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Abstract. We consider dynamical systems, consisting of Z2-actions by continuous
automorphisms on shift-invariant subgroups of FZ2

p , where Fp is the field of order p.
These systems provide natural generalizations of Ledrappier’s system, which was the
first example of a 2-mixing Z2-action that is not 3-mixing. Extending the results from
our previous work on Ledrappier’s example, we show that, under quite mild conditions
(namely, 2-mixing and that the subgroup defining the system is a principal Markov
subgroup), these systems are almost strongly mixing of every order in the following sense:
for each order, one just needs to avoid certain effectively computable logarithmically small
sets of times at which there is a substantial deviation from mixing of this order.

1. Introduction

Let Fp = GF(p) be the Galois field of order p, where p is a prime, and let �p = FZ
2

p .
Consider the shift Z2-action on the compact abelian group �p, defined by (Swx)w′ =
xw′−w for w, w′ ∈ Z2. A Markov subgroup is a closed shift-invariant subgroup 2 of �q

(see [5, 7]). For any Markov subgroup 2, the restriction of the action Sw to 2 defines
a measure-preserving system 2̃= (2, B2, µ2, (Sw)w∈Z2), where B2 is the σ -algebra
generated by the open sets and µ2 is the normalized Haar measure. Markov subgroups
of �p are of interest since, for the study of many dynamical properties of Z2-actions by
automorphisms on totally disconnected compact groups, it suffices to deal with that of
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2 L. Arenas-Carmona et al

Markov subgroups. A Markov subgroup 9 ⊆�p is principal if

9 =

{
ν ∈�p

∣∣∣∣ k∑
i=1

αiνwi+w = 0, w ∈ Z2
}
, (1)

for some distinct w1, . . . , wk ∈ Z2 and non-zero α1, . . . , αk ∈ Fp. In fact, principal
Markov subgroups 9 are the only Markov subgroups of �p for which 9̃ is ergodic (see
Proposition 3.13 below). A principal Markov subgroup is minimal if it does not properly
contain any principal Markov subgroup. Every principal Markov subgroup contains a
minimal principal Markov subgroup (see Proposition 3.2).

Perhaps the simplest non-trivial example of a Markov subgroup is Ledrappier’s
subgroup L⊆�2 (see [6]). It is defined as the set of elements ν = (νw)w∈Z2 ∈

�2 satisfying the relation νw + νw+(1,0) + νw+(0,1) = 0 for every w ∈ Z2. Ledrappier’s
subgroup is minimal. It is properly contained in the subgroup

M = {ν ∈�2 | νw + νw+(2,0) + νw+(0,1) + νw+(1,1) = 0, w ∈ Z2
},

since

νw + νw+(2,0) + νw+(0,1) + νw+(1,1) = (νw + νw+(1,0) + νw+(0,1))

+ (νw′ + νw′+(1,0) + νw′+(0,1)),

where w′ = w+ (1, 0). In fact, M/L is a cyclic group of order two. The non-trivial class
is the set of elements ν satisfying νw + νw+(1,0) + νw+(0,1) = 1 for all w ∈ Z2. A possible
representative of this class is given by the point ν with νw = 1 for all w. Similarly, the
group

8= {ν ∈�2 | νw + νw+(2,0) + νw+(0,2) = 0},

contains Ledrappier’s subgroup since

νw + νw+(2,0) + νw+(0,2) =

3∑
i=1

(νwi + νwi+(1,0) + νwi+(0,1)),

where w1 = w, w2 = w+ (1, 0), and w3 = w+ (0, 1).
Ledrappier’s system was the first example of a Z2-action which is 2-mixing but not

3-mixing. In [1], we have studied this system thoroughly and showed that it is ‘almost’
mixing of every order. Namely, mixing of a specific order means that intersections of sets to
which we apply transformations from the given semigroup tend to be almost independent
when the transformations are ‘far’ from each other.

We have shown that, while Ledrappier’s system is not 3-mixing, the exceptions to 3- and
higher-order mixing are contained in a ‘small’ set of transformations comprising the Z2-
action in Ledrappier’s example. Let us call a set E ⊆ Z2 logish if the number of elements
in E of ‘size’ n or less is bounded by some power of log n as n increases. It was proved in
[1] that, up to some technicalities arising from the possibility of taking shifts and disjoint
unions, the set of exponents that needed to be avoided is logish. (See §2 for more detailed
definitions and discussion.)

In this paper, we attempt to obtain an analogue for general Markov subgroups. Of
course, one cannot expect such a general result to be as detailed as in the case of the explicit
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An almost mixing of all orders property of algebraic dynamical systems 3

example of Ledrappier, but the general spirit of our main results is the same. Namely,
along a generic curve, unless one samples at very specific logish times, which correspond
to obvious obstructions to mixing, one essentially gets mixing of all orders. Also, due to
the generality of the results, the proofs this time require heavier use of algebraic methods,
as the elementary calculations of [1] cannot be applied to the general case.

In §2, we present the main results of the paper—Theorems 2.4 and 2.7 below. The
following several sections are devoted to developing various tools that will serve us in
the proofs. Section 3 discusses the dual action and contains several relevant results. In
§4, we view the main results from an algebraic viewpoint. Section 5 recalls the basics
of valuations on some global and local fields, and explains their relevance. In §6, we
prove that various power series over finite fields are algebraically independent. In §7, we
utilize the general results from the previous sections to obtain results on mixing of all
orders along polynomial sequences. Sections 8 and 9 are devoted to several more auxiliary
results. Finally, in §10, we conclude the proofs of the main theorems.

2. The main results
Two sequences (w(t))t∈N and (w′(t))t∈N in Z2 grow apart if ‖w(t)− w′(t)‖ −→t→∞

∞ (where ‖ · ‖ denotes any norm on R2). An r-sequence is a sequence in (Z2)r . An r -
sequence (B(t))t∈N, where B(t)= (w1(t), . . . , wr (t)), is spreading if the sequences wi (t)
and w j (t) grow apart for every 1≤ i < j ≤ r . A spreading r -sequence (B(t))t∈N, where
B(t)= (w1(t), . . . , wr (t)), is mixing for 9̃ if∫

9

r∏
i=1

fi (Swi (t)g) dµ9(g) −→t→∞

r∏
i=1

∫
9

fi , f1, . . . , fr ∈ L∞(9, B9 , µ9). (2)

The system 9̃ is r-mixing if every spreading r -sequence (B(t))t∈N is mixing for 9̃. When
9̃ is not r -mixing, we would like to know how far it is from being such. A set A ⊆ Z2 is an
r-trap for 9̃ if every spreading r -sequence (B(t))t∈N, where B(t)= (w1(t), . . . , wr (t)),
satisfying wi (t)− w j (t) /∈ A for all t , is mixing for 9̃. One way of measuring how far 9̃
is from being r -mixing is by providing a trap for 9̃. The smaller the trap A is, the closer
9̃ is to being mixing. To fix ideas, we introduce a few notions of smallness. For a fixed k,
denote CN = [−N , N ]k .

Definition 2.1. A subset A of Zk is logish of order M , or M-logish, if |A ∩ CN | =

O(lnM N ) as N →∞. The set is logish if it is M-logish for some M .

For example, the set of powers of two is 1-logish, and the sets {2m
+ 3n
: m, n ∈ N}

and {2m3n
: m, n ∈ N} are 2-logish. Clearly, if A1 ⊆ Zk1 is M1-logish and A2 ⊆ Zk2 is

M2-logish, then A1 × A2 ⊆ Zk1+k2 is (M1 + M2)-logish.

Definition 2.2. Let V : Zk
→ Z be a non-zero linear map. The set B ⊆ Zk is M-logish with

respect to V if there exists an M-logish subset A of Z= Z1 such that B ⊆ V−1(A).

For example, the set {(m, 2n) : m, n ∈ N} is logish with respect to π2, where π2(a, b)=
b, but it is not logish. Note that, if B is M-logish with respect to V for some non-zero
linear map V , then |B ∩ CN | = O[N k−1(log N )M

]. This bound may seem to indicate that
logishness with respect to a linear map is much coarser than logishness. However, we have
the following property.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/etds.2017.60
Downloaded from https://www.cambridge.org/core. Cambridge University Press, on 13 Sep 2017 at 20:07:25, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/etds.2017.60
https://www.cambridge.org/core


4 L. Arenas-Carmona et al

PROPOSITION 2.3. Let V1, . . . , Vr : Zr
→ Z be linear maps whose extensions to Rr form

a basis of the dual space (Rr )∗. Let B ⊆ Zr be M-logish with respect to each Vi . Then B
is Mr -logish.

Proof. By abuse of notation, identify each map with its extension to (Rr )∗. Let T : Rr
→

Rr be the map defined by T (w)= (V1(w), . . . , Vr (w)). Then T is an invertible linear
map, since {V1, . . . , Vr } is a basis of (Rr )∗. Now T (B)⊆

∏r
i=1 Vi (B), and hence T (B)

is Mr -logish. Recall that there exists a positive constant D such that D‖T (w)‖ ≤ ‖w‖. It
follows that |B ∩ CN | ≤ |T (B) ∩ CD−1 N |, which proves the lemma. �

The following two theorems are the main results of the paper. It will be convenient to
denote, for any positive integer r ,

h = h p(r)=

{
r − 1 if p = 2,

(p − 1)pr+1
+ r if p > 2.

(3)

THEOREM 2.4. Let 9 be a minimal principal Markov subgroup of �p. Assume that 9̃ is
2-mixing. Then there is an effective linear function V : Z2

→ Z such that, for every integer
r ≥ 3 and every ε > 0, there is an r-trap A for 9̃ that is (2h + ε)-logish with respect to V .

Remark 2.5. In the preceding theorem, if 9 = {ν ∈�p |
∑

w′∈S aw′νw+w′ = 0, w ∈ Z2
}

for some finite S, then V can be chosen as any linear map whose kernel is parallel to a
side of the convex hull of S (see the discussion following Theorem 4.2). The condition on
2-mixing implies that S is not contained in a line (see Example 3.10), so there are several
choices for the map V that are not multiples of each other. The trap A is a set of the form
K V−1(C) for an arbitrary shell C (as defined below) of the set D′ of distances between
elements in the set D(h)

p , defined in §4. The constant K is explicit.

Example 2.6. Let 90 = {ν ∈�2 | νw + νw+(0,1) = 0, w ∈ Z2
}. The elements of 90 have

constant coordinates on every vertical line. We conclude that no sequence of the form
((0, 0), (c, γ (t))) is mixing for this system. Any trap must contain all but a finite number
of points on each vertical line. This system cannot, therefore, have a trap that is logish with
respect to any V .

THEOREM 2.7. Let 9 be a principal Markov subgroup of�p. Assume that 9̃ is 2-mixing.
Then there exist effective linear maps V1, . . . , VN , such that, for every ε > 0, there exist
sets A1, . . . , AN ⊆ Z2, where Ai is (2h + ε)-logish with respect to Vi , such that

⋃
i Ai is

a trap for 9̃.

Example 2.8. Let 91 = {ν ∈�p |
∑

w′∈S νw+w′ = 0, w ∈ Z2
} for S = {(0, 0), (1, 0),

(0, 1), (1, 1)}. We prove in Proposition 3.11 that a sequence is mixing for a given principal
Markov subgroup of �p if and only if it is mixing for every minimal principal Markov
subgroup contained in it. We conclude that no subsequence of either of the sequences
((0, 0), (c, t))t∈N or ((0, 0), (t, c))t∈N, for any integer c, is mixing for 9̃1. In particular,
this system is not 2-mixing. In fact, any 2-trap for this system must contain a trap for the
system 90 in Example 2.6 and the image, rotated by 90 degrees, of another such trap.
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An almost mixing of all orders property of algebraic dynamical systems 5

Example 2.9. Let 92 = {ν ∈�p |
∑

w′∈S νw+w′ = 0, w ∈ Z2
} for

S = {(0, 0), (1, 0), (0, 1), (1, 2), (1, 3), (2, 2), (2, 5), (2, 6), (3, 5)}.

9 contains two minimal Markov subgroups. One is Ledrappier’s group. The other
one is L′ = {ν ∈�p |

∑
w′∈S′ νw+w′ = 0, w ∈ Z2

} for S′ = {(0, 0), (1, 2), (2, 5)}. Since
{(1, 2), (2, 5)} is a basis of Z2, this system is essentially isomorphic to Ledrappier’s, in
the sense that there exist isomorphisms α : Z2

→ Z2, β : L→ L′ satisfying Sα(w)β(x)=
β(Swx) for any w ∈ Z2 and any x ∈ L. In fact, they can be defined as

α(n, m)= (n + 2m, 2n + 5m), β(ν)w = να−1(w).

If A is a trap for L, then α(A) is a trap for L′. It follows that, using the results in [1],
we can find a logish trap for this system, which is, in particular, logish in every direction.
However,the existence of a trap which is logish in one direction, rather than a union as in
Theorem 2.7, fails to follow from the results in the present paper.

As a consequence of the proofs of the above theorems, we obtain the following theorem.

THEOREM 2.10. Let 9 be a principal Markov subgroup of �p. Assume that 9̃ is 2-
mixing. Let B(t)= ((m1(t), n1(t)), . . . , (mr (t), nr (t))) be an r-sequence such that, for
every i = 1, . . . , r , both mi (t) and ni (t) are polynomials in t . Assume that B(t) spreads,
or, equivalently, that the difference (mi (t), ni (t))− (m j (t), n j (t)) is not a constant for
any pair (i, j). Then there is a logish set A ⊆ Z such that the r-sequence (B(tk))k∈N is
mixing for 9̃ provided that tk /∈ A for all k ∈ N.

It can be proved that, if 9 satisfies the hypotheses of Theorem 2.4, then there are
different choices for the map V (see Remark 2.5). If it was possible to choose a trap A
that is logish simultaneously with respect to either map in a basis of (R2)∗, then A would
be logish by Proposition 2.3. Unfortunately, the intersection of traps is not always a trap,
so, at this point, we are unable to prove the following conjecture.

CONJECTURE 2.11. Let 9 be a minimal principal Markov subgroup of �p. Assume that
9̃ is 2-mixing. Then, for every r , there is a positive integer h′ = h′(r) such that, for every
ε > 0, there exists an (h′ + ε)-logish r-trap A for 9̃.

The condition on 2-mixing is needed, as shown by Example 2.6. On the other hand, as
we see at the end of the section, Conjecture 2.11 holds for Ledrappier’s subgroup L of�2.

A sequence (a(t))t∈N in a metric space (M, d) remains close to a subset A ⊆ M
if the distance d(a(t), A) is bounded as a function of t , and it gets away from A if
d(a(t), A)−→t→∞∞. Notice that a sequence gets away from a set if and only if no
subsequence remains close to the set, and, conversely, a sequence remains close to a set if
and only if no subsequence gets away from it.

Remark 2.12. One may consider a weaker concept than that of a trap. A subset
A ⊆ Z2 is an r -sub-trap for 9̃ if every spreading r -sequence (B(t))t∈N, where B(t)=
(w1(t), . . . , wr (t)), satisfying d(wi (t)− w j (t), A)→∞ as t→∞, is mixing for 9̃. A
set C such that v(t) /∈ C for all t and v(t)→∞ as t→∞ imply that v(t) gets away from
A is a shell for A. It follows that if A is a sub-trap for 9 and C is a shell for A, then C is a
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6 L. Arenas-Carmona et al

trap for 9. A shell for a set A can be constructed by taking a ball around every point a of
A and making the radius of the ball tend to∞ as a→∞. The rate at which the radius of
the ball tends to∞ can be made as small as needed. In particular, every h-logish set has an
(h + ε)-logish shell, for every ε > 0. Note, however, that a set that is logish with respect
to some linear map V might fail to have a shell that is logish with respect to V . In fact, any
vertical line is a sub-trap for the system 9̃0 of Example 2.6.

We recall a few definitions and results from [1]. A set W = {w1, . . . , wr } of distinct
points in Z2 is a special r-gon if

∑
w∈W νw = 0 for all ν ∈ L. Let 3⊂ (Z2)r be the

set of elements (w1, . . . , wr ) ∈ (Z2)r such that, for some i1, . . . , is ∈ {1, . . . , r}, the
set {wi1 , . . . , wis } is a special s-gon. Let ρ denote the Hausdorff distance in Z2. Every
element of (Z2)r can be regarded as a subset of Z2. If an r -sequence B(t) satisfies
ρ(B(t), 3)→∞ as t→∞, then B(t) is mixing for L̃ [1, Theorem 3.3]. A special
r -gon is connected if none of its proper subsets is a special r ′-gon for some r ′ < r .

Let A 4 B denote the symmetric difference of the sets A and B, so that the characteristic
function 1A4B : Z2

→ F2 is the pointwise sum 1A + 1B . In [1], the characteristic function
1A is identified with the polynomial

∑
(m,n)∈A XmY n . This identification is only possible

when p = 2, but can be generalized with the help of the concept of support that we defined
in §4.

PROPOSITION 2.13. Conjecture 2.11 holds in the particular case 9 = L.

Proof. It was proved in [1, Theorem 7.1] that, for every special r -gon Br , the characteristic
function 1Br is the sum of at most r3 characteristic functions 1T of special triangles,
i.e., sets of the form T = {w, w + (0, 2s), w + (2s, 0)}. In the proof of [1, Lemma 7.6],
we defined a graph whose vertices correspond to these triangles, and two vertices are
neighbors if and only if the corresponding triangles T and T ′ satisfy T ∩ T ′ 6= ∅. Note that
a special r -gon is connected if and only if the corresponding graph is connected for any
decomposition into triangles. It follows that in a connected special r -gon {w1, . . . , wr }, all
the coordinates of every difference wi − w j , for i, j ∈ {1, . . . , r}, are sums or differences
of no more than r3 powers of two. The set C(r)⊆ Z2 of such elements is logish. Note
that each element of the set 3⊆ (Z2)r contains a connected special r ′-gon for some r ′

between three and r , while a non-mixing sequence must remain close to 3. It follows that
a non-mixing sequence must have some difference w(t)i(t) − w(t) j (t) that remains close
to C(r), which is, therefore, a sub-trap as defined in Remark 2.12. The result follows. �

Neither the set 3 nor the set L of special r -gons is logish, but the subset of connected
special r -gons containing (0, 0) is logish in (Z2)r by the preceding proof.

3. Dual interpretation of mixing
In this section, we recall several results on Pontryagin duality, used in the subsequent work.
We refer to [7] for more details.

The Pontryagin dual �̂p of the compact group �p is the discrete group
⊕

(m,n)∈Z2 Fp,
which is isomorphic to the additive group of the ring of Laurent polynomials R =
Fp[X±1, Y±1

]. The dual endomorphisms of the downward and the leftward shifts on
FZ2

p are multiplication by X and multiplication by Y , respectively, in R. For f ∈ R,
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An almost mixing of all orders property of algebraic dynamical systems 7

we denote by χ f the corresponding element in �̂p. To simplify the notation, we write
U (m,n)

= XmY n . If f =
∑

w αwU w, then χ f (ν)= e(2π i/p)
∑

w αwνw . The exponential is
well defined since

∑
w αwνw is an element of Fp = Z/pZ.

PROPOSITION 3.1. A Markov subgroup 2 of �p is the annihilator {ν ∈�p | χ f (ν)= 1,
f ∈ I } of an ideal I of R, and vice versa. The dual 2̂ of 2 is isomorphic to the quotient
ring R/I .

For the proof, we just need to note that an additive subgroup of R forms an ideal
if and only if it is invariant under multiplication by X±1 and by Y±1. Note that the
correspondence between Markov subgroups and ideals is bijective and reverses inclusions.

Let f =
∑

wi
αwi U

wi ∈ R as before. Note that the annihilator of the principal ideal
〈 f 〉 is the principal Markov subgroup 9 defined by (1). The group 9 is denoted by 9 f .
For example, if 1= 1+ X + Y , the group 91 is Ledrappier’s subgroup L. Since R is a
Noetherian ring, every ideal is finitely generated. Note also that 9 f ⊆9g if and only if
〈g〉 ⊆ 〈 f 〉, i.e., f divides g. It follows that the principal Markov subgroup 9 f is minimal
if and only if f ∈ R is irreducible. This implies the following proposition.

PROPOSITION 3.2. Every Markov subgroup is an intersection of finitely many principal
Markov subgroups. Every principal Markov subgroup contains finitely many, but at least
one, minimal principal Markov subgroups.

Example 3.3. Consider the non-principal Markov subgroup {ν ∈�p | νw = νw+(1,0) =

νw+(0,1), w ∈ Z2
}. This is the group of constant elements in �p and its dual is

R/〈1− x, 1− y〉 ∼= Fp. On the other hand, the non-principal Markov subgroup

{ν ∈�2 | νw + νw+(1,0) + νw+(0,2) + νw+(1,1)

= νw + νw+(0,1) + νw+(2,0) + νw+(1,1) = 0, w ∈ Z2
},

is annihilated by the ideal 〈1+ x+ y2
+ xy, 1+ y+ x2

+ xy〉 = 〈1+ x, 1+ y〉〈1+ x+ y〉.
It follows that this group contains Ledrappier’s subgroup L as a finite index subgroup.
More precisely, 9/L has two elements, with the non-trivial class represented by the
element µ ∈�2 having each coordinate equal to one.

PROPOSITION 3.4. The ring R/I is infinite if and only if I is contained in some principal
ideal 〈 f 〉 6= R. Equivalently, a Markov subgroup is infinite if and only if it contains a
principal Markov subgroup.

Proof. Assume first that I ⊆ 〈 f 〉 for some f . Without loss of generality, we may assume
that f depends non-trivially on Y , i.e., it is not of the form Y r s(X) for a Laurent
polynomial s in X . Then f cannot divide a Laurent polynomial in X . It follows that if
x is the image of X in R/〈 f 〉, then its powers 1, x, x2, . . . are all different, so that R/I is
infinite.

On the other hand, if I is not contained in any principal ideal, it must contain elements
g1, . . . , gN with no common divisor. Let R′ = Fp[X, Y ]. Multiplying by powers of X
and Y , if needed, we may assume that g1, . . . , gN belong to R′ and are relatively prime
as elements of R′. Since Fp[X ] is a unique factorization domain, Gauss’s lemma applies.
It follows that g1, . . . , gN do not have common factors in R′′ = Fp(X)[Y ]. Since R′′
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8 L. Arenas-Carmona et al

is a principal ideal domain, there exist a1, . . . , aN ∈ R′′ such that a1g1 + · · · + aN gN

= 1. Note that ai ∈ R′′ means that ai is a polynomial on Y whose coefficients are rational
functions on X , i.e.,

ai =
hi,0(X)
ki,0(X)

+
hi,1(X)
ki,1(X)

Y + · · · +
hi,d(X)
ki,d(X)

Y d ,

and hence we can define bi = ai k(X), where k(X)=
∏

i, j ki, j (X), and obtain b1, . . . ,

bN ∈ R′ such that b1g1 + · · · + bN gN = k(X) is a polynomial in X , which belongs to the
ideal I , and therefore its image in R/I vanishes. It follows that the image x of X in R/I
satisfies a non-trivial polynomial equation k(x)= 0, and hence x is algebraic over Fp.
By the same token, the image y of Y is algebraic and therefore the ring Fp[x±1, y±1

] ⊆

Fp(x, y) is finite. �

Remark 3.5. A well-known fact in algebraic geometry is that ideals in Fp[X, Y ], generated
by relatively prime polynomials g1, . . . , gN as above, are precisely the ideals with
a finite number of zeros over the algebraic closure Fp. This is a consequence of
Hilbert’s Nullstellensatz (cf. [4]). Examples of such ideals for p = 2 are 〈1+ x, 1+ y〉,
〈1+ x4, 1+ y4, (1+ x)(1+ y)〉 and 〈1+ xy, 1+ x + y〉. The first two have (1, 1) as
their only zero, while the third is the ideal of polynomials vanishing on the Galois orbit of
the pair (α, α + 1) for any generator of F4 as an extension of F2.

If f is the greatest common divisor of the elements of I , then the set J = {g∈R |g f ∈ I }
is also an ideal. Furthermore, I = f J , and the greatest common divisor of the elements of
J is one. It follows that 〈 f 〉/I ∼= R/J is finite. We obtain the following corollary.

COROLLARY 3.6. Let I be the annihilator of a Markov subgroup 2. If f is the greatest
common divisor of the elements of I , then the quotient group 2/9 f is finite.

Next we give an algebraic characterization of mixing r -sequences that will be useful in
the proof of Theorem 2.4. Denote by uw the image of U w in R/I .

PROPOSITION 3.7. Let I be the annihilator of the Markov subgroup 2. The r-sequence
(B(t))t∈N, where B(t)= (w1(t), . . . , wr (t)), is mixing for 2̃ if and only if, for every
P1, . . . , Pr ∈ R/I , not all zero, the equation

r∑
i=1

uwi (t)Pi = 0 (4)

has only finitely many solutions t ∈ N.

Proof. Recall that
∫
2

1 dµ2 = 1 and
∫
2
χ dµ2 = 0 for every non-trivial character χ ∈ 2̂.

Assume that (4) has infinitely many solutions. Passing to a subsequence, we may assume
it is identically zero, so we can take the corresponding character and integrate to obtain∫

2

( r∏
i=1

χPi ◦ Swi (t)
)

dµ2 =
∫
2

1 dµ2 = 1,

while, on the other hand,
∏r

i=1
∫
2
χPi dµ2 = 0, since at least one factor vanishes. The

same argument proves that (2) goes to the right limit whenever f1, . . . , fr are characters.
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An almost mixing of all orders property of algebraic dynamical systems 9

Since linear combinations of characters are dense in the space C(2) of continuous
functions with the uniform topology, (2) holds actually for continuous functions. Now the
property can be extended to L∞(2, B2, µ2) since a measurable function coincides with
a continuous function having the same bound, in the complement of a set of an arbitrarily
small measure, by the general form of Lusin’s theorem. �

Example 3.8. In the ring R/〈1〉, x2t
+ y2t

+ 1= 0 for all t . This proves that, for
Ledrappier’s subgroup L=91, the system L̃ is not 3-mixing. Note that this was, in fact,
the first example of a Z2-action that was 2-mixing but not 3-mixing.

Example 3.9. Similarly to the preceding example, if g = x6
+ x5 y + x3 y2

+ y + y3, the
system 9̃g is 4-mixing but not 5-mixing. This is due to the fact that the convex hull of
S(g) is a pentagon. In fact, in [3] it is proved that, when I = 〈g〉, any spreading sequence
of solutions of (4) has a convex hull with a side that is asymptotically parallel to each side
of S(g).

Example 3.10. Assume that f is supported on a line L . By a translation, we may assume
that 0= (0, 0) ∈ S( f ) and that all other points in S( f ) are on the same side of the origin.
In particular, L is a 1-dimensional subspace. Then f is a polynomial on U w, where w
is a generator of L ∩ Z2, and therefore it divides U nw

− 1 for some positive integer n.
It follows that B(t)= (0, pt nw) is not mixing for 9̃ f . On the other hand, if S( f ) is not
contained in a line, its convex hull has two non-parallel sides and 9̃ f must be 2-mixing by
the results in [3] quoted above.

PROPOSITION 3.11. An r-sequence (B(t))t∈N is mixing for 9̃ f if and only if it is mixing
for 9̃ fi for every irreducible divisor fi of f .

Proof. Let B(t)= (w1(t), . . . , wr (t)) and let I = 〈 f 〉. Assume that there exist
P1, . . . , Pn , not all zero, in R/I , such that (4) holds for infinitely many t . By passing
to a subsequence, we may assume that it holds for all t . Let Q1, . . . , Qn be their pre-
images in R. It follows that f divides

∑r
j=1 U w j (t)Q j for all t , but f does not divide all

of Q1, . . . , Qn . Let g be the greatest common divisor of f, Q1, . . . , Qn , and let fi be an
irreducible divisor of f g−1. Then fi cannot divide all of g−1 Q1, . . . , g−1 Qn , but it does
divide

∑r
j=1 U w j (t)g−1 Q j . It follows that (B(t)) is not mixing for 9̃ fi . In the converse

direction, if fi divides
∑r

j=1 U w j (t)S j for all t , but it does not divide all of S1, . . . , Sn ,
then f divides

∑r
j=1 U w j (t)( f f −1

i )S j , but not all of ( f f −1
i )S1, . . . , ( f f −1

i )Sn . �

Example 3.12. The system 9̃ f is 2-mixing if and only if no divisor of f is supported on a
line.

PROPOSITION 3.13. The system 2̃ is ergodic if and only if 2 is a principal Markov
subgroup.

Proof. If f is the greatest common divisor of the elements of I , where2 is the annihilator
of I , then 9 f is a closed invariant subgroup. Furthermore, the quotient 2/9 f is finite by
Corollary 3.6, and hence 9 f is open in 2 and therefore of positive measure. Hence, if 2̃
is ergodic, then 2=9 f . On the other hand, if 2=9 f , we can choose w ∈ Z2, which is
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10 L. Arenas-Carmona et al

FIGURE 1. The support of an element f in good position.

not a multiple of another element of Z2, such that no irreducible divisor of f is a Laurent
polynomial in U w alone. Then the 2-sequence (B(t))t∈N, where B(t)= (0, tw), is mixing
by the results of [3], and therefore 2̃ is ergodic. �

We assume that 9 =9 f is a minimal Markov subgroup of �p in all that follows.

Definition 3.14. A spreading r -sequence (A(t))t∈N, where A(t)= (w1(t), . . . , wr (t))
is exceptional for 9 (or f ) if there exist elements P1, . . . , Pr ∈ R/I such that (4) is
satisfied for every t . If (A(t))t∈N is an exceptional (respectively, mixing) r -sequence, then,
for every permutation σ of {1, . . . , r}, the r -sequence {σ [A(t)]}t∈N, where σ [A(t)] =
(wσ(1)(t), . . . , wσ(r)(t)), is exceptional (respectively, mixing). Hence, for a fixed t , we
can identify A(t) with a set of r points in Z2.

4. Algebraic form of the main result
Definition 4.1. Let f =

∑
w awU w

∈ R. The support of f is given by S( f )= {w ∈ Z2
|

aw 6= 0}. An element f ∈ R is in good position if no point of S( f ) is to the left of the
Y -axis and there are at least two points of S( f ) on the Y -axis (see Figure 1).

We denote by D(N )
p the set of positive integers whose base p expansion has at most N

non-zero digits. The proofs of Theorem 2.4 and Theorem 2.7 are based on the following
result, which will be proved in §10.

THEOREM 4.2. Assume that f is in good position and that S( f ) is not contained in the Y -
axis. Let h be as in (3). Then there exists a constant C = C f such that, for every exceptional
r-sequence (A(t))t∈N, where

A(t)= ((m1(t), n1(t)), . . . , (mr (t), nr (t))), (5)

there exist 1≤ i < j ≤ r and a subsequence (tk) such that the sequence (|mi (tk)−
m j (tk)|)∞k=1 tends to∞ and remains close to the set of differences of C D(h)

p = {Cd | d ∈
D(h)

p }.

Let A be the affine group of the plane, i.e., the group of all maps g : R2
→ R2 of the

form g(x)= Ax+ w, where w is a vector and A an invertible matrix, and let G = {g ∈ A |
g(Z2)= Z2

}. The action of G on Z2 defines an action f 7→ g f on R, given by

g

(∑
w∈Z2

awU w
)
=

∑
w∈Z2

awU g(w).
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An almost mixing of all orders property of algebraic dynamical systems 11

Note that S(g f )= g(S( f )). If A(t) is an exceptional r -sequence for f , then g(A(t)) is an
exceptional r -sequence for g f . For every polynomial f with support of size at least two,
there exists an element g in G such that g f is in good position. As g(w1)− g(w2) depends
linearly on w1 − w2, Theorem 4.2 has the following corollary.

COROLLARY 4.3. Let f be an irreducible element of R, whose support is not contained in
a line, and let h be as in (3). Then there exist an effective non-zero linear map V : Z2

→ Z
and a constant C = C f , such that, for every exceptional r-sequence A(t) for f , there exist
a subsequence (tk) and indices 1≤ i < j ≤ r such that the sequence

(|V (wi (tk)− w j (tk))|)∞k=1 (6)

tends to∞ and remains close to the set of differences of C D(h)
p .

In terms of mixing sequences, the previous corollary implies the following one.

COROLLARY 4.4. Let f be an irreducible element of R, whose support is not contained
in a line, and let h be as in (3). Then there exist an effective non-zero linear map V : Z2

→

Z and a constant C such that, if B(t)= (w1(t), . . . , wr (t)) is a spreading r-sequence
satisfying that

for every subsequence (tk) and indices 1≤ i < j ≤ r , such that the sequence
(6) tends to∞, the sequence (6) gets away from the set of differences of C D(h)

p ,

then B(t) is mixing for 9̃ f .

For every Laurent polynomial f (X, Y )= α1 Xm1 Y n1 + · · · + αr Xmr Y nr , the relation
f (x, y)pt

= 0 in R/〈 f 〉 produces an exceptional r -sequence

A f (t)= ((m1 pt , n1 pt ), . . . , (mk pt , nk pt ))

for f . Sequence (6) in this case is (cptk )∞k=1 for some constant c. It follows from [8,
Theorem 5] that cptk gets away from the set of differences of C D(N )

p′ , for any constant C ,
whenever p′ is a prime different from p. It follows that Markov subgroups of �p cannot
be isomorphic as dynamical systems to Markov subgroups of�q ′ = GF(q ′)Z

2
, where q ′ is

a power of p′.

5. Absolute values
In this section, we present a short review of some definitions and results on local fields
and non-Archimedean valuations that will be used in the subsequent work. For a more
extensive account of the subject, see, for example, [2].

Let K be a field. A non-Archimedean absolute value on K is a homomorphism x 7→ |x |
from the multiplicative group K ∗ of K into the multiplicative group R+ of positive reals,
satisfying the inequality |a + b| ≤max{|a|, |b|} for a, b ∈ K ∗. By convention, we set
|0| = 0. An absolute value defines a metric, given by d(a, b)= |a − b| for a, b ∈ K . The
addition, multiplication and absolute value on K extend to the completion K̄ of K , so
that K̄ is also a field with a non-Archimedean absolute value. A series

∑
∞

i=0 ai over K̄
converges if and only if ai −→i→∞ 0, and an infinite product

∏
∞

i=0 bi of non-zero terms
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12 L. Arenas-Carmona et al

converges to some non-zero limit if and only if bi −→i→∞ 1. The field Q of rational
numbers admits a non-Archimedean absolute value | · |p for every prime p. The absolute
value is defined by |pn(a/b)|p = p−n for every integer n, a, b with (a, p)= (b, p)= 1.
The completion ofQ with respect to this absolute value is the fieldQp of p-adic numbers.
Similarly, for an arbitrary field F , the field of rational functions F(X) admits a non-
Archimedean absolute value | · |0, defined by |Xn( f/g)|0 = 2−n for polynomials f and
g, not divisible by X . The completion of F(X) with respect to this absolute value is the
field F((X)) of formal Laurent series.

Given a field K with a non-Archimedean absolute value, the set OK = {x ∈ K | |x | ≤ 1}
is the ring of integers of K , and mK = {x ∈ K | |x |< 1} is the maximal ideal. The group of
units of OK is O∗K = {x ∈ K | |x | = 1}. If K is the field F((X)) with absolute value | · |0,
then OK is the ring F[[X ]] of Taylor series. Units in F[[X ]] are series with non-vanishing
constant term. In particular, every element of F((X)) has the form Xnv(X), where n is an
integer and v(X) is a unit in F[[X ]]. If K = F(X) with the same absolute value | · |0, then
OK is the set of rational functions f/g such that g is not divisible by X . If K =Qp with
the absolute value | · |p, the ring OK is the ring of p-adic integers, denoted by Zp.

Denote by OK ((X))⊂ K ((X)) the ring of Laurent series with integral coefficients.
If f (X)=

∑
n≥N an Xn

∈OK ((X)) and z ∈mK is not zero, then the series f (z)=∑
n≥N anzn converges in K̄ . The mapping φz :OK ((X))→ K̄ , defined by φz[ f (X)] =

f (z), is a ring homomorphism. Now assume that a field F is contained in OK . This holds
if and only if |a| = 1 for every non-zero element a in F . Let ηz : F((X))→ K̄ be the
restriction of φz . Since F((X)) is a field, then ηz must be injective, i.e., K̄ contains a copy
of F((X)). Furthermore, ηz maps the ring of Taylor series F[[X ]] into OK , and therefore
it also maps units into units. Hence, if a Laurent series f (X) has the form X tv(X), where
v(X) is a unit, then | f (z)| = |z|t , i.e.,

log|z| | f (z)| = log|X |0 | f (X)|0. (7)

PROPOSITION 5.1. Let f ∈ R be irreducible and in good position, and K be the quotient
field of the integral domain R/〈 f 〉. Then there exists an absolute value | · | on K , such that
|x |< 1 and |y| = 1, where x and y are the images of X and Y in K .

Proof. If f is in good position, then no negative power of X appears in f . Multiplying f
by a power of the unit Y , if needed, we may assume that (0, 0) is the lowest point of S( f )
on the y-axis, i.e., f has a non-zero constant coefficient. Define Z by X = ZY s , and write
g(Z , Y )= f (ZY s, Y ). It is not hard to see that S(g) is the image of S( f ) under the linear
transformation with matrix

(
1 0
s 1

)
. In particular, it is also in good position. For s sufficiently

large, S(g) has no point below the X -axis, i.e., g is a polynomial in Z and Y . Note that
g also has a non-zero constant coefficient, since (0, 0) ∈ S(g). The polynomial g has a
decomposition g(Z , Y )= a(Z)

∏d
i=1(1− ηi Y ), such that the following hold.

(1) The ηi are the roots of the polynomial g̃(Z , Y )= Y d g(Z , Y−1), considered as a
polynomial in Y , in some finite extension L of F((Z)). Equivalently, the η−1

i are the
roots of g(Z , Y ).
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An almost mixing of all orders property of algebraic dynamical systems 13

(2) The polynomial a(Z) has a non-zero constant term, and therefore is a unit as an
element of the ring F[[Z ]] of integers of F((Z)). In particular, the polynomial
a(Z)−1g̃(Z , Y )=

∏
i (Y − ηi ) is a monic polynomial with coefficients in F[[Z ]],

so that the ηi are integral over F[[Z ]].
Note that L has a unique absolute value that extends the absolute value of F((Z)) [2,
p. 114]. Since the ηi are integral over F[[Z ]], if | · | is the absolute value on L , then
|ηi | ≤ 1. Now set

g(Z , Y )= a(Z)+ s1(Z)Y + s2(Z)Y 2
+ · · · + sd(Z)Y d . (8)

Recall that g is in good position, and hence g(0, Y ) is not a constant. It follows that at least
one si (0) does not vanish, and therefore si (Z) is a unit in F[[Z ]] ⊆OL . Since si (Z)=
(−1)i a(Z)σi (η1, . . . , ηd), where σi is the i th elementary symmetric function, at least one
of the ηi must be a unit. Now observe that K can be embedded into L by sending x to
Zη−s

i and y to η−1
i , since f (Zη−s

i , η−1
i )= g(Z , η−1

i )= 0. The required absolute value is
the pre-image under this map of the absolute value of L . �

6. Independence of p-adic powers
In this section, we study some independence properties of p-adic powers of 1+ X over
a field F . From now on, F is any field of characteristic p. Most of the results here are
probably known, but we present them in full for the convenience of the reader.

Any element d ∈ Zp has a unique p-adic expansion of the form

d =
∞∑

i=0

ai (d)pi , 0≤ ai (d)≤ p − 1.

For d ∈ Zp, we define the p-adic power (1+ X)d ∈ F[[X ]] by the formula

(1+ X)d =
∞∏

i=0

(1+ X pi
)ai (d). (9)

Note that this definition coincides with the usual when d ∈ N. Furthermore, the congruence
d ≡ d ′(mod pn) implies that (1+ X)d ≡ (1+ X)d

′

(mod X pn
). It follows that the function

d 7→ (1+ X)d is continuous. Therefore, all usual properties of exponents in N extend to
Zp.

LEMMA 6.1. For all d, e ∈ Zp with |d − e|p = p−t , |(1+ X)d − (1+ X)e|0 = |X |
pt

0 .

Proof. Since (1+ X)d − (1+ X)e = (1+ X)e[(1+ X)d−e
− 1], we may assume that

e = 0. If |d|p = p−t , then the p-adic expansion of d is at (d)pt
+ at+1(d)pt+1

+ · · · . It
follows that (1+ X)d ≡ (1+ X pt

)at (d) ≡ 1+ at (d)X pt
+ · · · (mod X pt+1

), and the result
follows. �

Define a partial order on Zp as follows. If d, d ′ ∈ Zp, with expansions d =∑
∞

i=0 ai (d)pi and d ′ =
∑
∞

i=0 ai (d ′)pi , then d � d ′ if ai (d)≤ ai (d ′) for all i .
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14 L. Arenas-Carmona et al

LEMMA 6.2.

(1+ X)d =
∑
d0∈N
d0�d

[ ∞∏
i=0

(
ai (d)
ai (d0)

)]
Xd0 .

Proof. Since, for a positive integer a, (1+ X pt
)a =

∑a
b=0

(a
b

)
Xbpt

, the result follows
immediately from (9). Note that the product is finite since d0 ∈ N, so that almost all
coefficients ai (d0) are zero. �

The lemma assumes a simpler form in the case p = 2. In fact, since any element of Z2

is of the form dT =
∑

i∈T 2i for a unique subset T of N, we obtain the following lemma.

LEMMA 6.3. If dT ∈ Z2, then (1+ X)dT =
∑

T0
XdT0 , where T0 runs over all finite subsets

of T .

Now we prove a few results on the algebra of p-adic powers that will be useful in the
subsequent work.

LEMMA 6.4. Let γi ∈ F and ei ∈ Zp for 1≤ i ≤ N, with ei 6= e j for i 6= j . If

N∑
i=1

(1+ X)ei γi = 0, (10)

then γi = 0 for all i = 1, . . . , N.

Proof. Without loss of generality, assume that e1 is maximal with respect to�, i.e., e1 � ei

for i ≥ 2. For every 2≤ i ≤ N , there exists an mi ∈ N such that ami (e1) > ami (ei ). Let
D =

∑
i ami (e1)pmi , so that D � e1, but D � ei for i 6= 1. Note that D ∈ N, since the sum

is finite. It follows from Lemma 6.2 that the integral power x D appears in the expression
of the p-adic power (1+ X)e1 , but not in any of the others. Therefore, the left-hand side
of (10) does not vanish. �

Let Ealg denote the algebraic closure of the field E . Lemma 6.4, applied to Falg, yields
the following corollary.

COROLLARY 6.5. Distinct p-adic powers of 1+ X are linearly independent over Falg.

Here we have a few more consequences of Lemma 6.4.

COROLLARY 6.6. If (1+ X)d1 , . . . , (1+ X)dk are linearly dependent over Falg(X), then
there exist 1≤ i < j ≤ k such that di − d j ∈ Z.

COROLLARY 6.7. If (1+ X)d ∈ Falg(X) is a rational function, then d ∈ Z.

COROLLARY 6.8. If d1, . . . , dk are linearly independent over Q, then (1+ X)d1 , . . . ,

(1+ X)dk are algebraically independent over Falg.

LEMMA 6.9. If E/K is a finite extension and T1, . . . , Tn are algebraically independent
over K , then they are algebraically independent over E.
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An almost mixing of all orders property of algebraic dynamical systems 15

Proof. If T1, . . . , Tn satisfy the polynomial f (Y1, . . . , Yn), with coefficients in E , and
if N is the norm from E(Y1, . . . , Yn) to K (Y1, . . . , Yn), then g = N ( f ) is a non-zero
polynomial with coefficients in K , and it is divisible by f . Hence g(T1, . . . , Tn)= 0. �

PROPOSITION 6.10. Let
k∑

j=1

α j (1+ X)d j = 0, d1, . . . , dk ∈Qp,

be a vanishing linear combination with α j ∈ F(X)alg. Put [i] = { j | di − d j ∈Q} for 1≤
i ≤ k. Then ∑

j∈[i]

α j (1+ X)d j = 0, 1≤ i ≤ k.

Proof. Let 1/N , b1, . . . , bt be a basis of the Z-submodule of Qp generated by
1, d1, . . . , dk . For j = 1, . . . , k, write

d j = n0, j/N +
t∑

i=1

ni, j bi .

For j 6= j ′, the classes [ j] and [ j ′] coincide if and only if the vectors (n1, j , . . . , nt, j ) and
(n1, j ′ , . . . , nt, j ′) are equal. Let j1, . . . , jM be a set of representatives of the equivalence
classes [ j]. Let f ∈ F(X)alg

[Y1, . . . , Yt ] be the polynomial defined by

f (Y1, . . . , Yt )=

M∑
l=1

(∑
j∈[ jl ]

α j (1+ X)n0, j /N
) t∏

i=1

Y
ni, jl
i .

Note that all monomials on the right-hand side are distinct. Then

f ((1+ X)b1 , . . . , (1+ X)bt )=
∑

j

α j (1+ X)d j = 0.

The coefficients of f are contained in some finite extension E of Falg(X). By Corollary
6.8, the powers (1+ X)b1 , . . . , (1+ X)bt are algebraically independent over Falg(X).
By the preceding lemma, they are also algebraically independent over E . This proves the
proposition. �

COROLLARY 6.11. If (1+ X)d1 , . . . , (1+ X)dk are linearly dependent over F(X)alg,
then di − d j ∈Q for some 1≤ i < j ≤ k.

COROLLARY 6.12. If (1+ X)d1 , . . . , (1+ X)dk are linearly dependent over an algebraic
extension K/Falg(X) that contains no roots of (1+ X), then di − d j ∈ Z for some 1≤ i <
j ≤ k.

Proof. By Proposition 6.10, we reduce the problem to the case where d1, . . . , dk ∈Q.
Raising to some power of p, if needed, we may assume that d1, . . . , dk ∈Q ∩ Zp, i.e.,
they have denominators relatively prime to p. Let N be relatively prime to p and divisible
by the denominators of d1, . . . , dn . It suffices to show that 1, (1+ X)1/N , . . . , (1+
X)(N−1)/N are linearly independent over K . Equivalently, we need to prove that the
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16 L. Arenas-Carmona et al

degree of the extension K ([1+ X ]1/N )/K is N . Let f (t)= t N
− (1+ X) be the minimal

polynomial of (1+ X)1/N over Falg(X), and let g(t) be the minimal polynomial of
(1+ X)1/N over K . Note that, over the algebraic closure F(X)alg,

f (t)=
N∏

i=1

(t − λi (1+ X)1/N ).

Since g divides f and it is monic, it must be a sub-product of the above, and hence g(0)=
λ(1+ X)M/N

∈ K , where λ ∈ Falg is a root of unity and M is the degree of g. Since K
contains λ, then it contains also

(1+ X)m/N
= ((1+ X)M/N )r (1+ X)s,

where m = r M + s N is the greatest common divisor between M and N , which is a root
of 1+ X , since N/m is an integer. We conclude that m = N , and therefore M = N . �

7. Mixing at polynomial times
From now on, we assume that 9 =9 f is a minimal Markov subgroup of �, as defined
in the introduction. We let K be the quotient field of the integral domain R/〈 f 〉 as in §5.
We assume throughout that f is in good position. Note that this implies that f depends
non-trivially on Y , and hence x /∈ Falg

p .
Let K be the completion of K with respect to the absolute value given by Proposition

5.1. Since K is a finite extension of Fp(x) (which is isomorphic to the field Fp(X) of
rational functions), K is a finite extension of Fp((x)) (which is isomorphic to the field
Fp((X)) of Laurent series). Let O be the ring of integers of K and let m be its maximal
ideal. Note that O is the completion of the ring R/〈 f 〉, while m is the completion of the
maximal ideal associated to the absolute value. The field O/m is a finite extension of
the field Fp = Fp[[x]]/xFp[[x]]. In particular, every non-zero element in O/m is a root of
unity. By Hensel’s lemma (cf. [2, p. 49]), there is a root of unity λ ∈ K such that y ≡ λ (m).
Notice that F= Fp(λ) is a finite field.

LEMMA 7.1. Assume that 9 =9 f , defined as above, is 2-mixing. Then there exists an
element z ∈ F(x, y)⊆ K such that y = λ(1+ z)τ with τ ∈ N maximal. If 9 is not 2-
mixing, y is a root of unity.

Proof. Let λ be as above. If y = λ, then y is algebraic over Fp. This may happen only if f
is independent of x , and is therefore supported on the vertical axis. In this case, f divides a
polynomial of the form 1− yn , so that 9 =9 f is not 2-mixing. If this is not the case, the
element y/λ ∈ F(x, y) is transcendental over F, while x is algebraic over F(y). It follows
that the extension F(x, y)/F(y) is finite. Since the degree of the extension F( n

√
y/λ)/F(y)

is n, there must exist a largest value n = τ of n for which n
√

y/λ is contained in F(x, y).
Set z = τ

√
y/λ− 1. �

From now on, we let z be as above, with the convention that z = 0 if 9 is not 2-
mixing. Note that, being a root of unity, λ has only finitely many distinct powers. Taking a
subsequence and redefining Pi , equation (4) takes the form

r∑
i=1

Pi xmi (t)(1+ z)τni (t) = 0. (11)
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An almost mixing of all orders property of algebraic dynamical systems 17

To illustrate our method, we prove the following result.

PROPOSITION 7.2. Assume that 9̃ is 2-mixing. Let B(t)= (w1(t), . . . , wr (t)) be
an r-sequence in (Z2)r , where wi (t)= (mi (t), ni (t)) for i = 1, . . . , r . Let N (t)=
(n1(t), . . . , nr (t)) ∈ Zr

p, and assume, for every accumulation point N = (n1, . . . , nr ) of
(N (t)), that τ(ni − n j ) /∈ Z for 1≤ i < j ≤ r . Then B(t) has no exceptional subsequence.

Proof. It suffices to prove that, for any P1, . . . , Pr ∈ R/I , not all zero, equation (11) has
only finitely many solutions in m. Without loss of generality, we may assume that none of
the Pi is zero.

Passing to a subsequence and reordering the sub-indices, we may assume that m1(t)≤
· · · ≤ mr (t) for all t . Dividing by xm1(t), we may assume that m1(t)= 0. Comparing
absolute values, we see that at least m2(t) must remain bounded. Passing again to a
subsequence, we may assume that all mi (t) are either constant or go to∞. Assume that
mi (t)= mi is constant for i = 1, . . . , s, and mi (t)→∞ for i = s + 1, . . . , r , for some
fixed s ∈ {2, 3, . . . , r}. Since Zr

p is compact, we may assume, by taking a subsequence,
that N (t)−→t→∞ N for some N = (n1, . . . , nr ) ∈ Zr

p.
Passing to the limit in (11), we obtain

s∑
i=1

xmi (1+ z)τni Pi = 0.

By the condition on N , the powers (1+ z)τni are linearly independent over F(y, x). It
follows that we must have xmi Pi = 0 for i = 1, . . . , s and, in particular, P1 = 0, which is
a contradiction. �

The following result concerns the case r = 3. Assume, as before, that 9̃ is 2-mixing.
It follows from [3, Proposition 3.5] that, if A(t)= (0, w1(t), w2(t)), with ni (t)≥ 0, is an
exceptional r -sequence, then the convex hull of S( f ) is a triangle. If f is in good position,
the vertices of this triangle are, up to translation, (0, 0), (0, a) and (b, c). Employing again
[3, Proposition 3.5], after permuting w1 and w2, if necessary,

w1(t)= k(t)(0, a)+ e1(t), w2(t)= k(t)(b, c)+ e2(t),

where ei (t) is bounded. Let ν : K
∗
→ R be defined by ν(u)= logδ(|u|) for some fixed

δ < 1. One normally chooses δ so that ν(K ∗)= Z, but we make no use of this here. Recall
that | · |p is the standard absolute value on Qp.

PROPOSITION 7.3. Let9 =9 f be as above. If A(t)= (0, w1(t), w2(t)) is an exceptional
r-sequence as above, then k(t)= pl(t)T + ε(t), where T is a constant depending only on
f and ε(t) is bounded.

Proof. By splitting the r -sequence into subsequences, we may assume that e1 and e2 are
constants. Replacing Pi by uei Pi , we may assume that e1 = e2 = (0, 0). In particular,
m1(t)= 0. Note that the formula for w2(t) given above implies that m2(t)→∞.
Furthermore, splitting into subsequences, we may assume, as before, that the root of unity
λn1(t) = λβ is a constant. Letting t→∞ in the equation

P0 + yn1(t)P1 + xm2(t)yn2(t)P2 = 0, (12)
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18 L. Arenas-Carmona et al

we see that λβ(1+ z)τn
=−P0/P1 for every accumulation point n of n1(t) in Zp. By

Corollary 6.12, the power τn must be an integer. Therefore (12) becomes

λβ P1(−(1+ z)τn
+ (1+ z)τn1(t))+ xm2(t)yn2(t)P2 = 0.

Comparing valuations, we get ν(P1)+ ν(z)pl(t)
= m2(t)ν(x)+ ν(P2), where l(t) is

defined by |τ(n − n1(t))|p = p−l(t) (see Lemma 6.1). Since m2(t)= bk(t), the result
follows. �

Note that, with a little more work, one can obtain the formulas T = ν(z)/bν(x) and
ε(t)= ν(P1/P2)/bν(x)+ π1[e1(t)− e2(t)]/b, where π1(m, n)= m. In the course of the
above proof, we have seen that P0/P1 is the product of a root of unity and a fractional
power of y. Using the action of G on R as in §1, we can obtain similar results for P0/P2.
This shows, in an alternative way, that we are in the exceptional case of [9, Theorem 2].

8. 8-series
Let χ be the standard valuation on the field F2[[X ]], i.e., χ( f (X))= log|X |0 | f (X)|0.
Recall that ν( f (z))= χ( f (X))ν(z) for every power series f (X) ∈ Fp[[X ]] and every
non-zero element z ∈m. A 8-series of size k is a power series of the form

φ(X)= α1(1+ X)b1 + · · · + αk(1+ X)bk , (13)

where α1, . . . , αk are in F∗p and b1, . . . , bk are distinct elements in Zp. Clearly, if φ(X)
is a 8-series of size k, then so is (1+ X)dφ(X) for every d ∈ Zp. Furthermore, if φ is a
8-series of size k and φ′ is a 8-series of size k′, then φ + φ′ is a 8-series of size at most
k + k′. If α1 + · · · + αk 6= 0 in (13), the power series φ(X) is a unit, i.e., its valuation χ(φ)
is zero. Otherwise, it has a valuation χ(φ) > 0. We prove now that the valuation χ(φ) has
a simple p-adic expansion. For p = 2, we have a small bound.

LEMMA 8.1. If p = 2 and φ is a 8-series of size k, then χ(φ) belongs to the set D(k−1)
p .

Proof. Recall that every d ∈ Z2 may be written in the form dT =
∑

k∈T 2k for a unique
T ⊆ N. Let b1, . . . , bk be as in (13) and set bi = dTi . Notice that α1 = · · · = αk = 1. Since
the coefficient of Xχ(φ) in φ does not vanish, if

χ(φ)=

N∑
i=1

2ki = dT , T = {k1, . . . , kN },

then the set T must be contained in Ti for an odd number of values of i . Now assume that
N > k − 1. For each i such that T 6⊆ Ti , choose an element of T which does not belong to
Ti . The set S, consisting of all these elements, is of size at most k − 1, and is also contained
in Ti for an odd number of values of i . It follows that the coefficient of XdS in φ does not
vanish. However, dS < dT = χ(φ), which is a contradiction. �

Now we prove a result of this type for general p.

LEMMA 8.2. If φ is a 8-series of size k, then the valuation χ(φ) is in D(h)
p , where h =

h(k)= (p − 1)pk+1
+ k.
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An almost mixing of all orders property of algebraic dynamical systems 19

Proof. The coefficient of Xd in the power series expansion of φ(X) defined by (13) is
1(d)=

∑
d�b j

α jδ(b j , d), where δ(b, d)=
∏
∞

i=0
(ai (b)

ai (d)

)
(see Lemma 6.2). The factors(ai (b j )

ai (d)

)
, for different values of j , depend only on the (k + 1)-tuple

[ai (b1), . . . , ai (bk), ai (d)].

Let d be such that 1(d) 6= 0, and put T (d)= {i | ai (d) 6= 0}. Assume that T (d) has
more than h(k) elements. We claim that there exists a d ′ 6= d satisfying the following
conditions.
(1) d ′ � d and, in particular, d ′ < d.
(2) d � b j if and only if d ′ � b j for all j = 1, . . . , k.
(3) δ(b j , d)= δ(b j , d ′) for all j = 1, . . . , k.
If we prove this claim, it will follow that 1(d)=1(d ′) and, in particular, d 6= χ(φ).

Let A = { j | d � b j }. For any j /∈ A, find an i = i( j) ∈ N such that ai (b j ) < ai (d).
Let T0 = {i( j) | j /∈ A}. Clearly, T0 ⊆ T (d) and T (d)− T0 has more than h − k =
(p − 1)pk+1 elements. By the pigeonhole principle, there exist i1, . . . , i p in T (d)− T0

such that ai1(b j )= · · · = ai p (b j ) for all j , and also ai1(d)= · · · = ai p (d). By Fermat’s
little theorem, m p

≡ m(p) for any integer m, and therefore

p∏
l=1

(
ail (b j )

ail (d)

)
=

(
ai1(b j )

ai1(d)

)
as an element of Z/pZ. The element d ′ = d −

∑p
l=2 ail (d)p

il satisfies ai (d ′)= 0 if
i ∈ {i2, . . . , i p} and ai (d ′)= ai (d) otherwise. Conditions 1–3 follow. �

LEMMA 8.3. Define a sequence of 8-series by

φ(t)(X)= α1(1+ X)b1(t) + · · · + αk(1+ X)bk (t). (14)

Assume that bi (t)−→t→∞ b ∈ Zp for i = 1, . . . , k. If ψ(t)= χ(φ(t)) and λ(t) is the
coefficient of Xψ(t) in φ(t)(X), then λ(t)−1 X−ψ(t)φ(t)(X)−→t→∞ (1+ X)b.

Proof. Factoring out (1+ X)b, if needed, we may assume that b = 0. Let β(t) be such
that |bi (t)| ≤ p−β(t) for all i and β(t)−→t→∞∞. Then we may write bi (t)= pβ(t)ρi (t)
for some ρi (t) ∈ Zp, and hence we obtain (1+ X)bi (t) = (1+ X pβ(t))ρi (t), and therefore
φ(t)(X) is a power series in X pβ(t) . The result follows. �

9. Main lemmas
Throughout this section, A(t)= (w1(t), . . . , wr (t)), where wi (t)= (mi (t), ni (t)),
denotes an r -sequence. We assume that A(t) satisfies (11), but not necessarily that it
spreads. We let 9 =9 f be a minimal Markov subgroup, as before, and assume that 9̃
is 2-mixing, so that z, defined as in Lemma 7.1, is non-zero.

Definition 9.1. A(t) is reduced if it satisfies the following conditions.
• A(t) is convergent in Zp.
• For any i, j , each coordinate of (wi (t)− w j (t)) is either constant or tends either to
+∞ or to −∞.
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20 L. Arenas-Carmona et al

Since Zp is compact, every r -sequence A(t) has a reduced subsequence. If A(t) is
reduced, the expression Mi (t)= xmi (t)(1+ z)τni (t)Pi is a monomial. Two monomials
Mi (t) and M j (t) are at the same level if the sequence ν(Mi (t))− ν(M j (t)) is bounded†.
The monomial Mi (t) is at the highest level if the difference ν(Mi (t))− ν(M j (t)) is
bounded from above for all monomials M j (t). If the two monomials Mi (t) and M j (t)
are at the same level, then they are in the same component if τ(ni − n j ) ∈ Z, where
ni = limt→∞ ni (t) and n j = limt→∞ n j (t).

Definition 9.2. The reduced sequence A(t) satisfies condition A if:
(1) for any two monomials Mi (t) and M j (t) at the same level, mi (t)= m j (t); and
(2 for any two monomials Mi (t) and M j (t) in the same component, ni = n j .

Monomials Mi (t) and M j (t) remain close if they are in the same component and
ni (t)− n j (t) is bounded. The relation of remaining close is an equivalence relation for any
reduced r -sequence. The corresponding equivalence classes are C-classes. Two monomials
Mi and M j in the same component are 8-equivalent if the coefficients Pi and Pj are
linearly dependent over Fp. The corresponding equivalence classes are 8-classes.

Definition 9.3. The reduced sequence A(t) satisfies condition B if:
• for any two monomials Mi (t) and M j (t) that remain close, ni (t)= n j (t) for all t ; and
• no two monomials that remain close are 8-equivalent.

Assume that A(t) satisfies conditions A and B. A8-term is the sum of all monomials in
a 8-class. Note that a 8-term may be written in the form Ti (t)= xmi (t)φ

(t)
i (z)P1, where

φ
(t)
i (X) is a sequence of non-zero 8-series satisfying the hypothesis of Lemma 8.3. Note

that all monomials in a 8-class are at the same level and component. The definitions of
levels and components for 8-terms are similar to those for monomials. Note, however,
that two8-terms made of monomials at the same level need not themselves be at the same
level.

LEMMA 9.4. Let h = k − 1 if p = 2, and let h = (p − 1)pk+1
+ k otherwise. Let A(t) be

a reduced r-sequence of solutions of (11), satisfying conditions A and B. If every 8-term
has at most k monomials, and ν(x)(mi (t)− m j (t)) is far from the set of differences of
ν(z)D(h)

p whenever mi (t) 6= m j (t), then, for any two 8-terms Ti (t) and T j (t) at the same
level, mi (t)= m j (t) and χ(φ(t)i )= χ(φ

(t)
j ) for sufficiently large t.

Proof. By Lemma 8.1 or 8.2, the valuation χ(φ(t)i ) is in D(h)
p . Now, the condition on

mi (t)− m j (t) implies that the levels, for 8-terms made of monomials at different levels,
must be different themselves. For the last statement, observe that if mi (t)= m j (t), then
χ(φ

(t)
i )− χ(φ

(t)
j ) is bounded. As in the proof of Lemma 8.3, each 8-series φ(t)i may be

written as the product of a unit (1+ X)bi and a power series in X pβi (t) for increasing values
of βi (t). It follows that φ(t)i /φ

(t)
j is, up to a unit, a power series in X pβ(t) for increasing

values of β(t)=min{βi (t), β j (t)}, and therefore χ(φ(t)i )− χ(φ
(t)
j ) must be eventually

zero. �

† This is equivalent to the condition that mi (t)− m j (t) is bounded; we formulated it in this way to keep the
analogy with the definition of levels and components for 8-terms that follows.
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An almost mixing of all orders property of algebraic dynamical systems 21

Note that the previous result states that 8-terms in the same component are sums of
monomials in the same component.

LEMMA 9.5. Under the same conditions as the preceding lemma, if Ti1(t), . . . , Tis (t) are
all the8-terms in one component of the highest level, then every element of {Pi1 , . . . , Pis }

is a linear combination of the others with coefficients in Fp.

Proof. By the preceding lemma, all the series φ(t)i1
, . . . , φ

(t)
is

have eventually the same
valuations, say, ψ(t). It follows from Lemma 8.3 that there exist non-zero constants
λ1, . . . , λs ∈ Fp and a subsequence (tk) such that z−ψ(tk )φ(tk )i (z)−→t→∞ λl(1+ z)τni

for l = 1, . . . , s. Also, mil (tk)= m(tk) is independent of l. Hence, dividing by xm(tk )zψ(tk )

and passing to the limit, ∑
i

λi (1+ z)τni Pi = 0,

where the sum runs over all indices i such that the 8-term Ti (t) is at the highest level.
Note that all 8-terms that are not in the highest level have zero contribution to this limit,
by definition. By the linear independence, the sum vanishes also for every component, but
condition A implies that ni is constant on every component. �

LEMMA 9.6. Let A(t) be a reduced r-sequence of solutions of (11), satisfying conditions
A and B. Assume that there are at most k C-classes in every component. Let h be as in
Lemma 9.4. If ν(x)(mi (t)− m j (t)) is far from the set of differences of ν(z)D(h)

p whenever
mi (t) 6= m j (t), then the sum of the monomials in every C-class is identically zero.

Proof. Without loss of generality, we assume that Pj 6= 0 for each j . Let {T j (t) | j ∈ C} be
a component of8-terms at the highest level. Lemma 9.5 gives us

∑
j∈C λ j Pj = 0. Fix i ∈

C. If there are no other elements in C, then Pi = 0, contrary to the assumption. Otherwise,
we may set Pi =

∑
j∈C\{i}(λ jλ

−1
i )Pj and replace every monomial with the factor Pi by a

sum of monomials with the factors Pj for j 6= i . If we produce two monomials of the form
αM(t) and βM(t), where α and β are in Fp, we replace them by (α + β)M(t), unless
α + β = 0, in which case we delete them. Note that:
• this procedure preserves condition A;
• no two new monomials can be both in the same 8-class and in the same C-class, since

conditions A and B for the original monomials imply that two such new monomials
would be of the form αM(t) and βM(t), and would have, therefore, been reduced; in
particular, the procedure preserves condition B;

• since one monomial is replaced by a sum of monomials in the same C-class, it does
not increase the number of C-classes, and the sum of all the monomials in every fixed
C-class does not change; and

• the procedure may increase the number of monomials, but it decreases the number of
8-terms.

If we iterate this procedure until we have no more 8-terms, all monomials have been
deleted, and therefore the sum of every C-class must have been zero to begin with. �

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/etds.2017.60
Downloaded from https://www.cambridge.org/core. Cambridge University Press, on 13 Sep 2017 at 20:07:25, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/etds.2017.60
https://www.cambridge.org/core


22 L. Arenas-Carmona et al

10. Conclusion of the proofs
Proof of Theorem 4.2. Set y = λ(1+ z)τ as in Lemma 7.1. Note that z 6= 0, since f is not
supported on a line. The constant in the theorem is C f = ν(z)/ν(x). Assume that we have
a spreading r -sequence A(t) of solutions of (4), where each difference of corresponding
coordinates is either bounded or far from C f D(h)

p .
By taking a subsequence so that λni (t) is constant, and modifying Pi , if needed, we may

assume that λ= 1, and thus we obtain a solution of (11). By taking a subsequence, we
may assume that it is reduced. Taking a subsequence and redefining Pi , mi (t) and ni (t),
we may assume that condition A is satisfied. Since no two different monomials remain
close, condition B is vacuously satisfied (either before or after assuming condition A). It
follows that Lemma 9.6 applies. Again, since no two different monomials remain close,
every C-class contains a unique monomial by definition. This implies that the monomials
are zero. This contradiction shows that the sequence A(t) cannot exist. �

Proof of Theorem 2.4. Let 9 =9 f be a minimal principal Markov subgroup of �p, and
assume that ψ̃ is 2-mixing. Then f is not supported in a line by Example 3.10. By applying
an automorphism of Z2, we may assume that f is in good position and, in this case, we
may choose V as the projection on the first coordinate.

Take an exceptional (and therefore spreading) sequence A(t) as in (5). Passing to a
subsequence, if needed, by Theorem 4.2 there exist two indices 1≤ i < j ≤ r such that
(|mi (t)− m j (t)|) tends to ∞ and remains close to the set D′ of differences of C f D(h)

p .
The set D′ is (2h)-logish, and hence, for every ε > 0, there is a (2h + ε)-logish shell Dε
for D′. It follows that V−1(Dε) is a trap for 9̃. �

Proof of Theorem 2.7. Let 9 be a principal Markov subgroup of �p, and assume that 9̃
is 2-mixing. Then the same is true for every minimal principal Markov subgroup 9 f of
9, by Theorem 3.11. We can, therefore, apply Theorem 2.4 to each of these minimal
principal Markov subgroups. Furthermore, if A f is a trap for 9̃ f , then the union

⋃
f A f

over all such f , which is a finite union, is a trap for 9̃, again by Theorem 3.11. The result
follows. �

Proof of Theorem 2.10. Let 9 be a principal Markov subgroup of �p, and assume that 9̃
is 2-mixing, as before. Note that we may assume that9 is minimal, since a union of logish
sets is logish. Let V : Z2

→ Z be the linear map in Corollary 4.4. By the condition that 9̃
is 2-mixing, we have different choices for V , so we may always assume that the image of
B is not contained in a line V = c.

It suffices to prove that A may be chosen so that, for every sequence (tk)k∈N satisfying
tk /∈ A for all k, the following condition holds. If i and j are different elements of
{1, . . . , r} such that, for i 6= j , the expression |V (mi (tk), ni (tk))− V (mi (tk), ni (tk))|
is unbounded, then it stays away from C f D(h)

p . Note that f (t)= V (mi (t), ni (t))−
V (mi (t), ni (t)) is a non-constant polynomial in t . In particular, there exists a constant
c such that | f (t)| ≤ c|t |d , where d is the degree of f . Furthermore, every point of Z has
at most d pre-images. Let D = Dε be the (2h + ε)-logish set in Z defined in the proof of
Theorem 2.4. Then

| f −1(D) ∩ CN | ≤ d|D ∩ CcN d | = O[(log cN d)h] = O[(log N )h],
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where CN = {−N ,−N + 1, . . . , N − 1, N }. It follows that the set A = f −1(D) is
logish. The result follows. �
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