THE ALGEBRA STRUCTURE OF $K(l)_*SO(2^{l+1}-1)$

VIDHYĀNĀTH K. RAO

The Ohio State University

ABSTRACT. We show that if G is a compact connected Lie group that has p-torsion in homology, then G localized at p is not homotopy nilpotent. Thus, a connected Lie group is homotopy nilpotent if and only if it has no torsion in homology.

0. Introduction

If X is a homotopy associative H-space, then the functor $[_, X]$ takes its values in the category of groups. We can ask when the values of this functor lie in various subcategories of groups. One special case is asking when $[_, X]$ is always nilpotent. Such X are said to be homotopy nilpotent.

Now, if A is finite, [A, X] is a nilpotent group; but the nilpotency class may depend on the dimension of A. If X is a finite H-space, then [A, X] will be nilpotent for all A precisely when the nilpotency class of [A, X] is bounded above for all finite A.

The above condition has a direct formulation in terms of the structure maps of X: Let μ and σ be the multiplication and the inverse maps of X. Define the commutator c_2 to be the composite

$$X\times X\xrightarrow{\Delta_{X\times X}}X\times X\times X\times X\xrightarrow{\operatorname{id}\times\operatorname{id}\times\sigma\times\sigma}X\times X\times X\times X\xrightarrow{\mu(\mu\times\mu)}X$$

and define the iterated commutators $c_n: X^n \to X$ inductively by $c_n = c_2(c_{n-1} \times id_X)$.

¹⁹⁹¹ $Mathematics\ Subject\ Classification.$ Primary: ; Secondary:.

Key words and phrases. Homotopy nilpotency, Lie groups, Morava K-theory.

Proposition 0.1. A finite homotopy associative H-space X is homotopy nilpotent iff c_n is null homotopic for sufficiently large n.

This is standard. See [13, Section 2.6].

For \mathbb{S}^3 , c_n will be Whitehead products. By calculating c_4 . G. J. Porter showed that \mathbb{S}^3 is homotopy nilpotent [5].

The first major advance was made by M. J. Hopkins [2]. He showed that a finite H-space X is homotopy nilpotent if and only if for sufficiently large n, c_n 's induce trivial homomorphism in complex bordism. This is same as asking that c_n 's induce trivial homomorphisms in all Morava K-theories. It follows that all homotopy associative finite H-spaces with no torsion in homology are homotopy nilpotent. Hopkins conjectured that all finite H-spaces were homotopy nilpotent.

In [9], the author showed that Spin(n) is not homotopy nilpotent for $n \geq 7$. The same method applies to G_2 , SO(3) and SO(4). N. Yagita [12] showed that the simply connected exceptional Lie groups were not homotopy nilpotent [12] using his earlier calculation of their Morava K-theories.

These results are all local. That is, if G is a simple simply connected Lie group and G has p-torsion in homology, then $G_{(p)}$, the localization of G at p, is not homotopy nilpotent. In this paper we generalize this to the following.

Theorem 0.2. Let G be a compact connected Lie group. Let p be a prime. Then $G_{(p)}$, the localization of G at p, is homotopy nilpotent if and only if $H_*(G, \mathbb{Z}_{(p)})$ is torsion-free.

Of course, the "if" part is due to Hopkins.

We refer the reader to [10] for a summary of facts about Morava K-theory that we need.

1. A Reduction

Lemma 1.1. Let X be an H-space and let \overline{X} be a covering space. Then there is a unique H-space structure on \overline{X} such that the covering projection is a H-map. If X is homotopy nilpotent, then so is \overline{X} .

Proof. The first part is standard. The second follows from the fact that for any connected $A, [A, \overline{X}] \to [A, X]$ is injective.

Fix a prime p. Let G be a compact connected Lie group such that $G_{(p)}$ homotopy nilpotent. Assume that G is not simply connected and is not a torus. The universal cover of G has the form $\widetilde{G} \times \mathbb{R}^n$ where \widetilde{G} is compact. It follows from the lemma above that \widetilde{G} is homotopy nilpotent. By [12] \widetilde{G} has no p-torsion in homology.

The kernel of $\widetilde{G} \times \mathbb{R}^n \to G$ has the form $C \times F$, where $C < \widetilde{G}$ is finite and F is free abelian. First suppose that the order of C is prime to p. Then $\widetilde{G} \simeq_{(p)} \widetilde{G}/C$. By [3, Proposition 3.2], G is homotopy equivalent, as a space, to the product of \widetilde{G}/C and a torus. It follows that G has no p-torsion in homology.

Now suppose that p divides the order of C. Then C contains an element of order p, say g. Then $\widetilde{G}/\langle g \rangle$ is equivalent to a covering group of G, and so is homotopy nilpotent. This contradicts the next lemma:

Lemma 1.2. Let G a compact connected Lie group with $\pi_1G = \mathbb{Z}/(p)$. Suppose that \widetilde{G} , the universal cover of G has no p-torsion in homology. Then $G_{(p)}$ is not homotopy nilpotent.

The rest of this paper is devoted to proving this lemma.

2. A Calculation

Lemma 2.1. Let X be a finite H-space such that $\pi_1 X = \mathbb{Z}/(p)$ and \widetilde{X} , the universal cover of X, has no p-torsion in homology. Then there is an element $\tau \in K(1)_2 X$ such that $K(1)_* X$ is a free $K(1)_* \widetilde{X}$ left module with basis $\{1, \tau, \ldots, \tau^{p-1}\}$ and $\tau^p = -v_1 \tau$.

Proof. There is a fiber sequence $\widetilde{X} \to X \to K(\mathbb{Z}/(p),1)$ which gives $\Omega X \simeq \Omega \widetilde{X} \times \mathbb{Z}/(p)$ when looped. By our assumption, $H_*(\widetilde{X},\mathbb{Z}_{(p)})$ is an exterior algebra on odd dimensional generators. So $H_*(\Omega \widetilde{X},\mathbb{Z}_{(p)})$ is a polynomial algebra on even-dimensional generators. It follows that $BP_*(\Omega \widetilde{X})$ is also a polynomial algebra. Let the generators be β_1, \ldots, β_n . Let β_0 be a generator of any summand of $\widetilde{BP}_0\Omega X$ such that $\beta_0^p = p\beta_0$.

We will make use of the Bar spectral sequence. We refer the reader to [7] and references cited there for details of construction. We will denote the divided power algebra on an element x by $\Gamma(x)$ and the truncated divided power algebra of height s by $\Gamma_s(x)$. These are the duals of the polynomial algebra P(y) and the truncated polynomial algebra $P(y)/(y^{p^s})$ on a primitive generator y. $\gamma_i(x)$ will denote the ith divided power of x.

We will do the case of odd p first. Let h be any BP-algebra theory with $h_0 = \mathbb{Z}/(p)$ and h_* concentrated in even degrees. The Bar ss $E_{**}^*(X,h)$ converging to h_*X has E^2 -term

$$\operatorname{Tor}_{**}^{h_*\Omega X}(h_*,h_*) = \Gamma(\tau) \otimes E(\overline{\beta}_0,\overline{\beta}_1,\ldots,\overline{\beta}_n)$$

where τ has bidegree (0,2) and $\overline{\beta}_i$ is the homology suspension of β_i and has bidegree (2t,1), where $2t \geq 2$ is the dimension of β_i . For dimensional reasons, τ is a permanent cycle, as are $\overline{\beta}_i$. Furthermore, even differentials are zero for degree reasons. If E^r are free h_* -modules for $2 \leq r \leq k$, then E^r is Hopf algebra and d^r a Hopf derivation for $2 \leq r \leq k$. The identification of the E^2 -term given above respects the Hopf algebra structure.

A calculation as in [11, proof of 6.9, 6.10] shows that the first non-trivial differential d^r must occur for $r = 2p^s - 1$ for some s. Then $d^r(\gamma_t(\tau)) = \gamma_{t-p^s}(\tau)d^r(\gamma_{p^s}(\tau))$; $d^r(\gamma_{p^s}(\tau))$ is primitive and so must be a linear combination of $\overline{\beta}_i$'s.

The map $\Omega X \to \Omega K(\mathbb{Z}/(p),1)$ induces a homomorphism of Bar ss in K(1)-theory. The Bar ss $E_{**}^*(K(\mathbb{Z}/(p),1),K(1))$ is described in [11]. The E^2 -term is $\Gamma(\tau) \otimes E(\overline{\beta}_0)$. The only non-trivial differential is given by $d^{2p-1}(\gamma_p(\tau)) = cv_1\overline{\beta}_0$, with $c \neq 0$ in $\mathbb{Z}/(p)$. Hence, in $E_{**}^{2p-1}(X,P(1))$ we must have $d^{2p-1}(\tau) = cv_1\overline{\beta}_0 + \overline{\beta}$, where β is a possibly trivial $\mathbb{Z}/(p)$ -linear combination of β_i 's.

An easy calculation using [11, Lemma 6.9] shows that if $\beta \neq 0$, then

$$E_{**}^{2p}(X, P(1)) = \Gamma_1(\tau) \otimes E(\overline{\beta}_0, \overline{\beta}_1, \dots, \overline{\beta}_n) / (cv_1\overline{\beta}_0 + \overline{\beta} = 0).$$

But if $\beta=0$, then the E^{2p} -term is generated by 1 and $\overline{\beta}_0\gamma_{ps}(\tau)$ as a module over $\Gamma_1(\tau)\otimes E(\overline{\beta}_1,\ldots,\overline{\beta}_n)$ subject to the relations $v_1\overline{\beta}_0\gamma_{ps}(\tau)=0$. Note that in the first case, all further differentials are trivial, while in the second further differentials cannot affect elements of total degree at most 2p.

In both cases, $E^{2p}(X, K(1)) = \Gamma_1(\tau) \otimes E(\overline{\beta}_1, \dots, \overline{\beta}_n)$ because v_1 is invertible in K(1). This proves that $K(1)_*X$ is as stated.

Note that $\tau^p = 0$ in the E^2 -term. Hence, in $P(1)_*X$, τ^p is a sum of elements total degree 2p and filtration at most 2p-1. But such elements must be $\mathbb{Z}/(p)$ -linear combination of $v_1\tau$ and products of $\overline{\beta}_i$'s and τ . Now $H_i(X,\mathbb{Z}/(p)) \cong H_i(K(\mathbb{Z}/(p),1),\mathbb{Z}/(p))$ for $i \leq 2$. So the reduction of τ to mod-p homology is primitive. Note that $P(1)_*Y \cong \widetilde{H}_i(Y,\mathbb{Z}/(p))$ for $i \leq 2p-2$ for any connected Y. It follows that the diagonal of X takes τ to $1 \times \tau + \tau \times 1$. So τ is primitive in $K(1)_*X$. As $\tau^p = -v_1\tau$ in $K(1)_*K(\mathbb{Z}/(p),1)$ [11], $\tau^p + v_1\tau$ is a primitive element of $K(1)_*X$ that is a linear combination of product of $\overline{\beta}_i$'s and τ . Hence it is trivial.

We now indicate the changes in the proof for p=2: the E^2 -term is $\Gamma(\overline{\beta}_0) \otimes E(\overline{\beta}_1,\ldots,\overline{\beta}_n)$ and $\gamma_s(\tau)$ must be replaced by $\gamma_{2s}(\overline{\beta}_0)$. However, τ is not primitive and we cannot eliminate the possibility that τ^2 contains a product of $\overline{\beta}_i$'s. However, if $i \geq 1$, β_i has dimension $2t \geq 2$ and $\overline{\beta}_i$ has bidegree (2t,1). Thus the only products that can occur in τ^2 are $\overline{\beta}_0\overline{\beta}_i$, with β_i of dimension 2. So we must have $\tau^2 = v_1\tau + \overline{\beta}_0\overline{\sigma}$, where $\overline{\sigma}$ is the K(1)-reduction of some element in $P(1)_3\widetilde{X}$.

Comparison with $H_*(K(\mathbb{Z}/(2),1),\mathbb{Z}/2)$ shows that the diagonal of τ is $1 \times \tau + \overline{\beta}_0 \times \overline{\beta}_0 + \tau \times 1$ and that $Q_0\tau = \overline{\beta}_0$. It follows that $[\tau, \overline{\beta}_0] = Q_0(\tau^2) = v_1\overline{\beta}_0$. As in the proof of [9, Lemma 3.5], we see that $\tau^2 - v_1\tau$ is primitive in $K(1)_*X$. Hence $\overline{\beta}_0\overline{\sigma} = 0$.

Note that, for X as in the lemma, $K(1)_*\widetilde{X}$ injects into $K(1)_*X$. This allows us to consider $K(1)_*\widetilde{X}$ to be a subalgebra of $K(1)_*X$. Note also that $\overline{\beta}_0$ is either 0 or $-v_1^{-1}\overline{\beta}$ for some $\overline{\beta} \in P(1)_{2p-1}\widetilde{X}$, according to whether $d^{2p-1}(\gamma_p(\tau))$ is $\overline{\beta}_0$ or not.

Note that $\overline{\beta}_0$ and τ come from $P(1)_*X$. We will make the choice of τ canonical by making a choice in $P(1)_2K(\mathbb{Z}/(p),1)$, lifting it to $P(1)_2X$ and then reducing to $K(1)_2X$. If it is necessary to avoid confusion, we will use the notation τ_X . Note that if we have a H-map $f: X \to Y$ between two such H-spaces with $f_*: \pi_1X \cong \pi_1Y$, then $f_*(\tau_X) = \tau_Y$.

We will abuse notation by denoting the chosen preimages of $\overline{\beta}_0$ and τ , as well as their reduction to mod-p homology, by the same symbols

3. Proof of Lemma 1.2

Lemma 3.1. Let \widetilde{H} be a simple simply connected compact Lie group with no ptorsion in homology, h a central element of order p and $H = \widetilde{H}/\langle h \rangle$. Then τ_H is not central in $K(1)_*H$.

Proof. The only simple simply connected Lie groups with a central element of order p and no p-torsion in homology are Spin(m) with $3 \le m \le 6$ and p = 2, Sp(m) with $m \ge 2$ and p = 2 and SU(pm) with $pm \ge 3$ and p any prime: See, for example, [Mi], especially p. 954 and pp. 956–961. It follows that H is one of SO(n) for $3 \le n \le 6$, the semi-spin group SS(4), $SU(pm)/\langle e^{2\pi i/p} \rangle$ and $Sp(n)/\langle -1 \rangle$. We shall show that in each case τ_H is not central in $K(1)_*H$.

For SO(3) and SO(4), this was done in [9]. Next we consider SO(5). By the results of [7] and [8], $E^2_{**}(SO(5),P(1)) = \Gamma(\overline{\beta}_0) \otimes E(\overline{\beta}_1,\overline{\alpha}_3)$. $d^2=0$ and $d^3(\gamma_4(\overline{\beta}_0)) = v_1\overline{\beta}_0$. It follows that the only non-zero element in E^4_{**} of total degree 5 and filtration less than 3 is $v_1\overline{\beta}_1$. Note that τ corresponds to $\gamma_2(\overline{\beta}_0)$. As the Bar ss is commutative, $[\tau,\overline{\beta}_1]$ must have filtration less than 3. Hence, $[\tau,\overline{\beta}_1]$ is either 0 or $v_1\overline{\beta}_1$.

Let P be the projective plane of SO(5). For any multiplicative homology theory h, there is a long exact sequence

$$\dots \widetilde{h}_{*+2}P \to \widetilde{h}_*(SO(5) \wedge SO(5)) \xrightarrow{\mu_*} \widetilde{h}_*SO(5) \to \widetilde{h}_{*+1}P \dots$$

where μ_* is induced by multiplication. Thus, if $[\tau, \overline{\beta}_1]$ were $0, \tau \wedge \overline{\beta}_1 - \overline{\beta}_1 \wedge \tau$ would be in the image of $P(1)_7 P$. But this contradicts [10, Proposition 4.1]. Hence, $[\tau, \overline{\beta}_1] = v_1 \overline{\beta}_1$. As $\overline{\beta}_1$ comes from $K(1)_* Spin(5)$, it is non-zero in $K(1)_* SO(5)$ by Lemma 2.1. So τ is not central in $K(1)_* SO(5)$.

As remarked in [8], $K(1)_*SO(5)$ injects into $K(1)_*SO(6)$. This proves our claim for SO(6).

Next we consider SS(4). The universal cover is Spin(4) whose homology is exterior on two generators of dimension 3. Consider the Bar ss in $\mathbb{Z}/(2)$ -homology. This is Hopf algebra spectral sequence. Its E^2 -term is $\Gamma(\overline{\beta}_0) \otimes E(\overline{\alpha}, \overline{\beta})$ where $\overline{\alpha}$ and $\overline{\beta}$ have bidegree (2,1). As SS(4) is finite, there must be non-trivial differentials. As in the proof of Lemma 2.1, the first non-trivial differential d^r occurs when $r = 2(2^s) - 1$ and then $d^r(\gamma_{r+1}(\overline{\beta}_0))$ is primitive. The only possibility is r = 3 with $d^r(\gamma_4(\overline{\beta}_0)) = a\overline{\alpha} + b\overline{\beta} \neq 0$.

As in the proof of Lemma 2.1, it follows that $d^3(\gamma_4(\overline{\beta}_0)) = v_1\overline{\beta}_0 + a\overline{\alpha} + b\overline{\beta}$ in $E_{**}^*(SS(4), P(1))$. Hence, $\overline{\beta}_0 = -v_1^{-1}(a\overline{\alpha} + b\overline{\beta}) \neq 0$ in $K(1)_*SS(4)$. On the other hand, applying Q_0 to $\tau^2 = -v_1\tau$ gives $[\tau, \overline{\beta}_0] = -v_1\overline{\beta}_0$ in $K(1)_*SS(4)$.

To deal with the case of $Sp(n)/\langle -1\rangle$, we need to recall the details of SO(3) calculation [7]: $E^2_{**}(SO(3), P(1)) = \Gamma(\overline{\beta}_0) \otimes E(\overline{\sigma})$, where $\overline{\sigma}$ is $\overline{\alpha}'_1$ in the notation of [7]. Of course, $\overline{\sigma}$ is a generator of $K(1)_*S^3$. The only non-trivial differential is given by $d^3(\gamma_{4k}(\overline{\beta}_0)) = (\overline{\sigma} + v_1\overline{\beta}_0)\gamma_{4k-4}(\overline{\beta}_0)$. τ corresponds to $\gamma_2(\overline{\beta}_0)$. In $P(1)_*SO(3)$, $[\tau, \overline{\beta}_0] = v_1\overline{\beta}_0$. As $\overline{\sigma} = -v_1\overline{\beta}_0$, $[\tau, \overline{\sigma}] = v_1\overline{\sigma}$.

Let $K = Sp(1)^n/\langle -1 \rangle$. $K(1)_*Sp(1)^n$ is the exterior algebra on $\overline{\sigma}_1, \ldots, \overline{\sigma}_n$, where $\overline{\sigma}_i$ is the image of $\overline{\sigma} \in K(1)_*Sp(1)$ under inclusion as the *i*-th factor. We will calculate $[\tau_K, \overline{\sigma}_1]$. It has bar filtration at most 2; so it is a linear combination of $\overline{\sigma}_i$'s.

The projection of $Sp(1)^n$ onto the *i*-th factor induces a homomorphism $pr_i: K \to Sp(1)/\langle -1 \rangle = SO(3)$. If $i \neq 1$, then $(pr_i)_*[\tau_K, \overline{\sigma}_1] = [(pr_i)_*\tau_K, (pr_i)_*\overline{\sigma}_1] = [\tau_{SO(3)}, 0] = 0$. On the other hand, $(pr_1)_*[\tau_K, \overline{\sigma}_1] = [\tau_{SO(3)}, \overline{\sigma}] = v_1\overline{\sigma}$. It follows that $[\tau_K, \overline{\sigma}_1] = v_1\overline{\sigma}_1$.

The inclusion $Sp(1)^n \subset Sp(n)$ induces $K \to Sp(n)/\langle -1 \rangle$. The former takes $\overline{\sigma}_1$ to the three dimensional generator $\overline{\sigma}$ of $K(1)_*Sp(n)$. Hence, $[\tau_H, \overline{\sigma}] = v_1\overline{\sigma}$.

The last case is that of $H = SU(n)/\langle e^{2\pi i/p} \rangle$, with $p \mid n$ and $n \geq 3$. The homology of the universal cover is exterior on $\overline{\beta}_i$, $1 \leq i < n$. Dualizing [1, Main Theorem I(ii)], we see that in mod-p homology $[\tau, \overline{\beta}_1] = \overline{\beta}_2$. The usual Bar ss argument shows that, in $P(1)_*H$, $[\tau, \overline{\beta}_1]$ is $\overline{\beta}_2$ if $p \geq 5$, $\overline{\beta}_2 + sv_1\overline{\beta}_0$ if p = 3 and $\overline{\beta}_2 + sv_1\overline{\beta}_1 + tv_1^2\overline{\beta}_0$ if p = 2, where $s, t \in \mathbb{Z}/(p)$. As in the proof of Lemma 2.1, $\overline{\beta}_0 = 0$ or $-av_1^{-1}\overline{\beta}_{p-1}$. It follows that if $p \neq 3$, then $[\tau, \overline{\beta}_1] \neq 0$ in $K(1)_*H$. If p = 3 and $[\tau, \overline{\beta}_1] = 0$, we must have $\overline{\beta}_0 = -sv_1^{-1}\overline{\beta}_2 \neq 0$ in $K(1)_*H$. But then, applying Q_0 to $\tau^3 = -v_1\tau$, we see that $[\tau, [\tau, \overline{\beta}_0]] = -v_1\overline{\beta}_0$. Thus, in every case, τ_H is not central in $K(1)_*H$.

Proof of Lemma 1.2. Let g be a generator of the kernel of $\widetilde{G} \to G$. Let \widetilde{H} be any simple factor of \widetilde{G} such that the projection of g to \widetilde{H} is non-trivial and put $H = \widetilde{H}/\langle h \rangle$. Obviously, \widetilde{H} has no p-torsion in homology. Furthermore, $K(1)_*G \to K(1)_*H$ is onto and takes τ_G to τ_H . Lemma 3.1 implies that τ_G is not central in $K(1)_*G$.

In characteristic p, the p-fold commutator $[\tau, [\ldots, [\tau, x] \ldots]]$ is $[\tau^p, x]$. Hence $[\tau, [\ldots, \overline{\beta}] \ldots] = -[v_l \tau, \overline{\beta}]$. Standard Hopf-algebra calculation shows that

$$(c_n)_*(\tau \times \cdots \times \tau \times \overline{\beta}_i) = [\tau, [\tau, \overline{\beta}_i], \dots]$$

(for p = 2, see [10, Lemmas 5.6, 5.7.]). Combining these with the fact that τ is not central, we see that c_n is detected by K(1) for all n.

References

- [1] P. Baum and W. Browder, *The Cohomology of Quotients of Classical Groups*, Topology. **3** (1964-65), 305–336.
- [2] M. J. Hopkins, Nilpotence and finite H-spaces, Israel J. Math. 66 (1989), 238–246.

- [3] Kane, *Homology of Hopf spaces*, North Holland Math. Library, vol. 40, North Holland, Amsterdam, 1988.
- [4] M. Mimura, *Homotopy theory of Lie groups*, in "Handbook of algebraic topology", (ed. I. M. James), Elsevier, Amsterdam, 1995.
- [5] G. J. Porter, *Homotopy nilpotency of* S³, Proc. Amer. Math. Soc. **15** (1964), 681–682.
- [6] V. K. Rao, The Hopf algebra structure of $MU_*(\Omega SO(n))$, Indiana Univ. J. Math. **38** (1989), 277–291.
- [7] $\frac{}{47-61}$, The bar spectral sequence converging to $h_*SO(2n+1)$, Manuscripta Math. **65** (1989),
- [8] _____, On the Morava K-theories of SO(2n+1), Proc. Amer. Math. Soc. **108** (1990), 1031-1038.
- [9] _____, Spin(n) is not homotopy nilpotent for $n \geq 7$, Topology. **32** (1993), 239–249.
- [10] _____, The algebra structure of $K(l)_*SO(2^{l+1}-1)$, Submitted to Manuscripta Math..
- [11] D. Ravenal and Wilson, Morava K-theories of Eilenberg-McLane spaces and the Conner-Floyd conjecture, American Jour. Math. 102 (1980), 691–748.
- [12] N. Yagita, Homotopy nilpotency for simply connected Lie groups, Bull. London Math. Soc. **25** (1993), 481–486.
- [13] A. Zabrodsky, *Hopf spaces*, North Holland Math. Studies 22, North Holland, Amsterdam, 1976.

Department of Mathematics, The Ohio State University at Newark, Newark, OH 43055.

E-mail address: nathrao+@osu.edu