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Abstract. We show that if G is a compact connected Lie group that has p-torsion

in homology, then G localized at p is not homotopy nilpotent. Thus, a connected Lie
group is homotopy nilpotent if and only if it has no torsion in homology.

0. Introduction
If X is a homotopy associative H-space, then the functor [ , X] takes its values

in the category of groups. We can ask when the values of this functor lie in various
subcategories of groups. One special case is asking when [ , X] is always nilpotent.
Such X are said to be homotopy nilpotent.

Now, if A is finite, [A,X] is a nilpotent group; but the nilpotency class may
depend on the dimension of A. If X is a finite H-space, then [A,X] will be nilpotent
for all A precisely when the nilpotency class of [A,X] is bounded above for all finite
A.

The above condition has a direct formulation in terms of the structure maps
of X: Let µ and σ be the multiplication and the inverse maps of X. Define the
commutator c2 to be the composite

X ×X
∆X×X−−−−→ X ×X ×X ×X

id× id×σ×σ−−−−−−−−→ X ×X ×X ×X
µ(µ×µ)−−−−−→ X

and define the iterated commutators cn : Xn → X inductively by cn = c2(cn−1 ×
idX).
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Proposition 0.1. A finite homotopy associative H-space X is homotopy nilpotent
iff cn is null homotopic for sufficiently large n.

This is standard. See [13, Section 2.6].
For S3, cn will be Whitehead products. By calculating c4. G. J. Porter showed

that S3 is homotopy nilpotent [5].
The first major advance was made by M. J. Hopkins [2]. He showed that a

finite H-space X is homotopy nilpotent if and only if for sufficiently large n, cn’s
induce trivial homomorphism in complex bordism. This is same as asking that
cn’s induce trivial homomorphisms in all Morava K-theories. It follows that all
homotopy associative finite H-spaces with no torsion in homology are homotopy
nilpotent. Hopkins conjectured that all finite H-spaces were homotopy nilpotent.

In [9], the author showed that Spin(n) is not homotopy nilpotent for n ≥ 7.
The same method applies to G2, SO(3) and SO(4). N. Yagita [12] showed that the
simply connected exceptional Lie groups were not homotopy nilpotent [12] using
his earlier calculation of their Morava K-theories.

These results are all local. That is, if G is a simple simply connected Lie group
and G has p-torsion in homology, then G(p), the localization of G at p, is not
homotopy nilpotent. In this paper we generalize this to the following.

Theorem 0.2. Let G be a compact connected Lie group. Let p be a prime. Then
G(p), the localization of G at p, is homotopy nilpotent if and only if H∗(G, Z(p)) is
torsion-free.

Of course, the “if” part is due to Hopkins.
We refer the reader to [10] for a summary of facts about Morava K-theory that

we need.

1. A Reduction

Lemma 1.1. Let X be an H-space and let X be a covering space. Then there is
a unique H-space structure on X such that the covering projection is a H-map. If
X is homotopy nilpotent, then so is X.

Proof. The first part is standard. The second follows from the fact that for any
connected A, [A,X] → [A,X] is injective.

Fix a prime p. Let G be a compact connected Lie group such that G(p) homotopy
nilpotent. Assume that G is not simply connected and is not a torus. The universal
cover of G has the form G̃ × Rn where G̃ is compact. It follows from the lemma
above that G̃ is homotopy nilpotent. By [12] G̃ has no p-torsion in homology.

The kernel of G̃× Rn → G has the form C × F , where C < G̃ is finite and F is
free abelian. First suppose that the order of C is prime to p. Then G̃ '(p) G̃/C.
By [3, Proposition 3.2], G is homotopy equivalent, as a space, to the product of
G̃/C and a torus. It follows that G has no p-torsion in homology.
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Now suppose that p divides the order of C. Then C contains an element of order
p, say g. Then G̃/ 〈g〉 is equivalent to a covering group of G, and so is homotopy
nilpotent. This contradicts the next lemma:

Lemma 1.2. Let G a compact connected Lie group with π1G = Z/(p). Suppose
that G̃, the universal cover of G has no p-torsion in homology.Then G(p) is not
homotopy nilpotent.

The rest of this paper is devoted to proving this lemma.

2. A Calculation

Lemma 2.1. Let X be a finite H-space such that π1X = Z/(p) and X̃, the univer-
sal cover of X, has no p-torsion in homology. Then there is an element τ ∈ K(1)2X
such that K(1)∗X is a free K(1)∗X̃ left module with basis

{
1, τ, . . . , τp−1

}
and

τp = −v1τ .

Proof. There is a fiber sequence X̃ → X → K(Z/(p), 1) which gives ΩX ' ΩX̃ ×
Z/(p) when looped. By our assumption, H∗(X̃, Z(p)) is an exterior algebra on
odd dimensional generators. So H∗(ΩX̃, Z(p)) is a polynomial algebra on even-
dimensional generators. It follows that BP∗(ΩX̃) is also a polynomial algebra. Let
the generators be β1, . . . , βn. Let β0 be a generator of any summand of B̃P 0ΩX
such that βp

0 = pβ0.
We will make use of the Bar spectral sequence. We refer the reader to [7] and

references cited there for details of construction. We will denote the divided power
algebra on an element x by Γ(x) and the truncated divided power algebra of height
s by Γs(x). These are the duals of the polynomial algebra P (y) and the truncated
polynomial algebra P (y)/(yps

) on a primitive generator y. γi(x) will denote the ith
divided power of x.

We will do the case of odd p first. Let h be any BP -algebra theory with h0 =
Z/(p) and h∗ concentrated in even degrees. The Bar ss E∗

∗∗(X, h) converging to
h∗X has E2-term

Torh∗ΩX
∗∗ (h∗, h∗) = Γ(τ)⊗ E(β0, β1, . . . , βn)

where τ has bidegree (0, 2) and βi is the homology suspension of βi and has bide-
gree (2t, 1), where 2t ≥ 2 is the dimension of βi. For dimensional reasons, τ is
a permanent cycle, as are βi. Furthermore, even differentials are zero for degree
reasons. If Er are free h∗-modules for 2 ≤ r ≤ k, then Er is Hopf algebra and dr

a Hopf derivation for 2 ≤ r ≤ k. The identification of the E2-term given above
respects the Hopf algebra structure.

A calculation as in [11, proof of 6.9, 6.10] shows that the first non-trivial differen-
tial dr must occur for r = 2ps−1 for some s. Then dr(γt(τ)) = γt−ps(τ)dr(γps(τ));
dr(γps(τ)) is primitive and so must be a linear combination of βi’s.



4 VIDHYĀNĀTH K. RAO

The map ΩX → ΩK(Z/(p), 1) induces a homomorphism of Bar ss in K(1)-
theory. The Bar ss E∗

∗∗(K(Z/(p), 1),K(1)) is described in [11]. The E2-term is
Γ(τ) ⊗ E(β0). The only non-trivial differential is given by d2p−1(γp(τ)) = cv1β0,
with c 6= 0 in Z/(p). Hence, in E2p−1

∗∗ (X, P (1)) we must have d2p−1(τ) = cv1β0 +β,
where β is a possibly trivial Z/(p)-linear combination of βi’s.

An easy calculation using [11, Lemma 6.9] shows that if β 6= 0, then

E2p
∗∗(X, P (1)) = Γ1(τ)⊗ E(β0, β1, . . . , βn)/(cv1β0 + β = 0) .

But if β = 0, then the E2p-term is generated by 1 and β0γps(τ) as a module over
Γ1(τ) ⊗ E(β1, . . . , βn) subject to the relations v1β0γps(τ) = 0. Note that in the
first case, all further differentials are trivial, while in the second further differentials
cannot affect elements of total degree at most 2p.

In both cases, E2p(X, K(1)) = Γ1(τ)⊗E(β1, . . . , βn) because v1 is invertible in
K(1). This proves that K(1)∗X is as stated.

Note that τp = 0 in the E2-term. Hence, in P (1)∗X, τp is a sum of ele-
ments total degree 2p and filtration at most 2p − 1. But such elements must be
Z/(p)-linear combination of v1τ and products of βi’s and τ . Now Hi(X, Z/(p)) ∼=
Hi(K(Z/(p), 1), Z/(p)) for i ≤ 2. So the reduction of τ to mod-p homology is prim-
itive. Note that P̃ (1)∗Y ∼= H̃i(Y, Z/(p)) for i ≤ 2p − 2 for any connected Y . It
follows that the diagonal of X takes τ to 1×τ +τ ×1. So τ is primitive in K(1)∗X.
As τp = −v1τ in K(1)∗K(Z/(p), 1) [11], τp + v1τ is a primitive element of K(1)∗X
that is a linear combination of product of βi’s and τ . Hence it is trivial.

We now indicate the changes in the proof for p = 2: the E2-term is Γ(β0) ⊗
E(β1, . . . , βn) and γs(τ) must be replaced by γ2s(β0). However, τ is not primitive
and we cannot eliminate the possibility that τ2 contains a product of βi’s. However,
if i ≥ 1, βi has dimension 2t ≥ 2 and βi has bidegree (2t, 1). Thus the only
products that can occur in τ2 are β0βi, with βi of dimension 2. So we must have
τ2 = v1τ + β0σ, where σ is the K(1)-reduction of some element in P (1)3X̃.

Comparison with H∗(K(Z/(2), 1), Z/2) shows that the diagonal of τ is 1 × τ +
β0 × β0 + τ × 1 and that Q0τ = β0. It follows that [τ, β0] = Q0(τ2) = v1β0. As in
the proof of [9, Lemma 3.5], we see that τ2 − v1τ is primitive in K(1)∗X. Hence
β0σ = 0.

Note that, for X as in the lemma, K(1)∗X̃ injects into K(1)∗X. This allows us
to consider K(1)∗X̃ to be a subalgebra of K(1)∗X. Note also that β0 is either 0 or
−v−1

1 β for some β ∈ P (1)2p−1X̃, according to whether d2p−1(γp(τ)) is β0 or not.
Note that β0 and τ come from P (1)∗X. We will make the choice of τ canonical

by making a choice in P (1)2K(Z/(p), 1), lifting it to P (1)2X and then reducing to
K(1)2X. If it is necessary to avoid confusion, we will use the notation τX . Note that
if we have a H-map f : X → Y between two such H-spaces with f∗ : π1X ∼= π1Y ,
then f∗(τX) = τY .
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We will abuse notation by denoting the chosen preimages of β0 and τ , as well as
their reduction to mod-p homology, by the same symbols

3. Proof of Lemma 1.2

Lemma 3.1. Let H̃ be a simple simply connected compact Lie group with no p-
torsion in homology, h a central element of order p and H = H̃/ 〈h〉. Then τH is
not central in K(1)∗H.

Proof. The only simple simply connected Lie groups with a central element of order
p and no p-torsion in homology are Spin(m) with 3 ≤ m ≤ 6 and p = 2, Sp(m)
with m ≥ 2 and p = 2 and SU(pm) with pm ≥ 3 and p any prime: See, for
example, [Mi], especially p. 954 and pp. 956–961. It follows that H is one of SO(n)
for 3 ≤ n ≤ 6, the semi-spin group SS(4), SU(pm)/

〈
e2πi/p

〉
and Sp(n)/ 〈−1〉. We

shall show that in each case τH is not central in K(1)∗H.
For SO(3) and SO(4), this was done in [9]. Next we consider SO(5). By

the results of [7] and [8], E2
∗∗(SO(5), P (1)) = Γ(β0) ⊗ E(β1, α3). d2 = 0 and

d3(γ4(β0)) = v1β0. It follows that the only non-zero element in E4
∗∗ of total degree

5 and filtration less than 3 is v1β1. Note that τ corresponds to γ2(β0). As the Bar
ss is commutative, [τ, β1] must have filtration less than 3. Hence, [τ, β1] is either 0
or v1β1.

Let P be the projective plane of SO(5). For any multiplicative homology theory
h, there is a long exact sequence

. . . h̃∗+2P → h̃∗(SO(5) ∧ SO(5))
µ∗−→ h̃∗SO(5) → h̃∗+1P . . .

where µ∗ is induced by multiplication. Thus, if [τ, β1] were 0, τ ∧β1−β1∧ τ would
be in the image of P̃ (1)7P . But this contradicts [10, Proposition 4.1]. Hence,
[τ, β1] = v1β1. As β1 comes from K(1)∗Spin(5), it is non-zero in K(1)∗SO(5) by
Lemma 2.1. So τ is not central in K(1)∗SO(5).

As remarked in [8], K(1)∗SO(5) injects into K(1)∗SO(6). This proves our claim
for SO(6).

Next we consider SS(4). The universal cover is Spin(4) whose homology is
exterior on two generators of dimension 3. Consider the Bar ss in Z/(2)-homology.
This is Hopf algebra spectral sequence. Its E2-term is Γ(β0)⊗E(α, β) where α and
β have bidegree (2, 1). As SS(4) is finite, there must be non-trivial differentials.
As in the proof of Lemma 2.1, the first non-trivial differential dr occurs when
r = 2(2s)− 1 and then dr(γr+1(β0)) is primitive. The only possibility is r = 3 with
dr(γ4(β0)) = aα + bβ 6= 0.

As in the proof of Lemma 2.1, it follows that d3(γ4(β0)) = v1β0 + aα + bβ in
E∗
∗∗(SS(4), P (1)). Hence, β0 = −v−1

1 (aα + bβ) 6= 0 in K(1)∗SS(4). On the other
hand, applying Q0 to τ2 = −v1τ gives [τ, β0] = −v1β0 in K(1)∗SS(4).
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To deal with the case of Sp(n)/ 〈−1〉, we need to recall the details of SO(3)
calculation [7]: E2

∗∗(SO(3), P (1)) = Γ(β0)⊗E(σ), where σ is α′1 in the notation of
[7]. Of course, σ is a generator of K(1)∗S3. The only non-trivial differential is given
by d3(γ4k(β0)) = (σ + v1β0)γ4k−4(β0). τ corresponds to γ2(β0). In P (1)∗SO(3),
[τ, β0] = v1β0. As σ = −v1β0, [τ, σ] = v1σ.

Let K = Sp(1)n/ 〈−1〉. K(1)∗Sp(1)n is the exterior algebra on σ1, . . . , σn,
where σi is the image of σ ∈ K(1)∗Sp(1) under inclusion as the i-th factor. We
will calculate [τK , σ1]. It has bar filtration at most 2; so it is a linear combination
of σi’s.

The projection of Sp(1)n onto the i-th factor induces a homomorphism pri :
K → Sp(1)/ 〈−1〉 = SO(3). If i 6= 1, then (pri)∗[τK , σ1] = [(pri)∗τK , (pri)∗σ1] =
[τSO(3), 0] = 0. On the other hand, (pr1)∗[τK , σ1] = [τSO(3), σ] = v1σ. It follows
that [τK , σ1] = v1σ1.

The inclusion Sp(1)n ⊂ Sp(n) induces K → Sp(n)/ 〈−1〉. The former takes σ1

to the three dimensional generator σ of K(1)∗Sp(n). Hence, [τH , σ] = v1σ.
The last case is that of H = SU(n)/

〈
e2πi/p

〉
, with p | n and n ≥ 3. The

homology of the universal cover is exterior on βi, 1 ≤ i < n. Dualizing [1, Main
Theorem I(ii)], we see that in mod-p homology [τ, β1] = β2. The usual Bar ss
argument shows that, in P (1)∗H, [τ, β1] is β2 if p ≥ 5, β2 + sv1β0 if p = 3 and
β2 + sv1β1 + tv2

1β0 if p = 2, where s, t ∈ Z/(p). As in the proof of Lemma 2.1,
β0 = 0 or −av−1

1 βp−1. It follows that if p 6= 3, then [τ, β1] 6= 0 in K(1)∗H. If p = 3
and [τ, β1] = 0, we must have β0 = −sv−1

1 β2 6= 0 in K(1)∗H. But then, applying
Q0 to τ3 = −v1τ , we see that [τ, [τ, β0]] = −v1β0. Thus, in every case, τH is not
central in K(1)∗H.

Proof of Lemma 1.2. Let g be a generator of the kernel of G̃ → G. Let H̃ be
any simple factor of G̃ such that the projection of g to H̃ is non-trivial and put
H = H̃/ 〈h〉. Obviously, H̃ has no p-torsion in homology. Furthermore, K(1)∗G →
K(1)∗H is onto and takes τG to τH . Lemma 3.1 implies that τG is not central in
K(1)∗G.

In characteristic p, the p-fold commutator [τ, [. . . , [τ, x] . . . ] is [τp, x]. Hence
[τ, [. . . , β] . . . ] = −[vlτ, β]. Standard Hopf-algebra calculation shows that

(cn)∗(τ × · · · × τ × βi) = [τ, [τ . . . [τ, βi] . . . ]

(for p = 2, see [10, Lemmas 5.6, 5.7.]). Combining these with the fact that τ is not
central, we see that cn is detected by K(1) for all n.
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