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Pipe Flow: Description

Navier-Stokes equations has a well-known simple solution in an infinitely
long cylindrical pipe; in non-dimensional form, velocity is given by:

~vP(r) = (1− r2)ẑ with ∇p = − 4

R
ẑ

Evidence also suggests that this flow is linear stable for all R.
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Reynolds explored the behaviour of flow in a long pipe for different R.

Ink was injected centerline of a pipe carrying water and he observed

For R < Rc,1, any perturbation eventually decays in time

For R > Rc2 > Rc,1 the Hagen-Poiseuille flow becomes irregular, and
exhibits complex spacetime behaviour
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For Rc,1 < R < Rc,2, the behavior seemed to depend on amplitude of
disturbance

Darbyshire & Mullin did a systematic study on disturbance amplitude effect.

The observed instability threshold in their experiment decreased with
increasing R.
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If we decompose ~v = ~vB + v , where ~vB is a steady base flow (~vB 6= ~vP
when suction-injection is applied at the walls), then v satisfies

∂v
∂t

= −(v · ∇)v −∇q +
1

R
∆v − (~vB · ∇)v − (v · ∇)~vB

∇ · v = 0 with v(1, θ, z , t) = 0 at the wall in cylindrical coords.

Abstractly, we may write

d ~X

dt
= f (~X ; ~β)

~X=representation of a perturbed velocity field v in the space of solenoidal
vector field, ~β = (R, α) are parameters of the system.
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Relevant questions for the dynamical system

- Existence of Steady states solutions.
- Existence of traveling wave/time periodic solutions.
- Dynamical behavior of trajectories in phase-space.

cartoon of phase-space portrait (Duguet et. al. ’08a

Evidence suggests boundary Σ of basin of attraction contains TW states.
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Pipe flow transition: Traveling Waves

A traveling wave, which are also time periodic solutions in the lab frame, is
of the form

v =
∑

k,l∈Z2

~vkl(r)e ikk0θe ilα(z−ct)

Lumping separately l = 0 and l 6= 0 terms, we may write

v =

U(r , θ)
V (r , θ)

0


︸ ︷︷ ︸

rolls

+

 0
0

W (r , θ)


︸ ︷︷ ︸

streaks

+

 û(r , θ, z − ct)
v̂(r , θ, z − ct)
ŵ(r , θ, z − ct)


︸ ︷︷ ︸

waves

where z-averaged 〈û〉 = 〈(û, v̂ , ŵ)〉 = ~0, U = (U,V ,W ).
Existence of such states may be understood physically as a self sustaining
three-way interaction between rolls, streaks and waves.
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This nonlinear three-dimensional process, sometimes referred to as
Self-Sustaining Process(SSP), is a generic mechanism in shear flows. First
proposed by Benney, developed further by Smith and Hall and applied
systematically to a Plane-Couette flow by Waleffe and extended by others.

Self Sustaining Process Diagram (Waleffe ’97)
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Figure shows how rolls affect streamwise velocity to create streak
instability. Streamwise rolls (U,V ) act as forcing in the z direction.

Streak Instability Cartoon in Plane-Couette Flow. ’Rolls’ and ’Streaks’ (Waleffe
’06)
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- Numerical calculation of these states requires good initial guess for
Newton iteration to converge.

- Other authors tried adhoc approach towards suitable initial guess (eg.
Wedin &Kerswell ’04).

- Note that these states cannot be obtained through a continuation of
Hagen-Poiseuille flow since it has no finite R bifurcation point.

Our Methodology

- Since small rolls induces large streaks, we perturbed the base flow
through azimuthal suction/injection at the walls and obtained a flow
with a finite critical R for linear instability.

- The Hopf-Bifurcation at critical R provides a good initial guess for
TW states with suction/injection, which is switched off far from
bifurcation point.
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Base Flow with suction-injection

Through numerical continuation in suction-injection parameter s, we
calculate base flow ~vB(r , θ) which satisfies Navier-Stokes with
~v = ~vwall(θ; s) on r = 1 where

~vwall(θ; s) =
s

R
cos(k0θ)r̂ .

Alternate suction/injection imposed at r = 1 when k0 = 2
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Computation Steps

~vB for s > 0 is determined to be neutrally stable at some α at some
large but finite R.
We compute neutrally stable modes û

TW computed with initial guess v0 = ε̂0û in a Newton iteration
process to find ~v .

Bifurcation point changes to finite R shown by × when s 6= 0.

The TW states obtained in this manner sustains itself without
suction-injection (s → 0) when sufficiently far from the Hopf-bifurcation
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Numerical solution

Solutions with Rotational symmetric Rk0 , at the truncation (N,M,P) in
the form

v =
∑
l even

j=0,...,N
k=0,...,M

 (u1
jkl cos l z̃ + u2

jkl sin l z̃)Φj(r ; kk0) cos kk0θ

(v1
jkl cos l z̃ + v2

jkl sin l z̃)Φj(r ; kk0) sin kk0θ

(w1
jkl sin l z̃ + w2

jkl cos l z̃)Ψj(r ; kk0) cos kk0θ



+
∑
l odd

j=0,...,N
k=0,...,M

 (u1
jkl cos l z̃ + u2

jkl sin l z̃)Φj(r ; kk0) sin kk0θ

(v1
jkl cos l z̃ + v2

jkl sin l z̃)Φj(r ; kk0) cos kk0θ

(w1
jkl sin l z̃ + w2

jkl cos l z̃)Ψj(r ; kk0) sin kk0θ

 .

are found, where z̃ = α(z − ct), with certain choice of Φj(r),Ψj(r), and
using S (shift-rotate) and S1 (shift-reflect) symmetries.
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Results

We restricted our calculations to (S-symmetric) R2− solutions

Reproduced the solution of Wedin & Kerswell (2004) for k0 = 2.

Two new TWs found: C1 and C2 calculated for upto R = 2× 105.

In the light of numerical evidence; we also explored R →∞
asymptotics of TW states.
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Roll and Streak profiles at R = 104 for α = 1.55.

(a) C1 (b) C2

Besides the S-symmetry (shift-and-reflect) the C2 branch also has
Ω2-symmetry (shift-and-rotate) (Pringle et. al. (2009))
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(c) WK (d) WK2
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Roll and Streak profiles at R = 105 for α = 1.55.

(e) C1 (f) C2 (g) WK

shrinking core structure observed for C1,C2.
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Wedin & Kerswell (2004), Pringle et al. (2009)
2-fold TW’s
with axial wavenumber α = 1.55
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Scaled radial roll amplitude AU
k (r)/AU

k,m vs. r/rm. for k = 2, 4, 6 for α = 1.55.

AU
k,m is the maximum roll amplitude attained at r = rm
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Waves

Scaled axial wave amplitude wkl(r)/wk,l,m versus r/rm for C2 solution at l = 1
for different k for α = 1.55.
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Large R Asymptotics for TWs

Introduce rescaled radial variable r̂ so that

r = δr̂

and perturbation velocity v = w̃ ẑ + v⊥ in scaled variables

v⊥ = δ1U(r̂ , θ) + δ2u(r̂ , θ, z)

w̃ = δ3W (r̂ , θ) + δ4w(r̂ , θ, z)

p̃ = δ5P(r̂ , θ) + δ6p(r̂ , θ, z)

1− c = δcc1

where U is the scaled roll, W is the scaled streak, and u,w the scaled
wave components 〈u〉 = 0, 〈w〉 = 0.
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Through elaborate consistency arguments, we concluded Rδ4 either >> 1
or strictly order one,

δ5 = (Rδ)−2 , δ1 = (Rδ)−1 , δ2 = R−5/6δ−1/3 , δ3 = δc = δ2 , δ6 = R−5/6δ8/3 , δ4 = R−5/6δ−4/3

The case δ = 1 is the equivalent of Hall-Sherwin (’10) scalings obtained
earlier for channel flows.
For δ << 1, i.e. collapsing core, we point out two distinct possibilities

1) δ = R−1/6 - Collapsing Vortex Wave Interacting (VWI) state

2) δ = R−1/4 - Nonlinear Viscous Core(NVC)
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Case1: Vortex Wave Interactions (VWI)

δ1 = (Rδ)−1 , δ2 = R−5/6δ−1/3 , δ3 = δ2

δ4 = R−5/6δ−4/3 , δ5 = R−2δ2 , δ6 = R−5/6δ8/3 , δc = δ2

1- Small linear O(R−5/6δ−4/3) waves concentrated near a critical layer
of width δ(Rδ4)−1/3

2- drives O(R−1δ−1) rolls through quadratic nonlinear averages
(Reynolds stress term),

3- which results in O(δ2) streaks, enough to alter the base flow to
support neutral stable waves.
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VWI governing equations

Waves (u,w) satisfy

(
c1 − r̂2 + W

)
∂zw + u · ∇⊥

(
W − r̂2

)
=

1

Rδ4
∆⊥w ,

(
c1 − r̂2 + W

)
∂zu = −∇⊥p +

1

Rδ4
∆⊥u ,

∇⊥ · u +
∂w

∂z
= 0

The viscous terms 1
Rδ4 ∆⊥ (u,w) are negligible outside O

(
(Rδ4)−1/3

)
critical layer around a critical curve defined by c1 − r̂2 + W = 0.

S. Tanveer Collaborators: O.Ozcakir, P.Hall, E.OvermanTraveling wave states in pipe flow May 23, 2016 25 / 50



 Re=10420

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-0.2

-0.1

0

0.1

0.2

 Re=191020

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

-0.1

0

0.1

(a) α = 0.624

 Re=10420

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-0.2

-0.1

0

0.1

0.2

 Re=191020

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

-0.1

0

0.1

(b) α = 1.55

 Re=10420

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-0.2

-0.1

0

0.1

0.2

 Re=191020

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

-0.1

-0.05

0

0.05

0.1

(c) α = 2.47

S2 contours for C1 solution showing 0.9, 0.8,0.7,0.5 and 0.3× S2,m for three
different values of R for given α. Critical Curve is shown in black, and location of
S2,m shown in ˚∗.
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Rolls satisfy

U · ∇⊥U = −∇⊥P + ∆⊥U− (Rδ4)1/3〈u · ∇⊥u〉 − (Rδ4)1/3〈w∂zu〉 ,

∇⊥ ·U = 0 ,

where as R →∞, the forcing due to waves approaches a delta function
supported at the critical curve. To the leading order, the streak is driven
only by the rolls as it satisfies

U · ∇⊥W = ∆⊥W + 2r̂U · r̂
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Case 2- Nonlinear Viscous Core(NVC): δ = R−1/4

δ1 = R−3/4 = δ2 , δ3 = R−1/2 = δ4 , δ5 = R−3/2 = δ6 , δc = R−1/2

(
c1 − r̂2 + ŵ

)
∂z v̂⊥ + v̂⊥ · ∇⊥v̂⊥ = −∇⊥p̂ + ∆⊥v̂⊥(

c1 − r̂2 + ŵ
)
∂z ŵ + v̂⊥ · ∇⊥

(
c1 − r̂2 + ŵ

)
= −H ′(z) + ∆⊥ŵ + δ2∂2

z ŵ

∇⊥v̂⊥ +
∂w

∂z
= 0

for some 2π/α periodic H(z).

Recently computed solution to this fully nonlinear eigenvalue problem

Generally algebraic behavior as r̂ >> 1.

Concluded numerical C1− C2 are finite R realization of NVC.

Similar to Deguchi& Hall (2014) viscous-core solutions in channels.

S. Tanveer Collaborators: O.Ozcakir, P.Hall, E.OvermanTraveling wave states in pipe flow May 23, 2016 28 / 50



(U,V ) =
(

1
r̂ ψθ, ψr̂

)
where ψ =

∑∞
n=1 ψk0n sin(k0nθ)

Far Field Rolls

(U4n,V4n) ∼ r̂−2n−1 for n ≥ 1 , for k0 = 4

(U2,V2), (U4,V4) = O(r̂−3), (U2n,V2n) ∼ r̂−2n+1 ln r̂ n ≥ 3 , for k0 = 2

and W (r̂ , θ) =
∑∞

n=0 Wk0n(r̂) cos(k0nθ) leads to

Far-Field Streaks

W0 ∼ r̂−3,W4n ∼ r̂−2n+2 , for n ≥ 1 , for k0 = 4

W0(r) ∼ r̂−3 ,W2 ∼ ĉ2,W4 ∼ ĉ4 ,W2n ∼ r̂4−2n ln r̂ , n ≥ 3 , for k0 = 2

Notice there is an azimuthal component of streak that does not go to zero
as r̂ →∞, even when rolls, which drive the streak, goes to zero.
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Each wave components (u,v,w) represented in the form

∞∑
m=0

um(r̂ , z) cos(mθ)

satisfy

Far-Field Waves

(um, vm) ∼ r̂−
√
m2+4−1

wm ∼ r̂−
√
m2+4−2
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Preliminary findings

As seen in c vs. Re plot WK2 states bifurcate from WK around
Re = 75000.

Similar bifurcation observed in α around α = 3.5

Initial finding suggests WK states loose their VWI properties as α
increases, higher modes become dominant.

Linear Stability Analysis on WK2 branch indicate 3 real unstable
modes VWI states which scale like, R−1/2 ,R0 and R−1 similar to
Deguchi&Hall ’15 observations.

However, C2 seem to have only one real unstable mode with R−1/2

scaling, whereas C2 has 2 real unstable both scaling like Re−.5. (still
need justification)
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Summary

Found a systematic way to compute traveling wave solutions.

Asymptotic behaviour was analyzed and connected to numerical
calculations.

We also have partial results of stability. Clearly unstable manifold is
low dimensional, suggesting controls that may stabilize these states.

Since travelling wave solutions have low drag compared to turbulent
flow, this may have technological implications.

Large R number asymptotics important in identifying important
mechanisms and interactions.

Large number R asymptotics of coherent structures equally useful to
channel and boundary layer flows.

Parameter free canonical equations allows us to numerical calculation
R →∞ by computing solutions to parameter free equations.
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QUESTIONS?
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rolls decay rate C1 & C2
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maximal rolls decay rate C1
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Maximal radial roll amplitude AU
k,m and its location rm for k-th azimuthal

component versus R for C1 solution for α = 1.55 and α = 0.624 when k = 1
( ), 2 ( ), 3 ( ). Dotted lines show linear fittings. Negative slopes of
dotted lines (from top to bottom) are (a) 0.78, 0.79, 0.67, (b) 0.84, 0.65, 0.66, (c)
0.23, 0.21, 0.22, (d) 0.23, 0.22, 0.22
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maximal rolls decay rate C2
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Maximal radial roll amplitude AU
k,m and its location rm for k-th azimuthal

component vs R for C2 solution for α = 1.55 and α = 0.624 when k = 2 ( ), 4
( ), 6 ( ). Dotted lines show linear fittings. Negative slopes of dotted lines
(from top to bottom) are (a) 0.79, 0.71, 0.73, (b) 0.79, 0.74, 0.75, (c) 0.23, 0.23,
0.22, (d) 0.33, 0.23, 0.23
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maximal streak decay rate C1
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(d) α = 0.624

Maximal k-th streak amplitude AS
k,m vs. R and its location rm vs. R for C1

solution for k = 0( ), 1( ), 2( ), 3( ) for α = 1.55 and α = 0.624.
k = 0 is missing in (c),(d) since it has a flat profile. Dotted lines show linear
fittings. Negative slopes of dotted lines (from top to bottom) are (a) 0.37, 0.33,
0.47, 0.53, (b) 0.33, 0.29, 0.33, 0.28, (c) 0.07, 0.23, 0.24, (d) 0.07, 0.21, 0.22
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maximal streak decay rate C2
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(d) α = 0.624

Maximal k-th streak amplitude AS
k,m vs. R and and its location rm vs. R for C2

solution for k = 0( ), 2( ), 4( ), 6( ) for α = 1.55 and α = 0.624.
k = 0 is missing in (c),(d) since it has a flat profile. Dotted lines show linear
fittings. Negative slopes of dotted lines (from top to bottom) are (a)
0.35,0.31,0.40, 0.45, (b) 0.28, 0.26, 0.33, 0.45, (c) 0.07, 0.19, 0.23, (d) 0.07,
0.17, 0.22.
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maximal wave decay rate
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Supremum over (r , θ) of Aw
l (r , θ) and A⊥

l (r , θ) at
l = 1( / ), 2( / ), 3( / ) for C1 and C2 solutions for different α.
Solid lines correspond to α = 1.55, while dashed lines represent α = 0.624.
Dotted lines show linear fittings. Negative slopes of dotted lines (from top to
bottom) are (a) 0.50, 0.52, 0.51, 0.58, 0.50, 0.65, (b)
0.54, 0.54, 0.60, 0.59, 0.71, 0.70, (c) 0.76, 0.76, 0.86, 0.80, 0.84, 0.83,
(d)0.78, 0.78, 0.88, 0.88, 0.69, 0.78.
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Supplementary Materials:Symmetries

Rotational k0-fold symmetry in azimuthal direction θ by

Rk0 : (u, v ,w , p)(r , θ, z)→ (u, v ,w , p)(r , θ + 2π/k0, z)

S1 Rotate and Reflect symmetry:

S1 : (r , θ, z)→ (−r , θ + π, z) implies (u, v ,w , p)→ (−u,−v ,w , p)

Shift -and -Reflect symmetry S on a z-periodic pipe is introduced as

S : (u, v ,w , p)(r , θ, z)→ (u,−v ,w , p)(r ,−θ, z + π/α),

leaves equations invariant. So the solution v is either S-symmetric
(S − even) or S-antisymmetric (S − odd) i.e.

S − even : (r , θ, z)→ (r ,−θ, z+π/α) implies (u, v ,w , p)→ (u,−v ,w , p),

S − odd : (r , θ, z)→ (r ,−θ, z+π/α) implies (u, v ,w , p)→ (−u, v ,w , p).
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NSE in Cylindrical Component Form

When v = (u, v ,w) and ~vB = (uB , vB ,wB), the equation becomes,

−c ∂u
∂z

= −∂q
∂r

+
1

R
∆u − 2

r2

∂v

∂θ
− u

r2
− (~vB · ∇)u +

2vBv

r
− (v · ∇)uB

−c ∂v
∂z

= −1

r

∂q

∂θ
+

1

R
∆v +

2

r2

∂u

∂θ
− v

r2
− (~vB · ∇)v − 2vBv

r
− (v · ∇)vB

−c ∂w
∂z

= −∂q
∂z

+
1

R
∆w − (~vB · ∇)w − (v · ∇)wB

u(1, θ, z) = v(1, θ, z) = w(1, θ, z) = 0

where operators are defined as

(~vB · ∇) = uB
∂

∂r
+

vB

r

∂

∂θ
+ wB ∂

∂z
, (v · ∇) = u

∂

∂r
+

v

r

∂

∂θ

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2
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Numerical Formulation: Computation of Vortex-Wave
states

Galerkin in θ and z̃ direction, Collocation in r with

rj = cos
(2j + 1)π

4N
, 0 ≤ j ≤ N .

Φj (r ; k) =

{
T2j+2(r) − T2j (r) k odd

T2j+3(r) − T2j+1(r) k even

for ukl (r) and vkl (r), and

Ψj (r ; k) =

{
T2j+3(r) − T2j+1(r) k odd

T2j+2(r) − T2j (r) k even

for wkl (r).

The resulting nonlinear algebraic equation is solved using Newton’s Method. The
solution process has three important elements:

i) Elimination of pressure from the equation to reduce the number of unknown
variables.

ii) Efficiently solving the linear system J(~X )δ ~X = −F (~X ) at each Newton Step
(for matrices of size 10000× 10000).
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i) Pressure Elimination

Instead of solving for divergence equation in the NSE, pressure term is
eliminated:

∆q = N (v) (2a)

where N is a nonlinear operator acting on v , complemented with
Neumann boundary conditions

∂q

∂r
= Nb(v) (2b)

Resulting Poisson equation is solved using pseudospectral techniques in θ
and z̃ to compute N (v), then invert ∆ efficiently at the discrete r values.
We denote L = ∆−1 with Neumann B.C. (2b) and replace ∇q in VW
equation by ∇L(N (v)).
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ii) Newton’s Method - Jacobian Matrix

Block structure of the Jacobian Matrix when M = 2 and P = 2.

Velocity scalings suggest that Jacobian blocks get smaller as we move
away from the big diagonal.

1

R
∆v + c

∂v
∂z︸ ︷︷ ︸

Linear-1

− ((~vB · ∇)v + (v · ∇)~vB)︸ ︷︷ ︸
Linear-2

− (∇L(N (v)) + (v · ∇)v)︸ ︷︷ ︸
Nonlinear

= 0
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ii) Newton’s Method - Iterative Method

Due to large number of unknowns for the velocity v , we need to use
GMRES iterative method to solve the matrix equation at each Newton’s
Step. Assuming we have a good initial guess, a preconditioner is chosen in
the form

Preconditioner matrix M for M = 2,P = 2.

using scaling properties of the NSE.
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Initial Guess Procedure via Suction, s 6= 0

Results from linear stability analysis of the base flow ~vB when s = 10

α vs. Im(c). Linear Stability of the 4 least stable eigenvector v ’s.
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Roll Asymptotics

Axial averaging 〈·〉 of NSE, the projection in orthogonal plane results in

δ−1δ2
1U·∇⊥U = −δ5δ

−1∇⊥P+δ1δ
−2R−1∆⊥U−δ−1δ2

2〈u·∇⊥u〉−δ4δ2〈w
∂

∂z
u〉

∇⊥ ·U = 0

divergence condition requires P appeara in the leading order
asymptotics δ5 = δ2

1 .

involve viscous term must be present for steady nontrivial solution
δ1δ = R−1.
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Full Equations

Axial averaging results in(
c1 −

δ2

δ3
r̂2 + W +

δ2

δδ3
w

)
∂zw +

1

Rδ2δ3
(U · ∇⊥)w

+
δ2

δδ3
u · ∇⊥w + u · ∇⊥

(
W − δ2

δ3
r̂2

)
= −δ2∂p

∂z
+

1

Rδ2δ3
∆⊥w +

1

Rδ3
∂2
zw +

δ2

δδ3
〈u · ∇⊥w〉

(
c1 −

δ2

δ3
r̂2 + W +

δ2

δδ3
w

)
∂zu+

1

Rδ2δ3
(U · ∇⊥)u+

1

Rδ2δ3
(u · ∇⊥)U

+
δ2

δδ3
u·∇⊥u = −∇⊥p+

1

Rδ2δ3
∆⊥u+

1

Rδ3
∂2
zu+

δ2

δδ3
〈u·∇⊥u〉+

δ2

δδ3
〈w∂zu〉 ,

∇⊥ · u +
∂w

∂z
= 0
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NVC-Canonical Equation

transforms into the following set of scaled nonlinear equations(
c1 − r̂2 + ŵ

)
∂z v̂⊥ + v̂⊥ · ∇⊥v̂⊥ = −∇⊥p̂ + ∆⊥v̂⊥ + δ2∂2

z v̂⊥ (3)(
c1 − r̂2 + ŵ

)
∂z ŵ+v̂⊥·∇⊥

(
c1 − r̂2 + ŵ

)
= −δ2∂z p̂+∆⊥ŵ+δ2∂2

z ŵ (4)

∇⊥ · v̂⊥ +
∂ŵ

∂z
= 0 (5)

To the leading order, δ2 = O(R−1/2)
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