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Abstract. We determine the algebra structure of K(l)∗SO(2l+1 − 1).

0. Introduction

In two earlier papers, [R2] and [R3], we calculated the E∞-term of the bar spectral
sequence converging to the Morava K-theories of the special orthogonal groups. This
gives the additive structure, and coalgbra structure modulo the algebra structure. We also
obtained a system of algebra generators. One algebra relation was obtained in [R4] and
was used to prove that Spin(n) is not homotopy nilpotent if n ≥ 7. However, a complete
set of relations is yet to be determined.

In this paper, we make a start of that objective, by determining the algebra structure
of P (l)∗SO(2l+1 − 1). The methods used have some applicability to K(l)∗SO(n). In
particular, Proposition 4.1 below will used in a later paper to prove that SO(5) and SO(6)
are not homotopy nilpotent.

The results of this paper can also be used to give another derivation of the Hopf algebra
structure of H∗(Spin(n), Z/2), by proving the main result of [MZ]. We will not use any of
the results of [MZ], although a proof or two can be shortened thereby.

Throughout this paper BP will refer to the 2-local theory. For background information
on BP and related topics, see [Wi].

1. Preliminaries on Morava K-theories

In this section, we recall some basic facts on the Morava K-theories, and related spectra.
It is well known that BP∗ = Z(2)[v1, v2, . . . ] where the degree of vi is 2(2i − 1) (see,

for example, [Qu]). Let l > 0. Using the Sullivan-Baas technique ([Su], [Bs]), we can kill
{vi | i < l} to get P (l), a BP -module theory with coefficient ring P (l)∗ = Z/2[vl, vl+1, . . . ].
(This and the next few statements are due to Jack Morava. See [JW] for a source in print.)
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There are Bockstein maps Qi : P (l) → P (l) of degree 2i+1 − 1 for 0 ≤ i < l. These cover
the Milnor Bocksteins on HZ/2 under the canonical map P (l) → HZ/2.

Lemma 1.1. Suppose that X is n-connected and that l ≤ m. Then P̃ (l)iX → P̃ (m)iX is
an isomorphism if 0 ≤ i ≤ n + 2l+1 − 2.

If 0 < l < ∞, there are two products on P (l) which make it into a BP -algebra theory
[Wu]. The Bocksteins Qi are derivations with respect to either of these two products (see,
for example, [SY, Theorem 3.14 (iii)]). Neither of these is commutative. We make P (l)
into an associative ring spectrum by arbitrarily selecting one of these two products.

Proposition 1.2. Let X and Y be spectra and τ : X ∧ Y → Y ∧ X be the switch map.
Then P (l)∗τ(x ∧ y) = y ∧ x + vl(Ql−1y) ∧ (Ql−1x).

This is an immediate consequence of the commutator formula of Würgler [Wu, 2.5].
Note that if X is an H-space with P (l)∗X free as a P (l)∗-module, then P (l)∗X is both

an algebra and a coalgebra. But it need not be a Hopf algebra, as P (l) is not commutative.

Proposition 1.3. Suppose that X is an H-space and that P (l)∗X is free as aP (l)∗-module.
Let x and y be elements of P (l)∗X and ∆ be the diagonal of the latter. Then

∆(xy) = ∆(x)∆(y) + vl((id⊗Ql−1)∆(x))((Ql−1 ⊗ id)∆(y)) .

See [R4, Corollary 1.6].
Throughout this paper, H∗X will denote the mod-2 homology of X. We will consider

Qi as a differential on H∗X, with degree 2i+1 − 1.

2. Preliminaries on P (l)∗SO(2l+1 − 1)

In this section, we collect some results from the earlier papers [R1], [R2] and [R3]. We
will also set up some notation.

The results of the next paragraph follows from [R1].
Let Gn = SO(n + 2)/(SO(2) × SO(n)) be the generating variety for the homology

of Ω0SO(n + 2); i.e. there is a map Gn → Ω0SO(n + 2) such that H∗(Gn, Z) maps
monomorphicaly into H∗(Ω0SO(n + 2), Z) and the image of the former generates the
latter as an algebra [Bt]. Gn has no torsion in homology. Note that G∞ = CP∞. Let
x be the image of the standard generator of MU∗CP∞ in MU∗Gn. MUQ∗G2n−1 =
MU∗[x]/(x2n = 0). Let {β′0, β1, . . . β2n−1} be the basis of MU∗G2n−1 that is dual to
{1, x, . . . , x2n−1}. Let β0 ∈ M̃U0ΩSO(2n + 1) be the unique element such that β2

0 = 2β0.
Define αi =

∑i
j=0 ci−jβj and α′i =

∑i
j=1 ci−jβj where cj is the coefficient of tj+1 in the

MU -[2]-series. If 1 ≤ i ≤ 2n − 1 and 1 ≤ j ≤ n − 1, then αi ∈ M̃U∗ΩSO(2n + 1) and
α′i, βj ∈ M̃U∗ΩSpin(2n + 1) ⊂ M̃U∗ΩSO(2n + 1).

If h is an MU -algebra theory, we will denote the images of the β’s and α’s in h∗ΩSO(2n+
1) by the same symbols. These elements are independent of n in the sense that if 0 ≤ i <
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n < q and j < 2n, then

h∗ΩSO(2n + 1) incl∗−−−→ h∗ΩSO(2q + 1)

preserves βi, α′j and αj . The image of u under the homology suspension h̃∗ΩSO(2n+1) →
h∗+1SO(2n + 1) will be denoted by u.

For the rest of this paper we will fix an l > 0. For 0 ≤ i < 2l−1, define k(i) by
2l ≤ 2k(i)(2i + 1) < 2l+1. Let k′(i) = 2k(i).

Fix a ground ring of characteristic 2. Let Γk(u) denote the divided power algebra of
height k on u. This is the dual of the primitively generated truncated polynomial algebra
P (x)/(x2k

). The jth divided power of u will be denoted by γj(u). These are characterized
by the relations γ1(u) = u, γs(u)γt(u) = (s, t)γs+t(u) where (s, t) is the binomial coefficient
(s + t)!/s!t!; and ∆(γs(u)) =

∑s
j=0 γj(u)⊗ γs−j(u).

We need some facts concerning the Bar spectral sequence; See [R2, Section 3] for proofs.
If G is a compact connected Lie group and h a BP -algebra theory, then the bar spectral
sequence

E2
∗∗(G, h) = Torh∗ΩG

∗∗ (h∗, h∗) ⇒ h∗G

is a spectral sequence of commutative algebras. If Er
∗∗(G, h) is free over h∗ for all r, then

it a spectral sequence of bicommutative, biassociative Hopf algebras.
The next result is proved in [R2]:

Proposition 2.1. (1) Let m ≥ l. Then

E∞
∗∗
(
SO(2l+1 − 1), P (m)

)
=

2l−2⊗
i=0

Γk(i)+1(βi)

E∞
∗∗
(
Spin(2l+1 − 1), P (m)

)
= E(α′2l−1)⊗

2l−2⊗
i=1

Γk(i)+1(βi)

(2) If i ≥ 2l − 1, then α2i+1 = 0 in P (l)∗SO(2l+1 − 1).
(3) If m > l, then P (m)∗SO(2l+1 − 1) is a bicommutative, biassociative Hopf algebra

isomorphic to
⊗2l−2

i=0 Γk(i)+1(βi).

Corollary 2.2. P (l)∗Spin(2l+1− 1) → P (l)∗SO(2l+1− 1) is injective and sends α′2l−1 to
vlβ0.

Proof. Note that α′2l−1 = α2l−1 − c2l−1β0 in BP∗ΩSO(2l+1 − 1), where c2l−1 is the coef-

ficient of t2
l

in the [2]-series. But c2l−1 is 0 if m > l and vl if m = l. The rest of the proof
is easy.

The elements γj(βi) are independent of l and m in sense that if l′ ≥ l, m′ ≥ m and
m′ > l′ then the map P (m)∗SO(2l+1 − 1) → P (m′)∗SO(2l′+1 − 1) preserves γj(βi).
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Lemma 2.3. γj(βi) ∈ Im
(
H∗Spin(2l+1 − 1) → H∗SO(2l+1 − 1)

)
if i ≥ 1 and j < 2k(i)+1.

Proof. Dualizing Proposition 2.1, we see that

H∗SO(2l+1 − 1) = E∗∗
∞ (SO(2l+1 − 1),HZ/2) =

2l−1−1⊗
i=0

P (w̃2i+1)/(w̃2k′(i)
2i+1 )

where w̃2i+1 is a primitive element of degree 2i + 1 and

〈γs(βi), w̃
2t

2j+1〉 =
{

1 s = 2t and i = j

0 otherwise

(w2t

2j+1 is, of course, the cohomology suspension of the (2t(2j + 1) + 1)th Stiefel-Whitney
class.)

Now w̃1 maps to 0 in H∗Spin(2l+1 − 1) for degree reasons. On the other hand, if i > 0
and j < 2k′(i), then w̃j

2i+1 maps non-trivially to H∗Spin(2l+1 − 1): By Proposition 2.1,

E∗∗
∞ (Spin(2l+1 − 1),HZ/2) = E(α2l−1)⊗

2l−1−1⊗
i=1

P (w̃2i+1)/(w̃2k′(i)
2i+1 ) .

Thus the kernel of the map H∗SO(2l+1 − 1) → H∗Spin(2l+1 − 1) is the ideal generated
by w̃1.

Let i ≥ 1 and w ∈ H∗SO(2l+1 − 1). Then

〈γs(βi), w̃1w〉 = 〈∆(γs(βi)), w̃1 ⊗ w〉 =
s∑

t=0

〈γt(βi), w̃1〉〈γs−t(βi), w〉 = 0 .

Let 0 ≤ i and j ≤ k′(i). By Lemma 1.1 and Proposition 2.1, there exist unique
elements γ′ij in P (l)∗SO(2l+1−1) that map to γj(βi) in H∗SO(2l+1−1). From Lemma 2.3,
Corollary 2.2 and Lemma 1.1 we see that if i ≥ 1, then there is a unique element in
P (l)∗Spin(2l+1 − 1) that maps to γj(βi). This element will also denoted by γ′ij . Clearly
this notation is consistent with the map P (l)∗Spin(2l+1 − 1) → P (l)∗SO(2l+1 − 1). For
typographical convenience, we will write γ̃i for γi,k′(i)

Proposition 2.4. The module of primitives of P (l)∗SO(2l+1−1) and P (l)∗Spin(2l+1−1)
are generated by

{βi | 0 ≤ i ≤ 2l − 2} and {βi | 1 ≤ i ≤ 2l − 2} ∪ {α2l−1}

respectively.

Proof. The case of SO(2l+1 − 1) was proved in [R4]. The case of Spin follows by Corol-
lary 2.2.
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3. The algebra structure of P (l)∗SO(2l+1 − 1) I

Let A be an algebra over a commutative ring R. A is said to be simply generated by
g1, g2, . . . over R if A is a free R-module with basis

{1} ∪ {gi1gi2 . . . gis | i1 < i2 < · · · < is} .

As we do not assume that A is commutative, the order of the elements is important.
We have the following corollary of Proposition 2.1:

Proposition 3.1. As a P (l)∗ algebra, P (l)∗SO(2l+1 − 1) is simply generated by{
β2l−2−j | 0 ≤ j ≤ 2l − 2

}
∪
{
γ′i,2s | 0 ≤ i < 2l−2, 1 ≤ s < k(i)

}
∪
{
γ̃i | 0 ≤ i < 2l−1

}
.

It turns out that the elements of the second set above commute with each other. So
how they are ordered is not material. Otherwise, the generators above will be ordered by
the sequence in which they are given.

Thus to determine the algebra structure of P (l)∗SO(2l+1 − 1), we must determine the
squares and the commutators of the generators listed above. The results can be summarized
by saying that these squares and commutators are as non-trivial as possible (that is to say,
consistent with Proposition 2.1).

We will repeatedly use the following observation: If x, y are elements of P (l)∗SO(2l+1−
1), then [x, y] = xy − xy is in vlP̃ (l)∗SO(2l+1 − 1). It is so because both P (l)∗{1} and
P (l +1)∗SO(2l+1− 1) are commutative. Also note that xy + yx = [x, y] as we are working
in characteristic 2.

Lemma 3.2. If i, j ≤ 2l−2, then [βi, βj ] = 0 and β
2

i = 0 in P (l)∗SO(2l+1−1). If i, j ≥ 1
then those equations hold in P (l)∗Spin(2l+1 − 1).

Proof. As the Bar ss is commutative, [βi, βj ] and β
2

i must have Bar filtration < 2. But
E∞

1,2s+1 = 0 and E∞
0∗ = P (l)∗{pt}.

Lemma 3.3. Suppose that 0 ≤ j ≤ 2l−1 − 1, 1 ≤ s ≤ k′(j) and i < 2l − 1− s(2j + 1)/2.
Then [βi, γ

′
js] = 0.

Proof. [βi, γ
′
js] is divisible by vl, has degree ≤ 2l+1 − 2, and its augmentation is trivial.

Hence it must be zero.

Lemma 3.4. Let i, j ≤ 2l−1−1. Then the following equations hold in P (l)∗SO(2l+1−1):

∆(γ′is) =
s∑

t=0

γ′it ⊗ γ′i,s−t if s ≤ k′(i);

γ′isγ
′
it = (s, t)γ′i,s+t if s, t < k′(i);

[γ′is, γ
′
jt] = 0 if s < k′(i) and t < k′(j).
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Proof. The first equation follows from the definition of γis and Lemma 1.1. Note that

2l−1−2⊗
i=0

Γk(i)(βi) = P (l)∗SO(2l − 1) → P (l)∗SO(2l+1 − 1)

takes γs(βi) to γ′is. Using Proposition 2.1, we get the second and the third equalities of
the lemma for i, j ≤ 2l−1 − 2.

Suppose that i = 2l−1 − 1. Then k(i) = 1. This the second equation follows from
Lemma 3.2. The third equation is vacuous if j = 2l−1 − 1. Let j < 2l−1 − 1. If t ≤
2k(j)−1, then Lemma 3.3 implies the result. Finally, if 2k(j)−1 < t < k′(j) because γ′jt =
γ′

j,t−2k(j)−1γ
′
j,2k(j)−1 commutes with β2l−1−1.

4. The main lemma

Let P be the projective plane of SO(n). There is a cofiber sequence

ΣSO(n) ∧ SO(n)
µ̃−→ ΣSO(n)

f−→ P
g−→ ΣSO(n) ∧ ΣSO(n)

where µ̃ is the Hopf construction on the multiplication of SO(n). This section is devoted
to proving the following result.

Proposition 4.1. Suppose that 2j+1 < n, i < 2l−1, 1 ≤ t ≤ k(i) and 2t(2i+1)+2j+1 ≥
max(n− 1, 2l+1). Then the image of the composition

k̃(l)∗+2P → H̃∗+2P
g∗−→ H̃∗+2(ΣSO(n) ∧ ΣSO(n)) ∼= H̃∗SO(n)⊗ H̃∗SO(n)

does not contain the element βj ⊗ γ′i,2t − γ′i,2t ⊗ βj.

We start by studying some identities of symmetric polynomials. Let R be the ring of
symmetric polynomials in n variables xi, 1 ≤ i ≤ n, with coefficients in Z/2. Denote the
elementary symmetric polynomials by σi, 1 ≤ i ≤ n. By convention σ0 = 1 and σi = 0 if
i < 0 or i > n. Let I be the ideal generated by the σi’s. Define φis by

φis =
∑{

xs
j0xj1 . . . xji

| j1 < · · · < ji; j0 6= jt for 1 ≤ t ≤ i
}

.

Note that φ0s =
∑

xs
j , which we will denote by πs.

Lemma 4.2. In R/I3, φ2k+1,2s = σ2k+2s+1 +
s−1∑
j=1

σ2k+2jσ2s+1−2j.

Proof. We have the following well-known Newton relations:

πi +
i−1∑
j=1

(−1)jσjπi−j + (−1)iiσi = 0
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It follows that πi ≡ iσi mod I2. Using the Newton relations once again, we have, in R/I3,

π2s+1 =
2s∑

i=1

σi(2s + 1− i)σ2s+1−i + (2s + 1)σ2s+1

=
s∑

t=1

σ2tσ2s+1−2t + σ2s+1

An easy calculation shows that φts = πsσt − φt−1,s+1. Iterating gives

φts =
t∑

i=0

(−1)iπs+iσt−i .

Thus, in R/I3,

φ2k+1,2s =
2k∑
i=0

π2s+iσ2k+1−i + π2k+2s+1

=
k−1∑
t=0

σ2s+2t+1σ2k−2t +
k+s−1∑

j=0

σ2k+2s−2jσ2j+1 + σ2k+2s+1

=
k−1∑
t=0

σ2s+2t+1σ2k−2t +
s−1∑
j=0

σ2k+2s−2jσ2j+1 +
s+k−1∑

j=s

σ2k+2s−2jσ2j+1 + σ2k+2s+1

The first and third sums above cancel each other, and the second sum is clearly the sum
in the statement of the lemma.

Next, we study the action of Ql on H∗P .
Extend the notation of Lemma 2.3 by letting w̃s be the unique primitive element in

HsSO(n). We have the inclusions P → BSO(n) → BO(n). Denote the image, in H∗P ,
of the s-th Stiefel-Whitney class by w′s. Note that f∗ : H∗P → H∗ΣSO(n) ∼= H∗−1SO(n)
takes w′s+1 to w̃s.

Lemma 4.3. In H∗P , Qlw
′
2k+2 = w′2k+1+2l+1 +

2l−1∑
j=1

w′2k+2jw
′
2l+1+1−2j

Proof. Identify H∗BO(n) with its image in H∗(RP∞)n = Z/2[x1, . . . , xn]. The i-th Steifel-
Whitney class is the i-th elementary symmetric polynomial in xi’s. In H∗(RP∞) = Z/2[x],
Qlx = x2l+1

. It follows that Qlσ2k+2 = φ2k+1,2l+1 in H∗((RP∞)n). The homomorphism
H∗BO(n) → H∗P annihilates I3 and w′1. Now apply Lemma 4.2.

Proof of Proposition 4.1. Denote βj ⊗ γi,2t − γi,2tβj by x′. It is of degree m = 2t+1(2i +
1) + 2j + 1.
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The cokernal of µ∗ : H̃∗SO(n)⊗H̃∗SO(n) → H̃∗SO(n) is the module of indecomposables
of the latter. Hence the kernel of f∗ is trivial in degrees > n. On the other hand, x′ is
in the kernel of µ∗ because H∗SO(n) is commutative. So x′ is in the image of g∗. Thus
there is a unique element x ∈ Hm+2P such that g∗x = x′. We will show that xQl 6= 0. For
typographical convenience, we put k = 2t−1(2i + 1) + j + 1− 2l.

〈xQl, w
′
m+3−2l+1〉 = 〈x,Qlw

′
m+3−2l+1〉 = 〈x,w′m+2〉+

2l−1∑
s=1

〈x,w′2k+2sw
′
2l+1+1−2s〉

Now w′m+2 = 0, for m + 2 > n. It is well known that the composition

H̃∗SO(n)⊗ H̃∗SO(n) ∼= H̃∗+2 (ΣSO(n) ∧ ΣSO(n))
g∗−→ H̃∗+2P

takes w̃r ⊗ w̃s to w′r+1w
′
s+1 [Th]. By definition, g∗x = βj ⊗ γi,2t − γi,2t ⊗ βj . So

〈xQl, w
′
m+3−2l+1〉 =

2l−1∑
s=1

〈βj , w̃2k+2s−1〉〈γi,2t , w̃2l+1−2s〉 −
2l−1∑
s=1

〈γi,2t , w̃2k+2s−1〉〈βj , w̃2l+1−2s〉

Using the remarks in the proof of Lemma 2.3 we see that all the terms in the second sum
vanish. So do all the terms in the first, except for the one with s = 2l − 2t−1(2i + 1); that
term is 1.

The proposition follows by noting that Ql annihilates the image of the reduction map
k(l)∗P → H∗P .

5. The algebra structure of P (l)∗SO(2l+1 − 1) II

In this section we determine a complete set of algebra relations for the generators in-
troduced in Section 3.

The next result is a useful technical lemma which is fairly well-known for commutative
Hopf-algebras. But we will use it in P (l)∗SO(2l+1 − 1) whose diagonal is not an algebra
homomorphism. So we give a statement that uses minimal hypothesis.

Lemma 5.1. Let B be both an algebra and coalgebra, and let A ⊂ B be both a subal-
gebra and a subcoalgebra. Let δ : A → B be both an algebra derivation and a coalgebra
derivation. Suppose that γi ∈ A, 0 ≤ i ≤ 2r+1 have the following properties: γ0 = 1,
∆(γi) =

∑i
j=0 γj ⊗ γi−j if i ≤ 2r+1; [γi, δ(γj)] = 0 and γiγj = (i, j)γi+j if i, j ≤ 2r; and

∆(δ(γ2r )γ2r ) = ∆(δ(γ2r ))∆(γ2r ). Then δ(γ2r+1)− δ(γ2r )γ2r is primitive.

Proof. Now γiγj = (i, j)γi+j if i, j < 2r+1: if 2r < i < 2r+1, then γi = γ2rγi−2r . In the
same way [γi, δ(γj)] = 0 if i, j < 2r+1.

If 0 < k < 2r+1, then
∑

0≤i<k−i≤2r

(
k
i

)(
2r+1−k
2r−i

)
= 1 (mod 2): Note that

(
2s+i

j

)
≡
(

i
j

)
mod 2 if 0 ≤ i, j < 2s. Thus, if i ≤ k < 2r, then(

k

i

)(
2r+1 − k

2r − i

)
=
(

k

i

)(
2r − k

2r − i

)
(mod 2) =

{
1 i = k

0 i < k
(mod 2) ,
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while if i ≤ 2r ≤ k,(
k

i

)(
2r+1 − k

2r − i

)
=
(

k − 2r

i

)(
2r+1 − k

2r − i

)
(mod 2) =

{
1 i = k − 2r

0 i 6= k − 2r
(mod 2) .

Now the result follows from the next calculation:

∆(δ(γ2r )γ2r ) =

(
2r∑

i=0

δ(γi)⊗ γ2r−i + γi ⊗ δ(γ2r−i)

) 2r∑
j=0

γj ⊗ γ2r−j


=

2r∑
i=0

(δ(γi)γi ⊗ γ2r−iγ2r−i + γiγi ⊗ δ(γ2r−i)γ2r−i)

+
∑
i 6=j

(δ(γi)γj ⊗ γ2r−iγ2r−j + γiγj ⊗ δ(γ2r−i)γ2r−j)

= δ(γ2r )γ2r ⊗ 1 + 1⊗ δ(γ2r )γ2r

+
∑

0≤i<j≤2r

(δ(γiγj)⊗ γ2r−iγ2r−j + γiγj ⊗ δ(γ2r−iγ2r−j))

= δ(γ2r )γ2r ⊗ 1 + 1⊗ δ(γ2r )γ2r

+
∑

0≤i<k−i≤2r

(
k

i

)(
2r+1 − k

2r − i

)
(δ(γk)⊗ γ2r+1−k + γk ⊗ δ(γ2r+1−k))

= δ(γ2r )γ2r ⊗ 1 + 1⊗ δ(γ2r )γ2r + ∆(δ(γ2r+1))− δ(γ2r+1)⊗ 1− 1⊗ δ(γ2r+1)

Lemma 5.2. If 0 ≤ i ≤ 2l − 2 and 0 ≤ r < l, then Qrβi = 0 in P (l)∗SO(2l+1 − 1). If
0 ≤ i ≤ 2l−1 − 1 and 1 ≤ s ≤ k(i), then

Qrγ
′
i,2s =

s∑
t=1

β2t−1(2i+1)−2rγ′i,2s−2t .

By convention, βt = 0 if t < 0.

Proof. The first sentence follows from the fact that

βi ∈ im
(
BP∗ΣG2l+1−3 → P (l)∗SO(2l+1 − 1)

)
.

We will prove the second by induction on s. Note that the claim is vacuously true if s = 0,
and true by degree considerations if 2s(2i + 1) ≤ 2r+1 − 1. In particular Ql−1γi,2s = 0 if
s < k(i).

Suppose that 2s−1(2i + 1) ≥ 2r. Then Qrγ
′
i,2s is indecomposable in H∗SO(2l+1 − 1):

Recall that H∗RP 2l+1−2 is isomorphic to the module of indecomposables of H∗SO(2l+1−1)
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as modules over the Steenrod algebra. Let xt be the non-trivial element of the former of
degree t. It is well known that if t ≥ 2r, then Qrx2t 6= 0.

Thus x = Qrγ
′
i,2s − γ′i,2s−1Qrγ

′
i,2s−1 is non-trivial. The last hypothesis of Lemma 5.1

holds by Proposition 1.3. So x is primitive. By Proposition 2.4, x = β2s−1(2i+1)−2r . The
induction hypothesis, and an easy calculation complete the proof.

Corollary 5.3. Let i ≤ 2l−1 − 1. If s < k′(i), then Ql−1γ
′
is = 0. Also, Ql−1γ̃i =

β2k(i)−1(2i+1)−2l−1 .

Proposition 5.4. Suppose that 0 ≤ i, j ≤ 2l−1 − 1 and s < k′(j). Then [γ̃i, γ
′
js] =

[γ̃i, βj ]γ′j,s−1.

Proof. The proof is by induction on s. Note that it is true by definition if s = 1. Let
s = 2t + r with 0 < r < 2t. Then

[γ̃i, γ
′
js] = [γ̃i, γ

′
j,2tγ′jr] = γ′j,2t [γ̃i, γ

′
jr] + [γ̃i, βj ]γj,2t−1γjr .

The second term is trivial. Thus we are left with the case s = 2t+1.
The induction hypothesis, Corollary 5.3, Lemma 3.4 and Proposition 1.3 imply that

Lemma 5.1 applies to γ′jr and

[γ̃i, .] : P (l)∗SO(2l − 1) → P (l)∗SO(2l+1 − 1) .

Thus [γ̃i, γ
′
js]− [γ̃i, γ

′
j,2t ]γ′j,2t is an even dimensional primitive. It must be trivial by Propo-

sition 2.4.

Proposition 5.5. Let 0 ≤ i ≤ 2l−1 − 1, 1 ≤ t ≤ k′(i) and 0 ≤ j ≤ 2l − 2. If s =
2t−1(2i + 1) + j − 2l + 1 ≥ 0, then [γi,2t , βj ] = [γi,2t−1 , βj ]γi,2t−1 + vlβs.

Proof. It follows from Lemma 5.1 that x = [γi,2t , βj ]− [γi,2t−1 , βj ]γi,2t−1 is primitive. It is
divisible by vl for P (l + 1)∗SO(2l+1 − 1) is commutative. By Proposition 2.4, x is either
0 or vlβs.

Let P be the projective plane of SO(2l+1 − 1). If x were trivial,

βj ∧ γi,2t − γi,2t ∧ βj − [γi,2t−1 , βj ] ∧ γi,2t−1

would be in the image of

P̃ (l)∗P → P̃ (l)∗(ΣSO(2l+1−1)∧ΣSO(2l+1−1)) ∼= P̃ (l)∗−2(SO(2l+1−1)∧SO(2l+1−1)) .

This contradicts Proposition 4.1 because the reduction of [γi,2t−1 , βj ] to ordinary homology
is trivial.
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Corollary 5.6. Let 0 ≤ i ≤ 2l−1 − 1, 0 ≤ j < 2l − 1. If 2s(2i + 1) + 2j + 1 = 2l+1 − 1,
then [γ′i,2s , βj ] = α′2l−1 in P (l)∗Spin(2l+1 − 1).

Proof. Combine Corollary 2.2 with the previous proposition.

This corollary, combined with Proposition 2.1, implies the dual of the main result of
[MZ].

Lemma 5.7. Let 0 ≤ i, j ≤ 2l−1 − 1. Then

[γ̃i, γ̃j ] = [γ̃i, βj ]γj,k′(j)−1 + [γ̃j , βi]γi,k′(i)−1 + (Ql−1γ̃i)(Ql−1γ̃j) .

Proof. Note that (id⊗Ql−1)(∆(γ̃i)) = 1 ⊗ (Ql−1γ̃i). Thus, by Proposition 1.3, Proposi-
tion 5.4 and Lemma 3.4,

∆([γ̃i, γ̃j ]) = [∆(γ̃i),∆(γ̃j)] + vl(1⊗ (Ql−1γ̃i))((Ql−1γ̃j)⊗ 1)

=
k′(j)∑
s=0

([γ̃i, γ
′
js]⊗ γ′j,k′(j)−s + γ′js ⊗ [γ̃i, γ

′
j,k′(j)−s])

+
k′(i)∑
s=0

([γ̃j , γ
′
is]⊗ γ′i,k′(i)−s + γ′is ⊗ [γ̃j , γ

′
i,k′(i)−s]) + vlQl−1γ̃j ⊗Ql−1γ̃i

= [γ̃i, γ̃j ]⊗ 1 + 1⊗ [γ̃i, γ̃j ] + ∆([γ̃i, βj ])∆(γ′j,k′(j)−1)

+ ∆([γ̃j , βi])∆(γ′i,k′(i)−1) + vlQl−1γ̃j ⊗Ql−1γ̃i

As Ql−1γ̃r are primitive, we see that

[γ̃i, γ̃j ]− ([γ̃i, βj ]γj,k′(j)−1 + [γ̃j , βi]γi,k′(i)−1 + (Ql−1γ̃i)(Ql−1γ̃j))

is an even dimensional primitive and hence trivial.

Proposition 5.8. Let 0 ≤ i ≤ 2l−1 − 1 and j = (2i + 1)2k(i)−1 − 2l−1. Then

γ̃2
i = [γ̃i, βi]γ

′
i,k′(i)−1 + γ′j,2 .

Proof. We have a by-now-familiar type of calculation:

∆(γ̃2
i ) = (∆(γ̃i))2 + vlβj ⊗ βj

= γ̃2
i ⊗ 1 + 1⊗ γ̃2

i + vlβj ⊗ βj

+
k′(i)−1∑

s=1

([γ̃i, γ
′
is]⊗ γ′i,k′(i)−s + γ′is ⊗ [γ̃i, γ

′
i,k′(i)−s])

= γ̃2
i ⊗ 1 + 1⊗ γ̃2

i + vlβj ⊗ βj + ∆([γ̃i, βi])∆(γ′i,k′(i)−1)

It follows that γ̃2
i − ([γ̃i, βi]γi,k′(i)−1 + γ′j,2) is an even dimensional primitive and hence

trivial.
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