

Also, known that cumulatitive dissipation

ν
∫ T

0
‖∇v(., t)|2L2(Ω)dt < ∞, but no pointwise control over

‖∇v(., t)‖2
L2(Ω) known.

Leray (1932a-34) found "weak solutions" to 3-D NS, but these are

in spaces of function where v and ∇v can blow up. Uniqueness

still an issue.

There are known sufficient conditions (Beale-Kato-Majda,

Constantin-Fefferman, Serrin, Prodi, Sverak,..) that gua rantee

smooth global solutions in time. Not known if these are satis fied.



An alternate Borel based approach

Formal expansion of N-S solution possible for small t:

v(x, t) = v0(x) +
∑

∞

m=1 tmvm(x).

Above can be Borel summed for analytic v0 and f (O. Costin &

S.T) into an actual solution in the form:

v(x, t) = v0(x) +
∫

∞

0
e−p/tU(x, p)dp. This form transcends

assumptions on analyticity of v0 and f or of t small

Advantageous sometimes to use generalized Laplace Transfo rm:

v(x, t) = v0(x) +

∫

∞

0

U(x, q)e−q/tn

dq

3-D NS equivalent to integral equation whose solution known a

priori for q ∈ [0, ∞). Global NS problem equivalent to finding

optimal α so that e−αq‖U(., q)‖ is integrable in (0, ∞). Some

results along this line (O. Costin, G. Luo & S.T), check my web site)
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