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Abstract. We show that if n ≥ 7, then SO(n) and Spin(n) are not homotopy

nilpotent. Also SO(3), SO(4) and the exceptional Lie group G(2) are not homotopy
nilpotent. This is done by showing that the iterated commutator maps are non-trivial

in a suitable Morava K-theory.

0. Introduction.
If X is a finite homotopy associative H-space, then the functor [ , X] takes its

values in the category of groups. [Unless otherwise specified, all spaces referred
to will be assumed to have the homotopy type of connected CW-complexes.] One
may then ask when this functor takes its values in various subcategories of groups.
For example X is homotopy commutative iff [A,X] is abelian for all A. We have
the the analogous notions of homotopy nilpotency and homotopy solvability. These
properties too can be charaterized in terms of X and its structure maps. We quote
the condition for homotopy nilpotency, after setting up some notation: Let µ and
σ be the multiplication and the inverse maps of X. Define c2, the commutator, to
be the composite

X ×X
∆X×X−−−−→ X ×X ×X ×X

id× id×σ×σ−−−−−−−−→ X ×X ×X ×X
µ(µ×µ)−−−−−→ X

and define the iterated commutators cn : Xn → X inductively by cn = c2(cn−1 ×
idX).

Proposition 0.1. [Zb, Lemma 2.6.1] A finite homotopy associative H-space X is
homotopy nilpotent iff cn is null homotopic for sufficiently large n.

There is another reason for considering this concept: If A is a finite complex
and X is homotopy associative H-space, then [A,X] will be a nilpotent group with
nilpotency class at most dim A. One might ask if there is an upper bound for the
nilpotency class of [A,X] that is independent of A. If that is the casethen X must
be homotopy nilpotent.
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Zabrodsky [Zb, Proposition 2.6.10] proved that the classical Lie groups SU(n),
Sp(n) and SO(2n+1) were homotopy solvable. The homotopy nilpotency of S3 is a
classical result that follows from the triviality of the relevant quadruple Whitehead
product [Po]. Recently M. J. Hopkins [Hp] found cohomological criteria for a finite
H-space to be homotopy nilpotent, and used it to prove that H-spaces with no
torsion in homology are homotopy nilpotent. The result is as follows:

Theorem 0.2. [Hp, Theorem 2.1] Let X be a finite homotopy associative H-space.
Then the following conditions are equivalent:

(1) X is homotopy nilpotent.
(2) M̃U∗ ∗ cn = 0 for sufficiently large n.
(3) For every prime p, B̃P ∗ ∗ cn = 0 for sufficiently large n.
(4) For every prime p and positive integer l, K̃(l)∗cn = 0 for sufficiently large

n.

Here K(l) is Morava’s l-th extraordinary K-theory at the prime p.
Remark: Hopkins states the last condition as “K(l)∗X is a nilpotent Hopf

algebra”. However, what he actually proves is the version given in the statement of
Theorem 0.2. Now, at the prime 2, K(l) is not commutative if 0 < l < ∞. Hence,
the equivalence of Hopkins’ condition is problematic.

Hopkins also conjectured that all finite connected homotopy associative H-spaces
are homotopy nilpotent. However, it turns out that not even all simply connected
Lie groups are homotopy nilpotent.

Theorem 0.3. If n ≥ 7, then Spin(n) and SO(n) are not homotopy nilpotent. In
addition, SO(3) and SO(4) are not homotopy nilpotent.

This theorem will be proved by showing that the iterated commutators induce
non-trivial homomorphisms in a suitably chosen homology theory. A more detailed
outline is as follows: Let l ≥ 1. There is a periodic homology theory B(l) with a
unit vl ∈ B(l)2l+1−2 and a “Bockstein” operation Q0 that is a derivation. We will
show that there is an element y in B̃(l)2l+1−2SO(2l+1 − 1) such that y2 = vly and

Q0y is primitive. If l ≥ 2, then y originates in B̃(l)∗Spin(2l+1 − 1). It will follow
that B(l)∗c2(Q0y ⊗ y) = [Q0y, y] = vlQ0y. By induction on s we get

B(l)∗cs(Q0y ⊗ y ⊗ · · · ⊗ y) = vs−1
l Q0y .

It turns out that Q0y maps to a non-zero element of B(l)∗SO(2l+2 − 4). Thus
the iterated commutators of SO(n) induce a non-trivial homomorphism in B(l)∗-
homology if 2l+1 − 1 ≤ n ≤ 2l+2 − 4.

If l ≥ 2 and n is of the form 2l+2 − 3 or 2l+2 − 2, we must replace Q0y by a
different element. Otherwise the proof is the same.

Since this paper was originally written, N. Yagita [Ya] has proved that for any
simply connected compact Lie group G and prime p, G localized at p is homotopy
nilpotent if and only if H∗(G, Z) has no p-torsion. This is done by a case by case
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analysis: SU(n) and Sp(n) have no torsion in homology. This paper handles the
case of Spin(n) and G(2). The other exceptional Lie groups are done by Yagita.
For p = 2, he builds on the case of G(2). For p = 3 and p = 5, he uses his earlier
calculations of the Morava K-theories of the exceptional Lie groups. The second
Morava K-theory K(2) is periodic with a unit v2 of degree 2(p2− 1). Yagita shows
that if G is an exceptional Lie group with p-torsion in homology, then there is an
element y in K(2)∗G such that yp = v2y and Q0y 6= 0. As above, this is enough.

It can be shown that the above result is true for any connected compact Lie
group G: Suppose that G is homotopy nilpotent. The universal cover of G is
homotopy nilpotent and has the form Ĝ × Rn where Ĝ is compact. By Yagita’s
result, Ĝ has no p-torsion in homology. Suppose that π1G has p-torsion. Then Ĝ

has a central element g of order p that lies in the kernal of Ĝ → G. Let H be
a simple factor of G such that h, the projection of g onto H, is non-trivial. The
homotopy nilpotency of G implies that the mod-p complex K-homology of Ĝ/〈g〉
and of H/〈h〉 are commutative. A case by case check of possible H’s shows that
this is impossible. Hence π1G has no p-torsion, and so G is p-equivalent, as a space,
to Ĝ× Tn where Tn is the n-dimensional torus. The details will appear elsewhere.

1. Preliminaries on Morava K-theories.
Throughout this paper BP will refer to the 2-local theory. For background

information on BP and related topics, see [Wi].
It is well known that BP∗ = Z(2)[v1, v2, . . . ] where the degree of vi is 2(2i − 1)

(see, for example, [Qu]). Let l > 0. Using the Sullivan-Baas technique ([Su],
[Bs]), we can kill {vi | i < l} to get P (l), a BP -module theory with coefficient
ring P (l)∗ = Z/2[vl, vl+1, . . . ]. (This and the next few statements are due to Jack
Morava. See [JW] for a source in print.) Inverting vl gives B(l) = v−1

l P (l). For
any space X, B(l)∗X is free as a B(l)∗-module [JW]. P (l) and B(l) can be made
into BP -module spectra in a canonical manner. There are maps

BP → P (1) → · · · → P (l) → P (l + 1) → · · · → HZ/2

of BP -module spectra. We will let P (0) and P (∞) denote BP and HZ/2 respec-
tively.

For any l, P (l) vl−→ P (l) −→ P (l + 1) is a cofibration sequence of spectra. In
particular, the kernal of the homomorphism P (l)∗X → P (l + 1)∗X is vlP (l)∗X.

For 0 ≤ i < l, there are maps Qi : P (l) → P (l), of degree 2i+1 − 1, that cover
the Milnor Bocksteins in ordinary homology. The homology operations induced by
these maps will also be denoted by Qi. These are respected by the maps P (l) →
P (m) with the convention that Qi = 0 on P (l) if i ≥ l.

We will make use of the following well-known result (see [JW, Section 4]):

Proposition 1.1. For any space X, and l > 0, the following are equivalent:
(1) If l < m ≤ ∞, then P (m)∗X ∼= P (m)∗ ⊗P (l)∗ P (l)∗X.
(2) The homomorphism P (l)∗X → H∗(X, Z/2) is surjective.
(3) The Atiyah-Hizrebruch spectral sequence P (l)∗ ⊗H(X, Z/2) ⇒ P (l)∗X col-

lapses.
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Making P (l) into ring spectra is more complicated at the prime 2 than at odd
primes. A geometric approach is used in [SY], where it is shown that P (l) can be
given an associative product with respect to which Qis are derivation. Würgler
([Wu1], [Wu2]) used a homotopy theoretic approach that gives more information.
Products that make P (l) into an algebra spectrum over BP can be identified with
primitive elements a of P (l)0(P (l) ∧ P (l)) such that(

BP ∧BP −→ P (l) ∧ P (l) a−→ P (l)
)

= (BP ∧BP −→ BP −→ P (l)) .

Analysing the module of primitives of P (l)∗(P (l) ∧ P (l)) shows that there exactly
two such elements. If one is m, then the other is m′ = m + vlm ◦ (Ql−1 ∧ Ql−1).
Assuming that m is commutative leads to the false conclusion that m = m′. So
m is not commutative and m′ = m ◦ T where T : P (l) ∧ P (l) → P (l) ∧ P (l) is the
map that transposes the factors. Arbitarily choose one of the two products as the
product for P (l). Then the following statements are true, irrespective of the choices
made:

Proposition 1.2. [Wu2, 2.5] Let X and Y be spectra and τ : X ∧ Y → Y ∧X be
the switch map. Then P (l)∗τ(x∧ y) = y ∧ x + vl(Ql−1y)∧ (Ql−1x) for x ∈ P (l)∗X
and y ∈ P (l)∗Y .

Lemma 1.3. For 0 ≤ i < l, the Milnor Bocksteins Qi are derivations of the ring
spectrum P (l).

Lemma 1.4. For m > l, the map P (l) → P (m) is a map of BP -algebra spectra.

Give B(l) the product induced by the chosen product for P (l). Then the first
two are true for B(l) as well.

Suppose that P (l)∗X and P (l)∗Y are free as P (l)∗-modules. Then the ×-product
P (l)∗X ⊗P (l)∗Y → P (l)∗(X ×Y ) is a module isomorphism allowing us to identify
the two modules. This also allows us to make P (l)∗X and P (l)∗Y into coalgebras by
the usual approach. But ×-product need not be a coalgebra morphism because P (l)
is not commutative. Thus, if X is an H-space with P (l)∗X free, then P (l)∗X is both
an algebra and a coalgebra, but not necessarily a Hopf algebra. Similar remarks
apply to B(l) as well (we need not even worry about freeness). The corrections to
be made are given by the next two results.

Proposition 1.5. Suppose that X and Y are two spaces such that P (l)∗X and
P (l)∗Y are free P (l)∗-modules. Identify P (l)∗X ⊗ P (l)∗Y with P (l)∗(X × Y ) as
modules. Then, for x ∈ P (l)∗X and y ∈ P (l)∗Y ,

∆P (l)∗(X×Y )(x⊗ y) = ∆P (l)∗Xx⊗∆P (l)∗Y y

+ vl(id⊗Ql−1 ⊗Ql−1 ⊗ id)(∆P (l)∗Xx⊗∆P (l)∗Y y)

where ∆P (l)∗X is the diagonal of P (l)∗X etc.
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Proof. Consider figure a in which P stands for P (l), τ transposes the appropriate
factors, and θ and φ are given by

θ(x1 ⊗ y1 ⊗ x2 ⊗ y2) = x1 ⊗ y1 ⊗ x2 ⊗ y2 + vlx1 ⊗Ql−1y1 ⊗Ql−1x2 ⊗ y2

φ(x1 ⊗ y1 ⊗ x2 ⊗ y2) = x1 × y1 × x2 × y2 + vlx1 ×Ql−1y1 ×Ql−1x2 × y2

P∗X ⊗ P∗Y P∗X ⊗ P∗Y ⊗ P∗X ⊗ P∗Y

P∗X ⊗ P∗X ⊗ P∗Y ⊗ P∗Y P∗X ⊗ P∗Y ⊗ P∗X ⊗ P∗Y

P∗(X × Y ) P∗(X × Y ×X × Y )

P∗(X ×X × Y × Y ) P∗(X × Y ×X × Y )

P∗(∆X×Y )

∆P∗(X)⊗P∗(Y )

1⊗ τ ⊗ 1

P∗(1⊗ τ ⊗ 1)

∆P∗(X) ⊗∆P∗(Y ) θ

P∗(∆X ×∆Y )

φ

figure a
The unmarked vertical maps, induced by the ×-product, are isomorphisms because
P (l)∗X and P (l)∗Y are free. The right hand face commutes by the naturality of the
×-product. The bottom face commutes by functoriality. The left and back faces
commute by the definition of the diagonal. The front commutes by Proposition 1.2.
It follows that the top face commutes.

Corollary 1.6. Suppose that X is an H-space such that P (l)∗X is free as a P (l)∗-
module. Let x and y be elements of P (l)∗X and ∆ be the diagonal of the latter.
Then

∆(xy) = ∆(x)∆(y) + vl((id⊗Ql−1)∆(x))((Ql−1 ⊗ id)∆(y)) .

The previous two results also hold for B(l). The same proofs, with the obvious
changes, apply.

2. Preliminaries on P (l)∗SO(n).
Let Gn = SO(n+2)/(SO(2)×SO(n)) be the generating variety for the homology

of Ω0SO(n + 2); i.e. there is a map Gn → Ω0SO(n + 2) = ΩSpin(n) such that
H∗(Gn, Z) maps monomorphicaly into H∗(Ω0SO(n + 2), Z) and the image of the
former generates the latter as an algebra [Bt]. (These were referred to as Qn by
Bott and in our previous papers. The notation has been changed to avoid confusion
with the Bocksteins.) Gn has no torsion in homology. The direct limit of Gn is
CP∞. This gives a canonical complex line bundle on Gn. Let x be its first Conner-
Floyd Chern class. Then MUQ∗G2n−1 = MUQ[x]/(x2n), because the same is true
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of rational cohomology. G2n−1 has an almost complex structure and we have an
embedding

CP
n−1

=
U(n)

U(1)× U(n− 1)
→ SO(2n + 1)

SO(2)× SO(2n− 1)
= G2n−1

of almost complex manifolds, where CP
n−1

is the complex projective (n− 1)-space
with the conjugate of the usual complex structure. Let y be the “Atiyah-Poincaré
dual” of CP

n−1
in G2n−1. Then xn = y([2](x)/x) in MU∗G2n−1, where [2](x) is

the 2-series for MU [R1, Proposition 2.1]. This is proved by calculating intersection
numbers and is the crucial lemma of [R1]. Also, {1, x, . . . , xn−1, y, yx, . . . , yxn−1}
is an MU∗-basis of MU∗G2n−1, for the reduction to integral cohomology is a basis.

Let {β′0, β1, . . . β2n−1} the basis of MUQ∗G2n−1 that is dual to {1, x, . . . , x2n−1}.
The basis dual to {1, x, . . . , xn−1, y, yx, . . . , yxn−1} is

{β′0} ∪ {βi | 1 ≤ i < n} ∪ {
i−n∑
j=0

aiβi−j | n ≤ i < 2n}

where ai is the coefficient of ti+1 in [2](t). It follows that α′i =
∑i−1

j=0 ajβi−j is
integral in the sense that it lies in the image of MU∗G2n−1 → MUQ∗G2n−1. Also
βi is integral if 1 ≤ i < n.

Remark: The last fact can be deduced from the fact that CPn−1 → G2n−1 →
G∞ = CP∞ is the usual inclusion (of spaces). The author is not aware of an equally
simple proof of the integrality of the α′i.

Using the fact that the relavant Atiyah-Hizrebruch spectral sequences collapse,
we see that MU∗G2n−1 injects into MU∗ΩSO(2n + 1). We will identify the former
with its image in the latter. Let β0 ∈ M̃U0ΩSO(2n+1) be the unique element such
that β2

0 = 2β0. Define αi in M̃UQ∗ΩSO(2n + 1), for i < 2n, by αi =
∑i

j=0 ai−jβj .

By the previous paragraph, αi is actually in M̃U∗ΩSO(2n + 1).
Let h be an MU -algebra theory. The images of the βs and αs in h∗ΩSO(2n+1),

under the homomorphism induced by MU → h, will be denoted by the same
symbols. These elements are independent of n in the sense that if n < q, then

h∗ΩSO(2n + 1) incl∗−−−→ h∗ΩSO(2q + 1)

sends βi to βi for 0 ≤ i < n, and similarly for the αs. For an element x of
h̃∗ΩSO(2n + 1), x will denote the image of x under the homology suspension

h̃∗ΩSO(2n + 1) → h̃∗+1ΣΩSO(2n + 1) → h̃∗+1SO(2n + 1) .

Proposition 2.1. For any BP -algebra theory h, h∗Ω0SO(2n+1), as an h∗-algebra,
is generated by βi, 1 ≤ i < n and α2j+1, n ≤ 2j + 1 ≤ 2n− 1.

This follows from [R1, Theorem 2.3.(2)]. It is proved by comparison with ordi-
nary homology and the Atiyah-Hizrebruch spectral sequence.
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Lemma 2.2. In P (l)∗ΩSO(2l+1 + 3), β2
2l−1 = vlβ1.

This follows from [R1, Theorem 2.3.(6)] and the fact that [−1](t) = t + vlt
2l−1

(mod t2
l

) in P (l)∗ (see [R3, proof of Lemma 3.1]).
Let G be a compact connected Lie group. Let h be a BP -algebra theory such

that for any a ∈ h∗, x ∈ h∗X and y ∈ h∗Y , where X and Y are spaces, (ax) ∧ y =
a(x ∧ y) = x ∧ (ay) in h∗(X ∧ Y ). We will denote the Bar spectral sequence

E2
∗∗(G, h) = Torh∗ΩG

∗∗ (h∗, h∗) ⇒ h∗G

by E∗
∗∗(G, h). This is a spectral sequence of commutative algebras, obtained from

the “bar filtration” on BΩG ' G. If Er
∗∗(G, h) is free over h∗ for all r, then it is a

spectral sequence of bicommutative, biassociative Hopf algebras (see [R2, Theorem
3.1]). The Hopf algebra structure on the E∞-term is compatible with the algebra
and coalgebra structure on h∗G (even if it is not a Hopf algebra).

Note that Er
0∗(G, h) = h∗ and that E2

1∗ = h̃∗ΩG/
(
h̃∗ΩG

)2

is the module of
indecomposables of the h∗-algebra h∗ΩG. Also the homology suspension factors as

h̃∗ΩG → E2
1∗(G, h) → E∞

1∗(G, h) → h̃1+∗G .

For the rest of this paper we will fix an l > 0. For 0 ≤ i < 2l−1, define k(i) by
2l ≤ 2k(i)(2i + 1) < 2l+1.

Fix a gound ring of charateristic 2. Let Γk(t) denote the divided power algebra
of height k on t. This is the dual of the primitively generated truncated polynomial
algebra P (x)/(x2k

). The jth divided power of t will be denoted by γj(t).
We will make use of the following calculations of the bar spectral sequences done

in [R2] and [R3]. The E2-term of the Bar ss is calcuated using a complex introduced
by T. Petrie [Pe]. The ss collapses if l = ∞ = n. Then we use descent on n and l
to get Proposition 2.4. Proposition 2.6 is deduced using the map E∗

∗∗(SO(2l+1 −
1), P (l)) → E∗

∗∗(SO(2n + 1), B(l)).

Proposition 2.3. [R2, Theorem 1.1] P (l)∗SO(2l − 1) is a bicommutative Hopf
algebra, and is isomorphic to

2l−1−2⊗
i=0

Γk(i)(βi) .

If 0 < i ≤ 2l−1 − 2 and 1 ≤ j < 2k(i), then we will denote the images of γj(βi)
in P (l)∗SO(2l+1 − 1) by the same symbol.

Proposition 2.4. [R2, Theorem 1.1 and p. 58] If l ≤ m, then

E∞
∗∗(SO(2l+1 − 1), P (m)) ∼=

2l−2⊗
i=0

Γk(i)+1(βi) ;

E∞
∗∗(Spin(2l+1 − 1), P (m)) ∼= E(α′2l−1)⊗

2l−2⊗
i=1

Γk(i)+1(βi) .
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Corollary 2.5. Suppose that X is SO(2l+1−1), Spin(2l+1−1) or a finite product

of those two. Then P̃ (l)iX
∼= P̃ (m)iX if l < m and 0 ≤ i ≤ 2l+1 − 2.

Proof. Use Proposition 2.4, Proposition 1.1 and the fact that P (m)j = 0 if 0 < j <
2m+1 − 2.

It follows that there exists a unique element γ̃i of P̃ (l)∗SO(2l+1−1) that reduces
to γ2k(i)(βi) in P (l+1)∗SO(2l+1−1), for 0 ≤ i ≤ 2l−1−1. Note that βi has degree
2i + 1 and γ̃i has degree 2k(i)(2i + 1).

Proposition 2.6. [R3, Proposition 3.2] If 2l ≤ n ≤ 2l+1 − 2, then

E∞
∗∗(SO(2n + 1), P (l)) ∼=

n−1⊗
i=2l−1

E(α2i+1) ⊗
n−1⊗

i=2l−1

E(βi)

⊗

2l−2⊗
i=0

Γk(i)+1(βi)

 / (
βi | 0 ≤ i ≤ n− 2l

)
.

Lemma 2.7. [R2, p. 56] For any n and any BP -algebra theory h,

E∗
∗∗(SO(2n + 2), h) ∼= E∗

∗∗(SO(2n + 1), h)⊗ E(w2n+1)

where w2n+1 has bidegree (1, 2n).

3. Proof of Theorem 0.3 for 2l+1 − 1 ≤ n ≤ 2l+2 − 4.
For typographical convenience, we write y for γ̃2l−1−1 and z for β2l−1−1. Unless

otherwise specified, we will be working with P (l)∗SO(2l+1 − 1). Let ∆ be the
diagonal of P (l)∗SO(2l+1−1) and σ the homomorphism in P (l)-homology induced
by g 7→ g−1. Note that if x ∈ P̃ (l)∗SO(2l+1 − 1) and ∆(x) =

∑
x′i ⊗ x′′i , then∑

x′iσ(x′′i ) = 0.

Lemma 3.1. Qjβi = 0, ∆(βi) = 1⊗ βi + βi ⊗ 1 and σ(βi) = βi.

Proof. Note that β’s originate in B̃P ∗Σ(G2l+1−3 ∪ {pt}) and that the latter is free
as a BP∗ module. This proves the first two equalities. The third now follows as
1σ(βi) + βiσ(1) = 0.

Lemma 3.2. β
2

i = 0 and βiβj + βjβi = 0.

Proof. Recall that βi has filtration 1 in the Bss and in the E∞-term, β
2

i = 0. Thus
β

2

i has filtration 0 or 1. But E∗
∗,2t+1 = 0 and E∗

0∗ = P (l)∗.
Proof of the second claim is similar.



Spin(n) IS NOT HOMOTOPY NILPOTENT FOR n ≥ 7. 9

Proposition 3.3. The module of primitives of P (l)∗SO(2l+1−1) is free with basis
{βi | 0 ≤ i ≤ 2l − 2}.

Proof. βis are primitive by Lemma 3.1 and are linearly independent by Proposi-
tion 2.4. Thus it is enough to show that any primitive can be written as a linear
combination of βi. We will prove this by induction on dim x. Note that the claim
is vacuous if dim x ≤ 0.

Let x be primitive. Then the reduction of x to P (l+1)∗SO(2l+1−1) is primitive.
By Proposition 2.3, there exist ai ∈ P (l + 1)∗ such that x =

∑
aiβi in P (l +

1)∗SO(2l+1 − 1). Consider these ai’s as elements of P (l)∗. Then u = x−
∑

aiβi is
divisible by vl because it maps to 0 in P (l+1)∗SO(2l+1−1). As P (l)∗SO(2l+1−1)
is free, u/vl is primitive. By the induction hypothesis, it is a linear combination of
βi.

Lemma 3.4. ∆(y) = 1 ⊗ y + z ⊗ z + y ⊗ 1, σ(y) = y and Qiy = β2l−2i−1 for
0 ≤ i < l.

Proof. To prove the first claim, note that it holds in P (l +1)∗SO(2l+1−1) and use
Corollary 2.5. Lemma 3.2 and the fact that 1σ(y) + zσ(z) + yσ(1) = 0 proves the
second equality.

I claim that Qiy 6= 0: The reduction of y to mod 2 ordinary homology is
γ2(β2l−1−1) which is indecomposable by Proposition 2.3. Recall that the module of
indecomposables of H∗(SO(2l+1 − 1), Z/2) is isomorphic to H∗(RP 2l+1−2, Z/2) as
modules over the Steenrod algebra. Thus y′, the unique non-zero element of degree
2l+1 − 2 in the latter, corresponds to y. It is well known that Qiy

′ 6= 0 if 0 ≤ i < l.
As Qi is a derivation and Qiz = 0, Qiy is primitive. Its degree is 2l+1−2i+1−1.

By Proposition 3.3, the only possibility is β2l−2i−1.

Lemma 3.5. y2 = vly.

Proof. An easy calculation using Corollary 1.6 and the lemmas above gives

∆(y2) = ∆(y)2 + vl((id⊗Ql−1)∆(y))(Ql−1 ⊗ id)(∆(y))

= 1⊗ y2 + z ⊗ (zy + yz) + (zy + yz)⊗ z + y2 ⊗ 1 + vlz ⊗ z

I claim that zy + yz is either 0 or vlz: Note that in the Bar ss, y and z have
filtration 2 and 1 respectively. Now zy+yz = 0 in E∞

3,2l+1+2l−6. By Proposition 2.4,
E∞

pq = 0 if q is odd. Hence zy + yz is in E∞
1,2l+1+2l−2 = {0, vlz}.

So z ⊗ (zy + yz) + (zy + yz) ⊗ z is either 0 or 2vlz ⊗ z = 0. It follows that
∆(y2 − vly) = 1 ⊗ (y2 − vly) + (y2 − vly) ⊗ 1. Hence y2 − vly is primitive of even
degree. By Proposition 3.3, it must be trivial.

Lemma 3.6. Suppose that x ∈ P̃ (l)∗SO(2l+1 − 1) is a linear combination of βis.
Let c2 be the commutator map of SO(2l+1 − 1). Then P (l)∗c2(x⊗ y) = xy + yx.

Proof. Note that Ql−1x = 0 by Lemma 3.1. An easy calculation using the definition
of c2, Proposition 1.5, Lemma 3.1 and Lemma 3.4 gives

P (l)∗c2(x⊗ y) = xy + zxz + yx + xy + xzz + xy .
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But xz2 = 0 and zxz = xzz = 0 by Lemma 3.2.

Lemma 3.7. Let cs be the iterated commutator map of SO(2l+1 − 1). Then

P (l)∗cs(β2l−2 ⊗ γ̃2l−1−1 ⊗ · · · ⊗ γ̃2l−1−1) = vs−1
l β2l−2

Proof. From Lemma 3.5 we get (Q0y)y + y(Q0y) = vlQ0y. By Lemma 3.4, Q0y =
β2l−2. Now Lemma 3.6 implies that P (l)∗c2(β2l−2 ⊗ y) = vlβ2l−2. This gives the
result if s = 2. Induction on s completes the proof.

Lemma 3.8. Let l ≥ 2. Then there is a unique element γ̃′ ∈ P (l)∗Spin(2l+1 − 1)
such that

∆(γ̃′) = 1⊗ γ̃′ + γ̃′ ⊗ 1 + β2l−1−1 ⊗ β2l−1−1 .

γ̃′ maps to γ̃2l−1−1 in P (l)∗SO(2l+1 − 1).

Proof. Throughout this proof n = 2l+1 − 1.
By [MM, Theorem 7.11 dualized] and Proposition 2.4,

H∗(Spin(n), Z/2) = E(α′2l−1)⊗
2l−2⊗
i=1

Γk(i)+1(βi)

as coalgebras. Thus, there is an element y′ ∈ H(Spin(n), Z/2), to which γ2(β2l−1−1)
converges, such that ∆(y′) = 1⊗ y′ + y′ ⊗ 1 + β2l−1−1 ⊗ β2l−1−1. This determines
y′ uniquely as any two choices must differ by an even dimensional primitive.

By Corollary 2.5 there exists a unique element γ̃′ of P (l)∗Spin(n) that maps to
y′ and that ∆(γ̃′) is as stated. The image of γ̃′ in P (l)∗SO(n) is γ̃2l−1−1 because
the difference is an even dimensional primitive.

Proof of Theorem 0.3 for n 6= 2m − 3, 2m − 2. Let s, l ≥ 2 and let fs be the
composition

Spin(2l+1 − 1)s proj−−→ SO(2l+1 − 1)s cs−→ SO(2l+1 − 1) incl−−→ SO(2l+2 − 4) .

By Lemma 3.7 and Lemma 3.8, P (l)∗fs(β2l−2⊗ γ̃′⊗ · · ·⊗ γ̃′) = vs−1
l β2l−2. On the

other hand, β2l−2 6= 0 in B(l)∗SO(2l+2−4) by Proposition 2.6 and Lemma 2.7. So
fs is not null-homotopic for any s.

Suppose that 2l+1 − 1 ≤ n ≤ 2l+2 − 4. Then fs can be factored as

Spin(2l+1 − 1)s −→ Spin(n)s cs−→ Spin(n) −→ SO(n) −→ SO(2l+2 − 4)

= Spin(2l+1 − 1)s −→ SO(2l+1 − 1)s −→ SO(n)s cs−→ SO(n) −→ SO(2l+2 − 4) .

Hence Spin(n) and SO(n) are not homotopy nilpotent.

Arguing similarly, we can show that the map

SO(3)s cs−→ SO(3) −→ SO(4) = SO(3)s −→ SO(4)s cs−→ SO(4)

is not null-homotopic for any s ≥ 2. This proves the second sentence of Theorem 0.3.
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Remark. Note that the proof of the lemmas of this section depend only on the
the coalgebra structure of P (l)∗SO(2l+1 − 1), the action of the Bocksteins Qi on
it and the algebra structure of E∞

∗∗(SO(2l+1 − 1), P (l)). The first two are clearly
independent of the multiplication on SO(2l+1 − 1). The last depends only on the
algebra structure of BP∗ΩSO(2l+1−1). But the H-space structure of ΩSO(2l+1−1)
is independent of the product on SO(2l+1 − 1). The only time we used the usual
product was to claim that Spin(n) → Spin(m) and SO(n) → SO(m) were H-maps.
It follows that if l ≥ 2, then Spin(2l+1 − 1) is not homotopy nilpotent with any
H-space structure.

Suppose that l ≥ 2 and that 2l+1 ≤ n < 2l+1 + 2l − 1. Then it can be shown
that Spin(n) is not homotopy nilpotent with any homotopy associative product:
Let y denote the image of γ̃′ in B(l)∗Spin(n). The diagonal, the action of Qi, and
the algebra structure of the E∞-term of the Bar ss are independent of the product.
So Lemmas 3.1, 3.2, 3.4 and 3.6 still hold. To determine y2, in the new product,
we proceed as follows: By the Bar ss, y2 is either 0 or vly. As in the proof of
Lemma 3.5, y2 − vly is primitive; but, by Proposition 2.6, vly is not (this is where
the restriction on n is needed). Lemma 3.7 will then follow.

Corollary 3.9. The exceptional Lie group G(2) is not homotopy nilpotent.

Proof. It is well-known that there is a principal fibration G(2) → Spin(7) → S7

that splits at the prime 2. So, P (2)iG(2) → P (2)iSpin(7) is bijective if i ≤ 6. In
particular, we can consider β2 and γ̃′ as elements of P (2)∗G(2). The corollary now
follows from Lemma 3.7.

Remark. Alternatively, we can first show that β
2

1, β
2

2, [β1, β2] and (γ̃′)2 − v2γ̃
′,

considered as elements of P (2)∗G(2), are even dimensional primitives. These ele-
ments must be trivial and we can then deduce that G(2) is not homotopy nilpotent.
Note that this argument will apply to any H-space strucutre on G(2).

4. Proof of Theorem 0.3 completed.
Let s, l ≥ 2 and let gs be the composition

Spin(2l+1 + 3)s proj−−→ SO(2l+1 + 3)s cs−→ SO(2l+1 + 3) incl−−→ SO(2l+2 − 2) .

The rest of this section is devoted to proving that B(l)∗gs 6= 0. This implies
that Spin(n) and SO(n) are not homotopy nilpotent if 2l+1 + 3 ≤ n ≤ 2l+2 − 2,
completing the proof of Theorem 0.3.

Lemma 4.1. Let y′ be the image of γ̃′ in H∗(Spin(2l+1+3), Z/2). Then [y′, β2l ] 6=
0.

Proof. Throughout this proof n = 2l+1 + 3.
We need some facts conerning the Z/2 cohomology of SO(n) and Spin(n): For

1 ≤ i ≤ n − 1, let xi ∈ H∗(SO(n), Z/2) be the cohomology suspension of the
(i + 1)st Stiefel-Whitney class and x′i be the image of xi in H∗(Spin(n), Z/2).
Then x′i = 0 if i is a power of 2. By [MZ], there is an indecomposable element u ∈
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H∗(Spin(n), Z/2) such that the latter is generated as an algebra by u, x′3, x
′
5, . . . .

Furthermore, u is of degree 2l+2 − 1 and

∆(u) = 1⊗ u + u⊗ 1 +
∑

j≤2l+1−1

x′j ⊗ x′2l+2−1−j .

It is well-known that the primitives of H∗(SO(n), Z/2) are the xis. By Proposi-
tion 2.3, the indecomposables of H∗(SO(n), Z/2) are {γ2s(βj) | 0 ≤ j ≤ 2l, 2s(2j +
1) ≤ 2l+1 + 2}. Thus

〈γ2s(βj), xi〉 =
{

1 2s(2j + 1) = i ;
0 otherwise.

By Lemma 3.8 γ̃′ maps to γ2(β2l−1−1) in H∗(SO(2l+1 + 3), Z/2). Combining
this with the previous two paragraphs, we see that

〈[y′, β2l ], u〉 = 〈y′ ⊗ β2l − β2l ⊗ y′,∆(u)〉 = 1 .

Lemma 4.2. In P (l)∗Spin(2l+1 + 3), [γ̃′, β2l ] = α′2l+1−1 + evlβ2l where e is either
0 or 1.

Proof. It follows from Proposition 2.1, Lemma 2.2 and the fact that E2
1∗(G, h) is the

module of indecomposables of h̃∗ΩG, that E2
1∗(Spin(2l+1 + 3), P (l)) is generated

by
β0, . . . , β2l , α′2l+1, . . . , α

′
2l+1+1

as a P (l)∗-module and that vlβ1 = 0. Thus

E2
1,2l+1−2(Spin(2l+1 + 3), P (l)) = {0, α′2l+1−1, vlβ2l , α′2l+1−1 + vlβ2l} .

It follows from Proposition 2.6 that all these elements survive to the E∞-term.
In the bar spectral sequence, γ̃′ has filtration 2 and β2l has filtration 1. As Er

∗∗ is
commutative and Er

2,2j+1 = 0, [γ̃′, β2l ] has filtration 1. It has total degree 2l+2− 1,
and by Lemma 4.1, is not divisible by vl. Only possibilites left are α′2l+1−1 and
α′2l+1−1 + vlβ2l .

Lemma 4.3. In B(l)∗SO(2l+1 + 3),

B(l)∗cs(β2l ⊗ γ̃2l−1−1 ⊗ · · · ⊗ γ̃2l−1−1) = vs−2
l [β2l , γ̃2l−1−1]

Proof. The proof is by induction on s. For typographical convenience, we will write
x and y for β2l and γ̃2l−1−1 respectively.

As Ql−1x = 0, the case s = 2 follows as in the proof of Lemma 3.6. Using
Lemma 4.2, we see that Ql−1[x, y] = 0 and that [x, y] is primitive. Hence

B(l)∗c2([x, y]⊗ y) = [[x, y], y] = xy2 − yxy − yxy + y2x = [x, y2] = vl[x, y]
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where we used Lemma 3.5 (and the fact that we are working in characteristic 2).
Thus

B(l)∗cs+1(x⊗ y ⊗ · · · ⊗ y) = B(l)∗c2((B(l)∗cs(x⊗ y ⊗ · · · ⊗ y))⊗ y)

= B(l)∗c2(vs−2
l [x, y]⊗ y) = vs−1

l [x, y] .

Proof that B(l)∗gs 6= 0 for all s ≥ 2. Note that α′2l+1−1 − α2l+1−1 is in BP∗β0.
But by Proposition 2.6, β0 = 0 in B(l)∗SO(2l+2 + 3). So, in the latter, α′2l+1−1 =
α2l+1−1.

Using Proposition 2.6 once more, we see that α2l+1−1 and β2l are linearly
independent in B(l)∗SO(2l+2 − 3). The latter injects into B(l)∗SO(2l+2 − 2)
(Lemma 2.7). Hence vs−2

l (α2l+1−1 + eβ2l) 6= 0 for any s ≥ 2 and e ∈ {0, 1}.
Combining this with the previous two lemmas completes the proof.
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14 VIDHYĀNĀTH K. RAO

[Zb] A. Zabrodsky, Hopf spaces, North Holland Math. Studies 22, North Holland, Amsterdam,
1976.

Department of Mathematics, The Ohio State University at Newark, Newark, OH

43055.
E-mail address: nathrao+@osu.edu


