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1 Introduction and Preliminaries

In earlier papers, the additive structure of the (periodic) Morava K-theories of
special orthogonal groups was calculated and some progress was made analyz-
ing the algebra structure. However, this is difficult due the problems in passing
between ordinary homology and periodic theories. It might be better to use
the connective theories as an intermediary. In this paper, we make a start on
this objective by studying K(2)∗SO(9) and its connective version k(2)∗SO(9).

Throughout this paper, we work at the prime 2. In particular, BP will
denote the 2-primary Brown-Peterson theory and k(l) and K(l) will denote
respecively the connective and periodic lth Morava K-theories at the prime 2.
Also, H∗X will denote the ordinary homology of X with Z/(2) coefficients.

Next, we recall some of the eariler results and set up our notation.
The source for this paragraph is [2]. Gn = SO(n + 2)/(SO(2) × SO(n)),

the generating variety for the homology of Ω0SO(n + 2), has torsion-free ho-
mology [1]. Note that G∞ = CP∞. Let x be the image of the standard gen-
erator of MU∗CP∞ in MU∗Gn. Then MUQ∗G2n−1 = MUQ∗[x]/(x2n). Let
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{β′0, β1, . . . β2n−1} be the basis of MUQ∗G2n−1 that is dual to {1, x, . . . , x2n−1}.
Let β0 ∈ M̃U0ΩSO(2n+ 1) be the unique element such that β2

0 = 2β0. Define
αi =

∑i
j=0 ci−jβj where cj is the coefficient of tj+1 in the MU -[2]-series. If

1 ≤ i ≤ 2n− 1 and 1 ≤ j ≤ n− 1, then αi and βj are in M̃U∗ΩSO(2n+ 1).
If h is an MU -algbra theory, we will denote the images of the β’s and α’s

in h∗ΩSO(2n+ 1) by the same symbols. These elements are independent of n
in the sense that if 0 ≤ i < n < q and j < 2n, then the map h∗ΩSO(2n+1)→
h∗ΩSO(2q+1) induced by inclusion preserves βi and αj. The image of u under

homology suspension h̃∗ΩSO(2n+ 1)→ h∗+1SO(2n+ 1) will be denoted by u.
Fix a ground ring of charateristic 2. Let Γk(u) denote the divided power

algebra of height k on u. This is the dual of the primitively generated truncated
polynomial algebra. The full divided power algebra will be denoted by Γ(u).

We need some facts concerning the bar spectral sequence; for the details,
see [3, Section 3]. If G is a compact connected Lie group and h a BP -algebra
theory, then the bar spectral sequence

E2
∗∗(G, h) = Torh∗ΩG

∗∗ (h∗, h∗)⇒ h∗G

is a spectral sequence of commutative algebras. If Er
∗∗(G, h) is free over h∗ for

all r, then it a spectral sequence of bicommutative, biassociative Hopf algebras.
By [3, Theorem 1.1],

E∞∗∗
(
SO(2l+1 − 1), P (s)

)
=

2l−2⊗
i=0

Γp(i)+1(βi)

if l ≤ s ≤ ∞, and there are no Hopf algebra extension problems if s > l.
Here p(i) is defined by 2l ≤ 2p(i)(2i + 1) < 2l+1, and Γk(x) is the dual of the
truncated primitively generated polynomial algebra P (x)/(x2k).

Hence there are unique elements γij ∈ P (l)2j(2i+1)SO(2l+1−1) which project

to the (2j)th divided power of βi in H2j(2i+1)SO(2l+1 − 1) for 0 ≤ i ≤ 2l − 2,
1 ≤ j ≤ 2p(i)−1. We will use the same symbols to denote the images of these
elements in h∗SO(N) for N ≥ 2l+1, where h may be P (l), k(l) or K(l).

Let A be an algebra over a commutative ring R. A is said to be simply
generated by g1, g2, . . . over R if A is a free R-module with basis

{1} ∪ {gi1gi2 . . . gis | i1 < i2 < · · · < is} .

As we do not assume that A is commutative, the order of the elements may
be important.



2 The calculations

Proposition 2.1. The E∞-term of the bar spectral sequence converging
to k(2)∗SO(9) contains the exterior algebra on β1, β2, β3, γ01, γ02 and γ11, and
is generated as module over that exterior algebra by β0, β0γ04 and α7 subject
to the relations v2β0 = 0, v2β2γ04 = 0.

Proof. Using the description in [3, pp. 54–55], we see that the Petrie com-
plex for k(2)∗ΩSO(9) is

E(β0)⊗ Γ(γ0)⊗ E(β1)⊗ Γ(γ1)⊗ E(β2, β3, α5, α7)

with trivial differential. Thus this is the E2-term of the Bss. For degree
reasons, d2k = 0 for all k. Also, note that all differentials must vanish on βi

and αj.
We will denote the jth divided power γi by γij.
Mapping the Bss converging to P (2)∗SO(7) into this E2-term and using

the description of the Bss in [3, Theorem 1.1], we see that the only non-trivial
values of d3 are given by d3(γ1,2i) = α5γ1,2i−2 for i ≥ 1. So the E4-term is

E(β0)⊗ Γ(γ0)⊗ E(β1, γ1, β2, β3, α7)

The differential d5 vanishes on Γ(γ0) since it does so in the Bss converging to
P (2)∗SO(7). Using the fact that α3 = v2β0 in P (2)∗ΩSO(9) and the values
of d7 for SO(7), we deduce that the only non-trivial values of d7 are given by
d7(γ0,4i) = v2β0γ0,4i−4. It follows that the E8-term is

E(β1, β2, β3, α7, γ01, γ02, γ11)〈1, β0γ0,4i〉
/
{v2β0γ0,4i = 0}

For degree reasons, all further differentials are zero on the exterior geneators.
Note that the projection to the Bss converging to H∗SO(9) is injective on

the k(2)∗-submodule generated by {β0γ0,4i}. It follows from the description
of the Bss converging to H∗SO(9) (see [3, Theorem 1.1]) that dk = 0 for
8 ≤ k < 15 and that d15β0γ0,4i = β0α7γ0,4i−8 and for i ≥ 2. Hence the E16-
term is the E∞-term as described in the statement of the proposition. All
further differentials are trivial for degree reasons.

By [7, Theorem 3.1], theer is a unique element ζ4 ∈ k(2)9SO(9) whose
reduction to mod-2 homology is the nineth divided power of β0 and which
satisfies v2ζ4 = α7.



Proposition 2.2. The elements β1, β2, β3, ζ4, γ01, γ02 and γ11 sim-
ply generate a subalgebra of k(2)∗SO(9). As a module over that subalgebra,
k(2)∗SO(9) is generated by β0 subject to the relation v2β0 = 0.

Proof. Combining the above calculation of the Bss with the fact that ζ4

projects to β0γ04 in H∗SO(9) implies that ζ4 is repesented by β0γ04 in the
Bss. As α3 = v2β0 in P (2)∗ΩSO(9) and α3 = 0 in P (2)∗SO(7), v2β0 = 0 in
k(2)∗SO(9). Finally v2ζ4 = α7. These relations solve the remaining extension
problems in the Bss converging to k(2)∗SO(9).

The products listed in the next proposition follow from [7, Proposition 4.1]
and the results of [6, Section 5].

Proposition 2.3. The following relations hold in k(2)∗SO(9).

1. The subalgebra generated by β1, β2, β3 and ζ4 is exterior.

2. γ2
01 = 0, γ2

02 = v2γ01 and γ2
11 = v2γ11.

3. [γ01, β1] = 0, [γ02, β1] = 0 and [γ11, β1] = v2β1.

4. [γ01, β2] = 0, [γ02, β2] = v2β1 and [γ11, β2] = v2β2, and

5. [γ01, γ02] = 0, [γ01, γ11] = 0 and [γ02, γ11] = 0.

Recall that for finite complexes X and Y ,

(k(l)∗X/vl-torsion)⊗ (k(l)∗Y/vl-torsion)→ k(l)∗(X × Y )/vl-torsion

is an isomorphism. Since k(l) is not commutative, this is not enough to
make k(l)∗X/vl-torsion a Hopf algebra when X is an H-space. However,
the obstruction to the commutativity of k(l) is divisible by vl. Adapting
the discussion in [5, Section 1], we can show that if X is an H-space, then
(k(l)∗X/vl-torsion) ⊗ Z/2 is a cocommutative Hopf algebra. Alternatively,
note that (k(l)∗X/vl-torsion)⊗ Z/2 is the E∞-term of the Bockstein spectral
sequence and the E2-term is a Hopf algebra.

The next lemma is a consequence of Theorem 3.1 and Lemma 3.4 of [7].

Lemma 2.4. As a Hopf algebra, (k(2)∗SO(9)/v2-torsion)⊗ Z/2 is given
by E(β2, β3, ζ4)⊗ Γ2(γ01)⊗ Γ2(β1).

Lemma 2.5. The module of primitives of K(2)∗SO(9) is free on the basis
{β1, β2, β3, ζ4, γ01}.



Proof. The listed elements are independent by Proposition 2.2. Since the
homolgy suspension of any element of BP∗ΩSO(9) is primitive, βi’s are prim-
itive. So is α7 and hence ζ4 = v−1

2 α7 is also primitive. Finally γ01 is primitive
because ∆(γ01) = γ01⊗1+β0⊗β0 +1⊗γ01 in k(2)∗SO(7) and β0 is v2-torsion
in k(2)∗SO(9).

Denote by A the k(2)∗-module generated by by {β1, β2, β3, ζ4, γ01}, and by
∆ the reduced diagonal SO(9)→ SO(9) ∧ SO(9).

Let x be a primitive of K(2)∗SO(9). We can write x = vs2y, where y is
the image of an element in k(2)∗SO(9) that is not divisible by v2 and ∆∗y is
v2-torsion. We will show by induction on its degree that y is the sum of an
element of A and a v2-torsion element. Note that this is vacuous if the degree
of y is less than two.

The image of y in (k(2)∗SO(9)/v2-torsion) ⊗ Z/2 is primitive. So by
Lemma 2.4, it is in the image of A. Hence we can write y = y′+vt2z+y′′ where
y′ ∈ A, t ≥ 1, z ∈ k(2)∗SO(9) is not divisible by v2, and y′′ is v2-torsion. Then
z is primitive in K(2)∗SO(9). By our induction assumption, z ∈ A.

Lemma 2.6. The values of the Milnor primitive Q1 are given by the
following: Q1(βi) = 0 for 0 ≤ i ≤ 3, Q1(γ01) = 0, Q1(γ02) = β0, Q1(γ11) = β1,
and Q1(ζ4) = β0β2.

Proof. All but the last statement follow from the known values of Q1 on
H∗SO(9) (see [7, p.. 427]).

Now Q1(v2ζ4) = Q1(α7) = 0 because α4 comes from BP∗SO(9). So Q1(ζ4)
is v2-torsion. In H∗SO(9), Q1(ζ4) = Q1(β0γ08) = β0(β0γ04 + β2).

Proposition 2.7. In k(2)∗SO(9) [γ01, β3] = v2β1, [γ02, β3] = v2β1γ01 +
v2β2 and [γ11, β3] = v2β3.

Proof. This proved as in [6, Section 5]. We will indicate the proof of the
first. Others are proved in a similar fashio.

First note that these commutators must be divisible by v2 because H∗SO(9)
is commutative. Next, because Q1(β3) = 0, [−, β3] is both an algebra deriva-
tion and a coalgebra derivation. So x = [γ01, β3] is primitive in K(2)∗SO(9).
Degree considerations and Lemma 2.5 imply that x is either 0 or v2β1.

If x = 0, then γ01 ⊗ β3 − β3 ⊗ γ01 would be in the image of

k̃(2)∗−2P → H̃∗−2P → H̃∗(SO(9) ∧ SO(9)) ∼= H̃∗SO(9)⊗ H̃∗SO(9)

where P is the projective plane of SO(9). This contradicts [6, Proposition
4.1]
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