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Navier-Stokes existence–background

· Global Existence of smooth 3-D Navier-Stokes solution is an

important open problem.

· Deviation from linear stress-strain relation or incompressibility

is potentially important if N-S solutions are singular

· Usual numerical calculations do not address this issue because

errors are not controlled, rigorously.

· Globally smooth solutions known only when Reynolds number

small

· Generally, smooth solutions for smooth data on [0, T ] known to

exist, for T scaling inversely with initial data/forcing.

· Global weak solutions known since Leray, but not known

whether they are unique. For unforced problem in T
3, such a

solution becomes smooth again for t > Tc, Tc depends on IC



Borel Summation–background and main idea

· Borel summation generates , under suitable conditions, a

one-one correspondence between series and and functions that

preserve algebraic operations (Ecalle, Costin,..).

· Borel sum can involve large or small variable(s)/ parameter(s).

· Formal expansion for t << 1: v(x, t) = v0(x) +
∑∞

m=1 tmvm(x)

generally divergent for the initial value problem

vt = N [v] , v(x, 0) = v0, N being some differential operator.

· Borel Sum of this series gives actual solution, which transcends

restriction t << 1

· For Navier-Stokes, the Borel sum is given by

v(x, t) = v0(x) +

∫ ∞

0

U(x, p)e−p/tdp

Equation for U obtained by inverse-Laplace transforming N-S.



Incompressible 3-D Navier-Stokes in Fourier-Space

Consider 3-D N-S in infinite geometry or periodic box. Similar

results expected for finite domain with no-slip BC using

eigenfunctions of Stokes operator as basis. In Fourier-Space

v̂t + ν|k|2v̂ = −ikjPk [v̂j ∗̂v̂] + f̂(k)

Pk =

(

I − k(k·)
|k|2

)

, v̂(k, 0) = v̂0(k)

where Pk is the Hodge projection in Fourier space, f̂(k) is the

Fourier-Transform of forcing f(x), assumed divergence free and

t-independent. Subscript j denotes the j-th component of a

vector. k ∈ R
3 or Z

3. Einstein convention for repeated index

followed. ∗̂ denotes Fourier convolution.

Decompose v̂ = v̂0 + û(k, t), inverse-Laplace Transform in 1/t

and invert the differential operator on the left side



Integral equation associated with Navier-Stokes

We obtain:

Û(k, p) =

∫ p

0

Kj(p, p′; k)Ĥj(k, p′)dp′+Û (0)(k, p) ≡ N
[

Û
]

(k, p)

(1)

Kj(p, p′; k) =
ikjπ

z
{z′Y1(z

′)J1(z) − z′Y1(z)J1(z
′)}

z = 2|k|√νp , z′ = 2|k|
√

νp′ , Ĥj = Pk

{

v̂0,j ∗̂Û + Ûj ∗̂v̂0 + Ûj
∗∗Û

}

Û (0)(k, p) = 2
J1(z)

z
v̂1(k) , Pk =

(

I − k(k·)
|k|2

)

v̂1(k) =
(−ν|k|2v̂0 − ikjPk [v̂0,j ∗̂v̂0]

)

+ f̂(k),

∗̂, denotes Fourier Convolution, ∗ denotes Laplace convolution,

while ∗∗ denotes Fourier followed by Laplace convolution. J1 and

Y1 are the usual Bessel functions.



Results for Integral equation and Navier-Stokes-1

Introduce norm ‖.‖µ,β and ‖.‖ for µ > 3, β ≥ 0 so that

‖ŵ‖µ,β = sup
k∈R3

eβ|k|(1 + |k|)µ|ŵ(k)|

‖Û‖ = sup
p>0

e−αp(1 + p2)‖Û(., p)‖µ,β

Lemma 1: If ‖v̂0‖µ+2,β and ‖f̂‖µ,β are finite, then an upper bound for α can be

found interms of v̂0 and f̂ so that the integral equation (1) has a unique solution for

p ∈ R
+ for which ‖Û‖ < ∞.

Theorem 1: Under same conditions as in Lemma 1, the 3-D Navier-Stokes has a

unique solution for Re 1
t

> α. Furthermore, v̂(·, t) is analytic for Re 1
t

> α and

‖v̂(·, t)‖µ+2,β < ∞ for t ∈ [0, α−1).

Theorem 2 deals with Borel Summability and the nature of the

asymptotic expansion v̂ ∼ v̂0 + tv̂1.. and will not be discussed.



Remarks on Theorem 1

Remark 1: Local existence results in Theorem 1 already known through classical

methods. However, in the present formulation, global existence problem can be cast

into a question of asymptotics of a known solution to integral equation. A

sub-exponential growth as p → ∞ gives global existence.

Remark 2: Errors in Numerical solutions rigorously controlled, unlike usual N-S

calculations. Discretization in p and Galerkin approximation in k results in:

Ûδ(k, mδ) = δ

m
∑

m′=0

Km,m′PNHδ(k, m′δ) + Û (0)(k, mδ)

≡ Nδ

[

Ûδ

]

for kj = −N, ...N, j = 1, 2, 3

PN is the Galerkin Projection into N -Fourier modes. Nδ has properties similar to

N . The continuous solution Û satisfies Û = Nδ

[

Û
]

+ E, where E is the

truncation error. Thus, Û − Ûδ can be estimated using same tools as in Theorem 1.



Numerical Solutions to integral equation

We choose the Kida initial conditions and forcing

v0(x) = (v1(x1, x2, x3, 0), v2(x1, x2, x3, 0), v3(x1, x2, x3, 0))

v1(x1, x2, x3, 0) = v2(x3, x1, x2, 0) = v3(x2, x3, x1, 0)

v1(x1, x2, x3, 0) = sin x3 (cos 3x2 cos x3 − cos x2 cos 3x3)

f1(x1, x2, x3) =
1

5
v1(x1, x2, x3, 0)

High Degree of Symmetry makes computationally less expensive

Corresponding Euler problem believed to blow up in finite time;

so good candidate to study viscous effects

In the plots, "constant forcing" corresponds to f = (f1, f2, f3) as

above, while zero forcing refers to f = 0. Recall sub-exponential

growth in p corresponds to global N-S solution.



Numerical solution to integral equation-plot-1
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Constant forcing

‖Û(., p)‖4,0 vs. p for ν = 1, constant forcing.



Numerical solution to integral equation-plot-2
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Zero forcing

‖Û(., p)‖4,0 vs. p for ν = 1, no forcing



Numerical solution to integral equation-plot-3
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Constant forcing

‖Û(., p)‖4,0 vs. p for ν = 0.16, constant forcing



Numerical solution to integral equation-plot-4
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Constant forcing

‖Û(., p)‖4,0 vs. p for ν = 0.1, constant forcing



Numerical solution to integral equation-plot-5
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Û(k, p) vs. p for k = (1, 1, 17), ν = 0.1, no forcing.



Numerical solution to integral equation-plot-6
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Constant forcing

log ‖Û(., p)‖4,0 vs. log p for ν = 0.001, constant forcing



Issues raised by numerical computations

Numerical solutions to integral equation available on finite

interval [0, p0], yet N-S solution requires [0, ∞) interval since

v̂(k, t) = v̂0 +
∫ ∞

0
e−p/tÛ(k, p)dp

Actually, the integral over
∫ p0

0
gives an approximate N-S solution,

with errors that can be bounded for a time interval [0, T ], if

computed solution to integral equation eventually decreases with

p on a sufficiently large interval [0, p0].

Further, a non-increasing Û over a sufficiently large interval

[0, p0] gives smaller bounds on growth rate α as p → ∞.

Therefore, in such cases smooth NS solution exists over a long

interval
[

0, α−1
)

.

Recall for unforced problem in T
3, even weak solution to NS

becomes smooth for t > Tc, with Tc estimated from initial data.

Hence global existence follows under some conditions.



Extending Navier-Stokes interval of existence

For α0 ≥ 0, define

ε = ν−1/2p
−1/2
0 , a = ‖v̂0‖µ,β , c =

∫ ∞

p0

‖Û (0)(., p)‖µ,βe−α0pdp

ε1 = ν−1/2p
−1/2
0

(

2

∫ p0

0

e−α0s‖Û(., s)‖µ,βds + ‖v̂0‖µ,β

)

b =
e−α0p0

√
νp0α

∫ p0

0

‖Û∗∗Û + v̂0 · Û‖µ,βds

Theorem 3: A smooth solution to 3-D Navier-Stokes equation exists in the ‖.‖µ,β

space on the interval [0, α−1), when α ≥ α0 is chosen to satisfy

α > ε1 + 2εc +
√

(ε1 + 2εc)2 + 4bε − ε2
1

Remark: If p0 is chosen large enough, ε, ε1 is small when computed solution in

[0, p0] decays with q. Then α can be chosen rather small.



Relation of Optimal α to Navier-Stokes singularities

Û(k, p) =
1

2πi

∫ c0+i∞

c0−i∞

ep/t [v̂(k, t) − v̂0(k)] d

[

1

t

]

Re 1/t

Im 1/t

α+ιγ

α−ιγ

Rightmost singularity(ies) of NS solution v̂(k, t) in the 1/t plane

determines optimal α. γ gives dominant oscillation frequency.



Laplace-transform and accelerated representation

To get rid of the effect of complex singularity, it is prudent to seek

a more general Laplace-transform involves

v̂(k, t) = v̂0(k) +

∫ ∞

0

e−q/tn

Û(k, q)dq

We have arguments to show for at least the unforced problem, if

there are complex singularities ts in the right-half plane, but not

on the real axis, then a a nonzero lower bound for | arg ts| exists.

Then, for sufficiently large n, no singularities in the τ = t−n

plane in the right-half plane. Hence, Û(k, q) will not grow with q

Û(k, q) satisfies an integral equation similar to the one satisfied

by Û(k, p) and Theorems similar to Theorem 1 follow. In the

context of ODEs, change of variable p → q is called acceleration

(Ecalle)



Extending Navier-Stokes interval of existence

For α0 ≥ 0, define

ε1 = ν−1/2q
−1+1/(2n)
0 , c =

∫ ∞

q0

‖Û (0)(., q)‖µ,βe−α0qdq

ε1 = ν−1/2q
−1+1/(2n)
0

(

2

∫ q0

0

e−α0s‖Û(., s)‖µ,βds + ‖v̂0‖µ,β

)

b =
e−α0q0

√
νq

1−1/(2n)
0 α

∫ q0

0

‖Û∗∗Û + v̂0 · Û‖µ,βds

Theorem 4: A smooth solution to 3-D Navier-Stokes equation exists in the ‖.‖µ,β

space on the interval [0, α−1/n), when α ≥ α0 is chosen to satisfy

α > ε1 + 2εc +
√

(ε1 + 2εc)2 + 4bε − ε2
1

Remark: If q0 is chosen large enough, ε, ε1 is small when computed solution in

[0, q0] decays with q. Then α can be chosen rather small.



Conclusions

We have shown how Borel summation methods provides an

alternate existence theory for N-S equation

With this integral equation (IE) approach, the global existence of

NS is implied if known solution to IE has subexponential growth.

The solution to integral equation in a finite interval can be

computed numerically with errors controlled rigorously

Integral equation in an accelerated variable q expected to show no

exponential growth unless there is singularity on the real t-axis.

The computation over a finite [0, q0] interval, gives a better upper

bound on growth rate exponent α at ∞ and hence ensures a

longer existence time
[

0, α−1/n
)

to 3-D Navier-Stokes.

Unresolved issues include Rigorous control of round-off error

and obtaining small enough bounds on truncation error for

manageable step size.



Key points in the proof-I

Define norm : ‖f̂(k, p)‖ = sup
p≥0

e−αp(1 + p2)‖f̂(., p)‖µ,β

Because of properties

eαp

(1 + p2)
∗ eαp

(1 + p2)
= eαp

∫ p

0

ds

(1 + s2)[1 + (p − s)2]
≤ M0eαp

1 + p2

[

e−β|k|(1 + |k|)−µ
]

∗̂
[

e−β|k|(1 + |k|)−µ
]

≤ C0(µ)e−β|k|

(1 + |k|)−µ
,

the following algebraic properties follow:

‖[f̂(k, p)]∗̂[ĝ(k)]‖µ,β ≤ C0‖f̂(·, p)‖µ,β‖ĝ‖µ,β

‖û
∗∗ v̂‖ ≤ M0C0‖û‖‖v̂‖ , ‖

∫ p

0

|û(k, s)|ds‖ ≤ Cα−1‖û‖



Key points in the proof-II

From these relations, it is possible to conclude from the integral

equation that if

u(p) ≡ ‖Û(., p)‖µ,β , a = ‖v̂0‖µ,β , u0(p) = ‖Û (0)(., p)‖µ,β ,

then

u(p) ≤ C
√

νp

∫ p

0

[u ∗ u + au](s)ds + u(0)(p)
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