A new approach to Regularity and Singularity

Questions in some PDEs including 3-D Navier-Stokes

Saleh Tanveer
(Ohio State University)

Collaborators: Ovidiu Costin, Guo Luo

Research supported in part by

- IMS (Imperial College), EPSRC \& NSF.

Regularity and Singularity in PDEs-background

- PDEs modeling physical phenomena typically include some effects while ignoring others.
- Existence and uniqueness questions of smooth solutions fundamental to relevance of a PDE model, as is blow-up.
- Global existence of evolutionary PDE solutions typically rely on
"Energy" methods. Control over sufficiently higher order Sobolev norm often necessary.
- Numerical discretization not rigorously controllable, generally. Further, numerical resolution becomes an issue in higher dimensions.

Navier-Stokes existence-background

- Global Existence of smooth 3-D Navier-Stokes solution is an important open problem.
- Deviation from linear stress-strain relation or incompressibility is potentially important if $\mathrm{N}-\mathrm{S}$ solutions are singular
- Globally smooth solutions known only when Reynolds number small
- Generally, smooth solutions for smooth data on $[0, T]$ known to exist, for T scaling inversely with initial data/forcing.
- Global weak solutions known since Leray, but not known whether they are unique. For unforced problem in \mathbb{T}^{3}, such a solution becomes smooth again for $t>T_{c}, T_{c}$ depends on IC

Borel Summation-background and main idea

- Borel summation generates an isomorphism between formal series and actual functions with respect to all usual algebraic operations (Ecalle, Costin,..). Borel summation used in exponential asymptotics (Dingle, Berry,..).
- Borel sum can involve large or small variable(s)/ parameter(s).
- Formal expansion for $t \ll 1: v(x, t)=v_{0}(x)+\sum_{m=1}^{\infty} t^{m} v_{m}(x)$ obtained algorithmically by plugging into $v_{t}=\mathcal{N}[v]$, where \mathcal{N} being some differential operator. Series usually divergent
- Borel Sum of this series gives actual solution, which transcends restriction $t \ll 1$
- For NS or Burger's equation, Borel sum given by:

$$
v(x, t)=v_{0}(x)+\int_{0}^{\infty} U(x, p) e^{-p / t} d p
$$

Borel Summation Illustrated in a Simple Linear ODE

$$
y^{\prime}-y=\frac{1}{x^{2}}
$$

Want solution $y \rightarrow 0$, as $x \rightarrow+\infty$
Dominant Balance (or formally plugging a series in $1 / x$):

$$
y \sim-\frac{1}{x^{2}}+\frac{2}{x^{3}}+\ldots \frac{(-1)^{k} k!}{x^{k+1}}+\ldots \equiv \tilde{y}(x)
$$

Borel Transform:

$$
\begin{gathered}
\mathcal{B}\left[x^{-k}\right](p)=\frac{p^{k-1}}{\Gamma(k)}=\mathcal{L}^{-1}\left[x^{-k}\right](p) \text { for Re } p>0 \\
\mathcal{B}\left[\sum_{k=1}^{\infty} a_{k} x^{-k}\right](p)=\sum_{k=1}^{\infty} \frac{a_{k}}{\Gamma(k)} p^{k-1}
\end{gathered}
$$

Borel Summation for linear ODE -II

$$
\begin{gathered}
Y(p) \equiv \mathcal{B}[\tilde{y}](p)=\sum_{k=1}^{\infty}(-1)^{k} p^{k}=-\frac{p}{1+p} \\
y(x) \equiv \int_{0}^{\infty} e^{-p x} Y(p) d p=\mathcal{L B}[\tilde{y}]
\end{gathered}
$$

is the linear ODE solution we seek. Borel Sum defined as $\mathcal{L B}$. Note once solution is found, it is not restricted to large x.

Necessary properties for Borel Sum to exist:

1. The Borel Transform $\mathcal{B}\left[\tilde{y}_{0}\right](p)$ analytic for $p \geq 0$,
2. $e^{-\alpha p}\left|\mathcal{B}\left[\tilde{y}_{0}\right](p)\right|$ bounded so that Laplace Transform exists.

Remark: Difficult to check directly for non-trivial problems

Borel sum of nonlinear ODE solution

Instead, directly apply \mathcal{L}^{-1} to equation; for instance

$$
y^{\prime}-y=\frac{1}{x^{2}}+y^{2} ; \text { with } \lim _{x \rightarrow \infty} y=0
$$

Inverse Laplace transforming, with $Y(p)=\left[\mathcal{L}^{-1} y\right](p)$:
$-p Y(p)-Y(p)=p+Y * Y$ implying $Y(p)=-\frac{1}{1+p}-\frac{Y * Y}{1+p}$

For functions Y analytic for $p \geq 0$ and $e^{-\alpha p} Y(p)$ integrable, it can be shown above has unique solution for sufficiently large α. Implies ODE solution $y(x)=\int_{0}^{\infty} Y(p) e^{-p x} d p$ for $R e x>\alpha$ The above is a special case of nonlinear ODEs (Costin, 1998). Generalized to sectorial PDE solutions (Costin \& T., '07)

Borel sum of nonlinear ODE solution-II

Define $\chi_{j}(p)$ characteristic function, equalling 1 for $p \in[j,(j+1))$ and zero otherwise.
Define $Y_{j}(p)=Y(p) \chi_{j}(p)$. Then from property of Laplace convolution $*$ for $p \in[j, j+1): Y * Y=\sum_{l=0}^{j} Y_{l} * Y_{j-l}$ Therefore, integral equation for $p \in[j, j+1)$ becomes:

$$
Y_{j}+\frac{2 Y_{0} * Y_{j}}{1+p}=-\frac{p}{1+p}-\frac{1}{1+p} \sum_{l=1}^{j-1} Y_{l} * Y_{j-l}
$$

Nonlinear ODE problem transformed to a sequence of linear problems beyond $[0,1)$ interval. If a convergent series or other representation is available in $[0,1)$, the rest involves a sequence of linear problem. This feature generalizes to nonlinear PDEs as well.

Integral Equation corresponding to Burger's equation

Plug in $v=v_{0}(x)+u(x, t)$ into 1-D Burger's to obtain
$u_{t}-u_{x x}=-v_{0} u_{x}-u v_{0, x}-u u_{x}+v_{1}(x), v_{1}(x)=v_{0}^{\prime \prime}-v_{0} v_{0, x}$ with $u(x, 0)=0$
Inverse Laplace Transform in $1 / t$ and Fourier-Transform in x :

$$
p \hat{U}_{p p}+2 U_{p}+k^{2} \hat{U}=-i k \hat{v}_{0} \hat{*} \hat{U}-i k \hat{U}_{*}^{*} \hat{U} \equiv \hat{G}(k, p)
$$

Inverting left side using $\hat{U}(k, 0)=0$ gives:

$$
\begin{gathered}
\hat{U}(k, p)=\int_{0}^{p} \mathcal{K}\left(p, p^{\prime} ; k\right) \hat{G}\left(k, p^{\prime}\right) d p^{\prime}+\hat{U}^{(0)}(k, p) \equiv \mathcal{N}[\hat{U}](k, p) \\
\mathcal{K}\left(p, p^{\prime} ; k\right)=\frac{i k \pi}{z}\left\{z^{\prime} Y_{1}\left(z^{\prime}\right) J_{1}(z)-z^{\prime} Y_{1}(z) J_{1}\left(z^{\prime}\right)\right\} \\
z=2|k| \sqrt{p}, z^{\prime}=2|k| \sqrt{p^{\prime}}, \hat{U}^{(0)}(k, p)=2 \frac{J_{1}(z)}{z} \hat{v}_{1}(k)
\end{gathered}
$$

Solution to integral equation $\hat{U}=\mathcal{N}[\hat{U}]$

$$
\begin{aligned}
&\left|\mathcal{K}\left(p, p^{\prime} ; k\right)\right| \leq \frac{C}{\sqrt{p}}, C \text { a constant } \\
&\|\hat{F}(., p) \hat{*} \hat{F}(., p)\|_{L^{1}\left(\mathbb{R}^{3}\right)} \leq C\|\hat{F}(., p)\|_{L^{1}\left(\mathbb{R}^{3}\right)}\|\hat{G}(., p)\|_{L^{1}\left(\mathbb{R}^{3}\right)}
\end{aligned}
$$

Define for functions of $F(p, k)$ the norm:

$$
\begin{gathered}
\|F\|^{(\alpha)}=\int_{0}^{\infty} e^{-\alpha p}\|F(., p)\|_{L^{1}\left(\mathbb{R}^{3}\right)} d p \text {, then can show } \\
\left\|F_{*}^{*} G\right\|^{(\alpha)} \leq C\|F\|^{(\alpha)}\|G\|^{(\alpha)}
\end{gathered}
$$

Using above, can show \mathcal{N} contractive for large α; implies integral equation has unique solution and so Burger PDE has continuous solution for $\operatorname{Re} \frac{1}{t}>\alpha$ as $v(x, t)=v_{0}(x)+\int_{0}^{\infty} e^{-p / t} U(x, p) d p$ Global PDE solution if $\|\hat{U}(., p)\|_{L^{1}\left(\mathbb{R}^{3}\right)}$ does not grow as $p \rightarrow \infty$

Incompressible 3-D Navier-Stokes in Fourier-Space

Consider 3-D N-S in infinite geometry or periodic box. Similar results expected for finite domain with no-slip BC using eigenfunctions of Stokes operator as basis. In Fourier-Space

$$
\begin{gathered}
\hat{v}_{t}+\nu|k|^{2} \hat{v}=-i k_{j} P_{k}\left[\hat{v}_{j} \hat{*} \hat{v}\right]+\hat{f}(k) \\
P_{k}=\left(I-\frac{k(k \cdot)}{|k|^{2}}\right) \quad, \quad \hat{v}(k, 0)=\hat{v}_{0}(k)
\end{gathered}
$$

where P_{k} is the Hodge projection in Fourier space, $\hat{f}(k)$ is the Fourier-Transform of forcing $f(x)$, assumed divergence free and t-independent. Subscript j denotes the j-th component of a vector. $k \in \mathbb{R}^{3}$ or \mathbb{Z}^{3}. Einstein convention for repeated index followed. $\hat{*}$ denotes Fourier convolution.

Decompose $\hat{v}=\hat{v}_{0}+\hat{u}(k, t)$, inverse-Laplace Transform in $1 / t$ and invert the differential operator on the left side

Integral equation associated with Navier-Stokes

We obtain:

$$
\begin{gathered}
\hat{U}(k, p)=\int_{0}^{p} \mathcal{K}_{j}\left(p, p^{\prime} ; k\right) \hat{H}_{j}\left(k, p^{\prime}\right) d p^{\prime}+\hat{U}^{(0)}(k, p) \equiv \mathcal{N}[\hat{U}](k, p) \\
\mathcal{K}_{j}\left(p, p^{\prime} ; k\right)=\frac{i k_{j} \pi}{z}\left\{z^{\prime} Y_{1}\left(z^{\prime}\right) J_{1}(z)-z^{\prime} Y_{1}(z) J_{1}\left(z^{\prime}\right)\right\} \\
z=2|k| \sqrt{\nu p}, z^{\prime}=2|k| \sqrt{\nu p^{\prime}}, \hat{H}_{j}=P_{k}\left\{\hat{v}_{0, j} \hat{*} \hat{U}+\hat{U}_{j} \hat{*} \hat{v}_{0}+\hat{U}_{j}{ }^{*} \hat{U}\right\} \\
\hat{U}^{(0)}(k, p)=2 \frac{J_{1}(z)}{z} \hat{v}_{1}(k), P_{k}=\left(I-\frac{k(k \cdot)}{|k|^{2}}\right) \\
\hat{v}_{1}(k)=\left(-\nu|k|^{2} \hat{v}_{0}-i k_{j} \mathcal{P}_{k}\left[\hat{v}_{0, j} \hat{*} \hat{v}_{0}\right]\right)+\hat{f}(k)
\end{gathered}
$$

$\hat{*}$, denotes Fourier Convolution, * denotes Laplace convolution, while $*$ denotes Fourier followed by Laplace convolution. J_{1} and Y_{1} are the usual Bessel functions.

Results for Integral equation and Navier-Stokes-1

Theorem: If $\left\|\hat{\boldsymbol{v}}_{0}\right\|_{l^{1}\left(\mathbb{Z}^{3}\right.},\|\hat{f}\|_{l^{1}\left(\mathbb{Z}^{3}\right)}<\infty$ then there exists some α so that integral equation $\hat{U}=\mathcal{N}[\hat{U}]$ has a unique solution for $p \in \mathbb{R}^{+}$in the space of functions $\left\{\hat{U}:\|\hat{U}\|^{(\alpha)}<\infty\right\}$. Further, $\hat{\boldsymbol{v}}(k, t)=\hat{v}_{0}(k)+\int_{0}^{\infty} \hat{U}(k, p) e^{-p / t} d p$ solves 3-D Navier-Stokes in Fourier-Space; the corresponding $\boldsymbol{v}(\boldsymbol{x}, \boldsymbol{t})$ is a classical Navier-Stokes solution for $t \in\left(0, \alpha^{-1}\right)$.

Remark 1: Local existence results in Theorem 1 already known through classical methods. In the present formulation, global PDE existence is a question of asymptotics of known solution to integral equation in the sense that a sub-exponential growth of \hat{U} as $p \rightarrow \infty$ implies global existence of PDE solution.

More Remarks on Theorem 1 for 3-D Navier-Stokes

Remark 2: Errors in Numerical solutions rigorously controlled. Discretization in p and Galerkin approximation in k results in:

$$
\begin{aligned}
\hat{U}_{\delta}(k, m \delta)=\delta & \sum_{m^{\prime}=0}^{m} \mathcal{K}_{m, m^{\prime}} \mathcal{P}_{N} \mathcal{H}_{\delta}\left(k, m^{\prime} \delta\right)+\hat{U}^{(0)}(k, m \delta) \\
& \equiv \mathcal{N}_{\delta}\left[\hat{U}_{\delta}\right] \quad \text { for } \quad k_{j}=-N, \ldots N, \quad j=1,2,3
\end{aligned}
$$

\mathcal{P}_{N} is the Galerkin Projection into N-Fourier modes. \mathcal{N}_{δ} has properties similar to \mathcal{N}. The continuous solution \hat{U} satisfies $\hat{U}=\mathcal{N}_{\delta}[\hat{U}]+E$, where E is the truncation error. Thus, $\hat{U}-\hat{U}_{\delta}$ can be estimated using same tools as in Theorem 1.

Note: Similar control over discretized solutions to PDEs not available since truncation errors involve derivatives of PDE solution which are not known to exist bevond a short-time.

Numerical Solutions to integral equation

We choose the Kida initial conditions and forcing

$$
\begin{gathered}
\mathrm{v}_{0}(\mathrm{x})=\left(v_{1}\left(x_{1}, x_{2}, x_{3}, 0\right), v_{2}\left(x_{1}, x_{2}, x_{3}, 0\right), v_{3}\left(x_{1}, x_{2}, x_{3}, 0\right)\right) \\
v_{1}\left(x_{1}, x_{2}, x_{3}, 0\right)=v_{2}\left(x_{3}, x_{1}, x_{2}, 0\right)=v_{3}\left(x_{2}, x_{3}, x_{1}, 0\right) \\
v_{1}\left(x_{1}, x_{2}, x_{3}, 0\right)=\sin x_{3}\left(\cos 3 x_{2} \cos x_{3}-\cos x_{2} \cos 3 x_{3}\right) \\
f_{1}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{5} v_{1}\left(x_{1}, x_{2}, x_{3}, 0\right)
\end{gathered}
$$

High Degree of Symmetry makes computationally less expensive Corresponding Euler problem believed to blow up in finite time; so good candidate to study viscous effects
In the plots, "constant forcing" corresponds to $f=\left(f_{1}, f_{2}, f_{3}\right)$ as above, while zero forcing refers to $f=0$. Recall sub-exponential growth in p corresponds to global N -S solution.

Numerical solution to integral equation-plot-1

$\|\hat{U}(., p)\|_{l^{1}}$ vs. p for $\nu=1$, constant forcing.

Numerical solution to integral equation-plot-2

$\|\hat{U}(., p)\|_{l^{1}}$ vs. p for $\nu=1$, no forcing

Numerical solution to integral equation-plot-3

$\|\hat{U}(., p)\|_{l^{1}}$ vs. p for $\nu=0.16$, constant forcing

Numerical solution to integral equation-plot-4

$\|\hat{U}(., p)\|_{l^{1}}$ vs. p for $\nu=0.1$, constant forcing

Numerical solution to integral equation-plot-5

$\hat{U}(k, p)$ vs. p for $k=(1,1,17), \nu=0.1$, no forcing.

Numerical solution to integral equation-plot-6

$\log \|\hat{U}(., p)\|_{l^{1}}$ vs. $\log p$ for $\nu=0.001$, constant forcing

Issues raised by numerical computations

Numerical solutions to integral equation available on finite interval $\left[0, p_{0}\right]$, yet $\mathrm{N}-\mathrm{S}$ solution requires $[0, \infty)$ interval since $\hat{v}(k, t)=\hat{v}_{0}+\int_{0}^{\infty} e^{-p / t} \hat{U}(k, p) d p$

Actually, the integral over $\int_{0}^{p_{0}}$ gives an approximate N -S solution, with errors that can be bounded for a time interval $[0, T]$, if computed solution to integral equation eventually decreases with p on a sufficiently large interval $\left[0, p_{0}\right]$.

Further, a non-increasing \hat{U} over a sufficiently large interval $\left[0, p_{0}\right]$ gives smaller bounds on growth rate α as $p \rightarrow \infty$. Therefore, in such cases smooth NS solution exists over a long interval $\left[0, \alpha^{-1}\right)$.

Recall for unforced problem in \mathbb{T}^{3}, even weak solution to NS becomes smooth for $t>T_{c}$, with T_{c} estimated from initial data. Hence alobal existence follows under some conditions.

Extending Navier-Stokes interval of existence

For $\alpha_{0} \geq 0$, define

$$
\begin{gathered}
\epsilon=\nu^{-1 / 2} p_{0}^{-1 / 2}, a=\left\|\hat{v}_{0}\right\|_{l^{1}}, c=\int_{p_{0}}^{\infty}\left\|\hat{U}^{(0)}(., p)\right\|_{l^{1}} e^{-\alpha_{0} p} d p \\
\epsilon_{1}=\nu^{-1 / 2} p_{0}^{-1 / 2}\left(2 \int_{0}^{p_{0}} e^{-\alpha_{0} s}\|\hat{U}(., s)\|_{l^{1}} d s+\left\|\hat{v}_{0}\right\|_{l^{1}}\right) \\
b=\frac{e^{-\alpha_{0} p_{0}}}{\sqrt{\nu p_{0}} \alpha} \int_{0}^{p_{0}}\left\|\hat{U}_{*}^{*} \hat{U}+\hat{v}_{0} \cdot \hat{U}\right\|_{l^{1}} d s
\end{gathered}
$$

Theorem 3: A smooth solution to 3-D Navier-Stokes equation exists on the interval $\left[0, \alpha^{-1}\right)$, when $\alpha \geq \alpha_{0}$ is chosen to satisfy

$$
\alpha>\epsilon_{1}+2 \epsilon c+\sqrt{\left(\epsilon_{1}+2 \epsilon c\right)^{2}+4 b \epsilon-\epsilon_{1}^{2}}
$$

Remark: If $\boldsymbol{p}_{\mathbf{0}}$ is chosen large enough, $\boldsymbol{\epsilon}, \boldsymbol{\epsilon}_{\mathbf{1}}$ is small when computed solution in $\left[0, p_{0}\right]$ decays with \boldsymbol{q}. Then $\boldsymbol{\alpha}$ can be chosen rather small.

Relation of Optimal α to Navier-Stokes singularities

$$
\hat{U}(k, p)=\frac{1}{2 \pi i} \int_{c_{0}-i \infty}^{c_{0}+i \infty} e^{p / t}\left[\hat{v}(k, t)-\hat{v}_{0}(k)\right] d\left[\frac{1}{t}\right]
$$

Rightmost singularity(ies) of NS solution $\hat{v}(k, t)$ in the $1 / t$ plane determines optimal $\alpha . \gamma$ gives dominant oscillation frequency.

Laplace-transform and accelerated representation

To get rid of the effect of complex singularity, it is prudent to seek a more general Laplace-transform involves

$$
\hat{v}(k, t)=\hat{v}_{0}(k)+\int_{0}^{\infty} e^{-q / t^{n}} \hat{U}(k, q) d q
$$

We have proved that for the unforced problem, if there are complex singularities t_{s} in the right-half plane, but not on the real axis, then a a nonzero lower bound for $\left|\arg t_{s}\right|$ exists. Then, for sufficiently large n, no singularities in the $\tau=t^{-n}$ plane in the right-half plane. Hence, $\hat{U}(k, q)$ will not grow with q
$\hat{U}(k, q)$ satisfies an integral equation similar to the one satisfied by $\hat{U}(k, p)$ and Theorems similar to Theorem 1 follow. In the context of ODEs, change of variable $p \rightarrow q$ is called acceleration (Ecalle)

$$
\|\hat{U}(., q)\|_{l^{1}} \text { vs. } q, n=2, \nu=0.1
$$

Kida I.C. $v_{1}^{(0)}=\sin x_{1}\left(\cos 3 x_{2} \cos x_{3}-\cos x_{2} \cos 3 x_{3}\right)$ Other components from cyclic relation:
$v_{1}^{(0)}\left(x_{1}, x_{2}, x_{3}\right)=v_{1}^{(0)}\left(x_{3}, x_{1}, x_{2}\right)=v_{3}^{(0)}\left(x_{2}, x_{3}, x_{1}\right)$

Extending Navier-Stokes interval of existence

For $\alpha_{0} \geq 0$, define

$$
\begin{gathered}
\epsilon_{1}=\nu^{-1 / 2} q_{0}^{-1+1 /(2 n)}, c=\int_{q_{0}}^{\infty}\left\|\hat{U}^{(0)}(., q)\right\|_{l^{1}} e^{-\alpha_{0} q} d q \\
\epsilon_{1}=\nu^{-1 / 2} q_{0}^{-1+1 /(2 n)}\left(2 \int_{0}^{q_{0}} e^{-\alpha_{0} s}\|\hat{U}(., s)\|_{l^{1}} d s+\left\|\hat{v}_{0}\right\|_{l^{1}}\right) \\
b=\frac{e^{-\alpha_{0} q_{0}}}{\sqrt{\nu} q_{0}^{1-1 /(2 n)} \alpha} \int_{0}^{q_{0}}\left\|\hat{U}_{*}^{*} \hat{U}+\hat{v}_{0} \cdot \hat{U}\right\|_{l^{1}} d s
\end{gathered}
$$

Theorem 4: A smooth solution to 3-D Navier-Stokes equation exists in the $\|\cdot\|_{l^{1}}$ space on the interval $\left[0, \alpha^{-1 / n}\right)$, when $\boldsymbol{\alpha} \geq \alpha_{0}$ is chosen to satisfy

$$
\alpha>\epsilon_{1}+2 \epsilon c+\sqrt{\left(\epsilon_{1}+2 \epsilon c\right)^{2}+4 b \epsilon-\epsilon_{1}^{2}}
$$

Remark: If $\boldsymbol{q}_{\mathbf{0}}$ is chosen large enough, $\boldsymbol{\epsilon}, \boldsymbol{\epsilon}_{\mathbf{1}}$ is small when computed solution in $\left[0, q_{0}\right]$ decays with \boldsymbol{q}. Then $\boldsymbol{\alpha}$ can be chosen rather small.

Example problems where approach is applicable

- Navier-Stokes with temperature field (Boussinesq approximation)
- Fourth order Parabolic equations of the type:

$$
u_{t}+\Delta^{2} u=N\left[u, D u, D^{2} u, D^{3} u\right]
$$

- KDV and related equations.
- Magneto-hydrodynamic equation with certain approximations.
- For some PDE problems with finite-time blow-up, blow-up time related to exponent α of exponential growth of IE solution, provided there is no-oscillation even with $p \rightarrow q$ acceleration.

Conclusions

We have shown how Borel summation methods provides an alternate existence theory for PDE Initial value problems like N-S.
With this integral equation (IE) approach, the PDE global existence is implied if known solution to IE has subexponential growth at ∞.
The solution to integral equation in a finite interval can be computed numerically with rigorously controlled errors. Integral equation in a suitable accelerated variable q will decay exponentially for unforced N -S equation, unless there is a real time singularity of PDE solution.
The computation over a finite $\left[0, q_{0}\right]$ interval gives a refined bound on exponent α at ∞, and hence a longer existence time $\left[0, \alpha^{-1 / n}\right)$ to 3-D Navier-Stokes.
Approach should be useful in both regularity and singularity studies of more general PDE initial value problems.

