Divergent series, Borel Summation, 3-D Navier-Stokes

Saleh Tanveer (Ohio State University)

Collaborators: Ovidiu Costin, Guo Luo

Research supported in part by

 Institute for Math Sciences (IC), EPSRC & NSF.

Navier-Stokes existence-background

• Global Existence of smooth 3-D Navier-Stokes solution is an important open problem.

• Deviation from linear stress-strain relation or incompressibility is potentially important if N-S solutions are singular

• Usual numerical calculations do not address this issue because errors are not controlled, rigorously.

 Globally smooth solutions known only when Reynolds number small

 \cdot Generally, smooth solutions for smooth data on [0, T] known to exist, for T scaling inversely with initial data/forcing.

· Global weak solutions known since Leray, but not known whether they are unique. For unforced problem in \mathbb{T}^3 , such a solution becomes smooth again for $t > T_c$, T_c depends on IC

Borel Summation–background and main idea

 Borel summation generates , under suitable conditions, a one-one correspondence between series and and functions that preserve algebraic operations (Ecalle, Costin,..).

- Borel sum can involve large or small variable(s)/ parameter(s).
- · Formal expansion for t << 1: $v(x,t) = v_0(x) + \sum_{m=1}^{\infty} t^m v_m(x)$ generally divergent for the initial value problem $v_t = \mathcal{N}[v] \ , \ v(x,0) = v_0, \mathcal{N}$ being some differential operator.

 \cdot Borel Sum of this series gives actual solution, which transcends restriction t << 1

• For Navier-Stokes, the Borel sum is given by

$$v(x,t)=v_0(x)+\int_0^\infty U(x,p)e^{-p/t}dp$$

Equation for U obtained by inverse-Laplace transforming N-S.

Incompressible 3-D Navier-Stokes in Fourier-Space

Consider 3-D N-S in infinite geometry or periodic box. Similar results expected for finite domain with no-slip BC using eigenfunctions of Stokes operator as basis. In Fourier-Space

$$egin{aligned} \hat{v}_t +
u |k|^2 \hat{v} &= -ik_j P_k \left[\hat{v}_j \hat{*} \hat{v}
ight] + \hat{f}(k) \ P_k &= \left(I - rac{k(k \cdot)}{|k|^2}
ight) \quad, \ \hat{v}(k,0) = \hat{v}_0(k) \end{aligned}$$

where P_k is the Hodge projection in Fourier space, $\hat{f}(k)$ is the Fourier-Transform of forcing f(x), assumed divergence free and *t*-independent. Subscript *j* denotes the *j*-th component of a vector. $k \in \mathbb{R}^3$ or \mathbb{Z}^3 . Einstein convention for repeated index followed. $\hat{*}$ denotes Fourier convolution.

Decompose $\hat{v} = \hat{v}_0 + \hat{u}(k, t)$, inverse-Laplace Transform in 1/tand invert the differential operator on the left side

Integral equation associated with Navier-Stokes

We obtain:

$$\begin{split} \hat{U}(k,p) &= \int_{0}^{p} \mathcal{K}_{j}(p,p';k) \hat{H}_{j}(k,p') dp' + \hat{U}^{(0)}(k,p) \equiv \mathcal{N} \left[\hat{U} \right] (k,p) \end{split}$$
(1)
$$\mathcal{K}_{j}(p,p';k) &= \frac{ik_{j}\pi}{z} \left\{ z'Y_{1}(z')J_{1}(z) - z'Y_{1}(z)J_{1}(z') \right\} \end{aligned}$$
$$z &= 2|k|\sqrt{\nu p}, \ z' = 2|k|\sqrt{\nu p'}, \ \hat{H}_{j} = P_{k} \left\{ \hat{v}_{0,j} \hat{*}\hat{U} + \hat{U}_{j} \hat{*}\hat{v}_{0} + \hat{U}_{j} \hat{*}\hat{U} \right\} \end{aligned}$$
$$\hat{U}^{(0)}(k,p) = 2\frac{J_{1}(z)}{z} \hat{v}_{1}(k) \ , \ P_{k} = \left(I - \frac{k(k \cdot)}{|k|^{2}} \right)$$

$$\hat{v}_1(k) = ig(-
u|k|^2 \hat{v}_0 - ik_j \mathcal{P}_k \left[\hat{v}_{0,j} \hat{*} \hat{v}_0
ight] ig) + \hat{f}(k),$$

 $\hat{*}$, denotes Fourier Convolution, * denotes Laplace convolution, while $\stackrel{*}{*}$ denotes Fourier followed by Laplace convolution. J_1 and Y_1 are the usual Bessel functions.

Results for Integral equation and Navier-Stokes-1

Introduce norm $\|.\|_{\mu,eta}$ and $\|.\|$ for $\mu>3$, $eta\geq 0$ so that

$$\|\hat{w}\|_{\mu,eta} = \sup_{k\in\mathbb{R}^3} e^{eta|k|} (1+|k|)^{\mu} |\hat{w}(k)|$$

$$\|\hat{U}\| = \sup_{p>0} e^{-lpha p} (1+p^2) \|\hat{U}(.,p)\|_{\mu,eta}$$

Lemma 1: If $\|\hat{v}_0\|_{\mu+2,\beta}$ and $\|\hat{f}\|_{\mu,\beta}$ are finite, then an upper bound for α can be found interms of \hat{v}_0 and \hat{f} so that the integral equation (1) has a unique solution for $p \in \mathbb{R}^+$ for which $\|\hat{U}\| < \infty$.

Theorem 1: Under same conditions as in Lemma 1, the 3-D Navier-Stokes has a unique solution for $\operatorname{Re} \frac{1}{t} > \alpha$. Furthermore, $\hat{v}(\cdot, t)$ is analytic for $\operatorname{Re} \frac{1}{t} > \alpha$ and $\|\hat{v}(\cdot, t)\|_{\mu+2,\beta} < \infty$ for $t \in [0, \alpha^{-1})$.

Theorem 2 deals with Borel Summability and the nature of the asymptotic expansion $\hat{v} \sim \hat{v}_0 + t \hat{v}_1$.. and will not be discussed.

Remarks on Theorem 1

Remark 1: Local existence results in Theorem 1 already known through classical methods. However, in the present formulation, global existence problem can be cast into a question of asymptotics of a known solution to integral equation. A sub-exponential growth as $p \to \infty$ gives global existence.

Remark 2: Errors in Numerical solutions rigorously controlled, unlike usual N-S calculations. Discretization in p and Galerkin approximation in k results in:

$$egin{aligned} \hat{U}_{\delta}(k,m\delta) &= \delta \sum_{m'=0}^m \mathcal{K}_{m,m'} \mathcal{P}_N \mathcal{H}_{\delta}(k,m'\delta) + \hat{U}^{(0)}(k,m\delta) \ &\equiv \mathcal{N}_{\delta} \left[\hat{U}_{\delta}
ight] \quad ext{for} \quad k_j = -N,...N, \;\; j = 1,2,3 \end{aligned}$$

 \mathcal{P}_N is the Galerkin Projection into N-Fourier modes. \mathcal{N}_δ has properties similar to \mathcal{N} . The continuous solution \hat{U} satisfies $\hat{U} = \mathcal{N}_\delta \left[\hat{U} \right] + E$, where E is the truncation error. Thus, $\hat{U} - \hat{U}_\delta$ can be estimated using same tools as in Theorem 1.

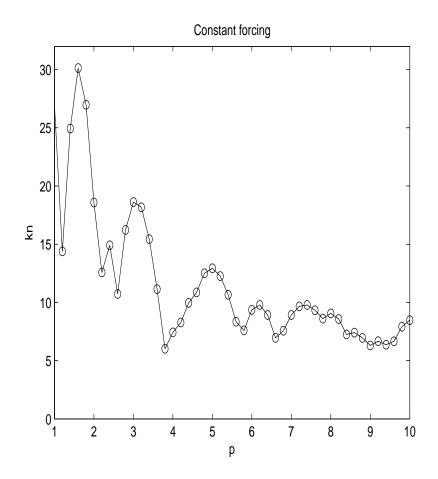
Numerical Solutions to integral equation

We choose the Kida initial conditions and forcing

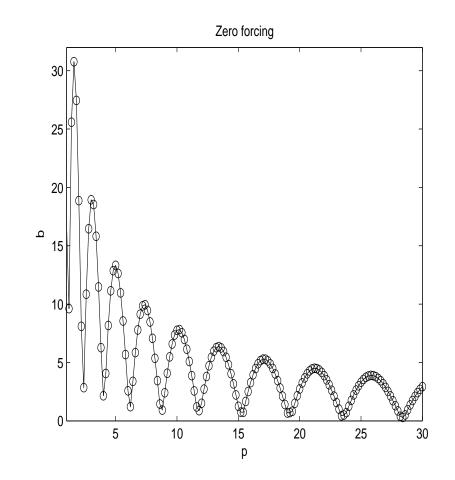
$$egin{aligned} \mathrm{v}_0(\mathrm{x}) &= (v_1(x_1,x_2,x_3,0),v_2(x_1,x_2,x_3,0),v_3(x_1,x_2,x_3,0)) \ v_1(x_1,x_2,x_3,0) &= v_2(x_3,x_1,x_2,0) = v_3(x_2,x_3,x_1,0) \ v_1(x_1,x_2,x_3,0) &= \sin x_3 \left(\cos 3x_2\cos x_3 - \cos x_2\cos 3x_3
ight) \end{aligned}$$

$$f_1(x_1,x_2,x_3)=rac{1}{5}v_1(x_1,x_2,x_3,0)$$

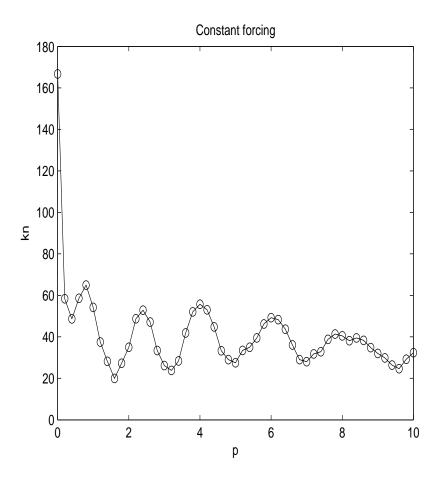
High Degree of Symmetry makes computationally less expensive Corresponding Euler problem believed to blow up in finite time; so good candidate to study viscous effects In the plots, "constant forcing" corresponds to $f = (f_1, f_2, f_3)$ as above, while zero forcing refers to f = 0. Recall sub-exponential growth in p corresponds to global N-S solution.



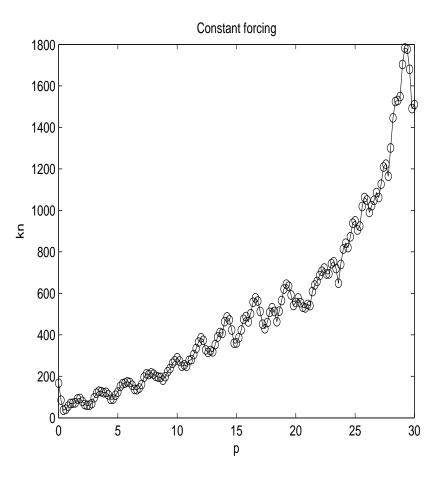
 $\|\hat{U}(.,p)\|_{4,0}$ vs. p for u=1, constant forcing.



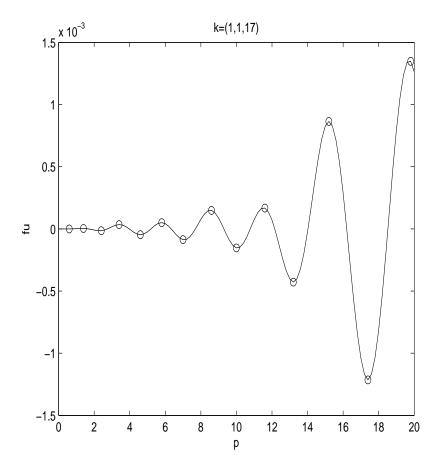
 $\|\hat{U}(.,p)\|_{4,0}$ vs. p for u=1, no forcing



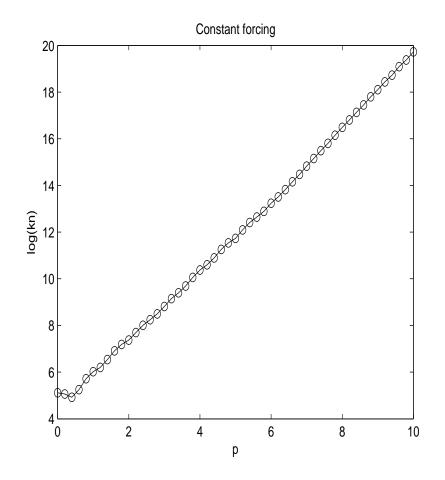
 $\|\hat{U}(.,p)\|_{4,0}$ vs. p for u=0.16, constant forcing



 $\|\hat{U}(.,p)\|_{4,0}$ vs. p for u=0.1, constant forcing



 $\hat{U}(k,p)$ vs. p for k=(1,1,17), u=0.1, no forcing.



 $\log \| \hat{U}(.,p) \|_{4,0}$ vs. $\log p$ for u = 0.001, constant forcing

Issues raised by numerical computations

Numerical solutions to integral equation available on finite interval $[0, p_0]$, yet N-S solution requires $[0, \infty)$ interval since $\hat{v}(k, t) = \hat{v}_0 + \int_0^\infty e^{-p/t} \hat{U}(k, p) dp$

Actually, the integral over $\int_0^{p_0}$ gives an approximate N-S solution, with errors that can be bounded for a time interval [0, T], if computed solution to integral equation eventually decreases with p on a sufficiently large interval $[0, p_0]$.

Further, a non-increasing \hat{U} over a sufficiently large interval $[0, p_0]$ gives smaller bounds on growth rate α as $p \to \infty$. Therefore, in such cases smooth NS solution exists over a long interval $[0, \alpha^{-1})$.

Recall for unforced problem in \mathbb{T}^3 , even weak solution to NS becomes smooth for $t > T_c$, with T_c estimated from initial data. Hence global existence follows under some conditions.

Extending Navier-Stokes interval of existence

For $\alpha_0 \geq 0$, define

$$\epsilon =
u^{-1/2} p_0^{-1/2} \ , \ a = \| \hat{v}_0 \|_{\mu,eta} \ , \ c = \int_{p_0}^\infty \| \hat{U}^{(0)}(.,p) \|_{\mu,eta} e^{-lpha_0 p} dp$$

- ----

$$\epsilon_1 = \nu^{-1/2} p_0^{-1/2} \left(2 \int_0^{p_0} e^{-\alpha_0 s} \| \hat{U}(.,s) \|_{\mu,\beta} ds + \| \hat{v}_0 \|_{\mu,\beta} \right)$$

$$b = rac{e^{-lpha_{0}p_{0}}}{\sqrt{
u p_{0}} lpha} \int_{0}^{p_{0}} \| \hat{U}_{*}^{*} \hat{U} + \hat{v}_{0} \cdot \hat{U} \|_{\mu,eta} ds$$

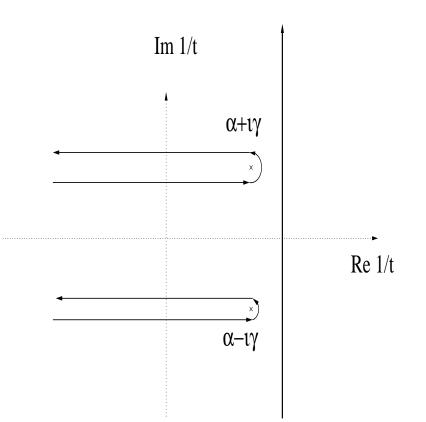
Theorem 3: A smooth solution to 3-D Navier-Stokes equation exists in the $\|\cdot\|_{\mu,\beta}$ space on the interval $[0, \alpha^{-1})$, when $\alpha \ge \alpha_0$ is chosen to satisfy

$$lpha > \epsilon_1 + 2\epsilon c + \sqrt{(\epsilon_1 + 2\epsilon c)^2 + 4b\epsilon - \epsilon_1^2}$$

Remark: If p_0 is chosen large enough, ϵ , ϵ_1 is small when computed solution in $[0, p_0]$ decays with q. Then α can be chosen rather small.

Relation of Optimal α to Navier-Stokes singularities

$$\hat{U}(k,p) = rac{1}{2\pi i} \int_{c_0-i\infty}^{c_0+i\infty} e^{p/t} \left[\hat{v}(k,t) - \hat{v}_0(k)
ight] d\left[rac{1}{t}
ight]$$



Rightmost singularity(ies) of NS solution $\hat{v}(k,t)$ in the 1/t plane determines optimal α . γ gives dominant oscillation frequency.

Laplace-transform and accelerated representation

To get rid of the effect of complex singularity, it is prudent to seek a more general Laplace-transform involves

$$\hat{v}(k,t)=\hat{v}_0(k)+\int_0^\infty e^{-q/t^n}\hat{U}(k,q)dq$$

We have arguments to show for at least the unforced problem, if there are complex singularities t_s in the right-half plane, but not on the real axis, then a a nonzero lower bound for $|\arg t_s|$ exists. Then, for sufficiently large n, no singularities in the $\tau = t^{-n}$ plane in the right-half plane. Hence, $\hat{U}(k,q)$ will not grow with q $\hat{U}(k,q)$ satisfies an integral equation similar to the one satisfied by $\hat{U}(k,p)$ and Theorems similar to Theorem 1 follow. In the context of ODEs, change of variable $p \rightarrow q$ is called acceleration (Ecalle)

Extending Navier-Stokes interval of existence

For $\alpha_0 \geq 0$, define

$$\epsilon_1 =
u^{-1/2} q_0^{-1+1/(2n)} \ , \ c = \int_{q_0}^{\infty} \| \hat{U}^{(0)}(.,q) \|_{\mu,eta} e^{-lpha_0 q} dq$$

$$\epsilon_1 =
u^{-1/2} q_0^{-1+1/(2n)} \left(2 \int_0^{q_0} e^{-lpha_0 s} \| \hat{U}(.,s) \|_{\mu,eta} ds + \| \hat{v}_0 \|_{\mu,eta}
ight)$$

$$b = rac{e^{-lpha_0 q_0}}{\sqrt{
u} q_0^{1-1/(2n)} lpha} \int_0^{q_0} \| \hat{U}_*^* \hat{U} + \hat{v}_0 \cdot \hat{U} \|_{\mu,eta} ds$$

Theorem 4: A smooth solution to 3-D Navier-Stokes equation exists in the $\|\cdot\|_{\mu,\beta}$ space on the interval $[0, \alpha^{-1/n})$, when $\alpha \ge \alpha_0$ is chosen to satisfy

$$lpha > \epsilon_1 + 2\epsilon c + \sqrt{(\epsilon_1 + 2\epsilon c)^2 + 4b\epsilon - \epsilon_1^2}$$

Remark: If q_0 is chosen large enough, ϵ , ϵ_1 is small when computed solution in $[0, q_0]$ decays with q. Then α can be chosen rather small.

Conclusions

We have shown how Borel summation methods provides an alternate existence theory for N-S equation With this integral equation (IE) approach, the global existence of NS is implied if known solution to IE has subexponential growth. The solution to integral equation in a finite interval can be computed numerically with errors controlled rigorously Integral equation in an accelerated variable q expected to show no exponential growth unless there is singularity on the real *t*-axis. The computation over a finite $[0, q_0]$ interval, gives a better upper bound on growth rate exponent α at ∞ and hence ensures a longer existence time $[0, \alpha^{-1/n})$ to 3-D Navier-Stokes. **Unresolved issues include Rigorous control of round-off error** and obtaining small enough bounds on truncation error for manageable step size.

Key points in the proof-I

Define norm : $\|\hat{f}(\mathbf{k},p)\| = \sup_{p \ge 0} e^{-\alpha p} (1+p^2) \|\hat{f}(.,p)\|_{\mu,\beta}$

Because of properties

$$\begin{aligned} \frac{e^{\alpha p}}{(1+p^2)} * \frac{e^{\alpha p}}{(1+p^2)} &= e^{\alpha p} \int_0^p \frac{ds}{(1+s^2)[1+(p-s)^2]} \le \frac{M_0 e^{\alpha p}}{1+p^2} \\ &\left[e^{-\beta |\mathbf{k}|} (1+|\mathbf{k}|)^{-\mu} \right] \hat{*} \left[e^{-\beta |\mathbf{k}|} (1+|\mathbf{k}|)^{-\mu} \right] \le \frac{C_0(\mu) e^{-\beta |\mathbf{k}|}}{(1+|\mathbf{k}|)^{-\mu}}, \end{aligned}$$

the following algebraic properties follow:

$$egin{aligned} &\|[\hat{f}(\mathrm{k},p)]\hat{*}[\hat{g}(\mathrm{k})]\|_{\mu,eta} \leq C_0 \|\hat{f}(\cdot,p)\|_{\mu,eta}\|\hat{g}\|_{\mu,eta} \ &\|\hat{u} \ &st \ \hat{v}\| \leq M_0 C_0 \|\hat{u}\| \|\hat{v}\| \ , \ \|\int_0^p |\hat{u}(\mathrm{k},s)|ds\| \leq C lpha^{-1} \|\hat{u}\| \end{aligned}$$

Key points in the proof-II

From these relations, it is possible to conclude from the integral equation that if

 $u(p)\equiv \|\hat{U}(.,p)\|_{\mu,eta} \ , \ a=\|\hat{v}_0\|_{\mu,eta} \ , \ u^0(p)=\|\hat{U}^{(0)}(.,p)\|_{\mu,eta} \ ,$

then

$$u(p) \leq rac{C}{\sqrt{
u p}} \int_0^p [u st u + au](s) ds + u^{(0)}(p)$$