
A new approach to Regularity and Singularity

Questions in some PDEs including

3-D Navier-Stokes

Saleh Tanveer

(Ohio State University)

Collaborators: Ovidiu Costin, Guo Luo

Research supported in part by

• IMS (Imperial College), EPSRC & NSF.



Regularity and Singularity in PDEs-background

· PDEs modeling physical phenomena typically include some

effects while ignoring others.

· Existence and uniqueness questions of smooth solutions

fundamental to relevance of a PDE model, as is blow-up.

· Global existence of evolutionary PDE solutions typically r ely on

"Energy" methods. Control over sufficiently higher order So bolev

norm often necessary.

· Numerical discretization not rigorously controllable, ge nerally.

Further, numerical resolution becomes an issue in higher

dimensions.



Navier-Stokes existence–background

· Global Existence of smooth 3-D Navier-Stokes solution is an

important open problem.

· Deviation from linear stress-strain relation or incompres sibility

is potentially important if N-S solutions are singular

· Globally smooth solutions known only when Reynolds number

small

· Generally, smooth solutions for smooth data on [0, T ] known to

exist, for T scaling inversely with initial data/forcing.

· Global weak solutions known since Leray, but not known

whether they are unique. For unforced problem in T
3, such a

solution becomes smooth again for t > Tc, Tc depends on IC



Borel Summation–background and main idea

· Borel summation generates an isomorphism between formal

series and actual functions with respect to all usual algebr aic

operations (Ecalle, Costin,..). Borel summation used in

exponential asymptotics (Dingle, Berry,..).

· Borel sum can involve large or small variable(s)/ parameter (s).

· Formal expansion for t << 1: v(x, t) = v0(x) +
∑

∞

m=1 tmvm(x)

obtained algorithmically by plugging into vt = N [v], where N
being some differential operator. Series usually divergen t

· Borel Sum of this series gives actual solution, which transc ends

restriction t << 1

· For NS or Burger’s equation, Borel sum given by:

v(x, t) = v0(x) +

∫

∞

0

U(x, p)e−p/tdp

U satisfies Integral equation obtained by inverse LT of PDE.



Borel Summation Illustrated in a Simple Linear ODE

y′ − y =
1

x2

Want solution y → 0, as x → +∞
Dominant Balance (or formally plugging a series in 1/x):

y ∼ − 1

x2
+

2

x3
+ ...

(−1)kk!

xk+1
+ .. ≡ ỹ(x)

Borel Transform:

B[x−k](p) =
pk−1

Γ(k)
= L−1[x−k](p) for Re p > 0

B
[

∞
∑

k=1

akx−k

]

(p) =
∞
∑

k=1

ak

Γ(k)
pk−1



Borel Summation for linear ODE -II

Y (p) ≡ B[ỹ](p) =
∞
∑

k=1

(−1)kpk = − p

1 + p

y(x) ≡
∫

∞

0

e−pxY (p)dp = LB[ỹ]

is the linear ODE solution we seek. Borel Sum defined as LB.

Note once solution is found, it is not restricted to large x.

Necessary properties for Borel Sum to exist:

1. The Borel Transform B[ỹ0](p) analytic for p ≥ 0,

2. e−αp|B[ỹ0](p)| bounded so that Laplace Transform exists .

Remark: Difficult to check directly for non-trivial problem s



Borel sum of nonlinear ODE solution

Instead, directly apply L−1 to equation; for instance

y′ − y =
1

x2
+ y2; with lim

x→∞

y = 0

Inverse Laplace transforming, with Y (p) = [L−1y](p):

−pY (p) − Y (p) = p + Y ∗ Y implying Y (p) = − 1

1 + p
− Y ∗ Y

1 + p

For functions Y analytic for p ≥ 0 and e−αpY (p) integrable, it

can be shown above has unique solution for sufficiently large α.

Implies ODE solution y(x) =
∫

∞

0
Y (p)e−pxdp for Re x > α

The above is a special case of nonlinear ODEs (Costin, 1998).

Generalized to sectorial PDE solutions (Costin & T., ’07)



Borel sum of nonlinear ODE solution-II

Define χj(p) characteristic function, equalling 1 for

p ∈ [j, (j + 1)) and zero otherwise.

Define Yj(p) = Y (p)χj(p). Then from property of Laplace

convolution ∗ for p ∈ [j, j + 1) : Y ∗ Y =
∑j

l=0 Yl ∗ Yj−l

Therefore, integral equation for p ∈ [j, j + 1) becomes:

Yj +
2Y0 ∗ Yj

1 + p
= − p

1 + p
− 1

1 + p

j−1
∑

l=1

Yl ∗ Yj−l

Nonlinear ODE problem transformed to a sequence of linear

problems beyond [0, 1) interval. If a convergent series or other

representation is available in [0, 1), the rest involves a sequence

of linear problem. This feature generalizes to nonlinear PD Es as

well.



Integral Equation corresponding to Burger’s equation

Plug in v = v0(x) + u(x, t) into 1-D Burger’s to obtain

ut − uxx = −v0ux − uv0,x − uux + v1(x) , v1(x) = v′′

0 − v0v0,x

with u(x, 0) = 0

Inverse Laplace Transform in 1/t and Fourier-Transform in x:

pÛpp + 2Up + k2Û = −ikv̂0∗̂Û − ikÛ∗∗Û ≡ Ĝ(k, p)

Inverting left side using Û(k, 0) = 0 gives:

Û(k, p) =

∫ p

0

K(p, p′; k)Ĝ(k, p′)dp′ + Û (0)(k, p) ≡ N
[

Û
]

(k, p)

K(p, p′; k) =
ikπ

z
{z′Y1(z

′)J1(z) − z′Y1(z)J1(z
′)}

z = 2|k|√p , z′ = 2|k|
√

p′ , Û (0)(k, p) = 2
J1(z)

z
v̂1(k)



Solution to integral equation Û = N [Û ]

|K(p, p′; k)| ≤ C
√

p
, C a constant

‖F̂ (., p)∗̂Ĝ(., p)‖L1(R3) ≤ C‖F̂ (., p)‖L1(R3)‖Ĝ(., p)‖L1(R3)

Define for functions of F (p, k) the norm:

‖F‖(α) =

∫

∞

0

e−αp‖F (., p)‖L1(R3) dp , then can show

‖F∗∗G‖(α) ≤ C‖F‖(α)‖G‖(α)

Using above, can show N contractive for large α; implies integral

equation has unique solution and so Burger PDE has continuou s

solution for Re 1
t

> α as v(x, t) = v0(x) +
∫

∞

0
e−p/tU(x, p)dp

Global PDE solution if ‖Û(., p)‖L1(R3) does not grow as p → ∞



Incompressible 3-D Navier-Stokes in Fourier-Space

Consider 3-D N-S in infinite geometry or periodic box. Simila r

results expected for finite domain with no-slip BC using

eigenfunctions of Stokes operator as basis. In Fourier-Spa ce

v̂t + ν|k|2v̂ = −ikjPk [v̂j ∗̂v̂] + f̂(k)

Pk =

(

I − k(k·)
|k|2

)

, v̂(k, 0) = v̂0(k)

where Pk is the Hodge projection in Fourier space, f̂(k) is the

Fourier-Transform of forcing f(x), assumed divergence free and

t-independent. Subscript j denotes the j-th component of a

vector. k ∈ R
3 or Z

3. Einstein convention for repeated index

followed. ∗̂ denotes Fourier convolution.

Decompose v̂ = v̂0 + û(k, t), inverse-Laplace Transform in 1/t

and invert the differential operator on the left side



Integral equation associated with Navier-Stokes

We obtain:

Û(k, p) =

∫ p

0

Kj(p, p′; k)Ĥj(k, p′)dp′+Û (0)(k, p) ≡ N
[

Û
]

(k, p)

(1)

Kj(p, p′; k) =
ikjπ

z
{z′Y1(z

′)J1(z) − z′Y1(z)J1(z
′)}

z = 2|k|√νp , z′ = 2|k|
√

νp′ , Ĥj = Pk

{

v̂0,j ∗̂Û + Ûj ∗̂v̂0 + Ûj
∗∗Û

}

Û (0)(k, p) = 2
J1(z)

z
v̂1(k) , Pk =

(

I − k(k·)
|k|2

)

v̂1(k) =
(−ν|k|2v̂0 − ikjPk [v̂0,j ∗̂v̂0]

)

+ f̂(k),

∗̂, denotes Fourier Convolution, ∗ denotes Laplace convolution,

while ∗∗ denotes Fourier followed by Laplace convolution. J1 and

Y1 are the usual Bessel functions.



Results for Integral equation and Navier-Stokes-1

Theorem: If ‖v̂0‖l1(Z3 , ‖f̂‖l1(Z3) < ∞ then there exists some α so that integral

equation Û = N
[

Û
]

has a unique solution for p ∈ R
+ in the space of functions

{

Û : ‖Û‖(α) < ∞
}

. Further, v̂(k, t) = v̂0(k) +
∫

∞

0
Û(k, p)e−p/tdp

solves 3-D Navier-Stokes in Fourier-Space; the corresponding v(x, t) is a classical

Navier-Stokes solution for t ∈ (0, α−1).

Remark 1: Local existence results in Theorem 1 already known

through classical methods. In the present formulation, glo bal

PDE existence is a question of asymptotics of known solution to

integral equation in the sense that a sub-exponential growt h of Û

as p → ∞ implies global existence of PDE solution.



More Remarks on Theorem 1 for 3-D Navier-Stokes

Remark 2: Errors in Numerical solutions rigorously control led.

Discretization in p and Galerkin approximation in k results in:

Ûδ(k, mδ) = δ
m
∑

m′=0

Km,m′PNHδ(k, m′δ) + Û (0)(k, mδ)

≡ Nδ

[

Ûδ

]

for kj = −N, ...N, j = 1, 2, 3

PN is the Galerkin Projection into N -Fourier modes. Nδ has

properties similar to N . The continuous solution Û satisfies

Û = Nδ

[

Û
]

+ E, where E is the truncation error. Thus, Û − Ûδ

can be estimated using same tools as in Theorem 1.

Note: Similar control over discretized solutions to PDEs no t

available since truncation errors involve derivatives of P DE

solution which are not known to exist beyond a short-time.



Numerical Solutions to integral equation

We choose the Kida initial conditions and forcing

v0(x) = (v1(x1, x2, x3, 0), v2(x1, x2, x3, 0), v3(x1, x2, x3, 0))

v1(x1, x2, x3, 0) = v2(x3, x1, x2, 0) = v3(x2, x3, x1, 0)

v1(x1, x2, x3, 0) = sin x3 (cos 3x2 cos x3 − cos x2 cos 3x3)

f1(x1, x2, x3) =
1

5
v1(x1, x2, x3, 0)

High Degree of Symmetry makes computationally less expensi ve

Corresponding Euler problem believed to blow up in finite tim e;

so good candidate to study viscous effects

In the plots, "constant forcing" corresponds to f = (f1, f2, f3) as

above, while zero forcing refers to f = 0. Recall sub-exponential

growth in p corresponds to global N-S solution.



Numerical solution to integral equation-plot-1

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

p

k
n

Constant forcing

‖Û(., p)‖l1 vs. p for ν = 1, constant forcing.



Numerical solution to integral equation-plot-2
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‖Û(., p)‖l1 vs. p for ν = 1, no forcing



Numerical solution to integral equation-plot-3
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‖Û(., p)‖l1 vs. p for ν = 0.16, constant forcing



Numerical solution to integral equation-plot-4

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

1600

1800

p

k
n

Constant forcing

‖Û(., p)‖l1 vs. p for ν = 0.1, constant forcing



Numerical solution to integral equation-plot-5
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Numerical solution to integral equation-plot-6
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Constant forcing

log ‖Û(., p)‖l1 vs. log p for ν = 0.001, constant forcing



Issues raised by numerical computations

Numerical solutions to integral equation available on finit e

interval [0, p0], yet N-S solution requires [0, ∞) interval since

v̂(k, t) = v̂0 +
∫

∞

0
e−p/tÛ(k, p)dp

Actually, the integral over
∫ p0

0
gives an approximate N-S solution,

with errors that can be bounded for a time interval [0, T ], if

computed solution to integral equation eventually decreas es with

p on a sufficiently large interval [0, p0].

Further, a non-increasing Û over a sufficiently large interval

[0, p0] gives smaller bounds on growth rate α as p → ∞.

Therefore, in such cases smooth NS solution exists over a lon g

interval
[

0, α−1
)

.

Recall for unforced problem in T
3, even weak solution to NS

becomes smooth for t > Tc, with Tc estimated from initial data.

Hence global existence follows under some conditions.



Extending Navier-Stokes interval of existence

For α0 ≥ 0, define

ǫ = ν−1/2p
−1/2
0 , a = ‖v̂0‖l1 , c =

∫

∞

p0

‖Û (0)(., p)‖l1e
−α0pdp

ǫ1 = ν−1/2p
−1/2
0

(

2

∫ p0

0

e−α0s‖Û(., s)‖l1ds + ‖v̂0‖l1

)

b =
e−α0p0

√
νp0α

∫ p0

0

‖Û∗∗Û + v̂0 · Û‖l1ds

Theorem 3: A smooth solution to 3-D Navier-Stokes equation exists on the interval

[0, α−1), when α ≥ α0 is chosen to satisfy

α > ǫ1 + 2ǫc +
√

(ǫ1 + 2ǫc)2 + 4bǫ − ǫ2
1

Remark: If p0 is chosen large enough, ǫ, ǫ1 is small when computed solution in

[0, p0] decays with q. Then α can be chosen rather small.



Relation of Optimal α to Navier-Stokes singularities

Û(k, p) =
1

2πi

∫ c0+i∞

c0−i∞

ep/t [v̂(k, t) − v̂0(k)] d

[

1

t

]

Re 1/t

Im 1/t

α+ιγ

α−ιγ

Rightmost singularity(ies) of NS solution v̂(k, t) in the 1/t plane

determines optimal α. γ gives dominant oscillation frequency.



Laplace-transform and accelerated representation

To get rid of the effect of complex singularity, it is prudent to seek

a more general Laplace-transform involves

v̂(k, t) = v̂0(k) +

∫

∞

0

e−q/tn

Û(k, q)dq

We have proved that for the unforced problem, if there are

complex singularities ts in the right-half plane, but not on the real

axis, then a a nonzero lower bound for | arg ts| exists. Then, for

sufficiently large n, no singularities in the τ = t−n plane in the

right-half plane. Hence, Û(k, q) will not grow with q

Û(k, q) satisfies an integral equation similar to the one satisfied

by Û(k, p) and Theorems similar to Theorem 1 follow. In the

context of ODEs, change of variable p → q is called acceleration

(Ecalle)



‖Û(., q)‖l1 vs. q, n = 2, ν = 0.1
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Extending Navier-Stokes interval of existence

For α0 ≥ 0, define

ǫ1 = ν−1/2q
−1+1/(2n)
0 , c =

∫

∞

q0

‖Û (0)(., q)‖l1e−α0qdq

ǫ1 = ν−1/2q
−1+1/(2n)
0

(

2

∫ q0

0

e−α0s‖Û(., s)‖l1ds + ‖v̂0‖l1

)

b =
e−α0q0

√
νq

1−1/(2n)
0 α

∫ q0

0

‖Û∗∗Û + v̂0 · Û‖l1ds

Theorem 4: A smooth solution to 3-D Navier-Stokes equation exists in the ‖.‖l1

space on the interval [0, α−1/n), when α ≥ α0 is chosen to satisfy

α > ǫ1 + 2ǫc +
√

(ǫ1 + 2ǫc)2 + 4bǫ − ǫ2
1

Remark: If q0 is chosen large enough, ǫ, ǫ1 is small when computed solution in

[0, q0] decays with q. Then α can be chosen rather small.



Example problems where approach is applicable

· Navier-Stokes with temperature field (Boussinesq

approximation)

· Fourth order Parabolic equations of the type:

ut + ∆2u = N [u, Du, D2u, D3u]

· KDV and related equations.

· Magneto-hydrodynamic equation with certain approximatio ns.

· For some PDE problems with finite-time blow-up, blow-up time

related to exponent α of exponential growth of IE solution,

provided there is no-oscillation even with p → q acceleration.



Conclusions

We have shown how Borel summation methods provides an

alternate existence theory for PDE Initial value problems l ike N-S.

With this integral equation (IE) approach, the PDE global

existence is implied if known solution to IE has subexponent ial

growth at ∞.

The solution to integral equation in a finite interval can be

computed numerically with rigorously controlled errors.

Integral equation in a suitable accelerated variable q will decay

exponentially for unforced N-S equation, unless there is a r eal

time singularity of PDE solution.

The computation over a finite [0, q0] interval gives a refined

bound on exponent α at ∞, and hence a longer existence time
[

0, α−1/n
)

to 3-D Navier-Stokes.

Approach should be useful in both regularity and singularit y

studies of more general PDE initial value problems.
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